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1. INTRODUCTION

Consider the following eigenvalue problem:

(−1)pu(2p)(t) = λ(n,p)u(t) + Pn−2p(t),

ˆ 1

0
tiu(t) dt = 0, i = 0, . . . , n− 1, (1.1)

where n, p ∈ N, n > 2p, Pn−2p(t) is a polynomial with unknown coefficients of degree less than n− 2p.

The aim of this paper is to find the asymptotics of the eigenvalues λ
(n,p)
k as k → +∞, where λ

(n,p)
k

is the kth eigenvalue of problem (1.1). This problem arises in the study of the asymptotics of small
deviations of Gaussian processes (see Sec. 3). For p = 1, this problem was considered in the paper [1]
of Ai and Li. Note that second-order operators with integral conditions of more general form were
considered in the monograph [2, Sec. 1.2] of Skubachevskii (see also the relevant bibliography given
there).

Consider the following auxiliary boundary-value problem:

(−1)py(2n)(t) = λ(n,p)y(2n−2p)(t), y(j)(0) = y(j)(1) = 0, j = 0, . . . , n − 1. (1.2)

Problem (1.2) arises in the search for the sharp constant in the embedding theorem for the spaces
W̊ n

2 (0, 1) ↪→ W̊ n−p
2 (0, 1):

λ
(n,p)
1 = min

y∈W̊n
2

´ 1
0 (y

(n)(x))2 dx´ 1
0 (y

(n−p)(x))2 dx
.

This constant was obtained by Janet [3] (see also [4]) for arbitrary n ∈ Z+ and p = 1. For an arbitrary
p ∈ N, the answer was stated in [5] without proof and in implicit terms (see also [6] for p = 2).

Lemma 1. Problems (1.1) and (1.2) are equivalent, i.e., they have solutions for the same positive
eigenvalues λ(n,p); further, if u(t) is a solution of problem (1.1) and y(t) is a solution of
problem (1.2), then they are related by the equality u(t) = y(n)(t).
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Proof. If we put u(t) := y(n)(t), then Eq. (1.2) takes the form

(−1)pu(n)(t) = λ(n,p)u(n−2p)(t),

which is equivalent to the equation in (1.1). Let us rewrite the boundary conditions (1.2) in terms of the
function u(t). By the Newton–Leibniz formula, we have

0 = y(n−1)

∣
∣
∣
∣

1

0

=

ˆ 1

0
y(n)(t) dt =

ˆ 1

0
v(t) dt,

0 = y(n−2)

∣
∣
∣
∣

1

0

=

ˆ 1

0
y(n−1)(t) dt = ty(n−1)

∣
∣
∣
∣

1

0

−
ˆ 1

0
ty(n) dt = −

ˆ 1

0
tv(t) dt.

Similarly, all the other boundary conditions can be written in the form of the integral conditions from
(1.1).

Conversely, we have the representation

y(k)(t) =
1

(n− k − 1)!

ˆ t

0
(t− s)(n−k−1)u(s) ds;

therefore, from the integral conditions in (1.1), we obtain the boundary conditions in (1.2).

The paper is organized as follows. In Sec. 2, we derive the equation for the eigenvalues λ
(n,p)
k and

construct their asymptotics. In Sec. 3, using the obtained results, we find the asymptotics of the
probabilities of small deviations for some detrended processes.

In this paper, we use the following notation: V[x1, . . . , xn] is the Vandermonde determinant; Jk(x) is
the Bessel function of the first kind of order k, and

[f(x)] := f(x) +O

(
1

x

)

.

By even and odd functions we mean functions that are even or odd with respect to the point 1/2.

2. THE ASYMPTOTICS OF THE EIGENVALUES λk

Without loss of generality, we can assume that the solutions of problem (1.2) are either even or odd
functions. Consider the even solution y(t). Note that y′(t) is an odd function satisfying the equation

(−1)p(y′(t))(2n−1) − λ(n,p)(y′(t))(2n−2p−1) = 0;

hence

(−1)p(y′(t))(2n−2) − λ(n,p)(y′(t))(2(n−1−p)) = const,

where the left-hand side is an odd and continuous function. Therefore, the constant on the right-hand
side is 0. Thus, we see that the eigenvalue λ(n,p) corresponding to the even solution of the problem is
λ(n−1,p), which corresponds to the odd solution of the problem.

