I
 ON THE HOCHSCHILD COHOMOLOGY RING OF THE QUATERNION GROUP OF ORDER EIGHT IN CHARACTERISTIC TWO

ALEXANDER IVANOV, SERGEI O. IVANOV, YURY VOLKOV, AND GUODONG ZHOU

Abstract

Let k be an algebraically closed field of characteristic two and let Q_{8} be the quaternion group of order 8. We determine the Gerstenhaber Lie algebra structure and the Batalin-Vilkovisky structure on the Hochschild cohomology ring of the group algebra $k Q_{8}$.

Introduction

Let A be an associative algebra over a field k. The Hochschild cohomology $H H^{*}(A)$ of A has a very rich structure. It is a graded commutative algebra via the cup product or the Yoneda product, and it has a graded Lie bracket of degree -1 so that it becomes a graded Lie algebra; these make $H H^{*}(A)$ a Gerstenhaber algebra (5).

During several decades, a new structure in Hochschild theory has been extensively studied in topology and mathematical physics, and recently this was introduced into algebra, the so-called Batalin-Vilkovisky structure. Roughly speaking a Batalin-Vilkovisky (aka. BV) structure is an operator on Hochschild cohomology which squares to zero and which, together with the cup product, can express the Lie bracket. A BV structure exists only on Hochschild cohomology of certain special classes of algebras. T. Tradler first found that the Hochschild cohomology algebra of a finite dimensional symmetric algebra, such as a group algebra of a finite group, is a BV algebra [19]; for later proofs, see e.g. [3, 17].

One of the value of BV structure is that it gives a method to compute the Gerstenhaber Lie bracket which is usually out of reach in practice. This paper deals with a concrete example. Let k be an algebraically closed field of characteristic two and let Q_{8} be the quaternion group of order 8. In this paper, we compute explicitly the Gerstenhaber Lie algebra structure and the Batalin-Vilkovisky structure on the Hochschild cohomology ring of the group algebra $k Q_{8}$. The Hochschild cohomology ring of $k Q_{8}$ was calculated by A. I. Generalov in [4] using a minimal projective bimodule resolution of $k Q_{8}$. Since the Gerstenhaber Lie bracket is defined using the bar resolution, one needs to find the comparison morphisms between the (normalized) bar resolution and the resolution of Generalov. To this end, we use an effective method employing the notion of weak self-homotopy, recently popularized by J. Le and the fourth author ([1]).

1. Hochschild (co) homology

The cohomology theory of associative algebras was introduced by Hochschild ([8). The Hochschild cohomology ring of a k-algebra is a Gerstenhaber algebra, which was first discovered by Gerstenhaber in [5]. Let us recall his construction here. Given a k-algebra A, its Hochschild cohomology

[^0]groups are defined as $H H^{n}(A) \cong \operatorname{Ext}_{A^{e}}^{n}(A, A)$ for $n \geq 0$, where $A^{e}=A \otimes A^{\text {op }}$ is the enveloping algebra of A. There is a projective resolution of A as an A^{e}-module
$$
\operatorname{Bar}_{*}(A): \cdots \rightarrow A^{\otimes(r+2)} \xrightarrow{d_{r}} A^{\otimes(r+1)} \rightarrow \cdots \rightarrow A^{\otimes 3} \xrightarrow{d_{1}} A^{\otimes 2}\left(\xrightarrow{d_{0}=\mu} A\right),
$$
where $\operatorname{Bar}_{r}(A):=A^{\otimes(r+2)}$ for $r \geq 0$, the map $\mu: A \otimes A \rightarrow A$ is the multiplication of A, and d_{r} is defined by
$$
d_{r}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{r+1}\right)=\sum_{i=0}^{r}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i-1} \otimes a_{i} a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_{r+1}
$$
for all $a_{0}, \cdots, a_{r+1} \in A$. This is usually called the (unnormalized) bar resolution of A. The normalized version $\overline{\operatorname{Bar}}_{*}(A)$ is given by $\overline{\operatorname{Bar}}_{r}(A)=A \otimes \bar{A}^{\otimes r} \otimes A$, where $\bar{A}=A /\left(k \cdot 1_{A}\right)$, and with the induced differential from that of $\operatorname{Bar}_{*}(A)$.

The complex which is used to compute the Hochschild cohomology is $C^{*}(A)=\operatorname{Hom}_{A^{e}}\left(\operatorname{Bar}_{*}(A), A\right)$. Note that for each $r \geq 0, C^{r}(A)=\operatorname{Hom}_{A^{e}}\left(A^{\otimes(r+2)}, A\right) \cong \operatorname{Hom}_{k}\left(A^{\otimes r}, A\right)$. If $f \in C^{r}(A)$, then the expression $f(a)$ makes sense for $a \in A^{\otimes(r+2)}$ and $a \in A^{\otimes r}$ simultaneously. We identify $C^{0}(A)$ with A. Thus $C^{*}(A)$ has the following form:

$$
C^{*}(A): A \xrightarrow{\delta^{0}} \operatorname{Hom}_{k}(A, A) \rightarrow \cdots \rightarrow \operatorname{Hom}_{k}\left(A^{\otimes r}, A\right) \xrightarrow{\delta^{r}} \operatorname{Hom}_{k}\left(A^{\otimes(r+1)}, A\right) \rightarrow \cdots .
$$

Given f in $\operatorname{Hom}_{k}\left(A^{\otimes r}, A\right)$, the map $\delta^{r}(f)$ is defined by sending $a_{1} \otimes \cdots \otimes a_{r+1}$ to
$a_{1} \cdot f\left(a_{2} \otimes \cdots \otimes a_{r+1}\right)+\sum_{i=1}^{r}(-1)^{i} f\left(a_{1} \otimes \cdots \otimes a_{i-1} \otimes a_{i} a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_{r+1}\right)+(-1)^{r+1} f\left(a_{1} \otimes \cdots \otimes a_{r}\right) \cdot a_{r+1}$.
There is also a normalized version $\bar{C}^{*}(A)=\operatorname{Hom}_{A^{e}}\left(\overline{\operatorname{Bar}}_{*}(A), A\right) \cong \operatorname{Hom}_{k}\left(\bar{A}^{\otimes *}, A\right)$.
The cup product $\alpha \smile \beta \in C^{n+m}(A)=\operatorname{Hom}_{k}\left(A^{\otimes(n+m)}, A\right)$ for $\alpha \in C^{n}(A)$ and $\beta \in C^{m}(A)$ is given by

$$
(\alpha \smile \beta)\left(a_{1} \otimes \cdots \otimes a_{n+m}\right):=\alpha\left(a_{1} \otimes \cdots \otimes a_{n}\right) \cdot \beta\left(a_{n+1} \otimes \cdots \otimes a_{n+m}\right) .
$$

This cup product induces a well-defined product in Hochschild cohomology

$$
\smile: H H^{n}(A) \times H H^{m}(A) \longrightarrow H H^{n+m}(A)
$$

which turns the graded k-vector space $H H^{*}(A)=\bigoplus_{n \geq 0} H H^{n}(A)$ into a graded commutative algebra ([5, Corollary 1]).

The Lie bracket is defined as follows. Let $\alpha \in C^{n}(A)$ and $\beta \in C^{m}(A)$. If $n, m \geq 1$, then for $1 \leq i \leq n$, set $\alpha \circ_{i} \beta \in C^{n+m-1}(A)$ by
$\left(\alpha \circ_{i} \beta\right)\left(a_{1} \otimes \cdots \otimes a_{n+m-1}\right):=\alpha\left(a_{1} \otimes \cdots \otimes a_{i-1} \otimes \beta\left(a_{i} \otimes \cdots \otimes a_{i+m-1}\right) \otimes a_{i+m} \otimes \cdots \otimes a_{n+m-1}\right) ;$ if $n \geq 1$ and $m=0$, then $\beta \in A$ and for $1 \leq i \leq n$, set

$$
\left(\alpha \circ_{i} \beta\right)\left(a_{1} \otimes \cdots \otimes a_{n-1}\right):=\alpha\left(a_{1} \otimes \cdots \otimes a_{i-1} \otimes \beta \otimes a_{i} \otimes \cdots \otimes a_{n-1}\right)
$$

for any other case, set $\alpha \circ_{i} \beta$ to be zero. Now define

$$
\alpha \circ \beta:=\sum_{i=1}^{n}(-1)^{(m-1)(i-1)} \alpha \circ_{i} \beta
$$

and

$$
[\alpha, \beta]:=\alpha \circ \beta-(-1)^{(n-1)(m-1)} \beta \circ \alpha .
$$

Note that $[\alpha, \beta] \in C^{n+m-1}(A)$. The above [,] induces a well-defined Lie bracket in Hochschild cohomology

$$
[,]: H H^{n}(A) \times H H^{m}(A) \longrightarrow H H^{n+m-1}(A)
$$

such that $\left(H H^{*}(A), \smile,[],\right)$ is a Gerstenhaber algebra ([5]).
The complex used to compute the Hochschild homology $H H_{*}(A)$ is $C_{*}(A)=A \otimes_{A^{e}} \operatorname{Bar}_{*}(A)$. Notice that $C_{r}(A)=A \otimes_{A^{e}} A^{\otimes(r+2)} \simeq A^{\otimes(r+1)}$ and the differential $\partial_{r}: C_{r}(A)=A^{\otimes(r+1)} \rightarrow$
$C_{r-1}(A)=A^{\otimes r}$ sends $a_{0} \otimes \cdots \otimes a_{r}$ to $\sum_{i=0}^{r-1}(-1)^{i} a_{0} \otimes \cdots \otimes a_{i-1} \otimes a_{i} a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_{r}+$ $(-1)^{r} a_{r} a_{0} \otimes a_{1} \otimes \cdots \otimes a_{r-1}$.

There is a Connes' \mathfrak{B}-operator in the Hochschild homology theory which is defined as follows. For $a_{0} \otimes \cdots \otimes a_{r} \in C_{r}(A)$, let $\mathfrak{B}\left(a_{0} \otimes \cdots \otimes a_{r}\right) \in C_{r+1}(A)$ be
$\sum_{i=0}^{r}(-1)^{i r} 1 \otimes a_{i} \otimes \cdots \otimes a_{r} \otimes a_{0} \otimes \cdots \otimes a_{i-1}+\sum_{i=0}^{r}(-1)^{i r} a_{i} \otimes 1 \otimes a_{i+1} \otimes \cdots \otimes a_{r} \otimes a_{0} \otimes \cdots \otimes a_{i-1}$.
It is easy to check that \mathfrak{B} is a chain map satisfying $\mathfrak{B} \circ \mathfrak{B}=0$, which induces an operator $\mathfrak{B}: H H_{r}(A) \rightarrow H H_{r+1}(A)$.

All the above constructions, the cup product, the Lie bracket, the Connes' \mathfrak{B}-operator, carry over to normalized complexes.

Definition 1.1. A Batalin-Vilkovisky algebra ($B V$ algebra for short) is a Gerstenhaber algebra $\left(A^{\bullet}, \smile,[],\right)$ together with an operator $\Delta: A^{\bullet} \rightarrow A^{\bullet-1}$ of degree -1 such that $\Delta \circ \Delta=0$ and

$$
[a, b]=-(-1)^{(|a|-1)|b|}\left(\Delta(a \smile b)-\Delta(a) \smile b-(-1)^{|a|} a \smile \Delta(b)\right)
$$

for homogeneous elements $a, b \in A^{\bullet}$.
Tradler noticed that the Hochschild cohomology algebra of a symmetric algebra is a BV algebra [19], see also [17, 3]. For a symmetric algebra A, he showed that the Δ-operator on the Hochschild cohomology corresponds to the Connes' \mathfrak{B}-operator on the Hochschild homology via the duality between the Hochschild cohomology and the Hochschild homology.

Recall that a finite dimensional k-algebra A is called symmetric if A is isomorphic to its dual $D A=\operatorname{Hom}_{k}(A, k)$ as A^{e}-module, or equivalently, if there exists a symmetric associative nondegenerate bilinear form $\langle\rangle:, A \times A \rightarrow k$. This bilinear form induces a duality between the Hochschild cohomology and the homology. In fact,

$$
\begin{aligned}
\operatorname{Hom}_{k}\left(C_{*}(A), k\right) & =\operatorname{Hom}_{k}\left(A \otimes_{A^{e}} \operatorname{Bar}_{*}(A), k\right) \\
& \cong \operatorname{Hom}_{A^{e}}\left(\operatorname{Bar}_{*}(A), \operatorname{Hom}_{k}(A, k)\right) \\
& \cong \operatorname{Hom}_{A^{e}}\left(\operatorname{Bar}_{*}(A), A\right)=C^{*}(A)
\end{aligned}
$$

Via this duality, for $n \geq 1$ we obtain an operator $\Delta: H H^{n}(A) \rightarrow H H^{n-1}(A)$ which is the dual of Connes' operator.

We recall the following theorem by Tradler.
Theorem 1.2. [19, Theorem 1] With the notation above, together with the cup product, the Lie bracket and the Δ-operator defined above, the Hochschild cohomology of A is a $B V$ algebra. More precisely, for $\alpha \in C^{n}(A)=\operatorname{Hom}_{k}\left(A^{\otimes n}, A\right), \Delta(\alpha) \in C^{n-1}(A)=\operatorname{Hom}_{k}\left(A^{\otimes(n-1)}, A\right)$ is given by the equation

$$
\left\langle\Delta(\alpha)\left(a_{1} \otimes \cdots \otimes a_{n-1}\right), a_{n}\right\rangle=\sum_{i=1}^{n}(-1)^{i(n-1)}\left\langle\alpha\left(a_{i} \otimes \cdots \otimes a_{n-1} \otimes a_{n} \otimes a_{1} \otimes \cdots \otimes a_{i-1}\right), 1\right\rangle
$$

for $a_{1}, \cdots, a_{n} \in A$. The same formula holds also for the normalized complex $\bar{C}^{*}(A)$.

