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THE EFFECT OF CURVATURE IN FRACTIONAL
HARDY-SOBOLEV INEQUALITY INVOLVING THE SPECTRAL
DIRICHLET LAPLACIAN

NIKITA USTINOV

ABSTRACT. We prove the attainability of the best constant in the fractional
Hardy—Sobolev inequality with a boundary singularity for the spectral Dirich-
let Laplacian. The main assumption is the average concavity of the boundary
at the origin.

1. INTRODUCTION

In this paper we discuss the attainability of the best fractional Hardy—Sobolev
constant Sﬁ’g’(Q) in a C'-smooth bounded domain Q C R*, n > 2:

(1) S5 -2l @) < ((~A)5puu),  ue D*(Q),

where 0 < 0 < s < 1 and 2% = —22_. The operator in the right-hand side of (I

n—20"
is the spectral Dirichlet Laplacian; the space D*(2) is generated by its quadratic
form (see Section 2).

In the case 0 € Q the embedding D*(Q) < Lo (,|2|=*)%) is compact and
Sig(Q) is obviously attained. Through this paper we will consider the non-trivial
case 0 € Q.

In the local case s = 1 the inequality () coincides with

(2) So(Q) - [l ullZ,, o) < (—Au,u) = [Vulli, q).

The attainability of the best constant S,(£2) is well-studied (even for the non-
Hilbertian case), and the following facts are known:
e If0 €, 0€[0,1], and n > 3, then S,(Q2) does not depend on 2. For o €
(0, 1] the constant S,(R™) is attained on the family of functions

so(n_2)\ 1— 2=
us(x) o (5 n |x| z"(7202)) 2
(A2,18]; in non-Hilbertian case see [1LB2] for o = 1, [11] for o € (0,1));

thus S,(Q) is not attained if D*(Q) # DY(R™). If o = 0, then S, is not
attained even in R™ (see [13, Sec. 7.3]).
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2 NIKITA USTINOV

e In the case 0 € 9N the attainability of S,(€2) was proved for cones: if
o€ (0,1),n > 2, and Q is a cone in R™, then S, () is attained ([7]; [27] in
non-Hilbertian case).

e The case of a bounded domain  with 0 € 92 is much more complex, and
the answer depends on the behaviour of 9 at the origin. In [J] it was
shown that for n > 4 S,(Q) is attained if all principal curvatures of 92 are
negative at the origin. In [I0] this condition was replaced by the negativity
of the mean curvature of 9Q at the origin. In [6] these conditions were
sufficiently weakened and the attainability was proved for all n > 2.

For s ¢ N only a few results were established before. In [35] the attainability of
8P (R™) was shown for s € (0,%). For s € (0,1) the attainability of the best
constant in R"} was shown for fractional Hardy—Sobolev inequalities with restricted
Dirichlet and Neumann fractional Laplacians [2125]. These inequalities differ from
(@ by the choice of fractional Laplacian in the right-hand side.

In this paper we prove the following results for the inequality (I)):

e In the case 0 € Q and D*(Q) # D*(R") the best constant S97(Q) is not
attained. Moreover, if the domain {2 is star-shaped about the origin, then
the corresponding Euler-Lagrange equation does not have any non-trivial
non-negative solutions.

e The best constant Sﬁg (R7}) is attained.

o In the case 0 € JQ in a bounded €2 the best constant Sﬁg (Q) is attained
under some geometrical assumptions on 9f2 at the origin, analogous to the
conditions from [6].

The short announcement of these results was given in [34].

