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HOMOGENIZATION FOR

LOCALLY PERIODIC ELLIPTIC PROBLEMS ON A DOMAIN

NIKITA N. SENIK

1. Introduction

Let Ω be a bounded domain, and let A : Ω× Rd → Cd×d be a uniformly elliptic
function which is smooth in the first variable and periodic in the second. A classical
result in homogenization theory tells us that, for any f in H−1(Ω), the dual of the

Sobolev space H̊1(Ω), the solution uε ∈ H̊1(Ω) of the Dirichlet problem

(1)
− divA(x, ε−1x)∇uε = f in Ω,

uε = 0 on ∂Ω,

converges, as ε→ 0, to the solution u0 of a similar problem

(2)
− divA0(x)∇u0 = f in Ω,

u0 = 0 on ∂Ω,

where A0 : Ω → Cd×d is a smooth function. In applications, this usually is in-
terpreted as approximation of a highly heterogeneous medium, described by the
rapidly oscillating locally periodic function x 7→ A(x, ε−1x), with a homogeneous
one, described by the slowly varying function x 7→ A0(x).

There are various ways to prove the convergence. Among the first were the
method of asymptotic expansions, using on powerful tools of asymptotic analysis
(see [BLP78] or [BP84]), and the energy method, based on compensated compact-
ness phenomenon (see [MT97]). Another way of dealing with the problem (1) is to
use the two-scale convergence technique (see, e.g., [A92]). In any case, one finds that

uε converges to u0 weakly in the Sobolev space H̊1(Ω), and therefore strongly in the
Lebesgue space L2(Ω). The latter can be phrased as saying that the resolvent of the
operator − divA(x, ε−1x)∇ converges to the resolvent of the operator − divA0(x)∇
in the respective strong operator topology. A simple argument, see [AC98], using a
compact embedding theorem then shows that the resolvent converges in the uniform
operator topology on L2(Ω), the strongest operator topology on L2(Ω). However,
this says nothing about the rate of convergence, nor does it apply to the case of
unbounded Ω (or quasi-bounded, to be precise; see [AF03]).

A sharp-order bound on the rate was found in the pioneering paper [BSu01]
(see also [BSu03]) for a purely periodic problem (when the coefficients depend
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on x/ε only) on Rd. Uniform operator approximations in homogenization the-
ory have attracted considerable attention since then, with a number of interest-
ing results – see [Gri04], [Gri06], [Zh05], [ZhP05], [B08], [KLS12], [Su131], [Su132],
[ChC16] and [ZhP16], to name just a few.

As each weakly convergent sequence of operators is bounded, one may ask
whether a sequence of the resolvents of − divA(x, ε−1x)∇ converge in the uni-
form operator topology on Lp(Ω) provided that it is bounded in the operator norm

from W−1
p (Ω) to W̊ 1

p (Ω) for p other than 2. Another question that naturally arises
in this context is which domains and boundary conditions are allowed to still yield
the convergence of the resolvent in the uniform operator topology on Lp(Ω). The an-
swer we give in this paper is somewhat implicit, for it is formulated in terms of,
e.g., boundary regularity results, but we provide some examples as well.

Let Ω be a uniformly Lipschitz domain (possibly unbounded). For fixed p ∈

(1,∞), let W1
p (Ω;Cn) be a subspace of the Sobolev spaceW 1

p (Ω)
n that contains W̊ 1

p (Ω)
n,

and let W
1
p+(Ω;Cn) be defined similarly for the exponent p+ conjugate to p. Let

Akl be C
n×n-matrix-valued mappings on Ω̄×R

d that are Lipschitz in the first vari-
able and periodic in the second and set A = {Akl}

d
k,l=1. We will study the matrix

operator

Aε = − divA(x, ε−1x)∇

acting between W
1
p (Ω;Cn) and W

−1
p (Ω;Cn), the dual of W1

p+(Ω;Cn). We point out

that a function in W
1
p (Ω;Cn) may satisfy mixed boundary conditions and even

different components of this function may satisfy different boundary conditions.
Suppose that, for some µ ∈ C and all sufficiently small ε, the operators Aε−µ are

isomorphisms with uniformly bounded (in ε) inverses. This condition is obviously
necessary for the sequence (Aε − µ)−1 to have a limit even in the weak operator
topology and thus is not related to homogenization; the next two definitely are. We
assume that, for each x ∈ Ω, the cell problem

− divA(x, ·)(∇N(x, ·) + I) = 0

has a unique solution inW 1
p (T

d) which is Lipschitz in x, and the resolvent (A0−µ)−1

of the effective operator A0 is continuous from Lp(Ω)
n to W

1
p (Ω)n ∩W 1+s

p (Ω)n for
some s ∈ (0, 1].

The basic examples are the Dirichlet and the Neumann problems for strongly
elliptic operators Aε on a bounded C1,1 domain. In this case, there is a sector S in
the complex plain and an open neighborhood P0 of the exponent 2 such that our
assumptions hold for any µ /∈ S and p ∈ P0. Moreover, P0 = (1,∞) as long as the
function A belongs to the VMO space in the “periodic” variable. See Section 7 for
details.

In this paper we prove that

‖(Aε − µ)−1 − (A0 − µ)−1‖Lp(Ω)→Lp(Ω) ≤ Cεs/p,(3)

‖∇(Aε − µ)−1 −∇(A0 − µ)−1 − ε∇Kε
µ‖Lp(Ω)→Lp(Ω) ≤ Cεs/p,(4)

where Kε
µ is a so-called corrector, see Theorem 6.1. If, in addition, the adjoint of Aε

satisfies similar assumptions as Aε, then

(5) ‖(Aε − µ)−1 − (A0 − µ)−1‖Lp(Ω)→Lp(Ω) ≤ Cεs,

see Theorem 6.3. For s = 1, the convergence rate in (5) is the same as in the whole
space case, which is known to be sharp with respect to the order. If we have a
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uniform Caccioppoli-type inequality for Aε, then the estimate (4) can be improved
as well, but only away from the boundary. Thus, for a subdomain Σ with closure
in Ω,

(6) ‖∇(Aε − µ)−1 −∇(A0 − µ)−1 − ε∇Kε
µ‖Lp(Ω)→Lp(Σ) ≤ Cεs,

see Corollary 6.5. We note that, in the whole space case, one can also find the second
term in the approximation (5) so that the rate becomes of order ε2, see [Se171],
where the case p = 2 was handled.

Purely periodic homogenization problems on a bounded domain are thoroughly
studied. By using the unfolding method, Griso [Gri04], [Gri06] established uni-
form approximations (3)–(6) in the Hilbert-space case p = 2 for scalar prob-
lems on C1,1 domains with Dirichlet or Neumann boundary conditions, as well
as on C0,1 domains with mixed boundary conditions. In the case when s = 1
and p = 2, Zhikov [Zh05] and Zhikov with Pastukhova [ZhP05] (see also the survey
paper [ZhP16] and the references therein) proved (3)–(4) for scalar problems and
the linear elasticity system on sufficiently smooth domains with Dirichlet or Neu-
mann boundary conditions. In [KLS12], the authors considered self-adjoint Dirich-
let and Neumann problems on C0,1 domains with Hölder continuous coefficients
and, for p = 2, obtained the approximation (5) with error of order ε|ln ε|σ for
any σ > 1/2. They also improved the rate to ε if s = 1. Quite general self-adjoint
strongly elliptic systems on C1,1 domains with Dirichlet or Neumann boundary
conditions were studied by Suslina [Su131], [Su132], where the estimates (3)–(6)
were proved for s = 1 and p = 2.

To prove the results, we study a first-order approximation, involving the re-
solvents of the original and the effective operators and the corrector. First-order
approximations are well-known in homogenization theory, see, e.g., [BLP78] or
[ZhKO93]. The one we use here differs from the classical one in that the corrector is
now regularized. The idea of using a smoothing to regularize the classical corrector
is due to Cioranescu, Damlamian and Griso, see [CDG02]. Besides the standard
mollification, we employ the Steklov smoothing operator, which is the most simple
and which had already proved to be quite useful for both linear and non-linear prob-
lems; see [Zh05] and [ZhP05], where that smoothing first appeared in the context
of homogenization, as well as [PT07], [Su131] and [Su132]. We adopt the technique
related to the Steklov smoothing operator from these papers.

For the first-order approximation, we derive an operator representation that
splits the problem into interior and boundary parts, see (69). The interior part is
treated in the same way as for the whole space case, cf. [Se171]. On the other hand,
the boundary part, being supported in a small neighborhood of the boundary, is
small as well, no matter what the boundary conditions.

We note that, once the estimates (3)–(6) are obtained, a limiting argument will
lead to similar results for locally periodic operators whose coefficients are Hölder
continuous in the first variable, see [Se173] for some details. We also mention the
paper [Se20], where the elliptic bounds (4)–(5) for the Dirichlet problem with s = 1
and p = 2 were carried over to the parabolic semigroup by keeping track of the rate
dependence on both the small parameter ε and spectral parameter µ.
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2. Notation

The symbol ‖·‖U will stand for the norm on a normed space U . If U and V
are Banach spaces, then B(U, V ) is the Banach space of bounded linear operators
from U to V . When U = V , the space B(U) = B(U,U) becomes a Banach algebra
with the identity map I. The norm and the inner product on Cn are denoted by | · |
and 〈 · , · 〉, respectively. We shall often identify B(Cn,Cm) and Cm×n.

Let Σ be a domain in Rd and U a Banach space. The space C0,1(Σ̄;U) consists
of those uniformly continuous functions u : Σ → U for which

‖u‖C0,1(Σ̄;U) = ‖u‖C(Σ̄;U) + [u]C0,1(Σ̄;U) <∞,

where ‖u‖C(Σ̄;U) = supx∈Σ‖u(x)‖U and

[u]C0,1(Σ̄;U) = sup
x1,x2∈Σ,
x1 6=x2

‖u(x2)− u(x1)‖U
|x2 − x1|

.

We will use the notation ‖·‖C0,1 , ‖·‖C and [ · ]C0,1 as shorthand for ‖·‖C0,1(Σ̄;U),

‖·‖C(Σ̄;U) and [ · ]C0,1(Σ̄;U) when the context makes clear which Σ and U are meant.
The corresponding modulus of continuity will be denoted by ωu:

ωu(r) = sup
x1,x2∈Σ,
|x1−x2|<r

‖u(x2)− u(x1)‖U .

Let L0(Σ;U) be the vector space of all strongly measurable functions on Σ
with values in U . The symbol Lp(Σ;U), p ∈ [1,∞], stands for the Lp-space of
L0(Σ;U)-functions. For finite p and s > 0, we letW s

p (Σ;U) denote the usual Sobolev
space or Sobolev–Slobodetskii space of L0(Σ;U)-functions on Σ with norm

‖u‖W s
p (Σ;U) =

( m
∑

|α|=0

‖Dαu‖pLp(Σ;U)

)1/p

if s = m ∈ N and

‖u‖W s
p (Σ;U) =

(

∑

|α|=m

‖Dr,p
Σ,UD

αu‖pLp(Σ;U) + ‖u‖pWm
p (Σ;U)

)1/p

if s = m+ r with m ∈ N0 and r ∈ (0, 1). Here D = −i∇ and Dr,p
Σ,U is the fractional

derivative of order r given by

Dr,p
Σ,Uu(x) =

(
∫

−x+Σ

|h|−d−rp‖∆hu(x)‖
p
U dh

)1/p

,

where ∆hu(x) = u(x + h) − u(x) and x ∈ Σ. In case U = Cn, we write ‖·‖p,Σ
and ‖·‖s,p,Σ for the norms on Lp(Σ)

n = Lp(Σ;U) and W s
p (Σ)

n = W s
p (Σ;U) and

( · , ·)Σ for the inner product on L2(Σ)
n. When it is clear from the context which

Σ and U are meant, we will write Dr,p instead of Dr,p
Σ,U . The dual space of W s

p (Σ)
n

under the pairing ( · , · )Σ is denoted by (W s
p (Σ)

n)∗, with ‖·‖∗−s,p+,Σ standing for the

norm. Here p+ is the exponent conjugate to p, that is, 1/p+ = 1− 1/p. The closure

of C∞
c (Σ)n in W s

p (Σ)
n is W̊ s

p (Σ)
n, and W−s

p+ (Σ)n is its dual, with norm ‖·‖−s,p+,Σ.