Conversely, let us consider the odd solution y(t) of problem (1.2) with λ(n−1,p). Obviously,

Y (t) :=

ˆ t

0
y(x) dx

is an even solution of the boundary-value problem

(−1)pY (2n)(t)− λ(n−1,p)Y (2n−2p)(t) = 0, Y (j)(0) = Y (j)(1) = 0, j = 0, . . . , n− 1.

Thus, it suffices to consider only odd solutions of problem (1.2). Any such solution can be written as

y(t) = a0 sin(ξ0(2t− 1)) + a1 sin(ξ1(2t− 1)) + · · ·+ ap−1 sin(ξp−1(2t− 1))

+ ap(2t− 1) + · · ·+ an−1(2t− 1)2n−2p−1, (2.1)
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where

ξj :=
ωzj

2
, j = 0, . . . , p− 1, ω = |λ(n,p)|1/2p, z = eiπ/p.

Substituting (2.1) into the boundary conditions from (1.2), we obtain a system of linear equations for aj ,
j = 0, . . . , n− 1.

For a nontrivial solution to exist, it is necessary that the determinant of the system be equal to zero.
After cancellation by appropriate powers of 2, this determinant becomes

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sin(ξ0) . . . sin(ξp−1) 1 1 1 . . . 1

ξ0 cos(ξ0) . . . ξp−1 cos(ξp−1) 1 3 5 . . . (2n− 2p− 1)

−ξ20 sin(ξ0) . . . −ξ2p−1 sin(ξp−1) 0 3 · 2 5 · 4 . . . (2n− 2p− 1)(2n− 2p− 2)

−ξ30 cos(ξ0) . . . −ξ3p−1 cos(ξp−1) 0 3! 5 · 4 · 3 . . . . . .

ξ40 sin(ξ0) . . . ξ4p−1 sin(ξp−1) 0 0 5 · 4 · 3 · 2 . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Denote this determinant by Δn,p and consider it as a function of the variables (ξ0, . . . , ξp−1).
Differentiating Δn,p with respect to each variable, we obtain

∂pΔn,p

∂ξ0 . . . ∂ξp−1
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

cos(ξ0) . . . 1 1 . . . 1

cos(ξ0)− ξ0 sin(ξ0) . . . 1 3 . . . (2n − 2p− 1)

−2ξ0 sin(ξ0)− ξ20 cos(ξ0) . . . 0 3 · 2 . . . (2n − 2p− 1)(2n − 2p − 2)

−3ξ20 cos(ξ0) + ξ30 sin(ξ0) . . . 0 3! . . . . . .

4ξ30 sin(ξ0) + ξ40 cos(ξ0) . . . 0 0 . . . . . .

. . . . . . . . . . . . . . . . . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Let us subject the resulting determinant to the following operations:

1) subtract the first row from the second, then subtract the doubled second row from the third, the
tripled third row from the fourth, etc.;

2) expand the determinant Δn,p along the (p+ 1)th column, obtaining a determinant of order
(n− 1);

3) take out common multipliers from each column, obtaining the recurrence relation

∂p

∂ξ0 . . . ∂ξp−1
Δn,p = 2 · 4 · 6 · · · (2n − 2p− 2) · ξ0 · · · ξp−1 ·Δn−1,p. (2.2)

For n = p, we have

Δp,p =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sin(ξ0) . . . sin(ξp−1)

ξ0 sin
′(ξ0) . . . ξp−1 sin

′(ξp−1)
...

. . .
...

ξp−1
0 sin(p−1)(ξ0) . . . ξp−1

p−1 sin
(p−1)(ξp−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Let us rewrite Δp,p in terms of the Bessel functions. Note that

sin(x) =

√
π

2
x1/2J1/2(x).
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Subtracting the first row from the second, we can write

x cos(x)− sin(x) = −
√

π

2
· x3/2J3/2(x).