The paper consists of nine sections. In Section 2 we give basic definitions and
recall some properties of the spectral Dirichlet Laplacian (including the Stinga—
Torrea extension). In Section 3 we prove the wunattainability of Sig(Q) in the
case 0 € Q together with the non-existence of positive solutions for the Euler—
Lagrange equation in a star-shaped . In Section 4 we derive estimates for the
Green functions of some auxiliary problems. In Section 5 we prove the attainability
of the best constant Sﬁg(Rﬁ). In Section 6 we formulate the assumptions on the
behaviour of 92 in a neighbourhood of the origin, which are sufficient for the
attainability of Sf’g (). The proof is based on the construction of a suitable trial
function using the minimizer in R’} . Estimates on this minimizer and on its Stinga—
Torrea extension are given in Section 7: at first we derive the rough pointwise
estimate of the minimizer and then we derive more accurate estimates, analogous
to [6, Theorem 2.1]. Technical estimates used for the proof of the attainability in
Q are given in Sections 8, 9.

Notation. © = (2',x,) is a point in R™ or in Q; y = (y',y,) is a point in the
half-space
RY :={y = (v,yn) €R" | yn > 0}.

We use the coordinates X = (x,t) € Q x Ry dealing with the Stinga—Torrea
extension from € and the coordinates Y = (y,2z) € R} x Ry dealing with the
extension from R .

We denote by B,(z) and S,(z) the sphere and the ball of radius r centered
in x, respectively. For brevity we use the notation B, := B,(0,), S, := S,(0,),
B, :=B, NR7%, and K} := BJ \ B/ (0, stands for the origin in R").
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 3

We fix a smooth cut-off function ¢, (y) such that

(3) pr(y) = {

We use letter C' to denote various positive constants depending on n, s, o only. To
indicate that C' depends on some other parameters, we write C(...). We also write
0:(1) to indicate a quantity that tends to zero as € — 0.

We use the notation 4(y) and w(Y') for the odd reflections of u(y) and its Stinga—
Torrea extension w(Y) :

dly) = QW) 20 ey S 2),
—U(y/, _y’n)> Yn < 0 , _w(y/7 —Yn, Z)u Yn

L Jyl<3
0, lyl>r

~1a

s IVyer(y)] <

0,
0

VAN

2. PRELIMINARIES

Recall (see, for instance, [33, Secs. 2.3.3, 4.3.2]) that the Sobolev spaces H*(R™)
and H*(Q) are defined via the Fourier transform Fu(§) := W Jgn €7 u(z)da:

(@) = {u e Lo@) \ [l 1= [ 1+ PP < 400 |

H*(Q) = {u € H*(R") | supp(u) C Q}.

The fractional Laplacian (—A)s in R™ of a function u € C§°(R™) is defined by the
identity

@ A u=FUEEFUE), (A uw = [ (ePIFu(e) P

The quadratic form in @) is well-defined on H*(R™); thus the fractional Laplacian
in R™ can be considered as a self-adjoint operator with the quadratic form (@) on
H*(R™).

The spectral Dirichlet Laplacian (—A)gp is the s-th power of the conventional
Dirichlet Laplacian in the sense of spectral theory. Its quadratic form in R™ coin-
cides with (), i.e. (-A)g, = (=A)* in R". In the case of Q@ = R} the quadratic
form is equal to

n

(~ )5y, u) = / €| Fu(e) Pde
with
]?u(f) =

for a bounded domain 2,

(5) (=A)g,u, u) ZAS u, ¢;)*

2 _igla .
W/R” u(2)e™ " sin(x, &, )d

Here A\; and ¢; are the eigenvalues and the eigenfunctions (orthonormalized in
Ly(€2)) of the Dirichlet Laplacian on €, respectively.

Proposition 1 ([22, Theorem 2]). Let s € (0,1). Then for u(z) € H*(Q) the
following inequality holds:

(6) (=A)5pu,u) = ((=A)%u, u).
If uw £ 0, then (@) holds with a strict sign.
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4 NIKITA USTINOV

Inequality (@) for s € (0,1) (or even for s € (0,%)) follows from (@) and the
general theorem by V.P. II'in [I5, Theorem 1.2, (22)] about estimates of integral
operators in weighted Lebesgue spaces.