2. Constructing Comparison morphisms

Let k be a field and let B be a k-algebra. Given two left B-modules M and N, let P_{*} (resp. Q_{*}) be a projective resolutions of M (resp. N). Then given a homomorphism of B-modules $f: M \rightarrow N$, it is well known that there exists a chain map $f_{*}: P_{*} \rightarrow Q_{*}$ lifting f (and different lifts are equivalent up to homotopy). However, sometimes in practice we need the actual construction of this chain map, called comparison morphism, to perform actual computations. This section presents a method to construct them. The method is not new and it is explained in the book of Mac Lane; see [14, Chapter IX Theorem 6.2].

Our setup is the following. Suppose that

$$
\cdots \longrightarrow P_{n} \xrightarrow{d_{n}^{P}} P_{n-1} \xrightarrow{d_{n-1}^{P}} \cdots \xrightarrow{d_{1}^{P}} P_{0}\left(\xrightarrow{d_{0}^{P}} M \rightarrow 0\right)
$$

is a projective resolution of M. Then for each $n \geq 0$ there are sets $\left\{e_{n, i}\right\}_{i \in X_{n}} \subset P_{n}$ and $\left\{f_{n, i}\right\}_{i \in X_{n}} \subset \operatorname{Hom}_{B}\left(P_{n}, B\right)$ such that $x=\sum_{i \in X_{n}} f_{n, i}(x) e_{n, i}$ for all $x \in P_{n}$. Suppose that the second projective resolution

$$
\cdots \longrightarrow Q_{n} \xrightarrow{d_{n}^{Q}} Q_{n-1} \xrightarrow{d_{n-1}^{Q}} \cdots \xrightarrow{d_{1}^{Q}} Q_{0}\left(\xrightarrow{d_{0}^{Q}} N \rightarrow 0\right)
$$

has a weak self-homotopy in the sense of the following definition.
Definition 2.1. [1] Let

$$
\cdots Q_{n} \xrightarrow{d_{Q}^{Q}} Q_{n-1} \xrightarrow{d_{n-1}^{Q}} \cdots \xrightarrow{d_{2}^{Q}} Q_{1} \xrightarrow{d_{1}^{Q}} Q_{0} \xrightarrow{d_{Q}^{Q}} N \rightarrow 0
$$

be a complex. A weak self-homotopy of this complex is a collection of k-linear maps $t_{n}: Q_{n} \rightarrow Q_{n+1}$ for each $n \geq 0$ and $t_{-1}: M \rightarrow Q_{0}$ such that for $n \geq 0, t_{n-1} d_{n}^{Q}+d_{n+1}^{Q} t_{n}=I d_{Q_{n}}$ and $d_{0}^{Q} t_{-1}=I d_{N}$.

Now we construct a chain map $f_{n}: P_{n} \rightarrow Q_{n}$ for $n \geq 0$ lifting $f_{-1}=f$. We need to specify the value of f_{n} on the elements $e_{n, i}$ for all $i \in X_{n}$.

For $n=0$, define $f_{0}\left(e_{0, i}\right)=t_{-1} f d_{0}^{P}\left(e_{0, i}\right)$. Then $d_{0}^{Q} f_{0}\left(e_{0, i}\right)=d_{0}^{Q} t_{-1} f d_{0}^{P}\left(e_{0, i}\right)=f d_{0}^{P}\left(e_{0, i}\right)$.
Suppose that we have constructed f_{0}, \cdots, f_{n-1} such that for $0 \leq i \leq n-1, d_{i}^{Q} f_{i}=f_{i-1} d_{i}^{P}$. Define $f_{n}\left(e_{n, i}\right)=t_{n-1} f_{n-1} d_{n}^{P}\left(e_{n, i}\right)$. It is easy to check that

$$
d_{n}^{Q} f_{n}\left(e_{n, i}\right)=f_{n-1} d_{n}^{P}\left(e_{n, i}\right)
$$

This proves the following
Proposition 2.2. The maps f_{*} constructed above form a chain map from P_{*} to Q_{*} lifting f : $M \rightarrow N$.

This result reduces the computation of comparison morphisms to the construction of weak self-homotopies. It is easy to see that the complex Q_{*} is exact if and only if there exists a weak self-homotopy of it. In fact, we can obtain more. Denote $Z_{n}=\operatorname{Ker}\left(d_{n}\right)$ for $n \geq 0$ and $Z_{-1}=N$. As vector spaces, one can fix a decomposition of $Q_{n}=Z_{n} \oplus Z_{n-1}$ for $n \geq 0$. Under these identifications, the differential d_{n} is equal to $\left(\begin{array}{cc}0 & I d \\ 0 & 0\end{array}\right): Z_{n} \oplus Z_{n-1} \rightarrow Z_{n-1} \oplus Z_{n-2}$ and we can define $t_{-1}=\binom{0}{I d}: Z_{-1} \rightarrow Z_{0} \oplus Z_{-1}$ and for $n \geq 0, t_{n}: Z_{n} \oplus Z_{n-1} \rightarrow Z_{n+1} \oplus Z_{n}$ to be the map $\left(\begin{array}{cc}0 & 0 \\ I d & 0\end{array}\right)$. Note that our construction has an additional property:
Lemma 2.3. For an exact complex of modules over a k-algebra, one can always find a weak self-homotopy $\left\{t_{i}, i \geq-1\right\}$ such that $t_{i+1} t_{i}=0$ for any $i \geq-1$.

We are interested in computing Hochschild cohomology of algebras. Let A be a k-algebra. In order to compute Hochschild (co)homology of A, one needs a projective resolution of A as a bimodule. Since this resolution splits as complexes of one-sided modules, one can even choose a weak self-homotopy which are right module homomorphisms and which satisfies the additional property in Lemma 2.3.

Now let P_{*} be an A^{e}-projective resolution of A. Denote now $Q_{*}=\operatorname{Bar}_{*}(A)$ (or $Q_{*}=\overline{\operatorname{Bar}}_{*}(A)$). Let us consider the construction of comparison morphisms $\Psi_{*}: Q_{*} \rightarrow P_{*}$ and $\Phi_{*}: P_{*} \rightarrow Q_{*}$.

Suppose now that $Q_{*}=\overline{\operatorname{Bar}}_{*}(A)$. In this case Q_{*} has a weak self-homotopy s_{*} defined by the formula

$$
s_{n}\left(a_{0} \otimes a_{1} \otimes \cdots \otimes a_{n} \otimes 1\right)=1 \otimes a_{0} \otimes \cdots \otimes a_{n} \otimes 1
$$

Note that $s_{n+1} s_{n}=0$ for $n \geq-1$, as we are working with the normalized Bar resolution. Suppose that the homomorphism d_{n}^{P} is defined by the formula

$$
d_{n}^{P}\left(e_{n, i}\right)=\sum_{j \in X_{n-1}} \sum_{p \in T_{n, i, j}} a_{p} e_{n-1, j} b_{p}+\sum_{j \in X_{n-1}} \sum_{q \in T_{n, i, j}^{\prime}} e_{n-1, j} b_{q}^{\prime},
$$

where $a_{p} \in J_{A}$ (here J_{A} is the Jacobson radical of A), $b_{p}, b_{q}^{\prime} \in A, T_{n, i, j}$ and $T_{n, i, j}^{\prime}$ are certain index sets and $e_{n, i}$ as above.
Lemma 2.4. If $\Phi_{*}: P_{*} \rightarrow Q_{*}$ is the chain map constructed using s_{*}, then

$$
\begin{equation*}
\Phi_{n}\left(e_{n, i}\right)=1 \otimes \sum_{j \in X_{n-1}} \sum_{p \in T_{n, i, j}} a_{p} \Phi_{n-1}\left(e_{n-1, j}\right) b_{p} \tag{1}
\end{equation*}
$$

Proof By construction, $\Phi_{n}\left(e_{n, i}\right)=s_{n-1} \Phi_{n-1} d_{n}\left(e_{n, i}\right)$. Note that

$$
\Phi_{n-1}\left(e_{n-1, j}\right)=s_{n-2} \Phi_{n-2} d_{n-1}^{P}\left(e_{n-1, j}\right)
$$

and thus

$$
s_{n-1} \Phi_{n-1}\left(e_{n-1, j} b_{q}^{\prime}\right)=s_{n-1} s_{n-2} \Phi_{n-2} d_{n-1}^{P}\left(e_{n-1, j}\right) b_{q}^{\prime}=0 .
$$

Therefore,

$$
\begin{aligned}
\Phi_{n}\left(e_{n, i}\right) & =s_{n-1} \Phi_{n-1} d_{n}\left(e_{n, i}\right) \\
& =s_{n-1} \Phi_{n-1}\left(\sum_{j \in X_{n-1}} \sum_{p \in T_{n, i, j}} a_{p} e_{n-1, j} b_{p}\right) \\
& =1 \otimes \sum_{j \in X_{n-1}} \sum_{p \in T_{n, i, j}} a_{p} \Phi_{n-1}\left(e_{n-1, j}\right) b_{p} .
\end{aligned}
$$

Let \mathcal{B} be some k-basis of A (or \bar{A} in the case $Q_{*}=\overline{\operatorname{Bar}}_{*}(A)$). Then the set $Y_{n}=\left\{1 \otimes b_{1} \otimes \cdots \otimes\right.$ $\left.b_{n} \otimes 1 \mid b_{1}, \ldots, b_{n} \in \mathcal{B}\right\}$ is a basis for Q_{n} as free A^{e}-module. Suppose that we have constructed a weak self-homotopy t_{*} of P_{*} such that $t_{n+1} t_{n}=0$ and that t_{n} is a homomorphism of right A-modules for all $n \geq-1$.

Lemma 2.5. If $\Psi_{*}: Q_{*} \rightarrow P_{*}$ is the chain map constructed using t_{*}, then

$$
\begin{equation*}
\Psi_{n}\left(1 \otimes a_{1} \otimes \cdots \otimes a_{n} \otimes 1\right)=t_{n-1}\left(a_{1} \Psi_{n-1}\left(1 \otimes a_{2} \otimes \cdots \otimes a_{n} \otimes 1\right)\right) \tag{2}
\end{equation*}
$$

for $n \geq 1$ and $a_{i} \in A(1 \leq i \leq n)$
Proof Denote

$$
y=\sum_{i=1}^{n-1}(-1)^{i} 1 \otimes a_{1} \otimes \ldots a_{i-1} \otimes a_{i} a_{i+1} \otimes a_{i+2} \otimes \cdots \otimes a_{n} \otimes 1+(-1)^{n} 1 \otimes a_{1} \otimes \cdots \otimes a_{n} .
$$

As $t_{n-1} t_{n-2}=0$, we have

$$
\begin{aligned}
& \Psi_{n}\left(1 \otimes a_{1} \otimes \cdots \otimes a_{n} \otimes 1\right) \\
= & t_{n-1} \Psi_{n-1} d_{n}^{Q}\left(1 \otimes a_{1} \otimes \cdots \otimes a_{n} \otimes 1\right)=t_{n-1} \Psi_{n-1}\left(a_{1} \otimes \cdots \otimes a_{n} \otimes 1+y\right) \\
= & t_{n-1}\left(a_{1} \Psi_{n-1}\left(1 \otimes a_{2} \otimes \cdots \otimes a_{n} \otimes 1\right)\right)+t_{n-1} t_{n-2} \Psi_{n-2} d_{n-1}^{Q}(y) \\
= & t_{n-1}\left(a_{1} \Psi_{n-1}\left(1 \otimes a_{2} \otimes \cdots \otimes a_{n} \otimes 1\right)\right) .
\end{aligned}
$$

Let $V=\oplus_{i=1}^{n} k x_{i}$ be a k-vector space with basis $\left\{x_{i}, 1 \leq i \leq n\right\}$. Let $A=T(V) / I=$ $k\left\langle x_{1}, \cdots, x_{n}\right\rangle / I$ be an algebra given by generators and relations. Then the minimal projective bimodule resolution of A begins with

$$
\begin{equation*}
\cdots \rightarrow A \otimes R \otimes A \xrightarrow{d_{2}} A \otimes V \otimes A \xrightarrow{d_{1}} A \otimes A \xrightarrow{d_{0}} A \rightarrow 0, \tag{3}
\end{equation*}
$$

where

- $V=\oplus_{i=1}^{n} k x_{i}, R$ is a k-complement of $J I+I J$ in I (thus R is a set of minimal relations), where J is the ideal of $k\left\langle x_{1}, \cdots, x_{n}\right\rangle$ generated by x_{1}, \cdots, x_{n};
- d_{0} is the multiplication of A;
- d_{1} is induced by $d_{1}\left(1 \otimes x_{i} \otimes 1\right)=x_{i} \otimes 1-1 \otimes x_{i}$ for $1 \leq i \leq n$;
- d_{2} is induced by the restriction to R of the bimodule derivation C : TV $\rightarrow T V \otimes V \otimes$ $T V$ sending a path $x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ (with $\left.1 \leq i_{1}, \cdots, i_{r} \leq n\right)$ to $\sum_{j=1}^{r} x_{i_{1}} \cdots x_{i_{j-1}} \otimes x_{i_{j}} \otimes$ $x_{i_{j+1}} \cdots x_{i_{r}}$.

We shall construct the first three maps of a weak self-homotopy of this projective resolution, which are moreover right module homomorphisms. Let \mathcal{B} be the basis of A formed by monomials in x_{1}, \cdots, x_{n}.