Similarly, subtracting from each row the appropriate linear combination of all previous rows and using
formula [7, 8.463], we obtain the following expression for Δp,p (up to a multiplicative constant which is
not important for our purposes):

Δp,p = Cp

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ
1/2
0 J1/2(ξ0) . . . ξ

1/2
p−1J1/2(ξp−1)

ξ
3/2
0 J3/2(ξ0) . . . ξ

3/2
p−1J3/2(ξp−1)

...
. . .

...

ξ
(2p−1)/2
0 J(2p−1)/2(ξ0) . . . ξ

(2p−1)/2
p−1 J(2p−1)/2(ξp−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Given Δp,p, using relation (2.2), we will try to find Δp+1,p. Let us multiply Δp,p by ξj , j = 0, . . . , p − 1,
and then integrate over each variable ξj from 0 to ξj . Using the recurrence relation between Bessel
functions [7, 8.472.3], we can write

Δp+1,p = Cp+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ
3/2
0 J3/2(ξ0) . . . ξ

3/2
p−1J3/2(ξp−1)

ξ
5/2
0 J5/2(ξ0) . . . ξ

5/2
p−1J5/2(ξp−1)

...
. . .

...

ξ
(2p+1)/2
0 J(2p+1)/2(ξ0) . . . ξ

(2p+1)/2
p−1 J(2p+1)/2(ξp−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Thus, carrying out this operation (n− p) times, we finally obtain

Δn,p = Cn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ξ
(2n−2p+1)/2
0 J(2n−2p+1)/2(ξ0) . . . ξ

(2n−2p+1)/2
p−1 J(2n−2p+1)/2(ξp−1)

ξ
(2n−2p+3)/2
0 J(2n−2p+3)/2(ξ0) . . . ξ

(2n−2p+3)/2
p−1 J(2n−2p+3)/2(ξp−1)

...
. . .

...

ξ
(2n−1)/2
0 J(2n−1)/2(ξ0) . . . ξ

(2n−1)/2
p−1 J(2n−1)/2(ξp−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (2.3)

Theorem 1. As k → ∞, the following equality holds:

λ
(n,p)
k =

(

πk +
(2n − p− 1)π

2
+O(k−1)

)2p

. (2.4)

Proof. Consider Δn,p as a function of the single variable ω ∈ C (recall that ξj = ωzj/2). Let us find
the asymptotics of the roots Δn,p(ω) = 0 as |ω| → ∞. Note that |Δn,p(ω)| = |Δn,p(zω)|; therefore, it
suffices to consider |arg(ω)| ≤ π/(2p).

In the angle |arg(ω)| < ϕ0 < π, the Bessel function has the following uniform asymptotics at infinity
(see [7, 8.451.1]):

Jn+1/2(ω) = (−1)n
√

2

π

sin(n)(ω)

ω1/2

(

1 +O

(
1

ω

))

, |ω| → ∞.

Therefore, for |arg(ω)| ≤ π/(2p), we have

Δn,p(ω) = Cn

(
2

π

) p
2

∣
∣
∣
∣
∣
∣
∣
∣
∣

(

−ω
2

)n−p
sin(n−p)

(
ω
2

)

. . .
(

−ω
2

)n−p
z(p−1)(n−p) sin(n−p)

(
ω
2 z

p−1
)

...
. . .

...
(

−ω
2

)n−1
sin(n−1)

(
ω
2

)

. . .
(

−ω
2

)n−1
z(p−1)(n−1) sin(n−1)

(
ω
2 z

p−1
)

∣
∣
∣
∣
∣
∣
∣
∣
∣

[1].
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Note that, for |arg(ω)| ≤ π/(2p), we have �(ωzj) > aω > 0 for a > 0 and j = 0, . . . , p − 1; therefore,

sin

(
ω

2
zj
)

= −e−i(ω/2)zj

2i
· [1], j = 1, . . . , p− 1, |ω| → ∞.

In all the columns, except the first, we replace the sines by the corresponding exponentials, obtaining

Δn,p =
Cn(−1)p−1

(2i)p

(
2

π

) p
2

[1]

×

∣∣∣∣∣∣∣∣∣∣

(
−ω

2

)n−p
(in−pe

iω
2 − (−i)n−pe−

iω
2 ) zn−p

(
iω
2

)n−p
e−iω

2
z . . . z(p−1)(n−p)

(
iω
2

)n−p
e−iω

2
zp−1

...
...

