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1. Introduction. The theory of small ball behavior for norms of Gaussian
processes is intensively developed in last decades (see, for example, reviews [1], [2];
the latest references can be found at the site [3]). The most explored case is that of
L2-norm. Let X(t), 0 5 t 5 1, be a Gaussian process with zero mean and covariance
function G(t, s) = EX(t)X(s), t, s ∈ [0, 1]. We put

‖X‖ =

(∫ 1

0

X2(t) dt

)1/2

.

We are interested in sharp asymptotics of P{‖X‖ < ε} as ε → 0. Theoretically
the problem of small deviation asymptotics was solved by Sytaya in [4], but in an
implicit way. Then the e�orts of many authors starting from [5], [6], [7] were aimed
at the simpli�cation of the expression for P{‖X‖ < ε} under di�erent assumptions.

By the well-known Karhunen-Lo�eve expansion, the following distributional equiality
holds:

‖X‖2 d
=

∞∑
k=1

λkξ
2
k.

Here ξk, k ∈ N, are independent standard Gaussian random variables (r.v.), while
λk > 0 (k ∈ N,

∑
λk < ∞) are eigenvalues of the integral operator with the kernel

G(s, t). Thus, the original problem is reduced to the description of the asymptotic
behavior of P{

∑∞
k=1 λkξ

2
k 5 ε2} as ε → 0. The main di�culty is that the explicit

formulas for eigenvalues are known only for a limited number of processes (see [8], [9]).
If one knows su�ciently precise asymptotics for λk then it is possible to obtain the
small ball asymptotics up to a constant using well-known comparison principle of
Wenbo Li.
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Proposition 1 (see [8], [10]). Let ξk be a sequence of independent standard

Gaussian r.v. Suppose that λk and λ̃k are two positive non-increasing summable

sequences such that
∏
λ̃k/λk <∞. Then

P

{ ∞∑
k=1

λkξ
2
k < ε2

}
∼ P

{ ∞∑
k=1

λ̃kξ
2
k < ε2

}
·
( ∞∏
k=1

λ̃k
λk

)1/2

, ε→ 0.(1)

In papers [11], [12] there was selected the concept of the Green Gaussian process.
For such process the covariance function G(s, t) is the Green function for an ordinary
di�erential operator. This allows to study asymptotics for λk using the methods of
spectral theory of ODEs, originated from the classical works of G.Birkho� [13], [14]
and J.D.Tamarkin [15], [16] (further development of this theory can be found in [17]).

The sharp asymptotics of small ball probabilities in L2-norm with various weights
for a large class of particular processes were calculated in papers [18], [19] and [20]
with the approach of [11], [12]. See in this connection also [21], [22], [23].

In the paper [24] the spectrum perturbation of the covariance operator was
considered under a �nite-dimensional perturbation of the Gaussian process. It was
shown that for �non-critical� perturbations the eigenvalues λ̃k of the perturbed operator
are asymptotically close to the original ones such that

∏
λ̃k/λk <∞. A similar result

was proved in [25] for a special class of operators.
We consider the small deviation problem in L2[0, 1] for Gaussian processes X(1),

X(2), X(3) with zero mean and covariance functions of the form

G1(s, t) = G(s, t)− h1(s)h1(t),(2)

G2(s, t) = G(s, t)− h2(s)h2(t),(3)

G3(s, t) = G(s, t)− h1(s)h1(t)− h2(s)h2(t).(4)

Here G(s, t) = min(s, t)− st is the Green function of the boundary value problem

Lu := −u′′ = λu, u(0) = u(1) = 0,

and

h1(t) = ϕ(Φ−1(t)), h2(t) = ϕ(Φ−1(t))
Φ−1(t)√

2
,

where

ϕ(s) =
1√
2π

exp

(
− s2

2

)
, Φ(t) =

∫ t

−∞
ϕ(s) ds

are the standard normal density and distribution function, respectively.
The processes X(1), X(2), X(3) appear as limiting ones when building goodness-

of-�t tests of ω2-type for testing normality with estimated mean and/or variance.
In the paper [26] M.Kac, J.Kiefer and J.Wolfowitz proved the convergence of the
empirical processes with estimated parameters to the limit process in the sense of
�nite-dimensional distributions. Analogous results were obtained independently by
I. I. Gikhman [27], [28]. Afterwards J.Durbin [29] gave the rigorous proof of weak
convergence to the limit, and described the limit processes for a much wider class of
empirical processes.
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It is well known that eigenfunctions and eigenvalues of the integral operator with
the kernel G(s, t) are

yk(t) = sin(πkt), λk = (πk)−2.

Let λ
(i)
k be eigenvalues of integral operators with kernels Gi(s, t), i = 1, 2, 3; k ∈ N.

In the cases (2) and (3) we deal with one-dimensional perturbations of the operator
with kernel G(s, t). According to the minimax principle [30, � 9.2], eigenvalues of the
perturbed operator and the original ones interlace. Note that both perturbations h1
and h2 are �critical� (in terms of our problem this means that

∫
hi(t)(Lhi)(t) dt = 1,

i = 1, 2). Thus the relation
∏
λ
(i)
k /λk < ∞ does not hold. Moreover, since Lhi 6∈

L2[0, 1], the result of [24, Theorem 2] is also not applicable. We construct the eigenvalues
asymptotics for the operators (2)�(4) using explicit formulas for Fredholm determinants
from [26] and [24]. In this way one can construct the complete asymptotic expansion

of λ
(i)
k , but we restrict ourselves to the approximation λ̃

(i)
k such that

∏
λ̃
(i)
k /λ

(i)
k <∞.

Note that the function h1(t) is even with respect to the point t = 1/2. Thus the
eigenfunctions odd with respect to the point t = 1/2 and corresponding eigenvalues

do not change under perturbation (2). For simplicity we denote them λ
(1)
2k = λ2k,

k ∈ N, despite of the fact that it can break the eigenvalues enumeration in the
decreasing order. Similarly, since the function h2(t) is odd with respect to the point
t = 1/2, eigenfunctions even with respect to t = 1/2 and corresponding eigenvalues

do not change under the perturbation (3). We denote them λ
(2)
2k−1 = λ2k−1, k ∈ N.