The first two are easy. We define $t_{-1}=1 \otimes 1$ and $t_{0}(b \otimes 1)=\mathrm{C}(b)$ for $b \in \mathrm{~B}$.
For $t_{1}: A \otimes V \otimes A \rightarrow A \otimes R \otimes A$, we first fix a vector space decomposition $T V / I^{2}=A \oplus I / I^{2}$. The space R, identified with $I /(J I+I J)$, generates I / I^{2} considered as A - A-bimodule. For $b \in \mathcal{B}$, consider $b x_{i} \in T V / I^{2}$, then we can write $b x_{i}=\sum_{b^{\prime} \in \mathcal{B}} \lambda_{b^{\prime}} b^{\prime}+\sum_{j} p_{j} r_{j} q_{j}$ with $r_{j} \in R$ via the vector space decomposition $T V / I^{2}=A \oplus I / I^{2}$. We define

$$
t_{1}\left(b \otimes x_{i} \otimes 1\right)=\sum_{j} p_{j} \otimes r_{j} \otimes q_{j} .
$$

Proposition 2.6. The above defined maps t_{-1}, t_{0}, t_{1} form the first three maps of a weak selfhomotopy of the minimal projective bimodule resolution (3).
Proof We have $d_{0} t_{-1}(1)=d_{0}(1 \otimes 1)=1$ and thus $d_{0} t_{-1}=I d$.
For $b=x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}} \in \mathcal{B}, t_{-1} d_{0}(b \otimes 1)=t_{-1}(b)=1 \otimes b$, and

$$
\begin{aligned}
d_{1} t_{0}(b \otimes 1) & =d_{1} \mathrm{C}(b) \\
& =d_{1}\left(\sum_{j=1}^{r} x_{i_{1}} \cdots x_{i_{j-1}} \otimes x_{i_{j}} \otimes x_{i_{j+1}} \cdots x_{i_{r}}\right) \\
& =\sum_{j=1}^{r} x_{i_{1}} \cdots x_{i_{j-1}} x_{i_{j}} \otimes x_{i_{j+1}} \cdots x_{i_{r}}-\sum_{j=1}^{r} x_{i_{1}} \cdots x_{i_{j-1}} \otimes x_{i_{j}} x_{i_{j+1}} \cdots x_{i_{r}} \\
& =b \otimes 1 \otimes 1 \otimes b .
\end{aligned}
$$

Therefore, $\left(d_{1} t_{0}+t_{-1} d_{0}\right)(b \otimes 1)=b \otimes 1-1 \otimes b+1 \otimes b=b \otimes 1$.
Now for $b \in \mathcal{B}$ and $1 \leq i \leq n, t_{0} d_{1}\left(b \otimes x_{i} \otimes 1\right)=t_{0}\left(b x_{i} \otimes 1-b \otimes x_{i}\right)$. Recall that via the decomposition $T V / I^{2}=A \oplus I / I^{2}, b x_{i}=\sum_{b^{\prime} \in \mathcal{B}} \lambda_{b^{\prime}} b^{\prime}+\sum_{j} p_{j} r_{j} q_{j}$, so

$$
t_{0} d_{1}\left(b \otimes x_{i} \otimes 1\right)=t_{0}\left(b x_{i} \otimes 1-b \otimes x_{i}\right)=\sum_{b^{\prime} \in \mathcal{B}} \lambda_{b^{\prime}} \mathrm{C}\left(b^{\prime}\right)-\mathrm{C}(b) x_{i} .
$$

We have also

$$
d_{2} t_{1}\left(b \otimes x_{i} \otimes 1\right)=d_{2}\left(\sum_{j} p_{j} \otimes r_{j} \otimes q_{j}\right)=\sum_{j} p_{j} \mathrm{C}\left(r_{j}\right) q_{j} .
$$

Recall that the bimodule derivation $\mathrm{C}: T V \rightarrow T V \otimes V \otimes T V$ composed with the sujection $T V \otimes V \otimes T V \rightarrow A \otimes V \otimes A$ vanishes on I^{2} and thus induces a well-defined map C:TV/I $I^{2} \rightarrow$ $A \otimes V \otimes A$. Furthermore, C restricted to I / I^{2} is a homomorphism of A - A-bimodules. This shows that $\sum_{j} p_{j} \mathrm{C}\left(r_{j}\right) q_{j}+\sum_{b^{\prime} \in \mathcal{B}} \lambda_{b^{\prime}} \mathrm{C}\left(b^{\prime}\right)=\mathrm{C}\left(b x_{i}\right)$ and since $\mathrm{C}\left(b x_{i}\right)=\mathrm{C}(b) x_{i}+b \otimes x_{i} \otimes 1$, we obtain that $\left(t_{0} d_{1}+d_{2} t_{1}\right)\left(b \otimes x_{i} \otimes 1\right)=b \otimes x_{i} \otimes 1$.

This completes the proof.

3. Weak self-homotopy for $k Q_{8}$

Let k be an algebrically closed field of characteristic two. Let Q_{8} be the quaternion group of order 8 . Denote by $A=k Q_{8}$ its group algebra. It is well known that A is isomorphic to the following bounded quiver algebra $k Q / I$:

$$
{ }^{x} G \bullet D^{y}
$$

with relations

$$
x^{2}+y x y, y^{2}+x y x, x^{4}, y^{4} .
$$

The structure of A can be visualised as follows:

A basis of A is given by $\mathcal{B}=\{1, x, y, x y, y x, x y x, y x y, x y x y\}$. Notice that \mathcal{B} contains a basis of the socle of A.

The group algebra A is a symmetric algebra, with respect to the symmetrising form

$$
\left\langle b_{1}, b_{2}\right\rangle= \begin{cases}1 & \text { if } b_{1} b_{2} \in \operatorname{Soc}(A) \\ 0 & \text { otherwise }\end{cases}
$$

with $b_{1}, b_{2} \in \mathcal{B}$. The correspondance between elements of \mathcal{B} and its dual basis \mathcal{B}^{*} is given by

$$
\begin{array}{ccccccccc}
b \in \mathcal{B} & 1 & x & y & x y & y x & x y x & y x y & x y x y \\
b^{*} \in \mathcal{B}^{*} & x y x y & y x y & x y x & x y & y x & y & x & 1
\end{array}
$$

Since A is an algebra with a DTI-family of relations, there is a minimal projective resolution constructed by the second author in [9. Let us recall the concrete construction of this resolution.

After ([4), there is an exact sequences of bimodules as follows:

$$
(0 \rightarrow A \xrightarrow{\rho}) A \otimes A \xrightarrow{d_{3}} A \otimes k Q_{1}^{*} \otimes A \xrightarrow{d_{2}} A \otimes k Q_{1} \otimes A \xrightarrow{d_{子}} A \otimes A \xrightarrow{d_{0}} A \rightarrow 0
$$

where

- $Q_{1}=\{x, y\}$ and $Q_{1}^{*}=\left\{r_{x}, r_{y}\right\}$ with $r_{x}=x^{2}+y x y$ and $r_{y}=y^{2}+x y x ;$
- the map d_{0} is the multiplication of A;
- $d_{1}(1 \otimes x \otimes 1)=x \otimes 1+1 \otimes x$ and $d_{1}(1 \otimes y \otimes 1)=y \otimes 1+1 \otimes y$;
- $d_{2}\left(1 \otimes r_{x} \otimes 1\right)=1 \otimes x \otimes x+x \otimes x \otimes 1+1 \otimes y \otimes x y+y \otimes x \otimes y+y x \otimes y \otimes 1$ and
$d_{2}\left(1 \otimes r_{y} \otimes 1\right)=1 \otimes y \otimes y+y \otimes y \otimes 1+1 \otimes x \otimes y x+x \otimes y \otimes x+x y \otimes x \otimes 1 ;$
- $d_{3}(1 \otimes 1)=x \otimes r_{x} \otimes 1+1 \otimes r_{x} \otimes x+y \otimes r_{y} \otimes 1+1 \otimes r_{y} \otimes y ;$
- $\rho(1)=\sum_{b \in \mathcal{B}} b^{*} \otimes b$.

Using this exact sequence, one can construct a minimal projective bimodule resolution of A which is periodic of period 4:

- $P_{0}=A \otimes A=P_{3}, P_{1}=A \otimes k Q_{1} \otimes A$ and $P_{2}=A \otimes k Q_{1}^{*} \otimes A ;$
- $P_{4}=P_{0}=A \otimes A$ and $d_{4}=\rho \circ d_{0}: P_{4} \rightarrow P_{3}$;
- for $n \geq 1$ and $i \in\{0,1,2,3\}$, we have $P_{4 n+i}=P_{i}$ and $d_{4 n+i+1}=d_{i+1}$.

We shall establish a weak self-homotopy $\left\{t_{i}: P_{i} \rightarrow P_{i+1} ; t_{-1}: A \rightarrow P_{0}\right\}$ over this periodic resolution which are right module homomorphisms.

The first two are easy which are $t_{-1}=1 \otimes 1$ and $t_{0}(b \otimes 1)=\mathrm{C}(b)$ for $b \in \mathrm{~B}$, where $\mathrm{C}: k Q \rightarrow$ $k Q \otimes k Q_{1} \otimes k Q$ is the bimodule derivation sending a path $\alpha_{1} \cdots \alpha_{n}$ with $\alpha_{1}, \cdots, \alpha_{n} \in Q_{1}$ to $\sum_{i=1}^{n} \alpha_{1} \cdots \alpha_{i-1} \otimes \alpha_{i} \otimes \alpha_{i+1} \cdots \alpha_{n}$.

The map $t_{1}: P_{1} \rightarrow P_{2}$ is given by

$$
\begin{array}{ll}
t_{1}(1 \otimes x \otimes 1) & =0 \\
t_{1}(x \otimes x \otimes 1) & =1 \otimes r_{x} \otimes 1, \\
t_{1}(y \otimes x \otimes 1) & =0, \\
t_{1}(x y \otimes x \otimes 1) & =0, \\
t_{1}(y x \otimes x \otimes 1) & =y \otimes r_{x} \otimes 1+x y \otimes r_{x} \otimes y+1 \otimes r_{y} \otimes x y, \\
t_{1}(x y x \otimes x \otimes 1) & =x y \otimes r_{x} \otimes 1+x \otimes r_{y} \otimes x y \\
t_{1}(y x y \otimes x \otimes 1) & =1 \otimes r_{y} \otimes y+y \otimes r_{y} \otimes 1, \\
t_{1}(x y x y \otimes x \otimes 1) & =1 \otimes r_{x} \otimes y x y-x \otimes r_{x} \otimes x+y x y \otimes r_{x} \otimes 1+y x \otimes r_{y} \otimes x y \\
t_{1}(1 \otimes y \otimes 1) & =0 \\
t_{1}(x \otimes y \otimes 1) & =0 \\
t_{1}(y \otimes y \otimes 1) & =1 \otimes r_{y} \otimes 1, \\
t_{1}(x y \otimes y \otimes 1) & =1 \otimes r_{x} \otimes y x+x \otimes r_{y} \otimes 1+y x \otimes r_{y} \otimes x, \\
t_{1}(y x \otimes y \otimes 1) & =0, \\
t_{1}(x y x \otimes y \otimes 1) & =0, \\
t_{1}(y x y \otimes y \otimes 1) & =y \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes 1, \\
t_{1}(x y x y \otimes y \otimes 1) & =x y \otimes r_{x} \otimes y x+x y x \otimes r_{y} \otimes 1 .
\end{array}
$$

Notice that $t_{1}\left(b_{1} \otimes b_{2} \otimes 1\right)=0$ for $b_{1}, b_{2} \in \mathcal{B}$ with $b_{1} b_{2} \in \mathcal{B}$. This observation will simplify very much some computations.