. . .
...

(
−ω

2

)n−1
(in−1e

iω
2 − (−i)n−1e−

iω
2 ) zn−1

(
iω
2

)n−1
e−iω

2
z . . . z(p−1)(n−1)

(
iω
2

)n−1
e−i)zp−1

∣∣∣∣∣∣∣∣∣∣
.

Taking out common multipliers from the rows and columns, we obtain

Δn,p =
Cn(−1)p−1

(2π)(p/2)ip

(
iω

2

)p(2n−p−1)/2

e−iω/2 · · · e−i(ω/2)zp−1 · z(n−p)p(p−1)/2

×

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(−1)n−peiω − 1 1 . . . 1

(−1)n−p+1eiω − 1 z . . . zp−1

...
...

. . .
...

(−1)n−1eiω − 1 zp−1 . . . z(p−1)2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

· [1]. (2.5)

Thus, the asymptotic solution of the equation Δn,p(ω) = 0 can be reduced to the solution of the equation

eiω(−1)n−p ·V[−1, z, . . . , zp−1] = V[1, z, . . . , zp−1] · [1],

or

eiω
(

1 +O

(
1

ω

))

= (−1)n−p (z − 1) · · · (zp−1 − 1)

(z + 1) · · · (zp−1 + 1)
= (−1)n−p z − 1

zp−1 + 1
· · · z

p−1 − 1

z + 1

= (−1)n−peiπ/p · · · ei(p−1)π/p = ei(2n−p−1)π/2. (2.6)

Standard arguments using the Rouché theorem (see, for example, [8, Chap. 2, Sec. 4]), show that
all the roots of Eq. (2.6) of sufficiently large modulus are located in neighborhoods of the points
2πk + (2n − p− 1)π/2 with radius O(k−1), exactly one root of the equation being in a neighborhood
of each point. The roots of the equation Δn−1,p(ω) = 0 are near the points 2πk − π + (2n− p− 1)π/2,

k → ∞. Since the set {(λ(n,p)
k )1/(2p)}k∈N is the union of the positive roots of the determinants Δn,p

and Δn−1,p, we obtain the following asymptotics of the eigenvalues of problem (1.2):

λk+k0 =

(

πk +
(2n− p− 1)π

2
+O(k−1)

)2p

, k → ∞,

where k0 is an integer. It remains to show that k0 = 0. To do this, let us use Jensen’s theorem (see [9,
Sec. 3.6]).

Denote δ := (2n − p− 1)/2. It follows from the equality |Δn,p(ω)| = |Δn,p(zω)|, that the roots of
the equation Δn,p(ω) = 0 have the form ωkz

j , j = 0, . . . , 2p − 1, where the ωk are the positive roots
of this equation. In addition to these roots, there are extraneous roots ω = 0 not corresponding to
the eigenvalues. To exclude them, we will use the asymptotic behavior of the Bessel functions in a
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neighborhood of zero (see [7, 8.440]). As ω → 0, we obtain

Δn,p = Cn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(ω/2)2n−2p+1 · (1 + o(1))

2(2n−2p+1)/2Γ(n− p+ 3/2)
. . .

((ω/2)zp−1)2n−2p+1 · (1 + o(1))

2(2n−2p+1)/2Γ(n− p+ 3/2)
...

. . .
...

(ω/2)2n−1 · (1 + o(1))

2(2n−1)/2Γ(n+ 1/2)
. . .

((ω/2)zp−1)2n−1 · (1 + o(1))

2(2n−1)/2Γ(n+ 1/2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Hence

|Δn,p(ω)|
ωp(2n−p)

∣
∣
∣
∣
ω=0

=
Cn · |V[1, z2, . . . , z2(p−1)]| · 2−(3/2)p(2n−p)

∏p
j=1 Γ(n− p+ j + 1/2)

=
Cn · pp/2 · 2−(3/2)p(2n−p)

∏p
j=1 Γ(n− p+ j + 1/2)

.