Besides, one can easily see that λ
(3)
2k = λ

(1)
2k and λ

(3)
2k−1 = λ

(2)
2k−1. Notice also that the

quadratic forms of the perturbed operators (2)�(4) do not exceed the quadratic form

of the original operator. Therefore the minimax principle provides λ
(1)
2k−1 5 λ2k−1 and

λ
(2)
2k 5 λ2k.

The equations for the eigenvalues of the integral operator with the kernel G3(s, t)
were derived in [26], see also [24, example 5]. After some transformations of these
equations we get that the quantities

ω
(1)
2k−1 :=

(
λ
(1)
2k−1

)−1/2
, ω

(2)
2k :=

(
λ
(2)
2k

)−1/2
are roots of the equations

D1(ω) : =
2 sin(ω/2)

ω
C21(ω) +

cos(ω/2)

ω2
− 4 cos(ω/2)

ω
I1(ω) = 0,(5)

D2(ω) : = −cos(ω/2)

ω
C22(ω) +

3 sin(ω/2)

2ω2
− 2 sin(ω/2)

ω
I2(ω) = 0,(6)

respectively, where

C1(ω) =

∫ 1/2

0

Φ−1(t) cos(ωt) dt, C2(ω) =

∫ 1/2

0

(Φ−1(t))2 cos(ωt) dt,

I1(ω) =

∫ 1/2

0

∫ t

0

Φ−1(t)Φ−1(s) sin(ωt) cos(ωs) ds dt,

I2(ω) =

∫ 1/2

0

∫ t

0

(Φ−1(t))2(Φ−1(s))2 sin(ωt) cos(ωs) ds dt.

The paper is organized as follows. In Section 2 we calculate the asymptotics for
a class of integrals with slowly varying amplitudes (see the de�nition in Appendix).
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Integrals C1(ω), C2(ω), I1(ω) and I2(ω) are particular examples of this class. For these
integrals we construct the complete asymptotic expansion with an error estimate.

In Section 3 we derive the asymptotic equations for the roots ω
(1)
2k−1 and ω

(2)
2k and

calculate their asymptotics (formulas (24) and (25)). In Sections 4 and 5 we apply
these results to the problem of small ball asymptotics for the processesX(1), X(2), X(3)

(see formulas (29), (35) and (36)). In Appendix we prove an auxiliary lemma on the
Fredholm determinants and some properties of the function Φ−1(t).

We use letter C to denote various positive constants which exact values are not
important. To indicate that C depends on some parameters, we list them in the
parentheses: C(. . .).

2. Asymptotics of integrals with slowly varying amplitudes. Let a function
F (t) be de�ned on the interval (0, 1/2], F (1/2) = 0, and let the functions F0(t) = F (t),
Fn+1(t) = tF ′n(t), n = 0, be slowly varying at zero. We introduce the following
notation: ∫

SN (x1)

FM dµN :=

∫ x1

1

· · ·
∫ xN

1

FM

(
xN+1

ω

)
dxN+1

xN+1
· · · dx2

x2
,

N = 1, M = 0.

Theorem 1. We have

C(ω) :=

∫ 1/2

0

F (t) cos(ωt) dt =

N∑
k=1

ccosk

Fk(1/ω)

ω
+Rcos

N , ω →∞,(7)

where

ccosk = −
∫ ∞
0

sinx

x

lnk−1 x

(k − 1)!
dx, k = 1,

Rcos
N = −

∫ ω/2

0

sinx1
x1

∫
SN (x1)

FN+1 dµN
dx1
ω

+O

(
LN (ω)

ω2

)
.(8)

Here LN (ω) is a slowly varying function at in�nity. Moreover, we have an error

estimate:

|Rcos
N | 5 C(F,N)

|FN+1(1/ω)|
ω

.(9)

Proof. Integrating by parts we obtain∫ 1/2

0

F (t) cos(ωt) dt = −
∫ ω/2

0

F1

(
x

ω

)
sinx

x

dx

ω
.

In what follows we will need the representation for the function FM :

FM

(
x

ω

)
= FM

(
1

ω

)
+

∫ x

1

FM+1

(
y

ω

)
dy

y
∀M = 0.(10)

Using formula (10) with M = 1, we arrive at

C(ω) = −
∫ ∞
0

sinx

x
dx · F1(1/ω)

ω

− 1

ω

∫ ω/2

0

∫ x

1

F2

(
y

ω

)
dy

y

sinx

x
dx︸ ︷︷ ︸

=R1

+O

(
1

ω2

)
.



The small ball asymptotics in Hilbert norm 5

This gives (7) for N = 1. Then we integrate R1 by parts and get

R1 =
1− cosx

x

∫ x

1

F2

(
y

ω

)
dy

y

∣∣∣∣x=ω/2
x=0

−
∫ ω/2

0

1− cosx

x2
F2

(
x

ω

)
dx(11)

+

∫ ω/2

0

1− cos(x)

x2

∫ x

1

F2

(
y

ω

)
dy

y
dx.

To estimate these integrals we need the following statement.

Proposition 2 (see [31, Sect. 1]). Let F(t) > 0 be a slowly varying function

at zero. Then for arbitrary α > 0 there exists ε > 0 such that the function F(t)tα

increases, and the function F(t)t−α decreases in ε-neighbourhood of zero.