The map $t_{2}: P_{2} \rightarrow P_{3}$ is given by

$$
\begin{array}{ll}
t_{2}\left(1 \otimes r_{x} \otimes 1\right) & =0 \\
t_{2}\left(x \otimes r_{x} \otimes 1\right) & =1 \otimes 1, \\
t_{2}\left(y \otimes r_{x} \otimes 1\right) & =0, \\
t_{2}\left(x y \otimes r_{x} \otimes 1\right) & =0, \\
t_{2}\left(y x \otimes r_{x} \otimes 1\right) & =y \otimes 1, \\
t_{2}\left(x y x \otimes r_{x} \otimes 1\right) & =x y \otimes 1+x \otimes y, \\
t_{2}\left(y x y \otimes r_{x} \otimes 1\right) & =1 \otimes x, \\
t_{2}\left(x y x y \otimes r_{x} \otimes 1\right) & =1 \otimes y x y+y x y \otimes 1+y \otimes x y+y x \otimes y \\
t_{2}\left(1 \otimes r_{y} \otimes 1\right) & =0 \\
t_{2}\left(x \otimes r_{y} \otimes 1\right) & =0, \\
t_{2}\left(y \otimes r_{y} \otimes 1\right) & =0, \\
t_{2}\left(x y \otimes r_{y} \otimes 1\right) & =x \otimes 1, \\
t_{2}\left(y x \otimes r_{y} \otimes 1\right) & =0, \\
t_{2}\left(x y x \otimes r_{y} \otimes 1\right) & =0, \\
t_{2}\left(y x y \otimes r_{y} \otimes 1\right) & =y \otimes x+y x \otimes 1, \\
t_{2}\left(x y x y \otimes r_{y} \otimes 1\right) & =x \otimes y x+x y \otimes x+x y x \otimes 1 .
\end{array}
$$

We define $\tau: P_{3}=A \otimes A \rightarrow A$ as follows: $\tau(x y x y \otimes 1)=1$ and $\tau(b \otimes 1)=0$ for $b \in \mathcal{B}-\{x y x y\}$. We impose $t_{3}=t_{-1} \circ \tau: P_{3} \rightarrow P_{4}$ and define $t_{4 n+i}=t_{i}$ for $n \geq 0$ and $i \in\{0,1,2,3\}$.
Proposition 3.1. The above defined maps $\left\{t_{i}\right\}_{i \geq-1}$ form a weak self-homotopy over P_{*}.
Proof Since the resolution is periodic of period 4, it suffices to prove that

$$
\begin{cases}d_{0} t_{-1} & =I d, \\ d_{p+1} t_{p}+t_{p-1} d_{p} & =I d, \text { for } 0 \leq p \leq 2 \\ t_{2} d_{3}+\rho \tau & =I d, \\ \tau \rho & =I d\end{cases}
$$

The first two maps t_{-1} and t_{0} are given at the end of Section 2,
The map t_{1} can be computed using the formula given at the end of Section 2. For instance, for $t_{1}(x y x y \otimes x \otimes 1)$, one can write

$$
x y x y x=x r_{x} x+y x y r_{x}+1 r_{x} y x y+y x r_{y} x y+r_{x}^{2} \in T V .
$$

As $r_{x}^{2} \in I^{2}$, we have

$$
t_{1}(x y x y \otimes x \otimes 1)=x \otimes r_{x} \otimes x+y x y \otimes r_{x} \otimes 1+1 \otimes r_{x} \otimes y x y+y x \otimes r_{y} \otimes x y
$$

Another expression is

$$
x y x y x=r_{y} y x+y r_{y} x+y x y r_{x}+y x r_{y} x y+y x x y x x y \in T V,
$$

Notice that $y x x \in I$ and $y x x y x x y \in I^{2}$, which give

$$
t_{1}(x y x y \otimes x \otimes 1)=1 \otimes r_{y} \otimes y x+y \otimes r_{y} \otimes x+y x y \otimes r_{x} \otimes 1+y x \otimes r_{y} \otimes x y
$$

The maps t_{2} and τ are computed by direct inspection. The details are tedious and long, but not difficult.

4. Comparison morphisms for $k Q_{8}$

For an algebra A, denote by $\bar{A}=A /(k \cdot 1)$. The normalized bar resolution is a quotient complex of the usual bar resolution whose p-th term is $B_{p}(A)=A \otimes \bar{A}^{\otimes p} \otimes A$ and whose differential is induced from that of the usual bar resolution. It is easy to see that this complex is well-defined.

Using the method from Section2, one can compute comparison morphsims between the minimal resolution P_{*} and the normalized bar resolution $\operatorname{Bar}_{*}(A)$, denoted by $\Phi_{*}: P_{*} \rightarrow \operatorname{Bar}_{*}(A)$ and $\Psi_{*}: \operatorname{Bar}_{*}(A) \rightarrow P_{*}$.

The chain map $\Phi_{*}: P_{*} \rightarrow B_{*}:=\operatorname{Bar}_{*}(A)$ can be computed by applying Lemma 2.4. Let us give the formulas for Φ_{i} with $i \leq 5$.

- $\Phi_{0}=I d: P_{0}=A \otimes A \rightarrow B_{0}=A \otimes A ;$
- $\Phi_{1}: P_{1}=A \otimes k Q_{1} \otimes A \rightarrow B_{1}=A \otimes \bar{A} \otimes A$ is induced by the inclusion $k Q_{1} \hookrightarrow \bar{A}$;
- $\Phi_{2}: P_{2}=A \otimes k Q_{1}^{*} \otimes A \rightarrow B_{2}=A \otimes \bar{A}^{\otimes 2} \otimes A$ is given by

$$
\Phi_{2}\left(1 \otimes r_{x} \otimes 1\right)=1 \otimes x \otimes x \otimes 1+1 \otimes y \otimes x \otimes y+1 \otimes y x \otimes y \otimes 1
$$

and

$$
\Phi_{2}\left(1 \otimes r_{y} \otimes 1\right)=1 \otimes y \otimes y \otimes 1+1 \otimes x \otimes y \otimes x+1 \otimes x y \otimes x \otimes 1
$$

- $\Phi_{3}: P_{3}=A \otimes A \rightarrow B_{3}=A \otimes \bar{A}^{\otimes 3} \otimes A$ is given by

$$
\begin{aligned}
\Phi_{3}(1 \otimes 1) & =1 \otimes x \otimes x \otimes x \otimes 1+1 \otimes x \otimes y \otimes x \otimes y+1 \otimes x \otimes y x \otimes y \otimes 1 \\
& +1 \otimes y \otimes y \otimes y \otimes 1+1 \otimes y \otimes x \otimes y \otimes x+1 \otimes y \otimes x y \otimes x \otimes 1
\end{aligned}
$$

- $\Phi_{4}: P_{4}=A \otimes A \rightarrow B_{4}=A \otimes \bar{A}^{\otimes 4} \otimes A$ is given by

$$
\Phi_{4}(1 \otimes 1)=\sum_{b \in \mathcal{B} \backslash\{1\}} 1 \otimes b \Phi_{3}(1 \otimes 1) b^{*} ;
$$

- $\Phi_{5}: P_{5}=A \otimes k Q_{1} \otimes A \rightarrow B_{5}=A \otimes \bar{A}^{\otimes 5} \otimes A$ is given by

$$
\Phi_{5}(1 \otimes x \otimes 1)=1 \otimes x \Phi_{4}(1 \otimes 1)
$$

and

$$
\Phi_{5}(1 \otimes y \otimes 1)=1 \otimes y \Phi_{4}(1 \otimes 1) .
$$

The chain map $\Psi_{*}: \operatorname{Bar}_{*}(A) \rightarrow P_{*}$ can be computed by applying the method of Section 2 to t_{*}. But the dimension of $\operatorname{Bar}_{n}(A)$ grows very fast. We have to specify the value of Ψ_{n} on 7^{n} elements to fully describe it. So we give the full description only for Ψ_{0} and Ψ_{1}.

- $\Psi_{0}=I d: B_{0}=A \otimes A \rightarrow P_{0}=A \otimes A ;$
- $\Psi_{1}: B_{1}=A \otimes \bar{A} \otimes A \rightarrow P_{1}=A \otimes k Q_{1} \otimes A$ is given by $\Psi_{1}(1 \otimes b \otimes 1)=\mathrm{C}(b)$ for $b \in \mathcal{B}-\{1\}$.

5. BV-structure on $H H^{*}\left(k Q_{8}\right)$

Generalov proved the following result in [4].
Theorem 5.1. 4, Theorem 1.1, case 1b)] Let k be an algebrically closed field of characteristic two. Let Q_{8} be the quaternion group of order 8 . We have $H^{*}\left(k Q_{8}\right) \simeq k[\mathcal{X}] / I$ where

- $\mathcal{X}=\left\{p_{1}, p_{2}, p_{2}^{\prime}, p_{3}, u_{1}, u_{1}^{\prime}, v_{1}, v_{2}, v_{2}^{\prime}, z\right\}$ with

$$
\left\{\begin{array}{c}
\left|p_{1}\right|=\left|p_{2}\right|=\left|p_{2}^{\prime}\right|=\left|p_{3}\right|=0,\left|u_{1}\right|=\left|u_{1}^{\prime}\right|=1, \\
\left|v_{1}\right|=\left|v_{2}\right|=\left|v_{2}^{\prime}\right|=2,|z|=4
\end{array}\right.
$$

- the ideal I is generated by the following relations
of degree 0

$$
\left\{\begin{array}{c}
p_{1}^{2}, p_{2}^{2},\left(p_{1}^{\prime}\right)^{2}, p_{1} p_{2}, p_{1} p_{2}^{\prime}, p_{2} p_{2}^{\prime} \\
p_{3}^{2}, p_{1} p_{3}, p_{2} p_{3}, p_{2}^{\prime} p_{3}
\end{array}\right.
$$

of degree 1

$$
p_{2} u_{1}-p_{2}^{\prime} u_{1}^{\prime}, p_{2}^{\prime} u_{1}-p_{1} u_{1}^{\prime}, p_{1} u_{1}-p_{2} u_{1}^{\prime}
$$

of degree 2

$$
\left\{\begin{array}{c}
p_{1} v_{1}, p_{2} v_{2}, p_{2}^{\prime} v_{2}^{\prime}, p_{3} v_{1}, p_{3} v_{2}, p_{3} v_{2}^{\prime}, u_{1} u_{1}^{\prime} \\
p_{2} v_{1}-p_{1} v_{2}^{\prime}, p_{2} v_{1}-p_{2}^{\prime} v_{2}, p_{2} v_{1}-p_{3} u_{1}^{2} \\
p_{2}^{\prime} v_{1}-p_{1} v_{2}, p_{2}^{\prime} v_{1}-p_{2} v_{2}^{\prime}, p_{2}^{\prime} v_{1}-p_{3}\left(u_{1}^{\prime}\right)^{2}
\end{array}\right.
$$

of degree 3

$$
u_{1}^{\prime} v_{2}-u_{1} v_{2}^{\prime}, u_{1}^{\prime} v_{1}-u_{1} v_{2}, u_{1} v_{1}-u_{1}^{\prime} v_{2}^{\prime}, u_{1}^{3}-\left(u_{1}^{\prime}\right)^{3}
$$

of degree 4

$$
v_{1}^{2}, v_{2}^{2},\left(v_{2}^{\prime}\right)^{2}, v_{1} v_{2}, v_{1} v_{2}^{\prime}, v_{2} v_{2}^{\prime}
$$

Remark 5.2. Let P be one of the members of the minimal resolution P_{*}. We use the following notion for the elements of $\operatorname{Hom}_{A^{e}}(P, A)$. If $P=A \otimes A$ and $a \in A$, then we denote by a the map which sends $1 \otimes 1$ to a. If $P=A \otimes Q_{1} \otimes A\left(P=A \otimes Q_{1}^{*} \otimes A\right), a, b \in A$, then we denote by (a, b) the the map which sends $1 \otimes x \otimes 1$ and $1 \otimes y \otimes 1\left(1 \otimes r_{x} \otimes 1\right.$ and $\left.1 \otimes r_{y} \otimes 1\right)$ to a and b respectively. Moreover, we use the same notation for the corresponding cohomology classes. It follows from the work [4] that $p_{1}=x y+y x, p_{2}=x y x, p_{2}^{\prime}=y x y, p_{3}=x y x y, u_{1}=(1+x y, x), u_{1}^{\prime}=(y, 1+y x)$, $v_{1}=(y, x), v_{2}=(x, 0), v_{2}^{\prime}=(0, y)$ and $z=1$ in this notation. By [4, Remarks 3.0.3, 3.1.18] we have that

$$
(x y+y x, 0),(0, x y+y x),(x y x, y x y) \in B^{1}(A)
$$

and

$$
(x y+y x, y x y),(x y x, x y+y x),(x y x y, y x y),(x y x, x y x y) \in B^{2}(A) .
$$

We want to compute the Lie bracket and BV structure on $H H^{*}\left(k Q_{8}\right)$. By definition 1.1 and the Poisson rule,

$$
[a \smile b, c]=[a, c] \smile b+(-1)^{|a|(|c|-1)} a \smile[b, c],
$$

we have an equality (in characteristic 2)

$$
\begin{equation*}
\Delta(a b c)=\Delta(a b) c+\Delta(a c) b+\Delta(b c) a+\Delta(a) b c+\Delta(b) a c+\Delta(c) a b \tag{4}
\end{equation*}
$$

So we need to compute $\Delta(x)$ only for $x \in \mathcal{X}$ and $x=a \cup b$ where $a, b \in \mathcal{X}$. Suppose that $a \in H H^{n}\left(k Q_{8}\right)$ is given by a cocycle $f: P_{n} \rightarrow A$, then we compute $\Delta(a)$ using the following formula

$$
\Delta(a)=\Delta\left(f \circ \Psi_{n}\right) \circ \Phi_{n-1} .
$$

It is clear that $\Delta(a)=0$ for $a \in\left\{p_{1}, p_{2}, p_{2}^{\prime}, p_{3}\right\}$ because Δ is a map of degree -1 .
For $b, c \in \mathcal{B}$ we have

$$
\langle b, c\rangle= \begin{cases}1, & \text { if } c=b^{*} \\ 0 & \text { overwise }\end{cases}
$$

Then it follows from Theorem 1.2 that

$$
\Delta(\alpha)\left(a_{1} \otimes \cdots \otimes a_{n-1}\right)=\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\sum_{i=1}^{n}(-1)^{i(n-1)} \alpha\left(a_{i} \otimes \cdots \otimes a_{n-1} \otimes b \otimes a_{1} \otimes \cdots \otimes a_{i-1}\right), 1\right\rangle b^{*}
$$

for $\alpha \in C^{n}(A), a_{1}, \ldots, a_{n-1} \in A$.