Consider the function

Δ̃n,p(ω) :=
Δn,p(ω)

Cnωp(2n−p)
· Δn−1,p(ω)

Cn−1ωp(2n−2−p)
. (2.7)

Note that

Δ̃n,p(0) =
pp · 2−3p(2n−p−1)

Γ(n− p+ 1/2)Γ(n + 1/2)
∏p−1

j=1 Γ
2(n− p+ j + 1/2)

�= 0. (2.8)

The zeros of the function Δ̃n,p(ω) are asymptotically close to the zeros of the function Ψ(ω) (see [10,
p. 8]),

Ψ(ω) := ψδ(ω) · ψδ(ωz) · · · · · ψδ(ωz
p−1),

where

ψδ(ω) =

∞∏

n=1

(

1− ω2

(π(n+ δ))2

)

=
Γ2(1 + δ)

Γ(1 + δ + ω/π)Γ(1 + δ − ω/π)
.

Let us prove the existence of the uniform limit

lim
|Δ̃n,p(ω)|
|Ψ(ω)| for |ω| = π

(

N + δ +
1

2

)

, N → ∞.

Just as above, it suffices to restrict ourselves to the sector |arg(ω)| ≤ π/(2p). It is known that (see [10,
Lemma 1.3])

ψδ(ω) ∼ Γ2(1 + δ)π2δω−2δ−1 cos

(

ω − π

(

δ +
1

2

))

uniformly in |ω| = π(N + δ + 1/2), N → ∞, in the given sector. Further, from formulas (2.5), (2.7),
using (2.6), we obtain the following uniform asymptotic behavior as |ω| → ∞ and |arg(ω)| ≤ π/(2p):

|Δ̃n,p(ω)| ∼ (2ω)−p(2n−p)

(
2

π

)p

· |V[1, z, . . . , zp−1]|2 · |e−iωz | · · · · · |e−iωzp−1 |

× |e iω
2 − ei(δπ−ω/2)| · |e iω

2 − ei(δπ−π−ω/2)|.
For j = 1 . . . p− 1, we have

∣
∣
∣
∣
cos

(

ωzj − π

(

δ +
1

2

))∣
∣
∣
∣
∼ 1

2
|e−i(ωzj−π(δ+1/2))| = 1

2
|e−iωzj | as |ω| → ∞

uniformly in the given sector In addition,

|eiω/2 − ei(δπ−ω/2)| · |eiω/2 − ei(δπ−π−ω/2)| = |eiω − ei(2δπ−ω)| = 2

∣
∣
∣
∣
cos

(

ω − π

(

δ +
1

2

))∣
∣
∣
∣
.
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Therefore, for |ω| = π(N + δ + 1/2) as N → ∞,

|Δ̃n,p(ω)|
|Ψ(ω)| ⇒ 22p · |V[1, z, . . . , zp−1]|2

Γ2p(1 + δ)(2π)p(2n−p)
. (2.9)

By Jensen’s theorem, we have
N∏

k=1

(π(k + δ))2p

ω2p
k

=
|Ψ(0)|

|Δ̃n,p(0)|
· exp

(
1

2π

ˆ 2π

0
ln

|Δ̃n,p(π(N + δ + 1/2)eiϕ)|
|Ψ(π(N + δ + 1/2)eiϕ)| dϕ

)

. (2.10)

Using formulas (2.8), (2.9), and (2.10) we see that the infinite product
∞∏

k=1

(π(k + δ))2p

ω2p
k

converges. Hence we obtain k0 = 0.

3. APPLICATION TO THE ASYMPTOTICS OF SMALL DEVIATIONS

As was pointed out in the Introduction, problem (1.1) arises in the study of the asymptotics of small
deviations P{‖Xn‖2 < ε} as ε → 0 for Gaussian processes Xn(t), t ∈ [0, 1], of the form

Xn(t) := X(t)−
n−1∑

i=0

ait
i, (3.1)

where the ai are determined by the relationsˆ 1

0
tiXn(t) dt = 0, i = 0, . . . , n− 1.