The space (W s
p (Σ)

n)∗ is continuously embedded in W−s
p+ (Σ)n.

Let Q be the closed cube in Rd with center 0 and side length 1, sides being parallel
to the axes. Then W̃m

p (Q)n denotes the completion of C̃m(Q)n in the Wm
p -norm.
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Here C̃m(Q) is the class ofm-times continuously differentiable functions onQ whose

periodic extension to R
d enjoys the same smoothness. Notice that L̃p(Q)n can be

identified with the space of all periodic functions in Lp,loc(R
d)n. In a similar fashion,

we define W̃m
p (Rd ×Q)n and C̃m(Rd ×Q)n. The dual of W̃m

p is denoted by W̃−m
p+ .

Let B be the open unit ball in Rd centered at the origin, and let B+ be the open
unit half-ball with xd ∈ (0, 1). We say that Σ satisfies the uniform weak Lipschitz
condition if there is a uniformly locally-finite open covering {Wk} of ∂Σ and a
sequence of bi-Lipschitz transformations ωk : Wk → B so that (1) ωk(Wk∩Σ) = B+

and ωk(Wk ∩∂Σ) = ∂B+ \∂B; (2) supk[ωk]C0,1(W̄k) and supk[ω
−1
k ]C0,1(B̄) are finite;

and (3) for some δ > 0, any open ball Bδ(x) with x ∈ ∂Σ is contained in a coordinate
patch Wk. The last two conditions are automatically satisfied provided that the
boundary of Σ is compact. Notice that the domain Rd \ Σ̄ is uniformly weakly
Lipschitz whenever Σ is.

For such Σ, there exists a C∞-partition of unity {ϕk} subordinate to {Wk}
with the property that supk‖D

αϕk‖∞,Wk
is finite for any α, see [Ste70, Chapter 6,

Section 3]. Then there is an extension operator fromW s
p (Σ)

n to W s
p (R

d)n. It follows

that standard density and embedding results which hold for Rd must also hold for Σ.
In particular, the Sobolev theorem states that W 1

p (Σ)
n is continuously embedded

in Lq(Σ)
n for any q ∈ [p, p∗]. Here p∗ is the Sobolev conjugate to p given by 1/p∗ =

1/p− 1/d if p < d; p∗ is any finite number greater than or equal to p if p = d; and
p∗ = ∞ if p > d. By p∗ we denote an exponent such that W 1

p∗
(Σ)n is embedded

in Lp(Σ)
n; more precisely, p∗ = 1 if p ∈ [1, d+), p∗ satisfies 1/p∗ = 1/p + 1/d

if p ∈ [d+,∞) and p∗ is any number greater than d if p = ∞.
If p = 2, we write Hs for W s

p , H−s for W−s
p , etc.

For a set Ξ ⊂ Rd, we let Ξδ denote a neighborhood of Ξ:

Ξδ =
{

x ∈ Ξ: dist(x,Ξ) < rQδ
}

,

where 2rQ = diamQ = d1/2. Thus, Ξ + δQ ⊂ Ξδ.
We shall also need the BMO(Rd) and VMO(Rd) spaces. The former consists of

all u ∈ L1,loc(R
d) such that

‖u‖BMO = sup
BR

−

∫

BR

|u(x) −mBR(u)| dx <∞,

where BR ⊂ Rd is a ball of radius R and mBR(u) = −
∫

BR
u(y) dy is the mean value

of u over BR. The latter is the subspace in BMO(Rd) of all functions u for which
the VMO-modulus, given by

ηu(r) = sup
BR : R<r

−

∫

BR

|u(x)−mBR(u)| dx,

tends to zero as r → 0. We refer the reader to [Gra142] and [Gar07] for more on
this matter.

We will often use the notation α . β (which is the same as saying that β & α) to
mean that there is a positive constant C depending only on some fixed parameters
(listed in Theorem 6.1–Corollary 6.6) such that α ≤ Cβ.

Finally, α∧β and α∨β are, respectively, the smaller and the larger of α and β.



6 NIKITA N. SENIK

3. Original operator

Let Ω ⊂ R
d be a (possibly unbounded) domain satisfying the uniform weak

Lipschitz condition. Define the operation τε, ε > 0, as follows: given a function
u : Ω× Rd → L0(Q), we set τεu : Ω → L0(Q) to be

(7) τεu(x, z) = u(x, ε−1x, z),

where x ∈ Ω and z ∈ Q. Obviously, τε is a homomorphism of the respective algebras;
in other words, for any two functions u and v from Ω× Rd to L0(Q)

(8) τε(u+ v) = τεu+ τεv, τεuv = τεu · τεv

(the · denotes the pointwise product of functions). We adopt the notation uε = τεu.

Let Akl, with 1 ≤ k, l ≤ d, be a function in C0,1(Ω̄; L̃∞(Q))n×n. Then A =
{Akl} can be thought of as a bounded mapping A : Ω̄ × Rd → B(Cd×n) which is
Lipschitz in the first variable and periodic in the second. It follows that A satisfies a
Carathéodory-type condition, i.e., A( · , y) is continuous on Ω̄ for almost every y ∈ Q
uniformly with respect to y and A(x, · ) is measurable on Rd for each x ∈ Ω̄ (see,
e.g., the proof of Lemma 5.6 in [A92]). Therefore, Aε is measurable and uniformly
bounded.

Fix p ∈ (1,∞). Let W
1
p (Ω;Cn) and W

1
p+(Ω;Cn) be subspaces of, respectively,

W 1
p (Ω)

n and W 1
p+(Ω)n that contain all functions in C∞

c (Ω)n; for instance,

(9) W̊ 1
p (Ω)

n ⊆ W
1
p (Ω;Cn) ⊆W 1

p (Ω)
n.

By W
−1
p (Ω;Cn) and ||| · |||−1,p,Ω we denote the dual of W

1
p+(Ω;Cn) (under the

L2-pairing) and the associated norm. Since W
−1
p (Ω;Cn) is isometrically isomor-

phic to the quotient space (W 1
p+(Ω)n)∗/(W1

p+(Ω;Cn))⊥, where (W1
p+ (Ω;Cn))⊥ is

the subspace of all functionals on W 1
p+(Ω)n vanishing on W

1
p+(Ω;Cn), the natural

projection

(10) π : f 7→ f + (W1
p+ (Ω;Cn))⊥

can be thought of as a continuous epimorphism of (W 1
p+(Ω)n)∗ onto W

−1
p (Ω;Cn):

(11) |||πf |||−1,p,Ω ≤ ‖f‖∗−1,p,Ω.

Consider the matrix operator Aε : W1
p (Ω;Cn) → W

−1
p (Ω;Cn) given by

(12) Aε = D∗AεD,

that is, Aε sends each u ∈ W
1
p (Ω;Cn) to the functional v 7→ (AεDu,Dv)Ω in W

−1
p (Ω;Cn).

It is plain that Aε is bounded uniformly with respect to ε:

(13) |||Aεu|||−1,p,Ω ≤ ‖A‖L∞
‖Du‖p,Ω, u ∈ W

1
p (Ω;Cn).

We further assume that, for some µ ∈ C, there is εµ ∈ (0, 1] so that the opera-
tors Aε

µ = Aε − µ are isomorphisms for any ε ∈ Eµ = (0, εµ] and, moreover, have
uniformly bounded inverses:

(14) ‖(Aε
µ)

−1f‖1,p,Ω . |||f |||−1,p,Ω, f ∈ W
−1
p (Ω;Cn).

Let (Aε
µ)

+ be the adjont of Aε
µ. The corresponding objects and results related

to (Aε
µ)

+, will be marked with “+” too. Notice that (Aε
µ)

+ obeys (13+) and (14+),
with the same constants, in fact.
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Remark 3.1. Basic examples to keep in mind are the extreme cases where W1
p (Ω;Cn)

coincides with either W̊ 1
p (Ω)

n or W 1
p (Ω)

n. The first case corresponds to the homo-
geneous Dirichlet problem, and the second, to the homogeneous Neumann problem.
Notice that components of u in W

1
p (Ω;Cn) may satisfy different boundary condi-

tions.

Lemma 3.2. Let v = χ(u − ξ), where χ ∈ C0,1
c (Rd), ξ ∈ Cn and u ∈ W

1
p (Ω;Cn).

If v ∈ W
1
p (Ω;Cn), then

(15) ‖v‖1,p,Ω . ‖|Dχ|Du‖p∗∨1,Ω+ ‖|Dχ|(u− ξ)‖p,Ω+ |ξ|‖χ‖p,Ω+ |||χAε
µu|||−1,p,Ω,

where the constant depends only on p, n, µ, Ω, ‖A‖L∞
and the constant in the

bound (14).

Proof. A simple calculation yields the identity

Aε
µv = −(Dχ̄)∗ ·AεDu+D∗Aε(Dχ · (u − ξ)) + µχξ + χAε

µu.

Observe that (p+)∗ = (p∗)
+ and therefore Lp∗∨1(Ω)

n ⊂ W
−1
p (Ω;Cn). Thus, using

(14), we obtain (15). �

As a consequence of Lemma 3.2, we prove the well-known (weak) reverse Hölder
inequality for the Dirichlet and Neumann problems. In what follows, QR will denote
a closed cube in Rd having side length R, sides parallel to the axes, and αQR will
denote the α-fold dilate of QR (with the same center).

Lemma 3.3. Suppose that d ≥ 2, p ≥ d+ and W
1
p (Ω;Cn) is either W̊ 1

p (Ω)
n or

W 1
p (Ω)

n. Let Aε
µuε = f + D∗F with f ∈ Lp(Ω)

n and F ∈ Lp(Ω)
dn; we regard f

and F as being identically zero outside Ω. Then there is RΩ > 0, depending on d
and Ω, such that, for any QR ⊂ R

d with R ≤ RΩ, one has

(16)
‖uε‖1,p,QR∩Ω . R−1

(

‖Duε‖p∗,2QR∩Ω + ‖uε‖p∗,2QR∩Ω

)

+ ‖f‖p∗,2QR + ‖F‖p,2QR ,

where the constant depends only on d, p, n, µ, Ω, ‖A‖L∞
and the constant in the

bound (14).

Proof. We intend to apply Lemma 3.2. Take χ ∈ C0,1
c (2QR) such that 0 ≤ χ ≤ 1

and |Dχ(x)| ≤ 4/R, with χ = 1 on QR and χ = 0 outside 3/2QR. Notice that

|||χAε
µuε|||−1,p,Ω . ‖f‖p∗,2QR +R−1‖F‖p∗,2QR + ‖F‖p,2QR ,

where we have used the fact that Lp∗
(Ω)n ⊂ W

−1
p (Ω;Cn) as long as p ≥ d+. Since

‖F‖p∗,2QR ≤ |2QR|
1/d‖F‖p,2QR = 2R‖F‖p,2QR

by Hölder’s inequality, we see that

(17) |||χAε
µuε|||−1,p,Ω . ‖f‖p∗,2QR + ‖F‖p,2QR .

We first consider the case when W
1
p (Ω;Cn) = W̊ 1

p (Ω)
n. Extend uε by 0 outside Ω.

Suppose that 3/2QR ⊂ Ω̄. According to Lemma 3.2, with ξ = m2QR(uε), and
the estimate (17),

‖uε‖1,p,QR ≤ ‖uε −m2QR(uε)‖1,p,QR + |2QR|
1/p|m2QR(uε)|

. R−1
(

‖Duε‖p∗,2QR + ‖uε −m2QR(uε)‖p,2QR

)

+ |2QR|
1/p|m2QR(uε)|+ ‖f‖p∗,2QR + ‖F‖p,2QR .
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By the Hölder and the Sobolev–Poincaré inequalities, we have

|m2QR(uε)| ≤ |2QR|
−1/p∗‖uε‖p∗,2QR

and

‖uε −m2QR(uε)‖p,2QR . ‖Duε‖p∗,2QR ,

respectively. Thus, (16) follows.
On the other hand, if 3/2QR intersects Rd\Ω̄, then using Lemma 3.2, with ξ = 0,

and keeping in mind (17), we obtain

‖uε‖1,p,QR . R−1
(

‖Duε‖p∗,2QR + ‖uε‖p,2QR

)

+ ‖f‖p∗,2QR + ‖F‖p,2QR .