Lemma 5.3.

$$
\begin{array}{ll}
\Delta\left(u_{1}\right)=\Delta\left(u_{1}^{\prime}\right)=0, & \Delta\left(p_{1} u_{1}\right)=\Delta\left(p_{3} u_{1}\right)=\Delta\left(p_{2} u_{1}^{\prime}\right)=p_{2}^{\prime} \\
\Delta\left(p_{2} u_{1}\right)=\Delta\left(p_{2}^{\prime} u_{1}^{\prime}\right)=p_{1}, & \Delta\left(p_{2}^{\prime} u_{1}\right)=\Delta\left(p_{1} u_{1}^{\prime}\right)=\Delta\left(p_{3} u_{1}^{\prime}\right)=p_{2}
\end{array}
$$

Proof We have

$$
\begin{aligned}
& p_{1} u_{1}=p_{2} u_{1}^{\prime}=(x y x y, x y x), p_{2} u_{1}=p_{2}^{\prime} u_{1}^{\prime}=(x y x, 0), p_{2}^{\prime} u_{1}=p_{1} u_{1}^{\prime}=(y x y, x y x y), \\
& p_{3} u_{1}=(x y x y, 0), p_{3} u_{1}=(0, x y x y)
\end{aligned}
$$

in $H H^{1}(A)$ (see Remark 5.21).
For $a \in \mathrm{HH}^{1}(A)$ we have

$$
\Delta(a)(1 \otimes 1)=\Delta\left(a \circ \Psi_{1}\right) \Phi_{0}(1 \otimes 1)=\sum_{b \in \mathcal{B} \backslash\{1\}}\langle a(\mathrm{C}(b)), 1\rangle b^{*} .
$$

It is easy to check that

$$
\langle a(\mathrm{C}(b)), 1\rangle= \begin{cases}0, & \text { if } a \in\left\{u_{1}, u_{1}^{\prime}\right\}, b \in \mathcal{B}, \text { or } a \in\left\{p_{1} u_{1}, p_{3} u_{1}\right\}, b \in \mathcal{B} \backslash\{x\}, \\ & \text { or } a=p_{2} u_{1}, b \in \mathcal{B} \backslash\{x y, y x\}, \text { or } a \in\left\{p_{2}^{\prime} u_{1}, p_{3} u_{1}^{\prime}\right\}, b \in \mathcal{B} \backslash\{y\}, \\ 1, & \text { if } a \in\left\{p_{1} u_{1}, p_{3} u_{1}\right\}, b=x, \text { or } a=p_{2} u_{1}, b \in\{x y, y x\}, \\ & \text { or } a \in\left\{p_{2}^{\prime} u_{1}, p_{3} u_{1}^{\prime}\right\}, b=y .\end{cases}
$$

Lemma follows from this formula.

Lemma 5.4.

$$
\Delta(a b)=0 .
$$

for $a \in\left\{v_{1}, v_{2}, v_{2}^{\prime}\right\}, b \in\left\{1, p_{1}, p_{2}, p_{2}^{\prime}, p_{3}\right\}$.
Proof For $a \in \operatorname{HH}^{2}(A)$ we have

$$
\begin{aligned}
& \Delta(a)(1 \otimes x \otimes 1)=\Delta\left(a \circ \Psi_{2}\right) \Phi_{1}(1 \otimes x \otimes 1)=\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{2}\right)(b \otimes x+x \otimes b), 1\right\rangle b^{*}, \\
& \Delta(a)(1 \otimes y \otimes 1)=\Delta\left(a \circ \Psi_{2}\right) \Phi_{1}(1 \otimes y \otimes 1)=\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{2}\right)(b \otimes y+y \otimes b), 1\right\rangle b^{*} .
\end{aligned}
$$

Direct calculations show that

$$
\begin{aligned}
& \Psi_{2}(b \otimes x+x \otimes b)=t_{1}(b \otimes x \otimes 1+x \mathrm{C}(b)) \\
& = \begin{cases}0, & \text { if } b \in\{x, y\}, \\
+1 \otimes r_{x} \otimes y+y \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes 1, & \text { if } b=x y, \\
y \otimes r_{x} \otimes 1+x y \otimes r_{x} \otimes y+1 \otimes r_{y} \otimes x y, & \text { if } b=y x, \\
x y \otimes r_{x} \otimes 1+x \otimes r_{y} \otimes x y+1 \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes x, & \text { if } b=x y x \\
1 \otimes r_{y} \otimes y+y \otimes r_{y} \otimes 1, & \text { if } b=y x y, \\
x \otimes r_{x} \otimes x+y x y \otimes r_{x} \otimes 1, & \text { if } b=x y x y\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{2}(b \otimes y+y \otimes b)=t_{1}(b \otimes y \otimes 1+y \mathrm{C}(b)) \\
& = \begin{cases}0, & \text { if } b \in\{x, y\} \\
1 \otimes r_{x} \otimes y x+x \otimes r_{y} \otimes 1+y x \otimes r_{y} \otimes x, & \text { if } b=x y \\
+1 \otimes r_{y} \otimes x+x y \otimes r_{x} \otimes 1+x \otimes r_{y} \otimes x y, & \text { if } b=y x \\
1 \otimes r_{y} \otimes y+y \otimes r_{y} \otimes 1, & \text { if } b=x y x \\
y \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes 1+1 \otimes r_{y} \otimes x y+x y \otimes r_{x} \otimes y, & \text { if } b=y x y \\
1 \otimes r_{y} \otimes x y x+y \otimes r_{y} \otimes y, & \text { if } b=x y x y\end{cases}
\end{aligned}
$$

It follows from Remark 5.2 and the formulas above that $\Delta\left(v_{1}\right)=\Delta\left(v_{2}\right)=\Delta\left(v_{2}^{\prime}\right)=0$ in $H H^{1}(A)$.
The remaining formulas of lemma can be deduced in the same way. But there is an easier way. By Theorem 5.1 it is enough to prove that $\Delta\left(p_{3} u_{1}^{2}\right)=\Delta\left(p_{3}\left(u_{1}^{\prime}\right)^{2}\right)=0$. And this equalities can be easily deduced from Lemma 5.3 and the formula (4).

Lemma 5.5.

$$
\Delta\left(u_{1} v_{1}\right)=\Delta\left(u_{1}^{\prime} v_{2}^{\prime}\right)=\left(u_{1}^{\prime}\right)^{2}+v_{2}, \Delta\left(u_{1}^{\prime} v_{1}\right)=\Delta\left(u_{1} v_{2}\right)=u_{1}^{2}+v_{2}^{\prime}, \Delta\left(u_{1}^{\prime} v_{2}\right)=\Delta\left(u_{1} v_{2}^{\prime}\right)=v_{1}
$$

in $H H^{2}(A)$.
Proof For $a \in \operatorname{HH}^{3}(A)$ we have

$$
\begin{aligned}
\Delta(a)\left(1 \otimes r_{x} \otimes 1\right) & =\Delta\left(a \circ \Psi_{3}\right) \Phi_{2}\left(1 \otimes r_{x} \otimes 1\right) \\
& =\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes x \otimes x+x \otimes b \otimes x+x \otimes x \otimes b), 1\right\rangle b^{*} \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes y \otimes x+x \otimes b \otimes y+y \otimes x \otimes b), 1\right\rangle b^{*} y \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes y x \otimes y+y \otimes b \otimes y x+y x \otimes y \otimes b), 1\right\rangle b^{*}, \\
\Delta(a)\left(1 \otimes r_{y} \otimes 1\right) & =\Delta\left(a \circ \Psi_{3}\right) \Phi_{2}\left(1 \otimes r_{y} \otimes 1\right) \\
& =\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes y \otimes y+y \otimes b \otimes y+y \otimes y \otimes b), 1\right\rangle b^{*} \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes x \otimes y+y \otimes b \otimes x+x \otimes y \otimes b), 1\right\rangle b^{*} x \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}}\left\langle\left(a \circ \Psi_{3}\right)(b \otimes x y \otimes x+x \otimes b \otimes x y+x y \otimes x \otimes b), 1\right\rangle b^{*} .
\end{aligned}
$$

Direct calculations (see also the proof of Lemma 5.4) show that

$$
\begin{aligned}
& \Psi_{3}(b \otimes x \otimes x+x \otimes b \otimes x+x \otimes x \otimes b)=t_{2}\left(b \otimes r_{x} \otimes 1+x t_{1}(b \otimes x \otimes 1+x \mathrm{C}(b))\right) \\
& = \begin{cases}1 \otimes 1, & \text { if } b=x, \\
0, & \text { if } b=y, \\
1 \otimes y, & \text { if } b=x y, \\
y \otimes 1, & \text { if } b=y x, \\
x y \otimes 1+x \otimes y+y x \otimes x y+1 \otimes y x, & \text { if } b=x y x \\
1 \otimes x+x \otimes 1, & \text { if } b=y x y, \\
1 \otimes y x y, & \text { if } b=x y x y\end{cases} \\
& = \begin{cases}0, & \text { if } b \neq x y, \\
1 \otimes y x+y \otimes x+y x \otimes 1+x y \otimes y x, & \text { if } b=x y\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \Psi_{3}(b \otimes y x \otimes y+y \otimes b \otimes y x+y x \otimes y \otimes b)=t_{2}\left(y t_{1}(b \otimes y \otimes x+b y \otimes x \otimes 1)+y x t_{1}(y \mathrm{C}(b))\right) \\
& = \begin{cases}0, & \text { if } b \in\{x, x y, y x, y x y\}, \\
1 \otimes x, & \text { if } b=y, \\
y x \otimes 1, & \text { if } b=x y x, \\
x y \otimes y x y+x y x \otimes x, & \text { if } b=x y x y ;\end{cases} \\
& \Psi_{3}(b \otimes y \otimes y+y \otimes b \otimes y+y \otimes y \otimes b)=t_{2}\left(b \otimes r_{y} \otimes 1+y t_{1}(b \otimes y \otimes 1+y \mathrm{C}(b))\right) \\
& = \begin{cases}0, & \text { if } b \in\{x, y, x y x\}, \\
x \otimes 1, & \text { if } b=x y, \\
1 \otimes x, & \text { if } b=y x, \\
y \otimes x+y x \otimes 1+x y \otimes y x+1 \otimes x y, & \text { if } b=y x y, \\
x \otimes y x+x y \otimes x+x y x \otimes 1, & \text { if } b=x y x y ;\end{cases} \\
& \Psi_{3}(b \otimes x \otimes y+y \otimes b \otimes x+x \otimes y \otimes b)=t_{2}\left(y t_{1}(b \otimes x \otimes 1)+x t_{1}(y \mathrm{C}(b))\right) \\
& = \begin{cases}0, & \text { if } b \in\{x, y, x y, y x y\}, \\
x y \otimes 1+x \otimes y+1 \otimes x y+y x \otimes x y, & \text { if } b=y x, \\
1 \otimes x+x \otimes 1, & \text { if } b=x y x, \\
y \otimes x, & \text { if } b=x y x y ;\end{cases} \\
& \Psi_{3}(b \otimes x y \otimes x+x \otimes b \otimes x y+x y \otimes x \otimes b)=t_{2}\left(x t_{1}(b \otimes x \otimes y+b x \otimes y \otimes 1)+x y t_{1}(x \mathrm{C}(b))\right) \\
& = \begin{cases}1 \otimes y, & \text { if } b=x, \\
0, & \text { if } b \in\{y, x y, y x, x y x\}, \\
x \otimes y, & \text { if } b=y x y, \\
y x y \otimes y+y x \otimes x y x, & \text { if } b=x y x y .\end{cases}
\end{aligned}
$$

By Theorem 5.1] it is enough to calculate Δ on $u_{1}^{\prime} v_{2}^{\prime}, u_{1} v_{2}$ and $u_{1}^{\prime} v_{2}$. By [4, Lemmas 4.1.2, 4.1.8] and Remark 5.2 we have

$$
\begin{aligned}
& u_{1}^{\prime} v_{2}^{\prime}=u_{1}^{\prime} T^{1}\left(v_{2}^{\prime}\right)=(y, 1+y x)\binom{0}{y \otimes 1}=y, u_{1} v_{2}=u_{1} T^{1}\left(v_{2}\right)=(1+x y, x)\binom{x \otimes 1}{0}=x, \\
& u_{1}^{\prime} v_{2}=u_{1} T^{1}\left(v_{2}\right)=(y, 1+y x)\binom{x \otimes 1}{0}=x y, \\
& u_{1}^{2}=u_{1} \mathrm{~T}^{1}\left(u_{1}\right)=(1+x y, x)\left(\begin{array}{cc}
1 \otimes(1+x y+y x) & (y+y x y) \otimes 1 \\
1 \otimes y+x \otimes x+y x y \otimes 1 & x \otimes 1+1 \otimes x+x \otimes y x
\end{array}\right)=(1, y), \\
& \left(u_{1}^{\prime}\right)^{2}=u_{1}^{\prime} \mathrm{T}^{1}\left(u_{1}^{\prime}\right)=(y, 1+y x)\left(\begin{array}{cc}
y \otimes 1+1 \otimes y+y \otimes x y & 1 \otimes x+y \otimes y+x y x \otimes 1 \\
(x+x y x) \otimes 1 & 1 \otimes(1+y x+x y)
\end{array}\right)=(x, 1) .
\end{aligned}
$$

From the formulas above we obtain

$$
\Delta\left(u_{1}^{\prime} v_{2}^{\prime}\right)=(0,1)=\left(u_{1}^{\prime}\right)^{2}+v_{2}, \Delta\left(u_{1} v_{2}\right)=(1,0)=u_{1}^{2}+v_{2}^{\prime}, \Delta\left(u_{1}^{\prime} v_{2}\right)=(y, x)=v_{1} .
$$

Lemma 5.6.

$$
\Delta(a z)=0 .
$$

for $a \in\left\{a, p_{1}, p_{2}, p_{2}^{\prime}, p_{3}\right\}$.
Proof It follows from the formula for Φ_{3} that we have to calculate Ψ_{4} on four kinds of elements:

1) $b \otimes a_{1} \otimes a_{2} \otimes a_{3} ;$
2) $a_{3} \otimes b \otimes a_{1} \otimes a_{2}$;
3) $a_{2} \otimes a_{3} \otimes b \otimes a_{1}$;
4) $a_{1} \otimes a_{2} \otimes a_{3} \otimes b$.