Let Q = R™. If 0 = 0, then inequality (1) reduces to the fractional Hardy
inequality

(7) (=A)%u,u) > S o

"/L‘|7SUH%2(R")7

and for o = s it reduces to the fractional Sobolev inequality
(8) (=A)w,u) > SasllullL,, @n):

The explicit values of S, o and S, s have been computed in [I4] and [5], respectively.
The explicit value of S »(R™) for arbitrary o € (0,1) is unknown.
Thanks to (8)), we can introduce the Hilbert spaces
D*(R") := {u € La: (R™) | ((=A)°u,u) < oo},
D*(Q) := {u e D*(R™) | u = 0 outside of Q},
both endowed with the scalar product ((—A)g,u,v). The space C5°() is dense
in D*(Q). Obviously ﬁs(Ri) N Ly (RY) = I}S(Ri), and for any bounded 2 the
Friedrichs inequality provides D%(Q) = H*(1).
We recall that the spectral Dirichlet Laplacian (—A)g, can be derived via the
Stinga—Torrea extension [31]. It turns out that the Dirichlet problem

(9)
Low](X)=—divt" *Vxw(z, 1)) =0 in QxRy; wl,_g=u; wcyq=0

has a unique solution w,, with finite energy

“+oo
(10) Esw] = / / 725V xw(w, t) |2 dadt.
0 Q
In addition, the following relation holds in the sense of distributions:
(11)

s Ow,
(—A)5,u(z) = Co——"

£y (2,0) :=—C, tl_i)r& 172 0wy (x,t)  with Cy = %

Moreover, ws), is the minimizer of (I0) over the space

W, (Q) = {w(X) | £s[w] < 400, w|t:0 =u, w\zeasz = 0} )
and the quadratic form (Bl can be expressed in terms of & [ws,] (see, e.g., 23] (2.6)]):
(12) (=) 5w, u) = Cs& [wsp] -

We refer to any function w(X) € 20,(Q) as an admissible extension of u(z). Obvi-
ously, for any admissible extension w we have & [w] > &, [wsp] . As we noted above,
for 2 = R"™ the spectral Dirichlet Laplacian coincides with the fractional Laplacian
(—A)® in R", and its extension (the Caffarelli-Silvestre extension) was introduced
earlier in [2].

The attainability of S ,(£2) is equivalent to the existence of a minimizer for the
functional Z, o:

(=4)5,u,u)

Ml

(13) Toalu] : 5 .
Lox ()
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 5

A standard variational argument shows that each minimizer of ([I3]) solves the
following problem (up to multiplication by a constant):
|uf* ~2u(z)

(14) (—A)u(z) = ——— in Q ueD(Q).

‘;L*|(S_U)2z*r

The s-Kelvin transform in 20(R™) is defined by the formula

15  w'(X):= \XITW(W) VX = (2,8) € R" x Ry \ {0pp1 ).
The following properties hold for the s-Kelvin transform (see, e.g., [8 Proposition
2.6]):
Lofw] (X) = X220, [u] () VX = (2,6) € RY x By \ {001},
G (2,0) = |a| "2 5L (55,0) Vo € R\ {0,}.
The relation
O g0) = b2 (2 ) W Em ORI @) (@,0)
Ovs lz|2” )

’ﬁrs_o)z; o |x|2;(5_0)

shows that the problem (I4) is invariant under the s-Kelvin transform. This fact
allows us to derive estimates of w near the origin and at infinity from each other.
In what follows, we need the following propositions:

Proposition 2 ([24, Theorem 3]). Let u(z) € D(Q), s € (0,1). Then |u(z)| €
D*(Q) and

(=A)5pu, u) = ((=A)5plul, |ul).
Moreover, if both the positive and the negative parts of u are non-trivial, then strict
inequality holds.

The proof in [24] is given for bounded domains but works for unbounded domains
without any changes.

Proposition 3 ([4, Lemma 2.6], [26, Proposition A.1]). Let s € (0,1), let u # 0,
let u(x) € D*(Q) or u(z) € D*(R"), and let (—A)g,u > 0 hold in the sense of
distributions. Then u > 0 for any compact K C Q (or K C R™, respectively).