Now find a point x0 ∈ 3/2QR ∩ ∂Ω in such a way that 1/2QR(x0) ⊂ 2QR. For
uniformly weakly Lipschitz Ω, there are constants cΩ > 0 and RΩ > 0 so that for
any cube Qr(x) with x ∈ ∂Ω and r ≤ RΩ

(18) |Qr(x) \ Ω| ≥ cΩ|Qr(x)|.

Notice also that, if a function u vanishes on a set Σ0 ⊂ Σ,

(19) |Σ| |mΣ(u)| ≤

∫

Σ\Σ0

|u−mΣ(u)| dx + |Σ \ Σ0| |mΣ(u)|.

Since uε = 0 on (1/2QR(x0)) \ Ω, (18) and (19) yield

|m2QR(uε)| ≤
|2QR|

|(1/2QR(x0)) \ Ω|
−

∫

2QR

|uε −m2QR(uε)| dx

. |2QR|
−1/p‖uε −m2QR(uε)‖p,2QR

provided R ≤ RΩ. It then follows from the Sobolev–Poincaré inequality that

‖uε‖p,2QR ≤ ‖uε −m2QR(uε)‖p,2QR + |2QR|
1/p|m2QR(uε)| . ‖Duε‖p∗,2QR .

As a result,

‖uε‖1,p,QR . R−1‖Duε‖p∗,2QR + ‖f‖p∗,2QR + ‖F‖p,2QR ,

which implies (16).
Finally, if W1

p (Ω;Cn) = W 1
p (Ω)

n, then χ(uε −m2QR(uε)) ∈ W
1
p (Ω;Cn) for any

QR and we can repeat the argument used for the “interior” case 3/2QR ⊂ Ω̄ above.
�

Remark 3.4. The reverse Hölder inequality is a first step in proving higher integra-
bility of the solution, together with its gradient, to an elliptic equation with Dirichlet
or Neumann boundary conditions, see, e.g., [GiM79] or [Gia83]. If d ≥ 2 and p ≥ d+,
then from Lemma 3.3 one deduces that, given f ∈ C∞

c (Ω)n and F ∈ C∞
c (Ω)dn,

−

∫

QR∩Ω

(

|Duε(x)|
p + |uε(x)|

p
)

dx .

(

−

∫

2QR∩Ω

(

|Duε(x)|
p + |uε(x)|

p
)p∗/p

dx

)p/p∗

+ −

∫

2QR

|f(x)|p dx+ −

∫

2QR

|F (x)|p dx

whenever R ≤ RΩ. Therefore, by the generalization of Gehring’s lemma due to
Giaquinta and Modica [GiM79, Proposition 5.1], there is pµ > p, depending only
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on p, d and the constant in the previous estimate, such that the inequality

(

−

∫

QR∩Ω

(

|Duε(x)|
q + |uε(x)|

q
)

dx

)1/q

.

(

−

∫

2QR∩Ω

(

|Duε(x)|
p + |uε(x)|

p
)

dx

)1/p

+

(

−

∫

2QR

|f(x)|q dx

)1/q

+

(

−

∫

2QR

|F (x)|q dx

)1/q

holds for each q ∈ [p, pµ). Then an argument using a partition of unity shows that

‖uε‖1,q,Ω . ‖f‖p∩q,Ω + ‖F‖p∩q,Ω

(here ‖·‖p∩q,Ω is the norm on Lp(Ω)∩Lq(Ω)). If Ω is bounded, this, together with
a duality argument (notice that p+ > d ≥ d+ if p < d+), implies that the range
of q > 1 for which uε ∈ W 1

q (Ω)
n, is open, and moreover (14) is valid with any q ∈

(p+µ , pµ) in place of p. This can be viewed as a special case of the extrapolation
result due to Shneiberg [Shn74] (see also [Agr13, Section 17.2]).

We close this section with another consequence of Lemma 3.2 , which will prove
useful in the context of interior estimates.

Lemma 3.5. Suppose that the inverse of Aε
µ is also bounded from (W 1

q+(Ω)
n)∗

to W 1
q (Ω)

n for some q ∈ [1, p). Assume further that, given any χ ∈ C0,1
c (Ω), there

is χ′ ∈ C0,1
c (Ω), with suppχ ⊂ suppχ′, so that

(20) ‖Dχu‖q,suppχ . ‖u‖q,suppχ′ + |||χ′Aε
µu|||−1,q,Ω

for all u ∈ C1
c (Ω)

n. Then a similar result holds with q replaced by p.

Proof. Fix χ ∈ C0,1
c (Ω) and choose a sequence of cutoff functions χk ∈ C0,1

c (Ω),
where 0 ≤ k ≤ m = ⌈d(1/q − 1/p)⌉ (here ⌈ ·⌉ is the ceiling function), in such a
way that χ0 = χ, suppχk ⊂ suppχk+1 and χk+1 = 1 on suppχk. Let q0 = p
and qk+1 = (qk)∗. Notice that (14) implies that the inverse of Aε

µ is bounded

from (W 1
p+(Ω)n)∗ to W 1

p (Ω)
n (according to (11)), and hence also from (W 1

q+k
(Ω)n)∗

to W 1
qk
(Ω)n for all qk ≥ q, via interpolation. Then, by Lemma 3.2 and Hölder’s

inequality,

‖Dχku‖qk,suppχk
. ‖Du‖qk+1∨q,suppχk

+ ‖u‖p,suppχk
+ |||χkA

ε
µu|||−1,p,Ω.

Iterating this and using the fact that χk+1 = 1 on suppχk, we obtain

(21) ‖Dχu‖p,suppχ . ‖Du‖qm∨q,suppχm−1
+ ‖u‖p,suppχm−1

+ |||χm−1A
ε
µu|||−1,p,Ω.

Now note that qm ≤ q, so the hypothesis and Hölder’s inequality show that

‖Du‖qm∨q,suppχm−1
. ‖u‖p,suppχ′

m
+ |||χ′

mAε
µu|||−1,p,Ω.

Substituting this to (21) gives the desired estimate with any χ′ ∈ C0,1
c (Ω) which

is 1 on suppχ′
m. �

4. Effective operator

As usual, the coefficients of the effective operator are described by the solution
of the so-called cell problem. Let Dr,q

1 and Dr,q
2 stand for differentiation in the first

variable and the second variable, respectively. Then the cell problem is as follows:
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for each ξ ∈ Cd×n and x ∈ Ω, find Nξ(x, · ) ∈ W̃ 1
p (Q)n, with −

∫

Q
Nξ(x, y) dy = 0,

satisfying

(22) D∗
2A(x, ·)(D2Nξ(x, ·) + ξ) = 0

on W̃ 1
p+(Q)n. We assume that such an Nξ exists, is unique and is Lipschitz on Ω̄

with values in W̃ 1
p (Q). Since Nξ depends linearly on ξ, the map assigning Nξ to

each ξ is simply an operator of multiplication by a function, which we denote by N .
Thus,

(23) N ∈ C0,1(Ω̄; W̃ 1
p (Q)).

A standard sufficient condition is this:

Lemma 4.1. For any x ∈ Ω, let A(x) = D∗
2A(x, · )D2 be an isomorphism of

W̃ 1
p (Q)n/C onto W̃−1

p (Q)n with uniformly bounded (in x) inverse. Then the prob-

lem (22) has a unique solution, satisfying (23).

Proof. By assumption,

Nξ(x, ·) + C = −A(x)−1D∗
2A(x, ·)ξ

is a unique solution of (22) and

‖D2Nξ(x, ·)‖p,Q . ‖D∗
2A(x, ·)ξ‖−1,p,Q,

and therefore

‖D2N‖L∞(Ω;Lp(Q)) . ‖A‖L∞
.

Let Th, h ∈ Rd, be the translation operator defined by Thu(x, y) = u(x + h, y),
where u ∈ L0(R

d × Rd), and let ∆h = Th − I. Obviously,

∆huv = ∆hu · v + Thu ·∆hv

for any u, v ∈ L0(R
d × Rd). It follows that if x, x+ h ∈ Ω, then

∆hNξ(x, ·) = −A(x+ h)−1D∗
2(∆hA(x, ·) · (D2Nξ(x, ·) + ξ)).

Hence,

‖D2∆hNξ(x, ·)‖p,Q . ‖D∗
2(∆hA(x, · ) · (D2Nξ(x, ·) + ξ))‖−1,p,Q,

and as a result

‖D1D2N‖L∞(Ω;Lp(Q)) . ‖D1A‖L∞
‖I +D2N‖L∞(Ω;Lp(Q)).

We have verified that D2N ∈ C0,1(Ω̄; L̃p(Q)). It is then immediate from the

Poincaré inequality that N ∈ C0,1(Ω̄; L̃p(Q)) as well. �

Now define the effective operator A0 : W1
p (Ω;Cn) → W

−1
p (Ω;Cn) by setting

(24) A0 = D∗A0D,

where A0 : Ω̄ → B(Cd×n) is given by

(25) A0(x) =

∫

Q

A(x, y)(I +D2N(x, y)) dy.

Notice that since A and D2N are uniformly continuous in the first variable, so is A0.
In fact, we have A0 ∈ C0,1(Ω̄). Indeed, an easy calculation shows that

‖A0‖L∞
≤ ‖A‖L∞

‖I +D2N‖L∞(Ω;Lp(Q))
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and

‖D1A
0‖L∞

≤ ‖A‖L∞
‖D1D2N‖L∞(Ω;Lp(Q)) + ‖D1A‖L∞

‖I +D2N‖L∞(Ω;Lp(Q)).

Thus, by (23), ‖A0‖C0,1(Ω̄) is finite.

We suppose that there is s ∈ (0, 1] such that the operator A0
µ = A0 − µ, with

the same µ as in (14), has a continuous inverse from Lp(Ω)
n to W 1+s

p (Ω)n:

(26) ‖(A0
µ)

−1f‖1+s,p,Ω . ‖f‖p,Ω, f ∈ Lp(Ω)
n.

Remark 4.2. Usually, one starts with an isomorphismA0
µ : W

1
p (Ω;Cn) → W

−1
p (Ω;Cn),

while additional regularity as in (26) requires that both the boundary of Ω and the
boundary conditions be more regular as well. For the Dirichlet or the Neumann
problems on uniformly C1,1-regular domains, we have s = 1, see, e.g., [McL00,
Chapter 4]; the same holds under a weaker assumption that each coordinate map ωk

is a (p, 2)-diffeomorphism with multiplier norm uniformly bounded in k, see [MSh09,
Chapter 14]. In the case of mixed Dirichlet–Neumann problems, one cannot hope
that s will be “too large” even for very regular domains and coefficients, as |1 +
s− 2/p| < 1/2 for the Laplacian on a half-space with mixed boundary conditions,
see [Sha68]. We refer the reader also to [Grv11] for more on this matter.

5. Corrector

Fix an extension operator E that maps the spaces W 1
p (Ω) and W 1+s

p (Ω) contin-

uously into, respectively, W 1
p (R

d) and W 1+s
p (Rd). We also extend the function N

to Rd ×Q in such a way that N ∈ C0,1(R̄d; W̃ 1
p (Q)) (e.g., by doing a reflection in

the boundary). Define the operator Kµ : Lp(Ω)
n →W s

p (R
d; W̃ 1

p (Q)n) to be

(27) Kµ = ND1E(A
0
µ)

−1.

From the assumptions (23) and (26) we immediately conclude that Kµ is bounded:

(28)
‖Ds,p

1 D2Kµf‖p,Rd×Q + ‖D2Kµf‖p,Rd×Q

+ ‖Ds,p
1 Kµf‖p,Rd×Q + ‖Kµf‖p,Rd×Q . ‖f‖p,Ω.

The image of Kµ is contained in the space W 1
p (R

d; W̃ 1
p (Q)n) only if s = 1.