In all points $b \in \mathcal{B}$,

$$
\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A}=\{(x, x, x),(x, y, x),(x, y x, y),(y, y, y),(y, x, y),(y, x y, x)\}
$$

1) Note that

$$
\Psi_{3}\left(a_{1} \otimes a_{2} \otimes a_{3}\right)=t_{2}\left(a_{1} t_{1}\left(a_{2} \otimes a_{3} \otimes 1\right)\right)= \begin{cases}1 \otimes 1, & \text { if } a_{1}=a_{2}=a_{3}=x \\ 0 & \text { if }\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash(x, x, x)\end{cases}
$$

So if $\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A}$, then

$$
\Psi_{4}\left(b \otimes a_{1} \otimes a_{2} \otimes a_{3}\right)=t_{3}\left(b \Psi_{3}\left(a_{1} \otimes a_{2} \otimes a_{3}\right)\right)= \begin{cases}1 \otimes 1, & \text { if } b=x y x y, a_{1}=a_{2}=a_{3}=x \\ 0 & \text { overwise }\end{cases}
$$

2) If $\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, x, x),(y, y, y)\}$, then $t_{1}\left(a_{1} \mathrm{C}\left(a_{2}\right)\right)=0$ and so $\Psi_{4}\left(a_{3} \otimes b \otimes a_{1} \otimes a_{2}\right)=0$. For the remaining cases we have

$$
\begin{aligned}
& \Psi_{4}(x \otimes b \otimes x \otimes x)=t_{3}\left(x t_{2}\left(b \otimes r_{x} \otimes 1\right)\right)= \begin{cases}1 \otimes 1, & \text { if } b=x y x y \\
0 & \text { overwise }\end{cases} \\
& \Psi_{4}(y \otimes b \otimes y \otimes y)=t_{3}\left(y t_{2}(b \otimes r \otimes 1)\right)= \begin{cases}1 \otimes 1, & \text { if } b=x y x y \\
0 & \text { overwise }\end{cases}
\end{aligned}
$$

Let $b \in \mathcal{B}, r \in\left\{r_{x}, r_{y}\right\}$. Note that $t_{3}\left(x t_{2}(b \otimes r \otimes 1)\right)$ can be nonzero only for $(b, r)=\left(x y x y, r_{x}\right)$. Analogously $t_{3}\left(y t_{2}(b \otimes r \otimes 1)\right)$ can be nonzero only for $(b, r)=\left(x y x y, r_{y}\right)$. Also note that for $b \in \mathcal{B}$, $a \in\{x, y\}$ the element $t_{1}(b \otimes a \otimes 1)$ is a sum of elements of the form $u \otimes r \otimes v$, where $u, v \in \mathcal{B}$, $r \in\left\{r_{x}, r_{y}\right\}$ and $(u, r) \notin\left\{\left(x y x, r_{x}\right),\left(y x, r_{x}\right),\left(y x y, r_{y}\right),\left(x y, r_{y}\right)\right\}$. So we have the equalities

$$
t_{3}\left(x t_{2}\left(y t_{1}(A)\right)=t_{3}\left(x t_{2}\left(y x t_{1}(A)\right)=t_{3}\left(y t_{2}\left(x t_{1}(A)\right)=t_{3}\left(y t_{2}\left(x y t_{1}(A)\right)=0\right.\right.\right.\right.
$$

for any $A \in P_{1}$. In the same way the equalities

$$
t_{3}\left(y x t_{2}\left(y t_{1}(A)\right)=t_{3}\left(x y t_{2}\left(x t_{1}(A)\right)=0\right.\right.
$$

can be proved. Then Ψ_{4} can be nonzero in points 3) and 4) only for $a_{1}=a_{2}=a_{3}=x$ and $a_{1}=a_{2}=a_{3}=y$. The same arguments show that

$$
t_{3}\left(x t_{2}\left(x t_{1}(b \otimes a \otimes 1)\right)=0((b, a) \in(\mathcal{B} \times\{x, y\}) \backslash\{x y x y, x\})\right.
$$

and

$$
t_{3}\left(y t_{2}\left(y t_{1}(b \otimes a \otimes 1)\right)=0((b, a) \in(\mathcal{B} \times\{x, y\}) \backslash\{x y x y, y\})\right.
$$

So we obtain equalities

$$
\begin{aligned}
& \Psi_{4}(x \otimes x \otimes b \otimes x)=\left\{\begin{array}{ll}
1 \otimes 1, & \text { if } b=x y x y, \\
0 & \text { overwise } ;
\end{array} \Psi_{4}(x \otimes x \otimes x \otimes b)=0 ;\right. \\
& \Psi_{4}(y \otimes y \otimes b \otimes y)=\Psi_{4}(y \otimes y \otimes y \otimes b)= \begin{cases}1 \otimes 1, & \text { if } b=x y x y \\
0 & \text { overwise } .\end{cases}
\end{aligned}
$$

We set

$$
\begin{aligned}
S\left(a_{1}, a_{2}, a_{3}, b\right) & :=\Psi_{4}\left(b \otimes a_{1} \otimes a_{2} \otimes a_{3}+a_{3} \otimes b \otimes a_{1} \otimes a_{2}+a_{2} \otimes a_{3} \otimes b \otimes a_{1}+a_{1} \otimes a_{2} \otimes a_{3} \otimes b\right) \\
& = \begin{cases}1 \otimes 1, & \text { if } b=x y x y,\left(a_{1}, a_{2}, a_{3}\right) \in\{(x, x, x),(y, y, y)\} \\
0 & \text { if } b \in \mathcal{B} \backslash\{x y x y\} \text { or }\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, x, x),(y, y, y)\}\end{cases}
\end{aligned}
$$

Then for $a \in H H^{4}(A)$ we have

$$
\begin{aligned}
\Delta(a)(1 \otimes 1) & =\Delta\left(a \circ \Psi_{4}\right) \Phi_{3}(1 \otimes 1) \\
& =\sum_{b \in \mathcal{B} \backslash\{1\},\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, y, x),(y, x, y)\}}\left\langle a\left(S\left(a_{1}, a_{2}, a_{3}, b\right)\right), 1\right\rangle b^{*} \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}}\langle a(S(x, y, x, b)), 1\rangle b^{*} y+\sum_{b \in \mathcal{B} \backslash\{1\}}\langle a(S(y, x, y, b)), 1\rangle b^{*} x \\
& =\langle a(1 \otimes 1+1 \otimes 1), 1\rangle=0 .
\end{aligned}
$$

If we know the values of $\Delta(a)$ and $\Delta(b)$, then it is enough to calculate $[a, b]$ to find $\Delta(a b)$. Sometimes it is easier than calculate $\Delta(a b)$ directly. Suppose that a and b are given by cocycles $f: P_{n} \rightarrow A$ and $g: P_{m} \rightarrow A$, then we compute $[a, b]$ using the following formula

$$
[a, b]=\left[f \circ \Psi_{n}, g \circ \Psi_{m}\right] \circ \Phi_{n+m-1}
$$

Lemma 5.7.

$$
\Delta\left(u_{1} z\right)=\Delta\left(u_{1}^{\prime} z\right)=0
$$

Proof It is enough to prove that $\left[u_{1}, z\right]=\left[u_{1}^{\prime}, z\right]=0$. For $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$ we have

$$
[a, z](1 \otimes 1)=\left(\left(a \circ \Psi_{1}\right) \circ\left(z \circ \Psi_{4}\right)\right) \Phi_{4}(1 \otimes 1)+\left(\left(z \circ \Psi_{4}\right) \circ\left(a \circ \Psi_{1}\right)\right) \Phi_{4}(1 \otimes 1) .
$$

Let prove that $\Psi_{4} \Phi_{4}=I d$. Direct calculations show that $\Psi_{3} \Phi_{3}=I d$ (see the proof of Lemma 5.61). Then

$$
\left(\Psi_{4} \Phi_{4}\right)(1 \otimes 1)=\sum_{b \in \mathcal{B} \backslash\{1\}} t_{3}\left(b \Psi_{3} \Phi_{3}(1 \otimes 1)\right) b^{*}=\sum_{b \in \mathcal{B} \backslash\{1\}} t_{3}(b \otimes 1) b^{*}=1 \otimes 1 .
$$

If $|a|=1$, we have

$$
\left(\left(a \circ \Psi_{1}\right) \circ\left(z \circ \Psi_{4}\right)\right) \Phi_{4}(1 \otimes 1)=\left(a \circ \Psi_{1}\right)\left(z\left(\Psi_{4} \Phi_{4}\right)(1 \otimes 1)\right)=\left(a \circ \Psi_{1}\right)(1)=0 .
$$

It remains to prove that

$$
\left(\left(z \circ \Psi_{4}\right) \circ\left(a \circ \Psi_{1}\right)\right) \Phi_{4}(1 \otimes 1)=0
$$

for $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$. Let us introduce the notation

$$
f=\left(z \circ \Psi_{4}\right) \circ\left(u_{1} \circ \Psi_{1}\right), f^{\prime}=\left(z \circ \Psi_{4}\right) \circ\left(u_{1}^{\prime} \circ \Psi_{1}\right) .
$$

In this proof we need to know the values of $u_{1} \circ \Psi_{1}$ and $u_{1}^{\prime} \circ \Psi_{1}$ on elements of \mathcal{B}. Direct calculations show that

$$
\left(u_{1} \circ \Psi_{1}\right)(b)=\left\{\begin{array}{ll}
1+x y, & \text { if } b=x, \\
x, & \text { if } b=y, \\
y+y x y, & \text { if } b=x y, \\
y, & \text { if } b=y x, \\
x y+y x, & \text { if } b=x y x, \\
x y x, & \text { if } b=y x y, \\
y x y, & \text { if } b=x y x y ;
\end{array} \quad\left(u_{1}^{\prime} \circ \Psi_{1}\right)(b)= \begin{cases}y, & \text { if } b=x, \\
1+y x, & \text { if } b=y, \\
x, & \text { if } b=x y, \\
x+x y x, & \text { if } b=y x, \\
y x y, & \text { if } b=x y x, \\
x y+y x, & \text { if } b=y x y, \\
x y x, & \text { if } b=x y x y\end{cases}\right.
$$

We want to calculate the values of $\left(z \circ \Psi_{4}\right) \circ\left(a \circ \Psi_{1}\right)$ on elements of the form $b \otimes a_{1} \otimes a_{2} \otimes a_{3}$, where $b \in \mathcal{B} \backslash\{1\}$ and $\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A}$ (see the proof of Lemma 5.6 for notation). Let consider each element of \mathcal{A} separately.

1) Let $a_{1}=a_{2}=a_{3}=x$. Let $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$. Then

$$
\left(z \circ \Psi_{4}\right) \circ \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes x \otimes x \otimes x)=z t_{3}\left(\left(a \circ \Psi_{1}\right)(b) \otimes 1\right)=0,
$$

because $\left(a \circ \Psi_{1}\right)(b)$ is a sum of elements of $\mathcal{B} \backslash\{x y x y\}$. Further we have

$$
\begin{aligned}
\Psi_{3}\left(\left(u_{1} \circ \Psi_{1}\right)(x) \otimes x \otimes x\right) & =\Psi_{3}(x y \otimes x \otimes x)=t_{2}\left(x y \otimes r_{x} \otimes 1\right)=0 ; \\
\Psi_{2}\left(\left(u_{1} \circ \Psi_{1}\right)(x) \otimes x\right) & =t_{1}(x y \otimes x \otimes 1)=0 ; \\
\Psi_{3}\left(x \otimes x \otimes\left(u_{1} \circ \Psi_{1}\right)(x)\right) & =\Psi_{3}(x \otimes x \otimes x y)=t_{2}\left(x t_{1}(x \otimes x \otimes y+y x y \otimes y \otimes 1)\right)=1 \otimes y ; \\
\Psi_{3}(y \otimes x \otimes x) & =\Psi_{3}(x \otimes y \otimes x)=\Psi_{3}(x \otimes x \otimes y)=0 .
\end{aligned}
$$

Consequently,

$$
f(b \otimes x \otimes x \otimes x)=\left\{\begin{array}{ll}
y, & \text { if } b=x y x y, \\
0 & \text { overwise },
\end{array} \quad f^{\prime}(b \otimes x \otimes x \otimes x)=0 .\right.
$$

2) $\left(a_{1}, a_{2}, a_{3}\right)=(x, y, x)$. We have

$$
\left(z \circ \Psi_{4}\right) \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes x \otimes y \otimes x)=\left(z \circ \Psi_{4}\right) \circ_{2}\left(a \circ \Psi_{1}\right)(b \otimes x \otimes y \otimes x)=0
$$

for $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$, because $\Psi_{2}(y \otimes x)=0$. Further we have

$$
\begin{aligned}
\Psi_{3}\left(x \otimes\left(u_{1} \circ \Psi_{1}\right)(y) \otimes x\right) & =\Psi_{3}(x \otimes x \otimes x)=1 \otimes 1 ; \\
\Psi_{2}\left(y \otimes\left(u_{1} \circ \Psi_{1}\right)(x)\right) & =\Psi_{2}(y \otimes x y)=t_{1}(y \otimes x \otimes y+y x \otimes y \otimes 1)=0 ; \\
\Psi_{3}\left(x \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y) \otimes x\right) & =\Psi_{3}(x \otimes y x \otimes x)=t_{2}\left(x t_{1}(y x \otimes x)\right) \\
& =t_{2}\left(x y \otimes r_{x} \otimes 1+x \otimes r_{y} \otimes x y\right)=0 ; \\
\Psi_{3}\left(x \otimes y \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(x)\right) & =\Psi_{3}(x \otimes y \otimes y)=t_{2}\left(x \otimes r_{y} \otimes 1\right)=0 .
\end{aligned}
$$