According to Proposition [2] the substitution v — |u| decreases Z, . Therefore,
if u is a minimizer of ([I3]), then the right-hand side of (I4]) is non-negative. Thus,
the maximum principle from Proposition Bl shows that u preserves a sign.

n—2s

Proposition 4 ([24, Proposition 3]). Let u(z)€D*(Q) and let up(x):=p 2 u(pz).
Then

(=4)u,u) = lm ((=A)§ spup, up)-

p—+00

3. NON-EXISTENCE RESULTS
In this section we consider the case 0 € Q.

Theorem 1. Let 0 € Q and D*(Q) # D*(R™).

(1) The constant S57(Q) is not attained.
(2) If Q is star-shaped about 0, then the only non-negative solution of (I4)
15 u = 0.
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6 NIKITA USTINOV

Proof. (1) In the local case s = 1 this statement is well-known. We adapt it for the
non-local case. At first we notice that S, ,(R™) can be approximated with C§°(R"™)
functions since such functions are dense in D*(R™). Proposition @] shows that for

each u € C§°(R"™) we have u, € D*(Q) for sufficiently large p and the following
relation holds:

pan;o Looup] = Lorn[u].

This means that S57(2) < S, »(R™).

Let S57(€) be attained on some u € D*(£2). We extend u by zero to obtain a
minimizer in R™. Indeed, the inequality (@) gives

IO',R" [u] < S.;S:g(Q) < SS,O‘(Rn)7

which leads to a contradiction due to D?(€2) # D*(R™) and the maximum principle
from Proposition [l

(2) To prove the statement we invent a non-local variant of the Pohozhaev iden-
tity for (—A)g, (see [28] for (—A)® in R™). Note that each solution of (I4) has
a singularity at the origin but is smooth outside the neighbourhood of the origin.
Integrating by parts, we derive from (@) (here n.(z) := 1 — ¢-(z), where ¢.(x) was
introduced in (@)):

0=C /*"O/dw 2V xw(X )) (X, Vxw(X))n.(z)dX

- Wijﬂm,vxu( 2))ne(x)dz

+oo
+ Cs / /BQ (Vew(X), A)(x, Vow(X))ne (z)dX

“+oo
—@/‘ /t“ﬂvmuxwmumx
0 Q

Cs Foo 1—2s 2
_7/0 /Qt (X, Vx (IVxw(X)[%))ne (z)dX

+oo
e[ [0, Vo @) (X, Vx (X)) dX
0 Q
=: B1 + B>+ B3 + By + Bs;

B; and Bs contain V, only since wy|
Further,

B = /an: ) LU ACI RPN

2; ‘:C|(s—o')22‘r

2% n * 2
— u a(m) 775(90) 20(3 B G) : 1'2175(1') T 776 171
7/9 2% : <|Qj|(57‘7)2;§ o |x|(sfo)2;;+2 dx + Z |$|(s o)2% dx
% (2)(1 — e (@) i [‘PE N
|x|<‘5 )2 da Z |x‘(s )2} dx

:7n—25<(7A)gpu’u>in—25/QuU(m)gog(:c) e

|x‘(5*‘7)2;

seon = 0 and twyf,_, = 0 due to ().

Il
N
8=

|

@
|
2
N————
S~
@
Q
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 7

Since w|,cyq = 0, vectors V,w(X) and 7 are parallel, which gives

+oo
-c. | /tl (0, i) - [Vaw(X) P (@)dX
o)
For B3 we have

+oo
By = —((—A)%,u,u) + CS/ / 1725V xw(X) e (z)dX.
0 Q

Integrating by parts in By we obtain (using #2725 |w;(X

—+o00
B =% / / H75 i, 78) Vo (X) . (2)dX
2 0 o0

L *°° £ IO (eta) + (o V() X

+o0 ’ n—2s+2 s
=G [ [ e a0 X + R (A5

)‘2}t=0 =0)

“+o0
_ 7/0 /Qtl—28|vxw(X)|2 ((n — 25+ 2) - (@) + (2, Vo (2))) dX.