For the other cases, we will use mollification to regularize the operator E(A0
µ)

−1

in Kµ.
Fix a non-negative function J ∈ C∞

c (B1(0)) with
∫

Rd J(x) dx = 1. For δ > 0, let
Jδ be the standard operator of mollification, that is, Jδu = Jδ ∗ u, where Jδ(x) =
δ−dJ(δ−1x). Obviously, the operator Jδ maps W s

p (R
d) into W 1

p (R
d), but for s < 1

its norm blows up as δ → 0. It is also known that Jδ converges, as δ → 0, to I in
the operator norm on Lp(R

d). The next two lemmas provide the rates of blow-up
and convergence, respectively.

Lemma 5.1. Let 0 < s ≤ r ≤ 1 and q ∈ [1,∞). Then for any δ > 0 and u ∈
C∞

c (Rd), we have

(29) ‖Dr,qJδu‖q,Rd . δ−(r−s)‖Ds,qu‖q,Rd .

Proof. We will prove that, for r < 1,

(30) ‖Dr,qJδu‖q,Rd . δ−(r−s)(1 − r)−1/q‖Ds,qu‖q,Rd ,
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where the constant does not depend on r. It then follows from the formula

lim
r→1

(1− r)1/q‖Dr,qu‖q,Rd = Cd,q‖Du‖q,Rd ,

see [BBM01], that (29) holds for r = 1 as well.
Suppose first that |h| ≤ δ. It is easy to see that

∆hJδu(x) = −

∫

Rd

∆hJδ(x− x̂)∆x−x̂u(x̂) dx̂,

where the integration is, in fact, running over B2δ(x). Then, by Hölder’s inequality,
∫

Bδ(0)

|h|−d−rq|∆hJδu(x)|
q dh

≤

∫

Bδ(0)

|h|−d−rq

(
∫

B2δ(0)

|∆hJδ(x̂)|
q+ dx̂

)q−1

dh

∫

B2δ(0)

|∆ĥu(x)|
q dĥ.

Since
∫

B2δ(0)

|∆hJδ(x̂)|
q+ dx̂ ≤ δ−q++(1−q+)d|h|q

+

[J ]q
+

C0,1 |B1(0)|,

the first integral on the right is estimated, up to a constant, by

δ−d−q

∫

Bδ(0)

|h|−d+(1−r)q dh . (1 − r)−1δ−d−rq.

The other integral is obviously bounded by (2δ)d+sq|Ds,qu(x)|q. As a result,

(31)

∫

Rd

∫

Bδ(0)

|h|−d−rq|∆hJδu(x)|
q dx dh . (1 − r)−1δ−(r−s)q‖Ds,qu‖q

q,Rd .

On the other hand, if |h| > δ, then using the identity

∆hJδu(x) =

∫

Rd

Jδ(x̂)∆hu(x− x̂) dx̂

and applying Hölder’s inequality yield
∫

Rd\Bδ(0)

|h|−d−rq|∆hJδu(x)|
q dh

. δ−(r−s)q

∫

Bδ(0)

(
∫

Bδ(0)

|Jδ(x̂)|
q+ dx̂

)q−1

|Ds,qu(x− x̂)|q dx̂.

Now
∫

Bδ(0)

|Jδ(x̂)|
q+ dx̂ ≤ δ(1−q+)d‖J‖L∞

|B1(0)|,

and therefore

(32)

∫

Rd

∫

Rd\Bδ(0)

|h|−d−rq|∆hJδu(x)|
q dx dh . δ−(r−s)q‖Ds,qu‖q

q,Rd .

Combining (31) and (32), we obtain (30). �

Lemma 5.2. Let r ∈ (0, 1) and q ∈ [1,∞). Then for any δ > 0 and u ∈ C∞
c (Rd),

we have

(33) ‖(Jδ − I)u‖q,Rd . δr‖Dr,qu‖q,Rd .
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Proof. We write

(Jδ − I)u(x) =

∫

Rd

Jδ(x̂)∆−x̂u(x) dx̂

and then repeat the argument leading to (32) in Lemma 5.1. �

For s ∈ (0, 1), we define the operator Kµ(δ) : Lp(Ω)
n → W 1

p (R
d; W̃ 1

p (Q)n) by

(34) Kµ(δ) = ND1JδE(A
0
µ)

−1;

we agree to set Kµ(δ) = Kµ for s = 1. It follows from the assumptions (23) and (26),
together with Lemma 5.1, that

(35)
δ1−s‖D1D2Kµ(δ)f‖p,Rd×Q + δ1−s‖D1Kµ(δ)f‖1,p,Rd×Q

+ ‖D2Kµ(δ)f‖p,Rd×Q + ‖Kµ(δ)f‖p,Rd×Q . ‖f‖p,Ω

for any s ∈ (0, 1] uniformly in δ > 0. Applying the Sobolev embedding theorem, we
then see that, for any s ∈ (0, 1] and q ∈ [p, p∗],

(36) δ1−s‖Kµ(δ)f‖q,Rd×Q . ‖f‖p,Ω

uniformly in δ ∈ (0, 1].
Since we do not impose any extra assumptions on the coefficients of Aε, the

function τεN may fail to be measurable, and therefore the classical corrector τεKµ –
and even the mollified one, τεKµ(δ), – may not map Lp(Ω)

n into L0(Ω)
n. We use

the Steklov smoothing operator to further regularize Kµ(δ).

5.1. Smoothing. Let T ε : L0(R
d × Q) → L0(R

d × Q;L0(Q)) be the translation
operator

(37) T εu(x, y, z) = u(x+ εz, y),

where (x, y) ∈ Rd ×Q and z ∈ Q. Obviously, T ε(u+ v) = T εu+ T εv and T εuv =
T εu · T εv, so T ε is an algebra homomorphism. Next, the formal adjoint of T ε with
respect to the L2-pairing is given by the formula

(T ε)∗u(x, y) =

∫

Q

u(x− εz, y, z) dz.

Then the Steklov smoothing operator Sε is the restriction of (T ε)∗ to L1(R
d×Q)+

L∞(Rd ×Q); in other words,

(38) Sεu(x, y) =

∫

Q

T εu(x, y, z) dz.

The operator Sε thus defined is formally self-adjoint.
Here we collect some well-known facts about T ε and Sε, cf. [ZhP16, Subsec-

tion 2.1].

Lemma 5.3. For any q ∈ [1,∞) and ε > 0, τεT ε is an isometry of L̃q(R
d × Q)

into Lq(R
d;Lq(Q)).

Proof. By change of variable,

‖τεT εu‖q
q,Rd×Q

=

∫

Rd

∫

Q

|u(x+ εz, ε−1x)|q dx dz =

∫

Rd

∫

Q

|u(x, ε−1x− z)|q dx dz.

But since u is periodic in the second variable, this equals ‖u‖q
q,Rd×Q

. �

A related result for Sε is immediate from Hölder’s inequality and Lemma 5.3.
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Lemma 5.4. For any q ∈ [1,∞) and ε > 0, τεSε is a bounded operator from

L̃q(R
d ×Q) to Lq(R

d) of norm 1.

Both T ε and Sε converge to the identity operator in uniform operator topologies,
where the domain is “smoother” that the codomain.

Lemma 5.5. Let Σ be a domain in Rd, and let r ∈ (0, 1] and q ∈ [1,∞). Then for

any ε > 0 and u ∈ C∞
c (Rd ×Q) we have

(39) ‖(T ε − I)u‖q,Σ×Q×Q . εr‖Dr,q
1 u‖q,Σε×Q.

Proof. For r < 1, the inequality (39) follows just by scaling. For r = 1, we write

u(x+ εz, y)− u(x, y) = εi

∫ 1

0

〈D1u(x+ εtz, y), z〉 dt.

Hence,

‖(T ε − I)u( · , y, z)‖q,Σ ≤ εrQ‖D1u( · , y)‖q,Σε .

Raising both sides to the qth power and integrating then yields (39). �

The next lemma comes from the previous one, together with Hölder’s inequality.

Lemma 5.6. Let Σ be a domain in Rd, and let r ∈ (0, 1] and q ∈ [1,∞). Then for

any ε > 0 and u ∈ C∞
c (Rd ×Q) we have

(40) ‖(Sε − I)u‖q,Σ×Q . εr‖Dr,q
1 u‖q,Σε×Q.

5.2. Corrector. We define the corrector Kε
µ : Lp(Ω)

n →W 1
p (Ω)

n by

(41) Kε
µ = τεSεKµ(ε).

Thanks to the smoothing Sε, it is bounded with

(42) ε‖DKε
µf‖p,Ω + ‖Kε

µf‖p,Ω . ‖f‖p,Ω.

Indeed, taking into account that εDτεSε = ετεSεD1+τ
εSεD2 and using Lemma 5.4,

we see that

ε‖DKε
µf‖p,Ω + ‖Kε

µf‖p,Ω . ε‖D1Kµ(ε)f‖p,Ωε×Q

+ ‖D2Kµ(ε)f‖p,Ωε×Q + ‖Kµ(ε)f‖p,Ωε×Q.

The estimate (42) then follows from (35). We also notice that (36) implies the
bound

(43) ε1−s‖Kε
µf‖q,Ω . ‖f‖p,Ω

for the same range of q as in (36).

Remark 5.7. The operator Kε
µ may be written explicitly as

Kε
µf(x) =

∫

Q

N(x+ εz, ε−1x)JεED(A0
µ)

−1f(x+ εz) dz.

It first appeared for s = 1 (in which case Jε is dropped from Kε
µ) in the pa-

per [PT07].
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6. Main results

Now we formulate the main results of the paper. The first one deals with ap-
proximation under minimal assumptions on the initial problem.

Theorem 6.1. If (14), (23) and (26) hold, then for any ε ∈ Eµ and f ∈ Lp(Ω)
n

we have

‖(Aε
µ)

−1f − (A0
µ)

−1f‖q,Ω . εs/p‖f‖p,Ω,(44)

‖D(Aε
µ)

−1f −D(A0
µ)

−1f − εDKε
µf‖p,Ω . εs/p‖f‖p,Ω,(45)

where q ∈ [p, p∗]. The constants depend only on the parameters d, s, p, q, n, µ,
the domain Ω, the C0,1-norms of A and N and the constants in the bounds (14)
and (26).

Notice that the inverse of Aε
µ actually does converge in the operator norm from

Lp to W r
p with r < 1, yet the rate may be not as good.

Corollary 6.2. Under the hypotheses of Theorem 6.1, for any r ∈ (0, 1), ε ∈ Eµ

and f ∈ Lp(Ω)
n it holds that

(46) ‖Dr,p((Aε
µ)

−1f − (A0
µ)

−1f)‖p,Ω . εs/p∧(1−r)‖f‖p,Ω.

The constant depends only on the parameters d, r, s, p, n, µ, the domain Ω, the

C0,1-norms of A and N and the constants in the bounds (14) and (26).

We can improve the estimate (44) for q = p provided that the adjoint problem
enjoys the same regularity properties as the initial one.

Theorem 6.3. Suppose that (14), (23), (26) and (23+), (26+) hold. Then for

any ε ∈ Eµ and f ∈ Lp(Ω)
n we have

(47) ‖(Aε
µ)

−1f − (A0
µ)

−1f‖p,Ω . εs‖f‖p,Ω.

The constant depends only on the parameters d, s, p, n, µ, the domain Ω, the

C0,1-norms of A, N and N+ and the constants in the bounds (14), (26) and (26+).

The other estimate in Theorem 6.1 can be improved as well, but only if restricted
to an interior of Ω.

Theorem 6.4. Suppose that (14), (23), (26) and (23+), (26+) hold. Suppose

further that for a given χ ∈ C0,1(Ω̄) with suppχ ⊂ Ω there is χ′ ∈ C0,1(Ω̄)
with suppχ ⊂ suppχ′ ⊂ Ω such that for all ε ∈Eµ the interior energy estimate

(48) ‖Dχu‖p,Ω . ‖u‖p,Ω + |||χ′Aε
µu|||−1,p,Ω, u ∈ W

1
p (Ω;Cn),

holds. Then for any ε ∈Eµ and f ∈ Lp(Ω)
n

(49) ‖Dχ((Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf)‖p,Ω . εs‖f‖p,Ω.