Here X(t), t ∈ [0, 1], is a Gaussian process with zero mean (EX(t) ≡ 0) whose covariance function
G(s, t) = EX(s)X(t) is the Green function of the following boundary-value problem:

Lu := (−1)pu(2p) = λu+ boundary conditions. (3.2)

The case n = 1 (zero-mean processes) was intensively studied for different X(t). In particular, results
for the zero-mean Brownian motion W1(t) and the Brownian bridge B1(t) were obtained in [11], [12]
(they correspond to the case p = 1 and appropriate boundary conditions).

It is natural to regard the zero-mean process X1(t) as the projection X(t) on the subspace of
functions orthogonal to a constant in L2[0, 1]. If the projection on the linear functions is subtracted,
then we obtain the so-called detrended processes X2(t). For the process B2(t), the asymptotics of
small deviations was studied in the paper [13] of Ai and Li,. For an arbitrary n, the processes Xn are
called nth order detrended processes. For the processes Wn(t) and Bn(t), the eigenvalues of the
covariance operator were found in [1].

By the well-known Karhunen–Loève expansion (see, for example, [14, Sec. 12]), we have the
following equality in distribution:

‖Xn‖22
d
=

∞∑

k=1

μkη
2
k,

where the ηk, k ∈ N, are the independent standard Gaussian random variables and the μk, k ∈ N, are
the eigenvalues of the integral operator with kernel

Gn(s, t) = EXn(s)Xn(t).

Note that

Gn(s, t) = E

(

X(s)−
n−1∑

i=1

ais
i

)(

X(t)−
n−1∑

i=1

ait
i

)

= G(s, t) + Pn(s, t),
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where Pn(s, t) is a polynomial of degree at most n− 1 in both variables. Then the equation for the
eigenvalues is of the form

μu(t) =

ˆ 1

0
u(s)(G(s, t) + Pn(s, t)) ds.

Applying the operator L to both sides of this equality and denoting λ(n,p) := μ−1, we obtain Eq. (1.1).
If we assume that n ≥ 2p, we then see that u(t) also satisfies the integral conditions from (1.1). In this
case, the asymptotics of small deviations is independent of the original boundary conditions in (3.2).

To obtain the exact asymptotics of small deviations, we will use the comparison principle of W. Li.

Proposition 1 (see [15], [16]). Let ηk be the sequence of independent standard Gaussian random
variables, and let μk and μ̃k be two positive nonincreasing summable sequences such that
∏

μ̃k/μk < ∞. Then

P

{ ∞∑

k=1

μkη
2
k < ε2

}

∼ P

{ ∞∑

k=1

μ̃kη
2
k < ε2

}

·
( ∞∏

k=1

μ̃k

μk

)1/2

, ε → 0.

For the approximant we take the sequence

μ̃k := [π(k + δ)]−2p, k ∈ N.

where δ = (2n − p− 1)/2. Then

P

{ ∞∑

k=1

μkη
2
k < ε2

}

∼ P

{ ∞∑

k=1

μ̃kη
2
k < ε2

}

·
( ∞∏

k=1

μ̃k

μk

)1/2

= P

{ ∞∑

k=1

μ̃kη
2
k < ε2

}

·
∞∏

k=1

ωp
k

(π(k + δ))p
.

The last product can be calculated from formulas (2.10), (2.8), (2.9). Using Theorem 6.2 from [17], we
obtain the following theorem.

Theorem 2. For the processes Xn, as ε → 0,

P{‖Xn‖2 < ε} ∼ Cεγ exp

(

− 2p− 1

2(2p sin(π/(2p)))2p/(2p−1)
ε−2/(2p−1)

)

,

where γ = (1− 2np+ p2)/(2p − 1) and

C =
(2p)1+γ/2+p/2 · π(p−1)/2 · sin(1+γ)/2(π/(2p))

2p(2n−p−1/2)
√
2p− 1 ·V[1, z, . . . , zp−1]|

· Γ
−1/2(n− p+ 1/2)Γ−1/2(n+ 1/2)

∏p−1
j=1 Γ(n− p+ j + 1/2)

.

Remark. For n = 2, p = 1, this result was obtained in [13] without the knowledge of the exact value of
the constant C. For the case p = 1 and an arbitrary n, the corresponding result in [1, Proposition 4.3]
was also given for an unknown constant C. Besides, in that paper, the value of γ was calculated
erroneously.
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