Let α > 0. We take ε such that Proposition 2 holds. Then for ω large (1/ω < ε)
we have the estimates∣∣∣∣F( yω

)∣∣∣∣( yω
)α

5

∣∣∣∣F( 1

ω

)∣∣∣∣ω−α if y ∈ (0, 1],(12) ∣∣∣∣F( yω
)∣∣∣∣(ωy )α 5

∣∣∣∣F( 1

ω

)∣∣∣∣ωα if y ∈ (1, εω].(13)

Moreover, by the continuity of F and (13), we obtain∣∣∣∣F( yω
)∣∣∣∣(ωy

)α
5 C(α, F )

∣∣∣∣F(εωω
)∣∣∣∣( ω

εω

)α
5 C(α, F )

∣∣∣∣F( 1

ω

)∣∣∣∣ωα if y ∈
[
εω,

ω

2

]
.(14)

Let us estimate
∫ x
1
F2(y/ω)y−1 dy. Using the estimate (12) for F = F2, we obtain for

x ∈ (0, 1]∣∣∣∣∣
∫ x

1

F2

(
y

ω

)
dy

y

∣∣∣∣∣ 5 ωα
∫ x

1

∣∣∣∣F2

(
y

ω

)∣∣∣∣( yω
)α

dy

y1+α
5

∣∣∣∣F2

(
1

ω

)∣∣∣∣ |x−α − 1|
α

.(15)

Using the estimates (13) and (14), we obtain for x ∈ [1, ω/2]∣∣∣∣ ∫ x

1

F2

(
y

ω

)
dy

y

∣∣∣∣ 5 ω−α
∫ x

1

∣∣∣∣F2

(
y

ω

)∣∣∣∣(ωy
)α

dy

y1−α

5 C(α, F )

∣∣∣∣F2

(
1

ω

)∣∣∣∣ |xα − 1|
α

.(16)

We substitute the estimates (15) and (16) with α = 1/2 into the expression (11) and
obtain the estimate (9) for N = 1. For N > 1 we proceed by induction. Namely, we
substitute formula (10) with M = N into (8) and estimate the remainder term using
Proposition 2. This completes the proof of Theorem 1.

Theorem 2. We have

S(ω) :=

∫ 1/2

0

F (t) sin(ωt) dt =
F (1/ω)

ω
+

N∑
k=1

csink
Fk(1/ω)

ω
+Rsin

N , as ω →∞,
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where

csink = −
∫ 1

0

1− cosx

x

lnk−1 x

(k − 1)!
dx+

∫ ∞
1

cosx

x

lnk−1 x

(k − 1)!
dx, k = 1,

Rsin
N = −

∫ 1

0

1− cos(x1)

x1

∫
SN (x1)

FN+1 dµN
dx1
ω

+

∫ ω/2

1

cosx1
x1

∫
SN (x1)

FN+1 dµN
dx1
ω

+O

(
LN (ω)

ω2

)
.

Here LN (ω) is a slowly varying function at in�nity.

Moreover, we have an error estimate:

|Rsin
N | 5 C(F,N)

|FN+1(1/ω)|
ω

.

The proof is similar to the proof of Theorem 1.

Remark 1. The following integrals can be reduced to C(ω) and S(ω):

∫ 1/2

0

∫ τ

0

F (t)F (τ) sin(ωt) sin(ωτ) dt dτ =
S2(ω)

2
,∫ 1/2

0

∫ τ

0

F (t)F (τ) cos(ωt) cos(ωτ) dt dτ =
C2(ω)

2
.

Theorem 3. We have:

I(ω) :=

∫ 1/2

0

∫ τ

0

F (t)F (τ) sin(ωτ) cos(ωt) dt dτ =
1

2ω

∫ 1/2

0

F 2(t) dt

+

N∑
n=2

∑
k+m=n,

k,m=1

ak,m
Fk(1/ω)Fm(1/ω)

ω2
+RscN , as ω →∞(17)

where

ak,m = −
∫ ∞
0

sinx

x

lnk−1 x

(k − 1)!

∫ ∞
x

cos y

y

lnm−1 y

(m− 1)!
dy dx.

Moreover, we have an error estimate

|RscN | 5 C(F,N)
∑

i+j=N+1,

i,j=1

|Fi(1/ω)Fj(1/ω)|
ω2

.(18)

Proof. We change the order of integration and integrate by parts. This gives

I(ω) =
1

2ω

∫ 1/2

0

F 2(t) dt− 1

ω2

∫ ω/2

0

F1

(
x

ω

)
sinx

x

∫ ω/2

x

F1

(
y

ω

)
cos y

y
dy dx.
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Using formula (10) with M = 1, we get∫ ω/2

0

F1

(
x

ω

)
sinx

x

∫ ω/2

x

F1

(
y

ω

)
cos y

y
dy dx

= F 2
1

(
1

ω

)∫ ω/2

0

sinx

x

∫ ω/2

x

cos y

y
dy dx

+F1

(
1

ω

)∫ ω/2

0

sinx

x

∫ ω/2

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx︸ ︷︷ ︸

=R11

+

∫ ω/2

0

sinx

x

∫ x

1

F2

(
z

ω

)
dz

z

∫ ω/2

x

F1

(
y

ω

)
cos y

y
dy dx︸ ︷︷ ︸

=R12

.(19)

It is easy to see that∫ ω/2

0

sinx

x

∫ ω/2

x

cos y

y
dy dx =

∫ ∞
0

sinx

x

∫ ∞
x

cos y

y
dy dx+O

(
1

ω

)
.

Hence, we obtain formula (17) for N = 2.
To estimate the integral R11 we split it into three terms:

R11 =

∫ 1

0

sinx

x

∫ 1

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx

+

∫ 1

0

sinx

x

∫ ω/2

1

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx

+

∫ ω/2

1

sinx

x

∫ ω/2

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx =: R111 +R112 +R113.

Note that the integrand in R111 does not change the sign. By (15) and the
inequalities

sinx

x
5 1, cos y 5 1,

we obtain

|R111| 5
∣∣∣∣F2

(
1

ω

)∣∣∣∣ ∫ 1

0

∫ 1

x

y−α − 1

αy
dy dx = C(α)

∣∣∣∣F2

(
1

ω

)∣∣∣∣.
Next,

|R112| 5

∣∣∣∣∣
∫ ω/2

1

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy

∣∣∣∣∣.
Integrating by parts, we have

|R112| 5

∣∣∣∣∣1 + sin y

y

∫ y

1

F2

(
z

ω

)
dz

z

∣∣∣∣y=ω/2
y=1

−
∫ ω/2

1

1 + sin y

y2

(
F2

(
y

ω

)
−
∫ y

1

F2

(
z

ω

)
dz

z

)
dy

∣∣∣∣∣.
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Substitution y = 1 vanishes; by (16), substitution y = ω/2 is O(|F2