The constant depends only on the parameters d, s, p, n, µ, the domain Ω, the

C0,1-norms of A, N , N+ and χ′ and the constants in the bounds (14), (26), (26+)
and (48).

As an immediate corollary we have:
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Corollary 6.5. Let hypotheses be as in Theorem 6.4 with χ having the property

that χ−1 is uniformly bounded on a domain Σ with Σ̄ ⊂ Ω. Then, for any ε ∈ Eµ

and f ∈ Lp(Ω)
n,

(50) ‖D(Aε
µ)

−1f −D(A0
µ)

−1f − εDKε
µf‖p,Σ . εs‖f‖p,Ω.

The constant depends only on the parameters d, s, p, n, µ, the domain Ω, the

C0,1-norms of A, N , N+ and χ′, the L∞-norms of Dχ and χ−1|Σ and the constants

in the bounds (14), (26), (26+) and (48).

The next result follows from Corollary 6.5 in the same manner as Corollary 6.2
comes from Theorem 6.1.

Corollary 6.6. Let hypotheses be as in Theorem 6.4 with χ having the property

that χ−1 is uniformly bounded on a domain Σ with Σ̄ ⊂ Ω. Then, for any r ∈ (0, 1),
ε ∈ Eµ and f ∈ Lp(Ω)

n,

(51) ‖Dr,p((Aε
µ)

−1f − (A0
µ)

−1f)‖p,Σ . εs∧(1−r)‖f‖p,Ω.

The constant depends only on the parameters d, r, s, p, n, µ, the domain Ω, the

C0,1-norms of A, N , N+ and χ′, the L∞-norms of Dχ and χ−1|Σ and the constants

in the bounds (14), (26), (26+) and (48).

Remark 6.7. The corrector εKε
µ is usually involved in an approximation for (Aε

µ)
−1

in the “energy” norm. If we want to approximate D(Aε
µ)

−1 only, we may use the
operator τεSεD2Kµ(ε) instead, because

εDKε
µ = ετεSεD1Kµ(ε) + τεSεD2Kµ(ε),

where
‖τεSεD1Kµ(ε)f‖p,Ω . ‖f‖p,Ω

by Lemma 5.4 and the estimate (35).

Remark 6.8. The results of Theorem 6.4 and Corollaries 6.5 and 6.6 rely on an a
priory bound (48). In view of Lemma 3.5, for a compactly supported function χ
this can be reduced to a similar bound with a smaller exponent q ≥ 1, provided
that (14) holds also for q in place of p.

Remark 6.9. A glance at (45) and (50) suggests that the rate of approximation
for D(Aε

µ)
−1 becomes worse only near the boundary of Ω. In fact, one can introduce

a boundary-layer correction term Bε
µ so that for any ε ∈Eµ and f ∈ Lp(Ω)

n

(52) ‖(Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf − Bε

µf‖1,p,Ω . εs‖f‖p,Ω.

For s = 1 and p = 2, such a result was the starting point of the approach sug-
gested in [ZhP05] (see also [PT07], [PSu12], [Su131] and [Su132]). However, the
construction of Bε

µ is no simpler than the original problem and actually amounts
to finding the inverse of Aε

µ. Thus, that approach required further analysis of the
boundary-layer correction term to obtain bounds on its norms.

We also note that if Ω = Rd (or, more generally, Ω is a flat manifold without
boundary, such as, e.g., Td), then Bε

µ = 0. This enables one to improve the rates
in (44)–(45) to εs, which, at least for s = 1, is known to be sharp.

Remark 6.10. By inspection of the proofs, one can see that the estimates in The-
orem 6.1–Corollary 6.6 follow from inequalities with ‖(A0

µ)
−1f‖1+s,p,Ω in place

of ‖f‖p,Ω on the right. Thus, if (26) fails to hold, but (A0
µ)

−1f ∈ W
1
p (Ω;Cn) ∩
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W 1+s
p (Ω)n for some f ∈ Lp(Ω)

n, then for fixed such f we still have, e.g., results
similar to Theorem 6.1 and Corollary 6.2.

7. Examples

In the examples below we assume that Ω is a bounded domain in Rd, d ≥ 2,
with C1,1 boundary and W

1
q (Ω;Cn) is either H̊1(Ω)n for all q or H1(Ω)n for all q,

in which case W
1
q (Ω;Cn) ⊂ W

1
p (Ω;Cn) whenever q ≥ p.

7.1. Strongly elliptic operators. Let p = 2, and let H
1(Ω;Cn) = W

1
2 (Ω;Cn).

Suppose that the operator Aε is weakly coercive uniformly in ε for ε sufficiently
small, that is, there are ε0 ∈ (0, 1] and cA > 0 and CA <∞ so that for all ε ∈ E0 =
(0, ε0]

(53) Re(Aεu, u)Ω + CA‖u‖
2
2,Ω ≥ cA‖Du‖

2
2,Ω, u ∈H

1(Ω;Cn).

With this assumption, Aε becomes strongly elliptic, which means that the func-
tion A satisfies the Legendre–Hadamard condition

(54) Re〈A( · )ξ ⊗ η, ξ ⊗ η〉 ≥ cA|ξ|
2|η|2, ξ ∈ R

d, η ∈ C
n

(see Lemma 7.2). What is more, a simple calculation based on boundedness and
coercivity of Aε shows that if ε ∈E0, then Aε is an m-sectorial operator with sector

S =
{

z ∈ C : |Im z| ≤ c−1
A ‖A‖L∞

(Re z + CA)
}

independent of ε, and therefore (14) holds for p = 2 and any ε ∈ E0 provided
that µ /∈ S. As we have seen in Remark 3.4, the estimate (14) is then valid for any
p ∈ (p+µ , pµ), with pµ > 2 depending only on d, µ, Ω and the ellipticity constants cA,
CA and ‖A‖C .

Let p0 = supµ/∈S pµ, and set P0 = (p+0 , p0). We show that (14) holds, in fact,
for any p ∈ P0 and µ /∈ S uniformly in ε ∈ E0. Indeed, suppose that µ, ν /∈ S and
choose p ∈ (2, pν). From the Sobolev embedding theorem, we know that L2(Ω)

n is
continuously embedded in W 1

q+(Ω)
∗ for q ∈ [2, 2∗] and in particular in W

−1
2∗∧p(Ω;C

n)

(see (11)). Therefore, the first resolvent identity

(Aε
µ)

−1 = (Aε
ν)

−1 + (µ− ν)(Aε
ν)

−1(Aε
µ)

−1

yields that (Aε
µ)

−1 is bounded from W
−1
2∗∧p(Ω;C

n) to W
1
2∗∧p(Ω;C

n). Repeating this

procedure finitely many times, if need be, we conclude that the operator (Aε
µ)

−1 is

bounded from W
−1
p (Ω;Cn) to W

1
p (Ω;Cn).

Remark 7.1. No necessary and sufficient algebraic condition for A to assure (53) is
known. A simpler condition not involving ε and still implying the weak coercivity
on H̊1(Ω)n is that for some c > 0 and all x ∈ Ω

(55) Re(A(x, ·)Du,Du)Rd ≥ c‖Du‖22,Rd, u ∈ H1(Rd)n.

That this hypothesis suffices can be seen by noticing that (55) is invariant under
dilation and therefore remains true with A(x, ε−1y) in place of A(x, y). Since A
is uniformly continuous in the first variable, a localization argument then leads

to (53), with cA < c, CA > 0 and H
1(Ω;Cn) = H̊1(Ω)n.
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To give an example of A satisfying the strong coercivity condition on H̊1(Ω)n

(i.e., with CA = 0), take a matrix first-order differential operator b(D) with symbol

ξ 7→ b(ξ) =

d
∑

k=1

bkξk,

where bk ∈ Cm×n. Suppose that the symbol has the property that rank b(ξ) = n
for any ξ ∈ Rd \ {0}, or, equivalently, that

b(ξ)∗b(ξ) ≥ cb|ξ|
2, ξ ∈ R

d.

Extending u ∈ H̊1(Ω)n by zero outside Ω and applying the Fourier transform, we

see that the operator b(D)∗b(D) is strongly coercive on H̊1(Ω)n:

(56) ‖b(D)u‖22,Ω ≥ cb‖Du‖
2
2,Ω, u ∈ H̊1(Ω)n.

Let g ∈ C0,1(Ω̄; L̃∞(Q))m×m with Re g uniformly positive definite and let Akl =
b∗kgbl. Then, by (56),

Re(AεDu,Du)Ω = Re(gεb(D)u, b(D)u)Ω

≥ cb‖(Re g)
−1‖−1

L∞

‖Du‖22,Ω

for all u ∈ H̊1(Ω)n. Purely periodic operators of this type were studied, e.g., in
[PSu12] and [Su131].

For coercivity onH1(Ω)n, we require a stronger condition on the symbol, namely,
that rank b(ξ) = n for any ξ ∈ Cd \ {0}, not just ξ ∈ Rd \ {0}, which implies that

(57) ‖b(D)u‖22,Ω ≥ cb‖Du‖
2
2,Ω − Cb‖u‖

2
2,Ω, u ∈ H1(Ω)n,

see [Ne12, Section 3.7, Theorem 7.8]. Then, obviously, for any u ∈ H1(Ω)n

Re(AεDu,Du)Ω = Re(gεb(D)u, b(D)u)Ω

≥ ‖(Re g)−1‖−1
L∞

(

cb‖Du‖
2
2,Ω − Cb‖u‖

2
2,Ω

)

,

where A and g are as above. Such operators in the purely periodic setting appeared
in [Su132].

Now we turn to the cell problem and the effective operator. The first thing that
we need to check is that the cell problem (22) has a unique solution, for which (23)
holds. Lemma 4.1 contains a sufficient condition to conclude these, and we will
see in a moment that the operator A(x) does indeed meet the hypothesis of that
lemma.

Lemma 7.2. Assume that (53) holds. Then for any x ∈ Ω

(58) Re(A(x)u, u)Q ≥ cA‖Du‖
2
2,Q, u ∈ H̃1(Q)n.

Proof. Fix u(ε) = εuεϕ with u ∈ C̃1(Q)n and ϕ ∈ C∞
c (Ω). We substitute u(ε) into

(53) and let ε tend to 0. Then, because u(ε) and Du(ε) − (Du)εϕ converge in L2

to 0,

lim
ε→0

Re

∫

Ω

〈Aε(x)(Du)ε(x), (Du)ε(x)〉|ϕ(x)|2 dx ≥ lim
ε→0

cA

∫

Ω

|(Du)ε(x)|2|ϕ(x)|2 dx.

It is well known that if f ∈ Cc(R
d; L̃∞(Q)), then

lim
ε→0

∫

Rd

f ε(x) dx =

∫

Rd

∫

Q

f(x, y) dx dy
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(see, e.g., [A92, Lemmas 5.5 and 5.6]). As a result,

Re

∫

Ω

∫

Q

〈A(x, y)Du(y), Du(y)〉|ϕ(x)|2 dx dy ≥ cA

∫

Ω

∫

Q

|Du(y)|2|ϕ(x)|2 dx dy.

But ϕ is an arbitrary function in C∞
c (Ω) and A is uniformly continuous in the first

variable, so

Re

∫

Q

〈A(x, y)Du(y), Du(y)〉 dy ≥ cA

∫

Q

|Du(y)|2 dy

for all x ∈ Ω, as required. �

We see that, for any x ∈ Ω, the operator A(x) is an isomorphism of H̃1(Q)n/C

onto H̃−1(Q)n and that the ellipticity constants of A(x) are better that those of Aε

(cf. (53) with (58)). Then the same arguments as in the proof of Lemma 3.3 and

in Remark 3.4 show that A(x) is an isomorphism of W̃ 1
p (Q)n/C onto W̃−1

p (Q)n for
any p ∈ P0. Thus, the hypothesis of Lemma 4.1 is verified.

As for the effective operator, one can prove that, for any µ /∈ S, the inverse for Aε
µ

converges in the weak operator topology and then the limit is an isomorphism of
H

−1(Ω)n onto H
1(Ω)n, which is, in fact, the inverse for A0

µ, see [Tar10, Lemma 6.2].