Consequently,

$$
f(b \otimes x \otimes y \otimes x)=\left\{\begin{array}{ll}
1, & \text { if } b=x y x y, \\
0 & \text { overwise },
\end{array} \quad f^{\prime}(b \otimes x \otimes y \otimes x)=0 .\right.
$$

3) $\left(a_{1}, a_{2}, a_{3}\right)=(x, y x, y)$. We have

$$
\left(z \circ \Psi_{4}\right) \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes x \otimes y x \otimes y)=\left(z \circ \Psi_{4}\right) \circ_{2}\left(a \circ \Psi_{1}\right)(b \otimes x \otimes y x \otimes y)=0
$$

for $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$, because $\Psi_{2}(y x \otimes y)=0$. Further we have

$$
\begin{aligned}
\Psi_{3}\left(x \otimes\left(u_{1} \circ \Psi_{1}\right)(y x) \otimes y\right) & =\Psi_{3}(x \otimes y \otimes y)=t_{2}\left(x \otimes r_{y} \otimes 1\right)=0 ; \\
\Psi_{3}\left(x \otimes y x \otimes\left(u_{1} \circ \Psi_{1}\right)(y)\right) & =\Psi_{3}(x \otimes y x \otimes x)=t_{2}\left(x y \otimes r_{x} \otimes 1+x \otimes r_{y} \otimes x y\right)=0 ; \\
\Psi_{2}\left(\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y x) \otimes y\right) & =\Psi_{2}((x+x y x) \otimes y)=t_{1}(x \otimes y \otimes 1+x y x \otimes y \otimes 1)=0 ; \\
\Psi_{3}\left(x \otimes y x \otimes\left(u_{1} \circ \Psi_{1}\right)(y)\right) & =\Psi_{3}(x \otimes y x \otimes y x)=t_{2}\left(x t_{1}(y x \otimes y \otimes x+y x y \otimes x \otimes 1)\right) \\
& =t_{2}\left(x \otimes r_{y} \otimes y+x y \otimes r_{y} \otimes 1\right)=x \otimes 1 .
\end{aligned}
$$

Consequently,

$$
f(b \otimes x \otimes y x \otimes y)=0, f^{\prime}(b \otimes x \otimes y x \otimes y)= \begin{cases}1, & \text { if } b=y x y \\ 0 & \text { overwise }\end{cases}
$$

4) Let $a_{1}=a_{2}=a_{3}=y$. Let $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$. Then

$$
\left(z \circ \Psi_{4}\right) \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes y \otimes y \otimes y)=0,
$$

because $\Psi_{3}(y \otimes y \otimes y)=0$. Further we have

$$
\begin{aligned}
\Psi_{3}(x \otimes y \otimes y) & =\Psi_{3}(y \otimes x \otimes y)=\Psi_{3}(y \otimes y \otimes x)=0 \\
\Psi_{3}\left(\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y) \otimes y \otimes y\right) & =\Psi_{3}(y x \otimes y \otimes y)=t_{2}\left(y x \otimes r_{y} \otimes 1\right)=0 ; \\
\Psi_{2}\left(\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y) \otimes y\right) & =t_{1}(y x \otimes y \otimes 1)=0 ; \\
\Psi_{3}\left(y \otimes y \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y)\right) & =\Psi_{3}(y \otimes y \otimes y x)=t_{2}\left(y t_{1}(y \otimes y \otimes x+x y x \otimes x \otimes 1)\right)=1 \otimes x .
\end{aligned}
$$

Consequently,

$$
f(b \otimes y \otimes y \otimes y)=0, f^{\prime}(b \otimes y \otimes y \otimes y)= \begin{cases}x, & \text { if } b=x y x y \\ 0 & \text { overwise }\end{cases}
$$

5) $\left(a_{1}, a_{2}, a_{3}\right)=(y, x, y)$. We have

$$
\left(z \circ \Psi_{4}\right) \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes y \otimes x \otimes y)=\left(z \circ \Psi_{4}\right) \circ_{2}\left(a \circ \Psi_{1}\right)(b \otimes y \otimes x \otimes y)=0
$$

for $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$, because $\Psi_{2}(x \otimes y)=0$. Further we have

$$
\begin{aligned}
& \Psi_{3}\left(y \otimes\left(u_{1} \circ \Psi_{1}\right)(x) \otimes y\right)=t_{2}\left(y t_{1}(x y \otimes y \otimes 1)\right)=t_{2}\left(y \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes 1\right)=0 ; \\
& \Psi_{3}\left(y \otimes x \otimes\left(u_{1} \circ \Psi_{1}\right)(y)\right)=\Psi_{3}(y \otimes x \otimes x)=0 ; \\
& \Psi_{3}\left(y \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(x) \otimes y\right)=\Psi_{3}(y \otimes y \otimes y)=0 ; \\
& \quad \Psi_{2}\left(x \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(y)\right)=\Psi_{2}(x \otimes y x)=t_{1}(x \otimes y \otimes x+x y \otimes x \otimes 1)=0
\end{aligned}
$$

Consequently,

$$
f(b \otimes y \otimes x \otimes y)=f^{\prime}(b \otimes y \otimes x \otimes y)=0 .
$$

6) $\left(a_{1}, a_{2}, a_{3}\right)=(y, x y, x)$. We have
$\left(z \circ \Psi_{4}\right) \circ_{1}\left(a \circ \Psi_{1}\right)(b \otimes y \otimes x y \otimes x)=\left(z \circ \Psi_{4}\right) \circ_{2}\left(a \circ \Psi_{1}\right)(b \otimes y \otimes x y \otimes x)=0$
for $a \in\left\{u_{1}, u_{1}^{\prime}\right\}$, because $\Psi_{2}(x y \otimes x)=0$. Further we have

$$
\begin{aligned}
\Psi_{3}\left(y \otimes\left(u_{1} \circ \Psi_{1}\right)(x y) \otimes x\right) & =\Psi_{3}(y \otimes(y+y x y) \otimes x)=t_{2}\left(y \otimes r_{y} \otimes y-x y x \otimes r_{y} \otimes 1\right)=0 ; \\
\Psi_{2}\left(x y \otimes\left(u_{1} \circ \Psi_{1}\right)(x)\right) & =\Psi_{2}(x y \otimes x y)=t_{1}(x y \otimes x \otimes y+x y x \otimes y \otimes 1)=0 ; \\
\Psi_{3}\left(y \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(x y) \otimes x\right) & =\Psi_{3}(y \otimes x \otimes x)=0 ; \\
\Psi_{3}\left(y \otimes x y \otimes\left(u_{1}^{\prime} \circ \Psi_{1}\right)(x)\right) & =\Psi_{3}(y \otimes x y \otimes y)=t_{2}\left(y \otimes r_{x} \otimes y x+y x \otimes r_{y} \otimes 1\right)=0 .
\end{aligned}
$$

Consequently,

$$
f(b \otimes y \otimes x y \otimes x)=f^{\prime}(b \otimes y \otimes x y \otimes x)=0 .
$$

Thus we obtain

$$
\begin{aligned}
f \Phi_{4}(1 \otimes 1)= & \sum_{b \in \mathcal{B} \backslash\{1\}} f(b \otimes x \otimes x \otimes x+b \otimes x \otimes y x \otimes y+b \otimes y \otimes y \otimes y+b \otimes y \otimes x y \otimes x) b^{*} \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}} f(b \otimes x \otimes y \otimes x) y b^{*}+\sum_{b \in \mathcal{B} \backslash\{1\}} f(b \otimes y \otimes x \otimes y) x b^{*}=y+y=0 ; \\
f^{\prime} \Phi_{4}(1 \otimes 1)= & \sum_{b \in \mathcal{B} \backslash\{1\}} f^{\prime}(b \otimes x \otimes x \otimes x+b \otimes x \otimes y x \otimes y+b \otimes y \otimes y \otimes y+b \otimes y \otimes x y \otimes x) b^{*} \\
& +\sum_{b \in \mathcal{B} \backslash\{1\}} f^{\prime}(b \otimes x \otimes y \otimes x) y b^{*}+\sum_{b \in \mathcal{B} \backslash\{1\}} f^{\prime}(b \otimes y \otimes x \otimes y) x b^{*}=x+x=0 ;
\end{aligned}
$$

Lemma 5.8.

$$
\Delta\left(v_{1} z\right)=\Delta\left(v_{2} z\right)=\Delta\left(v_{2}^{\prime} z\right)=0
$$

Proof Firstly note that it is enough to prove that $\left[v_{2}, z\right]=0$. Indeed, by Jacoby identity and Lemmas 5.3 5.7] we have

$$
\begin{aligned}
& \Delta\left(v_{1} z\right)=\left[v_{1}, z\right]=\left[\left[u_{1}^{\prime}, v_{2}\right], z\right]=\left[v_{2},\left[u_{1}^{\prime}, z\right]\right]+\left[u_{1}^{\prime},\left[v_{2}, z\right]\right]=\left[u_{1}^{\prime},\left[v_{2}, z\right]\right], \\
& \Delta\left(v_{2}^{\prime} z\right)=\left[v_{2}^{\prime}, z\right]=\left[\left[u_{1}, v_{2}\right]+u_{1}^{2}, z\right]=\left[v_{2},\left[u_{1}, z\right]\right]+\left[u_{1},\left[v_{2}, z\right]\right]+2\left[u_{1}, z\right]=\left[u_{1},\left[v_{2}, z\right]\right]
\end{aligned}
$$

and $\Delta\left(v_{2} z\right)=\left[v_{2}, z\right]$. For $a \in\{x, y\}$ we have

$$
\left[v_{2}, z\right](1 \otimes a \otimes 1)=\left(\left(v_{2} \circ \Psi_{2}\right) \circ\left(z \circ \Psi_{4}\right)\right) \Phi_{5}(1 \otimes a \otimes 1)+\left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right) \Phi_{5}(1 \otimes a \otimes 1)
$$

Note that if $\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, x, x),(y, y, y)\}$, then $\Psi_{2}\left(1 \otimes a_{1} \otimes a_{2} \otimes 1\right)=\Psi_{2}\left(1 \otimes a_{2} \otimes a_{3} \otimes 1\right)=0$ (see the proof of Lemma 5.6 for the notion of \mathcal{A}). It follows from this that

$$
\left(\left(v_{2} \circ \Psi_{2}\right) \circ_{i}\left(z \circ \Psi_{4}\right)\right)\left(a \otimes b \otimes a_{1} \otimes a_{2} \otimes a_{3}\right)=0
$$

for $i \in\{1,2\}, a \in\{x, y\}, b \in \mathcal{B},\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, x, x),(y, y, y)\}$. Further we have

$$
\begin{aligned}
& \left(z \circ \Psi_{4}\right)(b \otimes y \otimes y \otimes y)=z t_{3}\left(b \Psi_{3}(y \otimes y \otimes y)\right)=0, \\
& \left(z \circ \Psi_{4}\right)(a \otimes b \otimes y \otimes y)=z t_{3}\left(a t_{2}\left(b \otimes r_{y} \otimes 1\right)\right)= \begin{cases}1, & \text { if } a=y, b=x y x y, \\
0, & \text { if } a=x \text { or } b \in \mathcal{B} \backslash\{x y x y\} .\end{cases}
\end{aligned}
$$

Because of $\Psi_{2}(1 \otimes 1 \otimes y \otimes 1)=0$, we have

$$
\left(\left(v_{2} \circ \Psi_{2}\right) \circ\left(z \circ \Psi_{4}\right)\right)(a \otimes b \otimes y \otimes y \otimes y)=0 .
$$

Further we have

$$
\begin{aligned}
& \left(z \circ \Psi_{4}\right)(b \otimes x \otimes x \otimes x)=z t_{3}(b \otimes 1)= \begin{cases}1, & \text { if } b=x y x y, \\
0, & \text { if } b \in \mathcal{B} \backslash\{x y x y\}\end{cases} \\
& \left(z \circ \Psi_{4}\right)(a \otimes b \otimes x \otimes x)=z t_{3}\left(a t_{2}\left(b \otimes r_{x} \otimes 1\right)\right)= \begin{cases}1, & \text { if } a=x, b=x y x y \\
0, & \text { if } a=y \text { or } b \in \mathcal{B} \backslash\{x y x y\}\end{cases}
\end{aligned}
$$

Because of $\Psi_{2}(1 \otimes a \otimes 1 \otimes 1)=\Psi_{2}(1 \otimes 1 \otimes x \otimes 1)=0$, we have

$$
\left(\left(v_{2} \circ \Psi_{2}\right) \circ\left(z \circ \Psi_{4}\right)\right)(a \otimes b \otimes x \otimes x \otimes x)=0 .
$$

It remains to prove that

$$
\left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right) \Phi_{5}=0
$$

in $H H^{5}(A)$. If $\left(a_{1}, a_{2}, a_{3}\right) \in \mathcal{A} \backslash\{(x, x, x),(y, y, y)\}$, then

$$
\left(\left(z \circ \Psi_{4}\right) \circ_{i}\left(v_{2} \circ \Psi_{2}\right)\right)\left(a \otimes b \otimes a_{1} \otimes a_{2} \otimes a_{3}\right)=0
$$

for $1 \leq i \leq 4$. It follows from the formulas $\left(v_{2} \circ \Psi_{2}\right)\left(a_{1} \otimes a_{2}\right)=\left(v_{2} \circ \Psi_{2}\right)\left(a_{2} \otimes a_{3}\right)=0$ and the fact that

$$
\left(z \circ \Psi_{4}\right)\left(u \otimes v \otimes a_{2} \otimes a_{3}\right)=0
$$

for all $u, v \in A$. We have

$$
\left(\left(z \circ \Psi_{4}\right) \circ_{i}\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes y \otimes y \otimes y)=0
$$

for $i=3$ and $i=4$ because $\left(v_{2} \circ \Psi_{2}\right)(y \otimes y)=v_{2}\left(1 \otimes r_{y} \otimes 1\right)=0$. Moreover

$$
\left(z \circ \Psi_{4}\right)\left(\left(v_{2} \circ \Psi_{2}\right)(a \otimes b) \otimes y \otimes y \otimes y\right)=z t_{3}\left(\left(v_{2} \circ \Psi_{2}\right)(a \otimes b) \Psi_{3}(y \otimes y \otimes y)\right)=0 .
$$