(
1
ω

)
| ·ωα−1). Using

inequalities (16), (13) and (14) for F = F2, we estimate the last integral as follows:

∣∣∣∣ ∫ ω/2

1

1 + sin y

y2

(
F2

(
y

ω

)
−
∫ y

1

F2

(
z

ω

)
dz

z

)
dy

∣∣∣∣
5 C(α, F )

∣∣∣∣F2

(
1

ω

)∣∣∣∣ ∫ ω/2

1

1 + sin y

y2−α
dy 5 C(α, F )

∣∣∣∣F2

(
1

ω

)∣∣∣∣.
Consider now R113. Integrating by parts we obtain

R113 =
1− cosx

x

∫ ω/2

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy

∣∣∣∣x=ω/2
x=1

+

∫ ω/2

1

1− cosx

x2

∫ ω/2

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx

+

∫ ω/2

1

(1− cosx) cosx

x2

∫ x

1

F2

(
z

ω

)
dz

z
dx.

Substitution x = ω/2 vanishes; substitution x = 1 is estimated in terms of R112.
Using (16) we estimate the last integral via C(α, F )|F2(1/ω)|. As for the second term
we integrate by parts with respect to y and arrive at

∫ ω/2

1

1− cosx

x2

∫ ω/2

x

cos y

y

∫ y

1

F2

(
z

ω

)
dz

z
dy dx

=

∫ ω/2

1

1− cosx

x2

[
1 + sin y

y

∫ y

1

F2

(
z

ω

)
dz

z

∣∣∣∣y=ω/2
y=x

+

∫ ω/2

x

1 + sin y

y2

(∫ y

1

F2

(
z

ω

)
dz

z
− F2

(
y

ω

))
dy

]
dx.

This expression is estimated in the same way as R112. As a result, we obtain

|R11| 5 C(α, F )

∣∣∣∣F2

(
1

ω

)∣∣∣∣.
In a similar way we estimate R12. Setting α = 1/2 we obtain (18) forN = 2. ForN > 2
we proceed by induction. Namely, we substitute formula (10) into (19) and estimate
the remainder term using Proposition 2. This completes the proof of Theorem 3.

3. Asymptotics of eigenvalues. For convenience we denote F0(x) := Φ−1(x),
Fn+1(x) := xF ′n(x), n = 0. Note that by Theorem 5 (see Appendix) the functions
F = F0 and F = F2

0 satisfy the assumptions from the beginning of Section 2. We
write down the asymptotics of the integrals C1(ω), C2(ω), I1(ω), I2(ω) using the
formulas (7) and (17) for N = 2 (this precision is su�cient for our goals as one can
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see from the next Section):

C1(ω) = −π
2

F1

ω
+
γπ

2

F2

ω
+O

(
|F3|
ω

)
,

C2(ω) = −π F0F1

ω
+ γπ

F0F2 + F2
1

ω
+O

(
|F0F3|+ |F1F2|

ω

)
,(20)

I1(ω) =
1

4ω
+
π3

8

F1F2

ω2
+O

(
|F1F3|+ F2

2

ω2

)
,

I2(ω) =
3

4ω
+
π3

2

F2
0F1F2 + F0F3

1

ω2
+O

(
|F2

0F1F3|+ |F0F2
1F2|

ω2

)
.

Here γ is the Euler constant and all functions Fn are taken at the point 1/ω. We
substitute (20) into formulas (5) and (6) and obtain

D1(ω) =
π2

2ω3
F2

1

[
sin

(
ω

2

)
− 2γ sin

(
ω

2

)
F2

F1
− π cos

(
ω

2

)
F2

F1

+O

(
|F3F1|+ F2

2

F2
1

)]
;

D2(ω) =
π2

ω3

(
F0F1

)2[
− cos

(
ω

2

)
+ 2γ cos

(
ω

2

)
F0F2 + F2

1

F0F1

−π sin

(
ω

2

)
F0F2 + F2

1

F0F1

+O

(
(F0F2)2 + F4

1 + |F2
0F1F3|+ |F0F2

1F2|
F2

0F2
1

)]
.(21)

We recall that ω
(1)
2k−1 are roots of the equationD1(ω) = 0. Taking into account (21)

we rewrite this equation as follows:

tg

(
ω

2

)
= π
F2

F1
+O

(
|F3F1|+ F2

2

F2
1

)
.(22)

Here all functions Fn are taken at the 1/ω. Since the right hand side of (22) tends to
zero as ω → ∞, there is exactly one root of this equation in a neighbourhood of the
point 2πk for all k su�ciently large.

It was noticed in the Introduction that λ
(1)
2k = λ2k and λ

(1)
2k−1 5 λ2k−1. Thus

ω
(1)
2k = 2πk and ω

(1)
2k−1 = π(2k − 1). These facts and the interlacing property for

eigenvalues imply the interval [(2k − 1)π, (2k + 1)π) contains just two roots, ω
(1)
2k−1

and ω
(1)
2k . Thus, it is the root ω

(1)
2k−1 of the equation (22) that lies in a neighbourhood

of the point 2πk .

Using standard argument, we obtain the asymptotics of ω
(1)
2k−1 as k →∞:

ω
(1)
2k−1 = 2πk + 2π

F2

F1
+O

(
|F3F1|+ F2

2

F2
1

)
.

Here all functions Fn are taken at the point 1/2πk. The relations (43)�(46) imply

(23)

F1 =
1

F0
+O

(
1

|F0|3

)
, F2 = − 1

F3
0

+O

(
1

|F0|5

)
,

F3 = O

(
1

|F0|5

)
, ω →∞,
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where all functions Fn are taken at the point 1/ω. Hence, we have

ω
(1)
2k−1 = 2πk +

2π

F2
0 (1/2πk)

+O

(
1

F4
0 (1/2πk)

)
.

It is known (see, e.g., [32]) that

F(x) = Φ−1(x) = −
√
−2 lnx ·

[
1 +O

(
ln(− lnx)

lnx

)]
, x→ 0.