Now that we know that A0
µ is an isomorphism whenever µ /∈ S and that the

function A0 is Lipschitz, the assumption (26) follows for s = 1 and actually any p ∈
(1,∞) by elliptic regularity, see, e.g., [McL00, Chapter 4].

Of course, all these results are true for the dual counterparts with the same range
of p, because cA+ = cA, CA+ = CA and ‖A+‖L∞

= ‖A‖L∞
.

It remains to discuss the interior energy estimate (48). Let p ∈ [2, p0). Applying
the functional Aε

µu to |χ|2u, where χ ∈ C0,1
c (Ω), and using (53), we arrive at the

well-known Caccioppoli inequality:

‖χDu‖2,suppχ . ‖u‖2,suppχ + ‖χAε
µu‖

∗
−1,2,Ω, u ∈H

1(Ω;Cn),

Therefore, Lemma 3.5, for q = 2, yields (48).
To summarize, if the coercivity condition (53) holds true, then the global results

(see Theorem 6.1–Theorem 6.3) are valid with s = 1 and p ∈ P0 and the local
results (see Theorem 6.4–Corollary 6.6) are valid with s = 1 and p ∈ P0 ∩ [2,∞).

Remark 7.3. The constants pµ, and hence p0, can be expressed explicitly. We note
that generally one would not expect p0 to be too large. In fact, it must tend to 2 as
the ellipticity of the family Aε becomes “bad” (that is, the ratio c−1

A ‖A‖L∞
grows),

see [Mey63]. In the next subsection we provide an example where p may be chosen
arbitrary large.

7.2. Strongly elliptic operators with VMO-coefficients. Let Aε be as in the
previous subsection. Assume further that A ∈ L∞(Ω;VMO(Rd)), meaning that
supx∈Ω ηA(x, ·)(r) → 0 as r → 0.

Using the reflection technique, we extend A to be a function belonging to both
C0,1

c (Rd; L̃∞(Q)) and L∞(Rd; VMO(Rd)). Notice that Aε is then a VMO-function.
Indeed, Aε obviously belongs to the space BMO(Rd), with ‖Aε‖BMO ≤ 2‖A‖L∞

.
Next, after dilation, we may suppose that ε = 1. Given an ǫ > 0 small, there is
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r > 0 such that ωA(r) < ǫ/3 and ηA(x, ·)(r) < ǫ/3. Then, since

−

∫

BR(x0)

|A1(x)−mBR(x0)(A
1)| dx ≤ −

∫

BR(x0)

|A(x0, x) −mBR(x0)(A(x0, · ))| dx

+ 2−

∫

BR(x0)

|A(x, x) −A(x0, x)| dx,

we have
ηA1(r) ≤ sup

x0∈Rd

ηA(x0, ·)(r) + 2ωA(r) < ǫ,

and the claim follows.
As a result, if ε ∈ E0 is fixed and µ /∈ S, the inverse of Aε

µ is a continuous map

from W
−1
p (Ω;Cn) to W

1
p (Ω;Cn) for each p ∈ (1,∞), see [She18]. Hence, in order

to prove (14), we need only show that its norm is uniformly bounded in ε. We do
this by treating Aε as a local perturbation of a purely periodic operator and then
applying results for purely periodic operators with rapidly oscillating coefficients.

First observe that if BR is a ball with center in Ω̄ and radius R, then, by (53),

Re(Aε(x0, ·)Dv,Dv)BR∩Ω ≥ (cA − ωA(R))‖Dv‖
2
2,BR∩Ω − CA‖v‖

2
2,BR∩Ω

for all v in H
1(BR ∩ Ω;Cn), the space of functions whose zero extensions to Ω

belong to H
1(Ω;Cn). It follows that for R small enough, the operatorD∗Aε(x0, ·)D

from H
1(BR∩Ω;Cn) to the dual space H−1(BR∩Ω;Cn) is m-sectorial, with sector

SR =
{

z ∈ C : |Im z| ≤ (cA − ωA(R))
−1‖A‖L∞

(Re z + CA)
}

converging pointwise to S as R → 0, that is, dist(z,SR) → dist(z,S) for z ∈ C.
Now, fix µ 6∈ S and find R0 > 0 such that ωA(R) ≤ cA/2 and µ /∈ SR as long

as R ≤ R0. Let F ∈ C∞
c (Ω)dn and uε = (Aε

µ)
−1D∗F . Take χ ∈ C∞

c (BR), R ≤ R0,
with the properties that 0 ≤ χ(x) ≤ 1 and χ = 1 on 1/2BR. Then vε = χuε
obviously satisfies

D∗Aε(x0, · )Dvε − µvε = D∗(Aε(x0, ·)−Aε)Dvε + g

in the sense of functionals onH
1(BR0

∩Ω;Cn), where g = χD∗F +D∗(AεDχ · uε)−
(Dχ)∗ · AεDuε. This is a purely periodic problem, for which we know that the
operatorD∗Aε(x0, ·)D−µ is an isomorphism of W1

q (BR0
∩Ω;Cn) onto W

−1
q (BR0

∩
Ω;Cn) for any q ∈ (1,∞), with uniformly bounded inverse, see [She18]. Assuming
that p > 2 (the other case will follow by duality), we immediately find that

‖Dvε‖2∗∧p,BR0
∩Ω . ωA(R)‖Dvε‖2∗∧p,BR0

∩Ω + ‖g‖∗−1,2∗∧p,BR0
∩Ω,

the constant not depending on R. Choosing R sufficiently small, we may absorb the
first term on the right into the left-hand side. Since

‖g‖∗−1,2∗∧p,BR0
∩Ω . ‖F‖2∗∧p,BR∩Ω + ‖uε‖1,2,BR∩Ω

(we have used the Sobolev embedding theorem to estimate the L2∗∧p-norm of uε
and the W

−1
2∗∧p-norm of Duε), it follows that

‖Duε‖2∗∧p,1/2BR∩Ω . ‖F‖2∗∧p,BR∩Ω + ‖uε‖1,2,BR∩Ω.

Now, cover Ω with balls of radius R to obtain

‖Duε‖2∗∧p,Ω . ‖F‖2∗∧p,Ω + ‖uε‖1,2,Ω . ‖F‖2∗∧p,Ω.

After a finite number of repetitions, if need be, we get

‖Duε‖p,Ω . ‖F‖p,Ω.
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Next, the hypothesis of Lemma 4.1 is satisfied, because of Lemma 7.2 and the
fact that A(x, · ) ∈ VMO(Rd) with VMO-modulus bounded uniformly in x. Finally,
(26) and (48) hold for, respectively, s = 1 and any p ∈ (1,∞) and any p ∈ [2,∞),
as indicated previously.

Summarizing, if A ∈ L∞(Ω;VMO(Rd)) satisfies the coercivity condition (53),
then the global results (see Theorem 6.1–Theorem 6.3) are valid with s = 1 and p ∈
(1,∞) and the local results (see Theorem 6.4–Corollary 6.6) are valid with s = 1
and p ∈ [2,∞).

8. Proof of the main results

We start with a “resolvent” identity involving (Aε
µ)

−1, (A0
µ)

−1 and Kε
µ, which is

a central part of the proof.
Fix f ∈ Lp(Ω)

n and g ∈ (W 1
p (Ω)

n)∗. For δ = ε, we set u0 = (A0
µ)

−1f ,

u0,δ = JδE(A
0
µ)

−1f , U = Kµf , Uδ = Kµ(δ)f , Uε,δ = τεSεUδ = Kε
µf and u+ε =

((Aε
µ)

+)−1g. We then have

((Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf, g)Ω = (f, u+ε )Ω − (u0, g)Ω − ε(Uε,δ, g)Ω.

By definition of u0 and u+ε ,

(f, u+ε )Ω − (u0, g)Ω = (A0Du0, Du
+
ε )Ω − (AεDu0, Du

+
ε )Ω.

Choose a function ρε ∈ C0,1(Ω̄) with support in the closure of (∂Ω)3ε ∩ Ω and
values in [0, 1] such that ρε|(∂Ω)2ε∩Ω = 1 and ‖Dρε‖∞,Ω . ε−1. For example, we

may set ρε(x) = 3 − dist(x, ∂Ω)/rQε for x ∈ Ω ∩ (∂Ω)3ε \ (∂Ω)2ε. If χε = 1 − ρε,
then χεUε,δ ∈ W

1
p (Ω;Cn), and we immediately conclude that

(χεUε,δ, g)Ω = (AεDχεUε,δ, Du
+
ε )Ω − µ(χεUε,δ, u

+
ε )Ω.

As a result,
(59)

((Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf, g)Ω

= (χεA
0Du0, Du

+
ε )Ω − (χεA

εD(u0 + εUε,δ), Du
+
ε )Ω + εµ(χεUε,δ, u

+
ε )Ω

+ (ρε(A
0 −Aε)Du0, Du

+
ε )Ω + ε(AεDρε · Uε,δ, Du

+
ε )Ω − ε(ρεUε,δ, g)Ω.

Let us focus on the first two terms on the right-hand side. The first one can be
written, using (25), as

(60)

(χεA
0Du0, Du

+
ε )Ω = (χεA(D1u0 +D2U), D1u

+
ε )Ω×Q

= (χεA(D1u0,δ +D2Uδ), D1u
+
ε )Ω×Q

+ (χεA(D1(u0 − u0,δ) +D2(U − Uδ)), D1u
+
ε )Ω×Q.

As for the second, notice that εDUε,δ = ετεSεD1Uδ + τεSεD2Uδ, and hence

(61)

(χεA
εD(u0 + εUε,δ), Du

+
ε )Ω = (τεχεAT

ε(D1u0,δ +D2Uδ), D1u
+
ε )Ω×Q

+ (τεχεAT
εD1(u0 − u0,δ), D1u

+
ε )Ω×Q

+ ε(τεχεAT
εD1Uδ, D1u

+
ε )Ω×Q

+ (χεA
ε(I − Sε)Du0, Du

+
ε )Ω.
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We commute T ε past χεA in the first term on the right,
(62)
(τεχεAT

ε(D1u0,δ +D2Uδ), D1u
+
ε )Ω×Q = (τεT εχεA(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

+ (τεχε[A, T
ε](D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

− (τε[ρε, T
ε]A(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q,

and then examine the difference

(63) (χεA(D1u0,δ +D2Uδ), D1u
+
ε )Ω×Q − (τεT εχεA(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q.

Using Lemma 5.3 and noticing that χε vanishes near the boundary and, moreover,
so does T εχε, we obtain
(64)
(χεA(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q = (D∗

1χεA(D1u0,δ +D2Uδ), u
+
ε )Ω×Q

= (τεT εD∗
1χεA(D1u0,δ +D2Uδ), T

εu+ε )Ω×Q.

A similar result for the other term in (63) requires a technical lemma.

Lemma 8.1. Fix ε > 0. Let F ∈ C0,1(Ω̄; L̃p(Q))d be such that F (x, ·) = 0 for

x ∈ (∂Ω)ε and D∗
2F (x, ·) = 0 as a functional in W̃−1

p (Q) for each x ∈ Ω. Then

D∗
1τ

εT εF = τεT εD∗
1F on C1

c (Ω), viewed as a subspace of Cc(Ω×Q).

Proof. Let ϕ be a function in C1
c (Ω)

n, extended by zero to all of Rd. After a change
of variables, we must show that

(65)

∫

Ω

∫

Q

〈F (x, x/ε+ y), D1ϕ(x + εy)〉 dx dy

=

∫

Ω

∫

Q

〈D∗
1F (x, x/ε+ y), ϕ(x+ εy)〉 dx dy.

Were F (x, ·) smooth, this would be nothing but the usual integration by parts
formula. But we can find a sequence of smooth functions FK with D∗

2FK = 0 that
converges, in a suitable sense, to the function F , and that will complete the proof.

If ek(y) = e2πi〈y,k〉, where k ∈ Zd, then we let FK(x, ·) denote the square partial
sum of the Fourier series for F (x, ·):

FK(x, · ) =
∑

|kj |≤K

F̂k(x)ek.

