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Abstract—Spectral asymptotics for a family of finite-dimensional perturbations of operators of trace class are
found. The results are used to find exact asymptotics of small ball probabilities in the Hilbert norm for finite-
dimensional perturbations of Gaussian functions. As an example, Durbin processes appearing in the study of
empirical processes with estimated parameters are considered.
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1. SPECTRAL PROBLEM

Let  be a bounded domain in , , and  be
the closure of . Suppose that  is a positive
integral operator in  with a trace (which means
that its eigenvalues , , have the property

) and  is its kernel, so that

Consider a finite-dimensional perturbation of the
operator  of rank m. Its kernel can be represented in
the form

(1)

where , , and
 is a square matrix of order  (without loss

of generality, we can assume that D is a symmetric
matrix). Let , , denote the positive eigenval-
ues of the operator with kernel . By the minimax
principle (see [1, Subsection 9.2]), 
and, hence, . In this paper, we examine the
conditions on the perturbation parameters  and D
under which the spectrum  of the perturbed opera-
tor is “asymptotically close” to the spectrum  of the
original operator (see Theorem 1).
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The case of a one-dimensional perturbation
( ) was considered by Nazarov in [2]. Specifi-
cally, it was shown that there exists a critical value of
the parameter  (denoted by Dcr) such that

(i) for  and , the spectra  and

 are asymptotically close, namely, ;

(ii) for  and , the spectrum 
is asymptotically close to the shifted spectrum ,

namely, .

Note that the condition  is equivalent
to the fact that the quantity  is well
defined. Here,  denotes duality in dual spaces.
Moreover, , which is equivalent to the con-
dition .

In the case of a finite-dimensional perturbation,
the answer depends on the rank of the matrix

, where  is the identity matrix of order 
and . The main spectral result can be
formulated as follows.

Theorem 1. Suppose that the matrix 
is defined, or, equivalently, , j =

, and all eigenvalues  ( ) of
the matrix  are nonnegative.

1. If , then .
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2. If  and 

, then .

Remark 1. The perturbation corresponding to 
in item 2 of Theorem 1 is called critical (which corre-
sponds to the critical case introduced in [2] for one-
dimensional perturbations). In this case, D = .

The proof of Theorem 1 is based on Bateman’s for-
mula (see [3, Chapter II, Section 4; 4]) for the ratio of
Fredholm determinants and on the Jensen theorem for
the product of zeros of an entire function (see [5, Sub-
section 3.6]).

Remark 2. If the matrix  has several neg-
ative eigenvalues, there is also a “failure” in indexing,
since we consider only positive eigenvalues. For exam-
ple, if the matrix has  negative and  zero eigenvalues,

then .

2. APPLICATION TO THE PROBLEM
OF SMALL BALL PROBABILITIES

Consider a random Gaussian function , ,
with zero mean and covariance .
The problem of small ball probabilities for  in the

 norm consists in finding the asymptotics, as ,
of the quantity

(2)

This equality holds by virtue of the Karhunen–Loève
expansion (see, e.g., [6, Section 12]). Here, , ,
are independent normal standard random variables
and  are the positive eigenvalues of the integral
operator with kernel  (covariance operator).

An important role is played by the Wenbo Li com-
parison theorem [7]: Let  and  be two summable
sequences. If

(3)

then, as ,

(4)

Thus, to find the asymptotics of small ball probabili-
ties for X(t), it is sufficient to construct a function 
with known asymptotics of small ball probabilities
such that the eigenvalues  and  of their covariance
operators are asymptotically close (in the sense of con-
dition (3)).
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Consider the problem of small ball probabilities for
finite-dimensional perturbations of Gaussian func-
tions. Let , , be a Gaussian function with
zero mean and covariance function G0(s, t) =

. The corresponding covariance operator
is denoted by . Consider ,
where  are locally summable functions in , j =

. Assume that the vector function

(5)

is defined a.e. in , , and a matrix  is
defined:

(6)

Construct a family of Gaussian functions—a gen-
eralization of formula (1.3) from [2]:

(7)

Here, A is the matrix of perturbation parameters
( , ). Clearly, .

Lemma 1. The function  has the covariance

(8)

where the matrix  is given by the formula

(9)

Corollary 1. The functions  and  have
identical finite-dimensional distributions.

Corollary 2. Let . Then the following asser-
tions hold.

1. We have the identity ( )

2. The function  and the random variables
, , are independent.

3. If , , then the integral
operator with kernel  has a zero eigenvalue of
multiplicity  corresponding to the eigenfunctions ,

.

Theorem 2. 1. Let the matrix  be nonsin-
gular. Then, as ,
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2. Let . If , , then,
as ,

Remark 3. If  and ,
, then the small ball probabilities can be cal-

culated by combining cases 1 and 2 from Theorem 2.

The basic motivating example of processes of form
(7) is given by Durbin processes naturally arising in
statistics. Let us describe them in more detail.

Let  be a sample with a population
distribution function ,  be the distribu-
tion density, and , , be a vector of
parameters. Consider an empirical distribution func-
tion for fixed parameter values :

It is well known (see [8, Chapter 3]) that the pro-
cess  weakly converges to the Brownian
bridge  in . Here,  is the space of func-
tions on  that are right continuous and have only
jump discontinuities.

Assume that some of the parameters of the distri-
bution are unknown (without loss of generality, we
may assume that these are the first  parameters). The
unknown parameters are estimated using the sample
(e.g., by applying the maximum likelihood method),
and the new parameter vector is denoted by  :=

. Then the empirical distribu-
tion function becomes

It was shown in [9] that the process  con-
verges weakly in  to a finite-dimensional pertur-

bation of the Brownian bridge, namely, to a Gaussian
process with zero mean and the covariance function

here,  is the covariance of the
Brownian bridge;  is the Fisher information matrix with

elements Sij = ,

where  and  is a fixed
parameter vector;  and  are related by ;
and the functions  are given by the formula ψj(t) =

, .

Theorem 3. The Durbin processes are critical (in the
sense of Remark 1 and Corollary 2).

Small ball probabilities for some Durbin processes
were considered in [10, 11].
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