Therefore

ω
(1)
2k−1 = 2πk +

π

ln k
+O

(
ln(ln k)

ln2 k

)
.(24)

Further, ω
(2)
2k are roots of the equation D2(ω) = 0. Taking into account (21) we

rewrite this equation as follows:

ctg

(
ω

2

)
= −π F0F2 + F2

1

F0F1

+O

(
(F0F2)2 + F4

1 + F2
0 |F1F3|+ |F0F2

1F2|
F2

0F2
1

)
.

Here all functions Fn are taken at the point 1/ω. Arguing as above, we see that there

is exactly one root ω
(2)
2k of this equation in a neighbourhood of 2πk + π for all k

su�ciently large. The asymptotics of these roots is as follows:

ω
(2)
2k = π + 2πk − π F0F2 + F2

1

F0F1

+O

(
(F0F2)2 + F4

1 + F2
0 |F1F3|+ |F0F2

1F2|
F2

0F2
1

)
,

Here all functions Fn are taken at the point 1/π(2k + 1). Finally, by (23) we have

ω
(2)
2k = π + 2πk +O

(
1

F4
0 (1/π(2k + 1))

)
= π(2k + 1) +O

(
1

ln2 k

)
.(25)

4. Small ball asymptotics for the process X(2). Now we apply the obtained
results to the problem of small ball asymptotics in L2-norm for the Gaussian processes
X(1), X(2), X(3) with zero mean and covariance functions (2)�(4).

The problem for X(2) is the simplest one. We apply the Wenbo Li comparison
principle (Proposition 1). As an approximation we take a process for which the
eigenvalues of the corresponding integral operator are γk = [(2k + 1)π/2]−2, k ∈ N.

It is well known ([8, Theorem 3.4], see also [11, Theorem 6.2]) that

P

{ ∞∑
k=1

γkξ
2
k < ε2

}
∼ 4

π3/2
ε−1 exp

(
− 1

8ε2

)
.(26)

To calculate the constant from (1), we de�ne

µ1 := π−2, µ2k = µ2k+1 :=
[
(2k + 1)π

]−2
.
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Then we have( ∞∏
k=1

γk

λ
(2)
k

)1/2

=

( ∞∏
k=1

γk
µk

)1/2( ∞∏
k=1

µk

λ
(2)
k

)1/2

=

( ∞∏
k=1

γk
µk

)1/2( ∞∏
k=1

µ2k

λ
(2)
2k

)1/2

.

The �rst in�nite product can be easily calculated by the Stirling formula:( ∞∏
k=1

γk
µk

)1/2

= lim
k→∞

π · (3π)2 · (5π)2 · · · ((2k + 1)π)2

3π
2 ·

5π
2 · · ·

(4k+3)π
2

=
1√
2
.(27)

Next, we notice that µ
−1/2
2k and (λ

(2)
2k )−1/2 = ω

(2)
2k are roots of the following entire

functions:

M(ω) :=
cos(ω/2)

1− (ω/π)2
and D(ω) := ωD2(ω), ω ∈ C.

Moreover, these roots are rather close to each other. Note also thatM(0) = D(0) = 1.
Using Lemma 1 (see Appendix), we arrive at

∞∏
k=1

µ2k

λ
(2)
2k

= lim
|ω|=2πk,
k→∞

M(ω)

D(ω)
,

and we can pass to the limit along the real axis. So using formulas (21) and (23), we
have

∞∏
k=1

µ2k

λ
(2)
2k

= lim
ω=2πk
k→∞

M(ω)

ωD2(ω)
= lim

ω=2πk
k→∞

(
F0

(
1

ω

)
F1

(
1

ω

))2

= 1.(28)

Finally, from formulas (1), (26)�(28) we obtain

P
{
‖X(2)‖ < ε

}
= P

{ ∞∑
k=1

λ
(2)
k ξ2k < ε2

}

∼ 2
√

2

π3/2
ε−1 exp

(
− 1

8ε2

)
, ε→ 0.(29)

5. Small ball asymptotics for the processes X(1) and X(3). We cannot
calculate the sharp constant in small ball asymptotics for the processes X(1) and X(3).
To calculate this asymptotics up to a constant we use the following proposition, which
is a particular case of [9, Theorem 3.1].

Proposition 3. Let φ(t) be a positive, logarithmically convex, twice di�erentiable
and summable function de�nded on [1,∞). Then

P

{ ∞∑
k=1

φ(k)ξ2k 5 r

}
∼ C

√
f(uφ(1))

I2(u)
exp(I0(u) + ur), r → 0.

Here f(t) = (1 + 2t)−1/2 and u = u(r) is a function satisfying

lim
r→0

I1(u) + ur√
I2(u)

= 0,(30)
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while the functions I0, I1, I2 are de�ned by formulas

I0(u) =

∫ ∞
1

ln f(uφ(t)) dt, I1(u) =

∫ ∞
1

uφ(t)(ln f(uφ(t)))′ dt,

I2(u) =

∫ ∞
1

(uφ(t))2(ln f(uφ(t)))′′ dt.

We apply this proposition with the function

φ(t) = (t+ δ + F (t))−d, d > 1.

Here F (t) is a function slowly varying and monotonically tending to zero as t → ∞.
If
∫∞
1
F (t)/t dt < ∞, then the product

∏
φ(k)/(k + δ)−d converges. In this case the

asymptotics up to a constant follows from [11, Theorem 6.2]. So we may assume that
the integral

∫∞
1
F (t)/t dt diverges.

We transform the integral I1 as follows:

I1 = −u
∫ ∞
1

dt

2u+ (t+ δ + F (t))d

= −1

2

∫ ∞
1+δ+F (1)

dx

1 + (x/(2u)1/d)d
+

1

2

∫ ∞
1

F ′(t) dt

1 + ((t+ δ + F (t))/(2u)1/d)d

= − π(2u)1/d

2d sin(π/d)
+

1

2

∫ 1+δ+F (1)

0

dx

1 + (x/(2u)1/d)d

+
1

2

∫ ∞
1

F ′(t) dt

1 + ((t+ δ + F (t))/(2u)1/d)d
.