By hypothesis, D∗
2F (x, ·) = 0 on W̃ 1

p+(Q)n, so

〈F̂k(x), k〉 = (2π)−1

∫

Q

〈F (x, y), Dek(y)〉 dy = 0

for each k ∈ Zd. Also notice that D∗F̂k(x) are the Fourier coefficients of D∗
1F (x, ·).

An integration by parts then gives

(66)

∫

Ω

∫

Q

〈FK(x, x/ε+ y), D1ϕ(x+ εy)〉 dx dy

=

∫

Ω

∫

Q

〈(D∗
1F )K(x, x/ε+ y), ϕ(x+ εy)〉 dx dy.

Here (D∗
1F )K(x, · ) is the square partial sum of the Fourier series for D∗

1F (x, ·).

We now show that (66) implies (65). Let G be a function in L∞(Rd; L̃p(Q)), and
let GK(x, ·) be the square partial sum of the Fourier series for G(x, · ). We claim
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that GK → G in the weak-∗ topology on Cc(R
d × Q)∗ as K → ∞. Indeed, given

any ψ ∈ Cc(R
d ×Q), the sequence of functions x 7→ (GK(x, ·), ψ(x, · ))Q converges

pointwise to the function x 7→ (G(x, · ), ψ(x, ·))Q, because GK(x, ·) → G(x, ·)
in Lp(Q) (see [Gra141, Theorem 4.1.8]). In addition, all the functions in the sequence
are supported in a single compact set and are uniformly bounded, since

|(GK(x, ·), ψ(x, · ))Q| . ‖G(x, ·)‖p,Q‖ψ(x, ·)‖p+,Q

≤ ‖G‖L∞(Rd;Lp(Q))‖ψ‖C ,

where we have used the fact that supK∈N‖GK(x, ·)‖p,Q . ‖G(x, ·)‖p,Q (see [Gra141,
Corollary 4.1.3]). Then (GK , ψ)Rd×Q → (G,ψ)Rd×Q by the Lebesgue dominated
convergence theorem, and the claim follows. Applying this to the functions (x, y) 7→
χΩ(x)F (x, x/ε + y) and (x, y) 7→ χΩ(x)D

∗
1F (x, x/ε + y) (χΩ is the character-

istic function of Ω), which obviously belong to L∞(Rd; L̃p(Q)), we immediately
obtain (65). �

Choose a cutoff function ηε ∈ C0,1(Ω̄) satisfying ηε|(suppχε)ε = 1. By definition

of Uδ, the second term in (63) is

(τεT εχεA(I +D2N)D1u0,δ, D1ηεu
+
ε )Ω×Q.

Assume for the moment that ηεu
+
ε ∈ C1

c (Ω)
n and recall from (22) that, for each

fixed x ∈ Ω, D∗
2A(x, ·)(I+D2N(x, ·))Du0,δ(x) = 0 on W̃ 1

p+(Q)n. Then Lemma 8.1

tells us that

(τεT εχεA(I+D2N)D1u0,δ, D1ηεu
+
ε )Ω×Q = (τεT εD∗

1χεA(I+D2N)D1u0,δ, ηεu
+
ε )Ω×Q.

But the form

ηεu
+
ε 7→ (τεT εχεA(I +D2N)D1u0,δ, D1ηεu

+
ε )Ω×Q

is continuous on W̊ 1
p+(Ω)n and the form

ηεu
+
ε 7→ (τεT εD∗

1χεA(I +D2N)D1u0,δ, ηεu
+
ε )Ω×Q

is continuous on Lp+(Ω)n (by Lemma 5.3 and the hypothesis (23)), so the equality
(67)
(τεT εχεA(D1u0,δ+D2Uδ), D1ηεu

+
ε )Ω×Q = (τεT εD∗

1χεA(D1u0,δ+D2Uδ), ηεu
+
ε )Ω×Q

holds, in fact, for any u+ε ∈ W 1
p+(Ω)n. Recalling that ηε = 1 on (suppχε)ε and

combining (64) with (67), we see that

(68)
(χεA(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q − (τεT εχεA(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

= (τεT εD∗
1χεA(D1u0,δ +D2Uδ), (T

ε − I)u+ε )Ω×Q.

Putting together (59)–(62) and (68), we arrive at the operator identity

(69) (Aε
µ)

−1 − (A0
µ)

−1 − εKε
µ|Lp(Ω)n = Iε

µ +Dε
µ + Bε

µ

that effectively splits the problem into the interior parts, given by

(70)

(Iε
µf, g)Ω = (τεT εχεD

∗
1A(D1u0,δ +D2Uδ), (T

ε − I)u+ε )Ω×Q

− (τεχε[A, T
ε](D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

− ε(τεχεAT
εD1Uδ, D1u

+
ε )Ω×Q

− (χεA
ε(I − Sε)Du0, Du

+
ε )Ω

+ εµ(χεUε,δ, u
+
ε )Ω
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and

(71)
(Dε

µf, g)Ω = (χεA(D1(u0 − u0,δ) +D2(U − Uδ)), D1u
+
ε )Ω×Q

− (τεχεAT
εD1(u0 − u0,δ), D1u

+
ε )Ω×Q,

and the boundary part, given by

(72)

(Bε
µf, g)Ω = ((D1ρε)

∗ · τεT εA(D1u0,δ +D2Uδ), (T
ε − I)u+ε )Ω×Q

+ (τε[ρε, T
ε]A(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

+ (ρε(A
0 −Aε)Du0, Du

+
ε )Ω

+ ε(AεDρε · Uε,δ, Du
+
ε )Ω

− ε(ρεUε,δ, g)Ω.

We are finally in a position to prove Theorem 6.1.

Proof of Theorem 6.1. We estimate each term in (70), (71) and (72), bearing in
mind that χε vanishes on (∂Ω)2ε and ρε is supported in (∂Ω)3ε.

We begin with the “interior” operator Iε
µ. By Lemmas 5.3 and 5.5,

∣

∣(τεT εχεD
∗
1A(D1u0,δ +D2Uδ), (T

ε − I)u+ε )Ω×Q

∣

∣

≤ ‖τεT εχεD
∗
1A(D1u0,δ +D2Uδ)‖p,(suppχε)ε×Q‖(T

ε − I)u+ε ‖p+,(suppχε)ε×Q

. ε
(

‖Du0,δ‖1,p,Ω + ‖D1D2Uδ‖p,Ω×Q + ‖D2Uδ‖p,Ω×Q

)

‖Du+ε ‖p+,Ω.

For the second term, observe that

τε[A, T ε] = τε(I − T ε)A · τεT ε.

This, together with Lemma 5.3, implies that
∣

∣(τεχε[A, T
ε](D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

∣

∣

≤ ‖(I − T ε)A‖L∞
‖τεT ε(D1u0,δ +D2Uδ)‖p,suppχε×Q‖D1u

+
ε ‖p+,Ω×Q

. ε
(

‖Du0,δ‖p,Ω + ‖D2Uδ‖p,Ω×Q

)

‖Du+ε ‖p+,Ω.

By Lemma 5.3 again, we see that

ε
∣

∣(τεχεAT
εD1Uδ, D1u

+
ε )Ω×Q

∣

∣ ≤ ε‖A‖L∞
‖τεT εD1Uδ‖p,suppχε×Q‖D1u

+
ε ‖p+,Ω×Q

. ε‖D1Uδ‖p,Ω×Q‖Du
+
ε ‖p+,Ω,

while Lemmas 5.6 and 5.4 show that, respectively,
∣

∣(χεA
ε(I − Sε)Du0, Du

+
ε )Ω

∣

∣ ≤ ‖A‖L∞
‖(I − Sε)Du0‖p,suppχε‖Du

+
ε ‖p+,Ω

. εs‖Ds,pDu0‖p,Ω‖Du
+
ε ‖p+,Ω

and

ε
∣

∣(χεUε,δ, u
+
ε )Ω

∣

∣ ≤ ε‖Uε,δ‖p,suppχε‖u
+
ε ‖p+,Ω . ε‖Uδ‖p,Ω×Q‖u

+
ε ‖p+,Ω.

We have found that

(73)

∣

∣(Iε
µf, g)Ω

∣

∣ . εs
(

‖Ds,pDu0‖p,Ω + ε1−s‖Du0,δ‖1,p,Ω

+ ε1−s‖D1D2Uδ‖p,Ω×Q + ε1−s‖D1Uδ‖p,Ω×Q

+ ‖D2Uδ‖p,Ω×Q + ‖Uδ‖p,Ω×Q

)

‖u+ε ‖1,p+,Ω.
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Turning to the “interior” operator Dε
µ, we see that

∣

∣(χεA(D1(u0 − u0,δ) +D2(U − Uδ)), D1u
+
ε )Ω×Q

∣

∣ ≤

≤ ‖A‖L∞

(

‖D1(u0 − u0,δ)‖p,Ω×Q + ‖D2(U − Uδ)‖p,Ω×Q

)

‖D1u
+
ε ‖p+,Ω×Q

.
(

‖D(u0 − u0,δ)‖p,Ω + ‖D2(U − Uδ)‖p,Ω×Q

)

‖Du+ε ‖p+,Ω

and
∣

∣(τεχεAT
εD1(u0 − u0,δ), D1u

+
ε )Ω×Q

∣

∣

≤ ‖A‖L∞
‖τεT εD1(u0 − u0,δ)‖p,suppχε×Q‖D1u

+
ε ‖p+,Ω×Q

. ‖D(u0 − u0,δ)‖p,Ω‖Du
+
ε ‖p+,Ω

(according to Lemma 5.3). Hence

(74)
∣

∣(Dε
µf, g)Ω

∣

∣ .
(

‖D(u0 − u0,δ)‖p,Ω + ‖D2(U − Uδ)‖p,Ω×Q

)

‖Du+ε ‖p+,Ω.

It remains to estimate the “boundary” operator Bε
µ. Arguing as above and then

applying Lemma A.1 and the bound (14+), we easily find that

(75)

∣

∣(T ε(D1ρε)
∗ · τεT εA(D1u0,δ +D2Uδ), (T

ε − I)u+ε )Ω×Q

∣

∣

.
(

‖Du0,δ‖p,suppDρε + ‖D2Uδ‖p,suppDρε×Q

)

‖Du+ε ‖p+,(suppDρε)2ε

. εs/p
(

‖Du0,δ‖s,p,Ω + ‖Ds,p
1 D2Uδ‖p,Ω×Q + ‖D2Uδ‖p,Ω×Q

)

‖g‖∗−1,p+,Ω

and

(76)

∣

∣(τε[ρε, T
ε]A(D1u0,δ +D2Uδ), D1u

+
ε )Ω×Q

∣

∣

.
(

‖Du0,δ‖p,(suppDρε)2ε + ‖D2Uδ‖p,(suppDρε)2ε×Q

)

‖Du+ε ‖p+,(suppDρε)ε

. εs/p
(

‖Du0,δ‖s,p,Ω + ‖Ds,p
1 D2Uδ‖p,Ω×Q + ‖D2Uδ‖p,Ω×Q

)

‖g‖∗−1,p+,Ω.

Likewise,

(77)

∣

∣(ρε(A
0 −Aε)Du0, Du

+
ε )Ω

∣

∣ . ‖Du0‖p,supp ρε‖Du
+
ε ‖p+,supp ρε

. εs/p‖Du0‖s,p,Ω‖g‖
∗
−1,p+,Ω.