Also we have

$$
\begin{aligned}
& \left(z \circ \Psi_{4}\right)\left(a \otimes\left(v_{2} \circ \Psi_{2}\right)(b \otimes y) \otimes y \otimes y\right)=z t_{3}\left(a t_{2}\left(v_{2} t_{1}(b \otimes y \otimes 1) \otimes r_{y} \otimes 1\right)\right) \\
= & \left\{\begin{array}{ll}
z t_{3}\left(a t_{2}\left(x y x \otimes r_{y} \otimes 1\right)\right), & \text { if } b=x y, \\
z t_{3}\left(a t_{2}\left(x y x y \otimes r_{y} \otimes 1\right)\right), & \text { if } b=y x y, \\
0, & \text { if } b \in \mathcal{B} \backslash\{x y, y x y\}
\end{array}= \begin{cases}1, & \text { if } a=y, b=y x y, \\
0, & \text { if } a=x \text { or } b \in \mathcal{B} \backslash\{y x y\} .\end{cases} \right.
\end{aligned}
$$

Thus

$$
\left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes y \otimes y \otimes y)= \begin{cases}1, & \text { if } a=y, b=y x y \\ 0, & \text { if } a=x \text { or } b \in \mathcal{B} \backslash\{y x y\}\end{cases}
$$

We have

$$
\left(\left(z \circ \Psi_{4}\right) \circ_{i}\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes x \otimes x \otimes x)=\left(z \circ \Psi_{4}\right)(a \otimes b \otimes x \otimes x)
$$

for $i=3$ and $i=4$. So

$$
\left(\left(z \circ \Psi_{4}\right) \circ_{3}\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes x \otimes x \otimes x)+\left(\left(z \circ \Psi_{4}\right) \circ_{4}\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes x \otimes x \otimes x)=0
$$

Further we have

$$
\left(z \circ \Psi_{4}\right)\left(\left(v_{2} \circ \Psi_{2}\right)(a \otimes b) \otimes x \otimes x \otimes x\right)=z t_{3}\left(v_{2} t_{1}(a \mathrm{C}(b)) \otimes 1\right)
$$

Direct calculations show that

$$
v_{2} t_{1}(a \mathrm{C}(b))= \begin{cases}x, & \text { if } a=x, b=x, \\ 0, & \text { if } a=x, b \in\{y, y x, y x y\} \text { or } a=y, b \in\{x, y, x y, x y x, x y x y\}, \\ x y+x y x y, & \text { if } a=x, b=x y, \\ x y x, & \text { if } a=x, b=x y x \text { or } a=y, b=y x, \\ x y x y, & \text { if } a=x, b=x y x y \text { or } a=y, b=y x y .\end{cases}
$$

Finely we have

$$
\left(z \circ \Psi_{4}\right)\left(a \otimes\left(v_{2} \circ \Psi_{2}\right)(b \otimes x) \otimes x \otimes x\right)=z t_{3}\left(a t_{2}\left(v_{2} t_{1}(b \otimes x \otimes 1) \otimes r_{x} \otimes 1\right)\right) .
$$

Note that $t_{3}\left(y t_{2}\left(u \otimes r_{x} \otimes 1\right)\right)=0$ for any $u \in \mathcal{B}$. Direct calculations show that

$$
v_{2} t_{1}(b \otimes x \otimes 1)= \begin{cases}x, & \text { if } b=x \\ 0, & \text { if } b \in\{y, x y, y x y\} \\ y x+x y x y, & \text { if } b=y x \\ x y x, & \text { if } b=x y x \\ x y x y, & \text { if } b=x y x y\end{cases}
$$

Then

$$
\begin{aligned}
& \left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right)(a \otimes b \otimes x \otimes x \otimes x) \\
= & \begin{cases}1, & \text { if } a=x, b=x y \text { or } a=x, b=y x \text { or } a=y, b=y x y \\
0, & \text { if } a=x, b \in \mathcal{B} \backslash\{x y, y x\} \text { or } a=y, b \in \mathcal{B} \backslash\{y x y\} .\end{cases}
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right) \Phi_{5}(1 \otimes x \otimes 1)=x y+y x \\
& \left(\left(z \circ \Psi_{4}\right) \circ\left(v_{2} \circ \Psi_{2}\right)\right) \Phi_{5}(1 \otimes y \otimes 1)=x+x=0
\end{aligned}
$$

So $\left[v_{2}, z\right]=(x y+y x, 0)=0$, because $(x y+y x, 0) \in B^{1}(A)=B^{5}(A)$ by Remark 5.2 and the 4-periodicity of the resolution P_{*}.

We now can prove a theorem which describes the BV structure on $H H^{*}(A)$.
Theorem 5.9. Let $A=k Q_{8}$, char $k=2$ and Δ be the $B V$ differential from Theorem 1.2. Then

1) Δ is equal 0 on the generators of $H H^{*}(A)$ from Theorem 5.1;
2) $\Delta(a b)=0$ for $a \in\left\{v_{1}, v_{2}, v_{2}^{\prime}\right\}, b \in\left\{p_{1}, p_{2}, p_{2}^{\prime}, p_{3}\right\}$;
3) $\Delta(a z)=0$ if a is a generator of $H H^{*}(A)$ from Theorem 5.1;
4) Δ satisfies the equalities

$$
\begin{aligned}
& \Delta\left(p_{1} u_{1}\right)=\Delta\left(p_{3} u_{1}\right)=\Delta\left(p_{2} u_{1}^{\prime}\right)=p_{2}^{\prime}, \Delta\left(p_{2} u_{1}\right)=\Delta\left(p_{2}^{\prime} u_{1}^{\prime}\right)=p_{1} \\
& \Delta\left(p_{2}^{\prime} u_{1}\right)=\Delta\left(p_{1} u_{1}^{\prime}\right)=\Delta\left(p_{3} u_{1}^{\prime}\right)=p_{2}, \Delta\left(u_{1} v_{1}\right)=\Delta\left(u_{1}^{\prime} v_{2}^{\prime}\right)=\left(u_{1}^{\prime}\right)^{2}+v_{2} \\
& \Delta\left(u_{1}^{\prime} v_{1}\right)=\Delta\left(u_{1} v_{2}\right)=u_{1}^{2}+v_{2}^{\prime}, \Delta\left(u_{1}^{\prime} v_{2}\right)=\Delta\left(u_{1} v_{2}^{\prime}\right)=v_{1}
\end{aligned}
$$

Points 1)-4) with Theorem 5.1] determines BV algebra structure (and in particular Gerstenhabber algebra structure) on $H H^{*}(A)$.

Proof Points 1)-4) follow from Lemmas 5.35.8. To determine BV algebra structure we need the value of Δ on generators and all their pairwise products. Point 1) determines Δ on generators. Points 2)-4) determine Δ on all pairwise products of generators except zero products (see Theorem 5.1) and squares of generators. All the listed products are zero in characteristic two. So BV structure is fully determined.

Corollary 5.10. Let $A=k Q_{8}$, chark $=2$ and [,] be the Gerstehaber bracket from Theorem [1.2. Then the bracket is zero for all pairs of generators of $H^{*}(A)$ from Theorem [5.1 exept:

$$
\begin{aligned}
& {\left[p_{1}, u_{1}\right]=\left[p_{3}, u_{1}\right]=\left[p_{2}, u_{1}^{\prime}\right]=p_{2}^{\prime},\left[p_{2}, u_{1}\right]=\left[p_{2}^{\prime}, u_{1}^{\prime}\right]=p_{1},} \\
& {\left[p_{2}^{\prime}, u_{1}\right]=\left[p_{1}, u_{1}^{\prime}\right]=\left[p_{3}, u_{1}^{\prime}\right]=p_{2},\left[u_{1}, v_{1}\right]=\left[u_{1}^{\prime}, v_{2}^{\prime}\right]=\left(u_{1}^{\prime}\right)^{2}+v_{2},} \\
& {\left[u_{1}^{\prime}, v_{1}\right]=\left[u_{1}, v_{2}\right]=u_{1}^{2}+v_{2}^{\prime},\left[u_{1}^{\prime}, v_{2}\right]=\left[u_{1}, v_{2}^{\prime}\right]=v_{1} .}
\end{aligned}
$$

This completely determines Gerstehaber algebra structure on $H H^{*}(A)$.
Proof From the Theorem 5.9 we know, that BV-differential Δ equals zero on any generator of BV-algebra $H H^{*}(A)$. Then using formula from the definition 1.1 one immediately has $[a, b]=$ $\Delta(a \smile b)$ for any a, b from the set of generators of $H H^{*}(A)$.

References

[1] N. Bian, G. Zhang and P. Zhang, Setwise homotopy category, Appl. Categ. Structures 17 (2009), no. 6, 561-565.
[2] C. Cibils and A. Solotar, Hochschild cohomology algebra of abelian groups, Arch. Math. 68 (1997), 17-21.
[3] C.-H. Eu and T. Schedler, Calabi-yau Frobenius algebras, J. Algebra 321 (2009), no. 3, 774-815.
[4] A. I. Generalov, Hochschild cohomology of algebras of quaternion type, I: Generalized quaternion groups, St. Petersburg Math. J. 18 (2007) 37-76.
[5] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. Math. (2) 78 (1963), 267-288.
[6] E. Getzler, Batalin-Vilkovsky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994), no.2, 265-285.
[7] T. Holm, The Hochschild cohomology ring of a modular group algebra: the commutative case, Comm. Algebra 24 (1996), no.6, 1957-1969.
[8] G. Hochschild, On the cohomology groups of an associative algebra, Ann. Math. (2) 46 (1945), 58-67.
[9] S. O. Ivanov, Self-Injective algebras of stable Calabi-Yau dimension three, J. Math. Sciences 188 (2013), no.5, 601-620
[10] J. Le and G. Zhou, On the Hochschild cohomology ring of tensor products of algebras, J. Pure Appl. Algebra 218 (2014), no. 8, 1463-1477.
[11] J. Le and G. Zhou, Comparison morphisms and Hochschild cohomology, in preparation.
[12] Y.-M. Liu and G. Zhou, The Batalin-Vilkovisky structure over the Hochschild cohomology ring of a group algebra, preprint, 2014.
[13] J.-L. Loday, Cyclic homology, Appendix E by M. O. Ronco, Grund. Math. Wiss. 301, Springer-Verlag, Berlin, 1992.
[14] S. Mac Lane, Homology, Grund. Math. Wiss. 114, Springer-Verlag, Berlin-New York, 1967.
[15] Yu I. Manin, Three constructions of Frobenius manifolds: a comparative study, Asian J. Math. 3 (1999), no. 1, 179-220.
[16] J.P. May, The cohomology of restricted Lie algebras and of Hopf algebras, J. Algebra 3 (1966), 123-146.
[17] L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras, K-Theory 32 (2004), no. 3, 231-251.
[18] S. Sanchez-Flores, The Lie structure on the Hochschild cohomology of a modular group algebra, J. Pure Appl. Algebra 216 (2012), no.3, 718-733.
[19] T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products, Ann. Inst. Fourier 58 (2008), no. 7, 2351-2379.
[20] T. Yang, A Batalin-Vilkovisky algebra structure on the Hochschild cohomology of truncated polynomials, arXiv:0707.4213, 2007.

Alexander Ivanov
Department of Higher Algebra and Number Theory
Faculty of Mathematics and Mechanics
Saint Petersburg State University
Universitetsky prospekt 28
Saint Petersburg, Peterhof, 198504
Russia
E-mail address: a.a.ivanov.spb@gmail.com

Sergei O. Ivanov
Chebyshev Laboratory,
St. Petersburg State University,
14th Line, 29b,
Saint Petersburg, 199178
Russia
E-mail address: ivanov.s.o.1986@gmail.com
Yury Volkov
Department of Higher Algebra and Number Theory
Faculty of Mathematics and Mechanics
Saint Petersburg State University
Universitetsky prospekt 28
Saint Petersburg, Peterhof, 198504
Russia
E-mail address: wolf86_666@list.ru
Guodong Zhou
Department of Mathematics
Shanghai Key laboratory of PMMP
East China Normal University
Dong Chuan Road 500
Shanghai 200241
P.R.China

E-mail address: gdzhou@math.ecnu.edu.cn

[^0]: Mathematics Subject Classification(2010): 16E40
 Keywords: Batalin-Vilkovisky structure; Comparison morphism; Gerstenhaber Lie bracket; Hochschild cohomology; Quaternion group; Weak self-homotopy

 Date: version of July 17, 2014.
 The first, the second and the third authors are supported by RFBR grant 13-01-00902_ a.
 The first and the second authors are supported by RF Presidental grant MD-381.2014.1.
 The second author is supported by the Chebyshev Laboratory (Department of Mathematics and Mechanics, St. Petersburg State University) under RF Government grant 11.G34.31.0026 and by JSC "Gazprom Neft".

 The fourth author is supported by the exchange program STIC-Asie 'ESCAP' financed by the French Ministry of Foreign Affairs, by Shanghai Pujiang Program (No. 13PJ1402800), by National Natural Science Foundation of China (No. 11301186) and by the Doctoral Fund of Youth Scholars of Ministry of Education of China (No. 20130076120001).