Since both integrands are majorazed by summable functions, we obtain by the
Lebesgue Dominated Convergence Theorem that, as u→∞,

1

2

∫ 1+δ+F (1)

0

dx

1 + (x/(2u)1/d)d
+

1

2

∫ ∞
1

F ′(t) dt

1 + ((t+ δ + F (t))/(2u)1/d)d
→ 1 + δ

2
.

Thus,

I1(u) = − π(2u)1/d

2d sin(π/d)
+
δ + 1

2
+ o(1), u→∞.

Repeating the same arguments for I2(u), we obtain, as u→∞,

I2(u) = 2u2
∫ ∞
1

dt

(2u+ (t+ δ + F (t))d)2
=

(d− 1)π(2u)1/d

2d2 sin(π/d)
+O(1).

Note that the asymptotics of I1(u) and I2(u) coincides with the asymptotics of the
corresponding integrals in [11]. Therefore, we can choose

u = u(r) :=
1

2

( πr−1

d sin(π/d)

)d/d−1
(31)

(This function satis�es the assumption (30)).
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Consider now I0(u). Integrating by parts, we get

I0(u) = −1

2

∫ ∞
1

ln

(
1 +

2u

(t+ δ + F (t))d

)
dt

=
(1 + δ)

2
ln

(
1 +

2u

(1 + δ + F (1))d

)
−ud

∫ ∞
1

(t+ δ)(1 + F ′(t)) dt

(2u+ (t+ δ + F (t))d)(t+ δ + F (t))
.

The last integral can be represented as the sum of four integrals:

−ud
∫ ∞
1

dt

2u+ (t+ δ + F (t))d
− ud

∫ ∞
1

F ′(t) dt

2u+ (t+ δ + F (t))d

+ud

∫ ∞
1

F (t) dt

(2u+ (t+ δ + F (t))d)(t+ δ + F (t))

+ud

∫ ∞
1

F (t)F ′(t) dt

(2u+ (t+ δ + F (t))d)(t+ δ + F (t))

=: K1 +K2 +K3 +K4.

The integral K1 = −d · I1, so we have

K1 =
π(2u)1/d

2 sin(π/d)
+ const + o(1), u→∞.

The integrands in K2 and K4 are majorized by summable functions, hence, we obtain
as u→∞

K2 =
d

2

∫ ∞
1

F ′(t) dt

1 + ((t+ δ + F (t))/(2u)1/d)d

→ d

2

∫ ∞
1

F ′(t) dt = −d
2
· F (1) = const;

K4 =
d

2

∫ ∞
1

F (t)F ′(t) dt

(1 + ((t+ δ + F (t))/(2u)1/d)d)(t+ δ + F (t))

→ d

2

∫ ∞
1

F (t)F ′(t) dt

(t+ δ + F (t))
= const.

Next, we represent the integral K3 as a sum of four integrals:

K3 =
d

2

∫ (2u)1/d

1

F (t)

t
dt− d

2

∫ (2u)1/d

1

F (t)(δ + F (t))

t(t+ δ + F (t))
dt

− 1

2u

d

2

∫ (2u)1/d

1

F (t)(t+ δ + F (t))d−1

1 + ((t+ δ + F (t))/(2u)1/d)d
dt

+
d

2

∫ ∞
(2u)1/d

F (t) dt

(1 + ((t+ δ + F (t))/(2u)1/d)d)(t+ δ + F (t))

=:
d

2
F−1

(
(2u)1/d

)
−K31 −K32 +K33,

where F−1(x) =
∫ x
1

(F (t)/t) dt. By the Lebesgue theorem we have

K31 →
d

2

∫ ∞
1

F (t)(δ + F (t))

t(t+ δ + F (t))
dt = const.
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In the integrals K32 and K33 we change variable t = (2u)1/d · z and obtain:

K32 =
d

2

∫ 1

1/(2u)1/d

F ((2u)1/dz)

(
z +

δ + F ((2u)1/dz)

(2u)1/d

)d−1
1 +

(
z +

δ + F ((2u)1/dz)

(2u)1/d

)d dz,

K33 =

∫ ∞
1

F ((2u)1/dz) dz(
1 +

(
z +

δ + F ((2u)1/dz)

(2u)1/d

)d)(
z +

δ + F ((2u)1/dz)

(2u)1/d

) .
The integrands here are bounded, so by the Lebesgue theorem K32 → 0 and K33 → 0
as u→∞. Thus, we arrive at

K3 =
d

2
F−1

(
(2u)1/d

)
+ const + o(1), as u→∞.

Whence,

I0(u) =
(1 + δ)

2
ln

(
1 +

2u

(1 + δ + F (1))d

)
− π(2u)1/d

2 sin(π/d)

+
d

2
F−1

(
(2u)1/d

)
+ const + o(1).(32)

Note that the function exp(F−1(t)) is slowly varying [31, Theorem 1.2]. Hence, taking
into account the relation (31) we have

exp
(
F−1((2u)1/d)

)
= exp

(
F−1(r−1/d−1) + o(1)

)
, r → 0.(33)

We apply Proposition 3 taking into account (31)�(33) and rescaling. This gives the
following result.

Theorem 4. Consider the form
∑∞
k=0 Λkξ

2
k with Λk = (ϑ(k+δ+F (k)))−d, where

ϑ > 0, δ > −1 and d > 1 are some constants. Then we have, as ε→ 0,

P

{ ∞∑
k=0

Λkξ
2
k < ε2

}
∼ C · εγ · exp

(
− d− 1

2

(
π

dϑ sin(π/d)

)d/(d−1)
· ε−2/(d−1)

+
d

2
· F−1(ε−2/(d−1))

)
,

where

γ =
2− d− 2dδ

2(d− 1)
, C = C(ϑ, δ, d, F ) = const.

For the process X(1) we set

Λk :=

[
π

(
k +

1

2
+

1

2 ln(k + 1)

)]−2
.