As for the last two terms in (72),

(78)
ε
∣

∣(AεDρε · Uε,δ, Du
+
ε )Ω

∣

∣ . ‖Uε,δ‖p,suppDρε‖Du
+
ε ‖p+,suppDρε

. εs/p
(

‖Ds,p
1 Uδ‖p,Ω×Q + ‖Uδ‖p,Ω×Q

)

‖g‖∗−1,p+,Ω

and
(79)
ε
∣

∣(ρεUε,δ, g)Ω
∣

∣ .
(

ε‖DUε,δ‖p,supp ρε + ‖Uε,δ‖p,suppDρε

)

‖g‖∗−1,p+,Ω

. εs/p
(

‖Ds,p
1 D2Uδ‖p,Ω1×Q + ‖Ds,p

1 Uδ‖p,Ω×Q

+ ε1−s‖D1Uδ‖p,Ω1×Q + ‖D2Uδ‖p,Ω1×Q + ‖Uδ‖p,Ω×Q

)

‖g‖∗−1,p+,Ω,

where we have used the estimates

(80)
ε‖DUε,δ‖p,supp ρε . εs/p

(

‖Ds,p
1 D2Uδ‖p,Ω1×Q

+ ε1−s‖D1Uδ‖p,Ω1×Q + ‖D2Uδ‖p,Ω1×Q

)

and

(81) ‖Uε,δ‖p,suppDρε ≤ εs/p
(

‖Ds,p
1 Uδ‖p,Ω×Q + ‖Uδ‖p,Ω×Q

)
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(recall that Uδ is extended to all of Rd and hence is well-defined on Ω1). To verify the
first one, we substitute εDUε,δ = ετεSεD1Uδ+τ

εSεD2Uδ to obtain, via Lemma 5.4,

ε‖DUε,δ‖p,supp ρε ≤ ε‖τεSεD1Uδ‖p,Ω + ‖τεSεD2Uδ‖p,supp ρε

. ε‖D1Uδ‖p,Ω1×Q + ‖D2Uδ‖p,(supp ρε)ε×Q.

Since (supp ρε)ε is the union of (supp ρε)ε ∩ Ω and (supp ρε)ε \ Ω, we may apply
Lemma A.1, with Σ = Ω and Σ = Ω1 \ Ω̄, to get (80). The other inequality is
checked in a similar fashion. Summarizing,
(82)
∣

∣(Bε
µf, g)Ω

∣

∣ . εs/p
(

‖Du0‖s,p,Ω + ‖Du0,δ‖s,p,Ω + ‖Ds,p
1 D2Uδ‖p,Ω1×Q

+ ‖Ds,p
1 Uδ‖p,Ω×Q + ε1−s‖D1Uδ‖p,Ω1×Q

+ ‖D2Uδ‖p,Ω1×Q + ‖Uδ‖p,Ω×Q

)

‖g‖∗−1,p+,Ω.

Now from (73), (74) and (82), together with Lemmas 5.1 and 5.2 and the esti-
mates (26), (28) and (14+), we obtain

(83) ‖(Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf‖1,p,Ω . εs/p‖f‖p,Ω,

which immediately implies (45). The Lq-bound (44) comes from (83) as well, since,
according to the Sobolev embedding theorem,

‖(Aε
µ)

−1f − (A0
µ)

−1f‖q,Ω . ‖(Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf‖1,p,Ω + ε‖Kε

µf‖q,Ω

and the terms on the right are estimated by using (43) and (83). �

Proof of Corollary 6.2. From (83) and the fact that W 1
p (Ω)

n is continuously em-
bedded in W r

p (Ω)
n, we conclude that

‖Dr,p((Aε
µ)

−1f − (A0
µ)

−1f − εKε
µf)‖p,Ω . εs/p‖f‖p,Ω.

On the other hand, interpolation between the W 1
p - and Lp-bounds in (42) gives

εr‖Dr,pKε
µf‖p,Ω . ‖f‖p,Ω,

and (46) follows. �

Proof of Theorem 6.3. Knowing that (Aε
µ)

+ satisfies the hypotheses of Theorem 6.1+

and g ∈ Lp+(Ω)n, we can get a better estimate on Bε
µ than (82). Indeed, if

U+
δ = K+

µ (δ)g and U+
ε,δ = τεSεU+

δ = (Kε
µ)

+g, then (45+) implies that

‖Du+ε ‖p+,(∂Ω)5ε∩Ω . ‖Du+0 ‖p+,(∂Ω)5ε∩Ω + ε‖DU+
ε,δ‖p+,(∂Ω)5ε∩Ω + εs/p

+

‖g‖p+,Ω,

and, therefore, by Lemma A.1 and the estimate (80+) with (∂Ω)5ε in place of supp ρε,
(84)

‖Du+ε ‖p+,(∂Ω)5ε∩Ω . εs/p
+(

‖Du+0 ‖s,p+,Ω + ‖Ds,p+

1 D2U
+
δ ‖p+,Ω1×Q

+ ε1−s‖D1U
+
δ ‖p+,Ω1×Q + ‖D2U

+
δ ‖p+,Ω1×Q + ‖g‖p+,Ω

)

.
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Using this to bound the norm of Du+ε in (75)–(78), as well as Lemma 5.4 to handle
the last term in (72), yields
(85)
∣

∣(Bε
µf, g)Ω

∣

∣ . εs
(

‖Du0‖s,p,Ω + ‖Du0,δ‖s,p,Ω + ‖Ds,p
1 D2Uδ‖p,Ω1×Q + ‖Ds,p

1 Uδ‖p,Ω×Q

+ ε1−s‖D1Uδ‖p,Ω1×Q + ‖D2Uδ‖p,Ω1×Q + ‖Uδ‖p,Ω×Q

)

×
(

‖Du+0 ‖s,p+,Ω + ‖Ds,p+

1 D2U
+
δ ‖p+,Ω1×Q + ε1−s‖D1U

+
δ ‖p+,Ω1×Q

+ ‖D2U
+
δ ‖p+,Ω1×Q + ‖g‖p+,Ω

)

.

Combining (73), (74) and (85) with Lemmas 5.1 and 5.2 and the estimates (26),
(28) and (14+), (26+), (28+), we obtain

∣

∣((Aε
µ)

−1f − (A0
µ)

−1f, g)Ω
∣

∣ . εs‖f‖p,Ω‖g‖p+,Ω,

and this is what we wanted to prove. �

As we have seen in the proof of Theorem 6.1, the interior terms in (69) are of
order εs. To go further, we establish an “interior” operator identity, which is similar
to (69) but involves no boundary terms.

So let χ′ ∈ C0,1(Ω̄) with χ′ = 0 in (∂Ω)σ for some σ > 0. Define the linear op-
erator Pε : W 1

p (Ω)
n → (C∞

c (Ω)n)∗ associated with the form (u, v) 7→ (AεDu,Dv)Ω
and set Pε

µ = Pε − µ. If uε = (Aε
µ)

−1f , then we have

(χ′Pε
µuε, u

+
ε )Ω = (f, χ′u+ε )Ω = (A0

µu0, χ
′u+ε )Ω.

Thus,

(χ′Pε
µ(uε − u0 − εUε,δ), u

+
ε )Ω = (A0Du0, Dχ

′u+ε )Ω − (AεD(u0 + εUε,δ), Dχ
′u+ε )Ω

+ εµ(Uε,δ, χ
′u+ε )Ω.

The first two terms on the right-hand side are similar to those in (59), with u+ε re-
placed by χ′u+ε , in which case χε|suppχ′ = 1 for 5ε ≤ σ, so the previous calculations
go over without change to yield, for such ε,

(86) (Aε
µ)

−1χ′Pε
µ((A

ε
µ)

−1 − (A0
µ)

−1 − εKε
µ)|Lp(Ω)n = I̊ε

µ + D̊ε
µ,

where

(I̊ε
µf, g)Ω = (τεT εD∗

1A(D1u0,δ +D2Uδ), (T
ε − I)χ′u+ε )Ω×Q

− (τε[A, T ε](D1u0,δ +D2Uδ), D1χ
′u+ε )Ω×Q

− ε(τεAT εD1Uδ, D1χ
′u+ε )Ω×Q

− (Aε(I − Sε)Du0, Dχ
′u+ε )Ω

+ εµ(Uε,δ, χ
′u+ε )Ω

and

(D̊ε
µf, g)Ω = (A(D1(u0 − u0,δ) +D2(U − Uδ)), D1χ

′u+ε )Ω×Q

− (τεAT εD1(u0 − u0,δ), D1χ
′u+ε )Ω×Q.

This is the interior operator identity that we seek.

Proof of Theorem 6.4. Set vε = uε − u0 − εUε,δ and fε = χ′Pε
µvε. If η is a smooth

cutoff function which is supported in Ω and is identically 1 on suppχ′, then ηvε
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belongs to W
1
p (Ω;Cn) and therefore fε = χ′Aε

µηvε belongs to W
−1
p (Ω;Cn). To

estimate the norm of fε, we use the identity (86):
∣

∣(fε, u
+
ε )Ω

∣

∣ . εs
(

‖Ds,pDu0‖p,Ω + ε1−s‖Du0,δ‖1,p,Ω + ε1−s‖D1D2Uδ‖p,Ω×Q

+ ε1−s‖D1Uδ‖p,Ω×Q + ‖D2Uδ‖p,Ω×Q + ‖Uδ‖p,Ω×Q

+ ε−s‖D(u0 − u0,δ)‖p,Ω + ε−s‖D2(U − Uδ)‖p,Ω×Q

)

‖u+ε ‖1,p+,Ω

(cf. (73) and (74) in the proof of Theorem 6.1); taking the supremum over all g ∈
(W 1

p (Ω)
n)∗, or, equivalently, over all u+ε ∈ W

1
p+(Ω;Cn) (recall that the quotient

map (10+) is an epimorphism), and applying Lemmas 5.1 and 5.2 and the inequal-
ities (26) and (28) shows that

(87) |||fε|||−1,p,Ω . εs‖f‖p,Ω.

On the other hand, according to (48),

‖Dχvε‖p,Ω . ‖vε‖p,Ω + |||fε|||−1,p,Ω,

because χ′Aε
µηvε = fε and η = 1 on suppχ′. The result now follows from (42), (87)

and Theorem 6.3. �

Appendix A. An estimate for integrals over a neighborhood of the

boundary

The following lemma is a slight modification of [PSu12, Lemma 5.1].

Lemma A.1. Let Σ be a uniformly weakly Lipschitz domain in Rd. Then for each

fixed r ∈ (0, 1] and q ∈ [1,∞) and any ε > 0

(88) ‖u‖q,(∂Σ)ε∩Σ . εr/q‖u‖r,q,Σ, u ∈ C∞
c (Σ̄).

The constant in the inequality depends only on r, q, d and Σ.

Proof. We show that

(89) ‖u‖q,(∂Σ)ε∩Σ . ε1/q‖u‖
1/q
1,q,Σ‖u‖

1−1/q
q,Σ ,

which, via interpolation, clearly implies (88).
Recall that B denotes the open unit ball centered at the origin and B+ denotes

the open unit half-ball with xd ∈ (0, 1). Let St be the cross-section of B at xd = t
and Pt be the piece of B+ with xd ∈ (0, t). If (Wk, ωk) are local boundary coordinate
patches, then ωk(Wk∩Σ) = B+ and ωk(Wk∩∂Σ) = S0, and for any y ∈ ωk(Wk∩Σ)

dist(y, S0) ≤ LΣ dist(x,Wk ∩ ∂Σ),

where x = ω−1
k (y) and LΣ = supk[ωk]C0,1 . It follows that ωk(Wk∩(∂Σ)ε∩Σ) ⊂ Pε/ε1

with ε1rQ = L−1
Σ . On the other hand, we know that the cover is sufficiently tight in

the sense that the union of ω−1
k (B+) contains (∂Σ)δ ∩Σ for some δ > 0. Therefore,

taking ε0 = ε1∧δ, we can insure that (∂Σ)ε ∩Σ is covered by {Wk} for any ε ≤ ε0.
Now, using a partition of unity {ϕk} subordinate to {Wk} (see Section 2) and

making a change of variables to flatten out the boundary, we reduce (89) to proving
that, for any ε ≤ ε0 and any smooth function u on B+ vanishing near the boundary
of B, it holds that

(90) ‖u‖q,Pε/ε0
. ε1/q‖u‖

1/q
1,q,B+

‖u‖
1−1/q
q,B+

.
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By the divergence theorem, for any t ∈ (0, 1) we have
∫

St

|u(x′, t)|q dx′ = −

∫

B+\Pt

∂xd
|u(x)|q dx,

and hence
∫

St

|u(x′, t)|q dx′ ≤ q

∫

B+\Pt

|∂xd
u(x)||u(x)|q−1 dx

≤ q

(
∫

B+

|∂xd
u(x)|q dx

)1/q(∫

B+

|u(x)|q dx

)1−1/q

.

Integrating in t from 0 to ε/ε0 now gives (90). �
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