Let us check that
∏
λ
(1)
k /Λk converges. To prove this we de�ne

τ2k := (2πk)−2, τ2k−1 :=

[
π

(
2k +

1

ln(k + 1)

)]−2
, k ∈ N.
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We have ( ∞∏
k=1

λ
(1)
k

Λk

)1/2

=

( ∞∏
k=1

λ
(1)
k

τk

)1/2( ∞∏
k=1

τk
Λk

)1/2

=

( ∞∏
k=1

λ
(1)
2k−1
τ2k−1

)1/2( ∞∏
k=1

τk
Λk

)1/2

.(34)

The �rst product in (34) converges, since the relation (24) gives( ∞∏
k=1

λ
(1)
2k−1
τ2k−1

)1/2

=

∞∏
k=1

(
1 +O

(
ln ln k

k ln2 k

))
<∞.

The second product can be represented as follows:( ∞∏
k=1

τ2kτ2k−1
Λ2kΛ2k−1

)1/2

=

∞∏
k=1

(2k + 1/2 + 1/(2 ln(2k + 1)))(2k − 1/2 + 1/(2 ln(2k))

2k(2k + 1/ln(k + 1))

=

∞∏
k=1

(
1 +

1

4k

(
1

ln(2k + 1)
+

1

ln(2k)
− 2

ln(k + 1)

)
+O

(
1

k2

))

=

∞∏
k=1

(
1 +O

(
1

k ln2 k

))
<∞.

Applying the Wenbo Li comparison principle and Theorem 4, we obtain

P
{
‖X(1)‖ < ε

}
= P

{ ∞∑
k=1

λ
(1)
k ξ2k < ε2

}
∼ C ·P

{ ∞∑
k=1

Λkξ
2
k < ε2

}
∼ Cε−1 ln1/2

(
1

ε

)
exp

(
− 1

8ε2

)
, ε→ 0.(35)

For the process X(3) we set

Λ̃k :=

[
π

(
k + 1 +

1

2 ln(k + 1)

)]−2
, k ∈ N.

Similarly to (35), we get

P
{
‖X(3)‖ < ε

}
= P

{ ∞∑
k=1

λ
(3)
k ξ2k < ε2

}
∼ CP

{ ∞∑
k=1

Λ̃kξ
2
k < ε2

}
∼ Cε−2 ln1/2

(
1

ε

)
exp

(
− 1

8ε2

)
, ε→ 0.(36)

6. Appendix.

6.1. The following lemma strengthens the result of [18, Lemma 1.2].
Lemma 1. Let sequences ωk and ρk have the same two-term asymptotics

ωk ∼ c(k + δ) + ak, ρk ∼ c(k + δ) + bk, k →∞,
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where ak, bk → 0, and |ak−bk| decreases monotonically as k →∞. Suppose, moreover,

that

∞∑
k=1

|ak − bk|
k

<∞.(37)

Then the functions

f(ζ) =

∞∏
k=1

(
1− ζ2

ω2
k

)
, g(ζ) =

∞∏
k=1

(
1− ζ2

ρ2k

)
have the same behavior up to a constant at in�nity. Namely, for |ζ| = c(n+ δ + 1/2)
we have, as n→∞,

f(ζ)

g(ζ)
−→−→ const =

∞∏
k=1

ρ2k
ω2
k

.(38)

Proof. We have

f(ζ)

g(ζ)
=

∞∏
k=1

ρ2k
ω2
k

·
∞∏
k=1

(
1 +

ωk − ρk
ρk + ζ

)
·
∞∏
k=1

(
1 +

ωk − ρk
ρk − ζ

)
.(39)

The convergence of the �rst product in (39) is equivalent to the convergence of the
series

∞∑
k=1

|ak − bk|
c(k + δ) + bk

,

which converges by assumption (37). Let <(ζ) = 0. Then the second product in (39)
converges uniformly. The third product converges uniformly if so does the series

∞∑
k=1

|ωk − ρk|
|ρk −R|

, where R = c(n+ δ + 1/2).(40)

Note that |ρk −R| = c|n− k + δ1|, where δ1 > 0. Therefore,

∞∑
k=1

|ωk − ρk|
|ρk −R|

5

( ∑
k5 2

3n

+
∑

2
3n5k5

4
3n

+
∑
k= 4

3n

)
|ak − bk|

c|n− k + δ1|
.(41)

The third sum in (41) tends to zero as n→∞:

∞∑
k= 4

3n

|ak − bk|
c|n− k + δ1|

5 C
∑
k= 4

3n

|ak − bk|
k

→ 0.

The �rst sum is majorized by the converging series

∑
k5 2

3n

|ak − bk|
c|n− k + δ1|

5 C

∞∑
k=1

|ak − bk|
k

.
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Hence, it converges uniformly and we obtain as n→∞∑
k5 2

3n

|ak − bk|
c|n− k + δ1|

→ 0.

Since |ak − bk| decreases monotonically, we have

∑
2
3n5k5

4
3n

|ak − bk|
c|n− k + δ1|

5 2
∑

2
3n5k5n

|ak − bk|
c|n− k + δ1|

5
2

c

∑
m5 1

3n

|am+n
3
− bm+n

3
|

|m+ δ1|
.

The last sum is majorized by the converging series, therefore, it converges uniformly.
Thus, the series (40) converges uniformly and we can pass to the limit in (39) as
|ζ| = c(n + δ + 1/2) → ∞. This gives (38) for <(ζ) = 0. The proof for <(ζ) 5 0 is
similar, and Lemma 1 follows.

6.2. The properties of Φ−1(x). We introduce the notation:

x = Φ(y), y = F0(x) := Φ−1(x),

and construct the sequence of functions:

FN+1(x) := xF ′N (x), N = 0.(42)

Denote F̃N (y) := FN (x(y)) and notice that

F̃1(y) = x(y)
dF (x(y))

dx
= x(y)

dy

dx
,

F̃N+1(y) = x(y)
dFN (x)

dx
= x(y)

dy

dx

dF̃N (y)

dy
= F̃1(y)F̃ ′N (y).(43)

We study the behavior of the functions F̃N (y). First, we consider the function F̃1(y):

F̃1(y) = x(y) · dy
dx

=
x(y)

dx/dy
=

∫ y
−∞ exp(−t2/2) dt

exp(−y2/2)

= exp

(
y2

2

)∫ y

−∞
exp

(
− t2

2

)
dt

=

∫ ∞
0

exp

(
yz − z2

2

)
dz = −1

y

∫ ∞
0

exp

(
− u− u2

2y2

)
du.

We introduce the auxiliary functions:

eN (y) :=

∫ ∞
0

exp

(
− u− u2

2y2

)
u2N−2 du.

Lemma 2. The following relations hold:

1. e′N (y) =
eN+1(y)

y3
;(44)

2. (2N − 2)!

(
1− N(2N − 1)

y2

)
< eN (y) < (2N − 2)!.(45)
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Proof. 1. It is checked by direct calculation.
2. Taking into account that

1− u2

2y2
< exp

(
− u2

2y2

)
< 1,

we obtain∫ ∞
0

exp(−u)

(
1− u2

2y2

)
u2N−2 du < eN (y) <

∫ ∞
0

exp(−u)u2N−2 du,

(2N − 2)!− (2N)!

2y2
< eN (y) < (2N − 2)!,

which provides (45), and Lemma 2 follows.

Lemma 3. The following identity holds for the N -th derivative of F̃1(y):

F̃
(N)
1 (y) =

(−1)N+1N !e1(y)

yN+1
+
c2e2(y)

yN+3
+ · · ·+ cN+1eN+1(y)

y3N+1
,(46)

where

c2 = c2(N), c3 = c3(N), . . . , cN+1 = cN+1(N) are some constants.

To prove we proceed by induction using (44).
Corollary 1. The following relation holds as y → −∞:

F̃
(N)
1 (y) ∼ (−1)N+1N !

yN+1
.(47)

Proof follows from (45) and (46).

Lemma 4. F̃N (y) can be represented in the following form:

F̃N (y) =
∑

{n1,...,nN}

cn1,··· ,nN F̃
n1,...,nN
N (y),(48)

where

F̃n1,...,nN
N (y) := (F̃1(y))n1(F̃ ′1(y))n2 · · · (F̃ (N−1)

1 (y))nN .(49)

Here

n1, . . . , nN ∈ N0 = {0, 1, . . .};
1 · n1 + 2 · n2 + · · ·+N · nN = 2N − 1,(50)

and the coe�cients in (48) satisfy the following inequalities:

cn1,...,nN = 0,
∑

{n1,...,nN}

cn1,...,nN > 0.(51)

Proof. We proceed by induction on N .
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Base caseN = 1: F̃1(y) = cn1
F̃n1
1 , n1 = 1, cn1

= 1. Properties (49)�(51) evidently
hold.

Inductive step: suppose that the statement holds for F̃N (y). We write (50) as
follows:

1 · n1 + · · ·+N · nN + (N + 1) · nN+1 = 2N − 1,

where nN+1 = 0. By (43) and (48) we have

F̃N+1(y) =
∑

{n1,...,nN}

cn1,...,nN F̃1(y)
d

dy

[
(F̃1(y))n1(F̃ ′1(y))n2 · · · (F̃ (N−1)

1 (y))nN
]
.

Here the coe�cients cn1,...,nN satisfy the condition (51). Di�erentiating we get

N∑
k=0

cn1,...,nNnk(F̃1)n1+1 · · · (F̃ (k−1)
1 )nk−1(F̃

(k)
1 )nk+1+1 · · · (F̃ (N−1)

1 )nN .(52)

Consider a term in the sum (52) corresponding to some k. Let n′1, n
′
2, . . . , n

′
N+1

be the powers of the corresponding derivatives of F̃1 in this term.
If k = 1, then n′2 = n2 + 1 and n′i = ni for all other i.
If k = 2, then n′1 = n1 + 1, n′k = nk − 1, n′k+1 = nk+1 + 1 and n′i = ni for all

other i.
Therefore, the property (50) holds. Next, all coe�cients in (52) are evidently

non-negative, and moreover, ∑
k=1,...,N

{n1,...,nN}

cn1,...,nN · nk > 0.

Thus, the inequalities (51) hold, and Lemma 4 follows.
Lemma 5. As y → −∞ we have

F̃N (y) ∼ − C

y2N−1
,(53)

where C = C(N) > 0 is a constant.

Proof. For each term of the form (49) with non-zero coe�cient cn1,...,nN we obtain
by (47) and (50)

(F̃1(y))n1(F̃ ′1(y))n2 · · · (F̃ (N−1)
1 (y))nN

∼
(

(−1)0!

y1

)n1
(

(−1)21!

y2

)n2

· · ·
(

(−1)N (N − 1)!

yN

)nN
= 0!n11!n2 · · · (N − 1)!nN︸ ︷︷ ︸

cN

(−1)n1+2n2+···+NnN

yn1+2n2+···+NnN

= cN
(−1)2N−1

y2N−1
= − cN

y2N−1
.

Hence, the relation (53) holds with

C = cN
∑

{n1,...,nN}

cn1,··· ,nN ,
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and Lemma 5 follows.
Definition 1 (see [31, Section 1]). A measurable function L(x) is called slowly

varying at in�nity, if it is of constant sign on [A,∞), for some A > 0, and for arbitrary
λ > 0 we have

lim
x→∞

L(λx)

L(x)
= 1.

A function L(x) is called slowly varying at zero, if the function L(1/x) is slowly
varying at in�nity.

For example, the functions lnα x, α ∈ R, are slowly varying at in�nity.
Theorem 5. FN (x) are slowly varying functions at zero for all N = 0.
Proof. According to [31, Section 1] it is su�cient to prove, that FN (x) is of constant

sign in a neighbourhood of x = 0 (or equivalently, F̃N (y) is of constant sign in a
neighbourhood of y = −∞), and

lim
y→−∞

F̃N+1(y)

F̃N (y)
= 0.

Both statements easily follow from Lemma 5. This completes the proof of Theorem 5.
Remark 2. Theorem 5 remains valid for the sequence (42) constructed from the

function F0(x) = (Φ−1(x))n, n ∈ N.
We are grateful to Ya.Yu.Nikitin for valuable comments and consultations on the

history of the problem.
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