Summing up, we get

+oo
—/ / 725 (@, 1) | Vpw (X)) PdX
o0
+oo
:—/ / 1725 (0, 1) [V0(X) P () dX
o0
n—2s U ”(‘T)<Pa(1') / T [pe(
i
+ 2 ~/Q |$‘(3_U)2; d Z |I|(s 0)2*

“+o0
+ % /0 /9151*25|V;<1t)()()\2 ((n = 28)pe(2) + (2, Vo (2))) dX

+oo
— 1-2s w T w .
c, / /Q 1725(T w(X), Vaipe (2)) (X, V(X)) dX

The right-hand side of this equality tends to zero as € — 0; therefore, the left-hand
side is zero. The assumption that  is star-shaped about 0 gives (x, 71) > 0, thus
V.w = 0 on 9. Integrating by parts, we get

O—/O+oo/div(t125VXw(X))dX

u’e (x) 12
— WdX—ktll)r& de(tl BV xw(X)) d.

The second term in the right-hand side is zero (for more details see [{f) and @1
in Section 6), but the first term is positive for u(z) > 0,u # 0, a contradiction. [

Remark 1. The second statement of Theorem [I]is also valid in the case 0 € 9.

Below we assume that 0 € 0. We also can assume that u(z) > 0 in Q by
PropositionBland [||z|7~*u| 1,. (o) = 1 due to the invariance of (I3) under dilations
and multiplications by a constant.
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8 NIKITA USTINOV

4. ESTIMATES ON GREEN FUNCTIONS

The simplest problem involving the fractional Laplacian in R’} is

(16) (=A)gpuly) = hy) in RL.
The boundary value problem (BVP) (@) in R’} looks like
(17)

Lsw] (V) = —div(z' " *Vyw(Y))=0 in RE xRy wl_y=u w|, _,=0.

The Stinga—Torrea extension w (Y) can be derived from h(y) by solving the BVP

. " ow
(18) Liw](Y)=0 in R} xRy; C’Sa—ys(y7 0) = h(y); w|yn:O =0.
Lemma 1. The Green functions of problems ([[8)-({I8]) are as follows:

(19)

s Ay } e
F CG(Y.E) = S (i | VI L .
o ( {+Wy—02+ﬁ )

(20)

A n+42s
C, 22 41ynén o
For (Em) FS(K f) = Lk nt2s <1 - |:1 + y2§ 2:| > ’
Iy =P+ et

(21)
For [@8): G(y,€) = Gs(y,0,€).
Proof. To obtain required Green functions, we consider the odd reflections @(y)

and w (Y). Notice that w (Y') is the Stinga-Torrea extension of %(y) because of
w| = 0. In [2] and [3, Remark 3.10] the Green functions in R™ were calculated

=0
forytwo problems: for the BVP
: 1-2s ~ : n ow 7
—div(t ™ Vxw(X)) =0 in R" xRy, CSa (,0) = h(x)
VS
we have the Green function G (X):
~ =~ 7 . ~ én S
(22) w(X) = [ Giz—& (S with Gy(X) = ————;
R™ (£E2 + t2) 2
for the BVP

—div(t' " *Vxw(X))=0 in R"xRy; @|,_o=1

we have the Green function I's(X):
_ - An StQS
(23)  @(X) = / Tu(e — &, 0i()de with Ty(X) = — sl
n (372 + t2) 2

The required representation (I9)) follows from ([22)) and from the identity

Ga(Y.6) = Gy, 1,6) = oy, —yn, 1.€)  with g > 0.
Similarly, (20) follows from (23)); the representation (2IJ) is obvious. O
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 9

Lemma 2. For any b € [0,1] the Green functions G4(Y,§) and T'5(Y, &) satisfy the
following estimates:

beb beb,2s
(24) Gs(Y,¢) < Fynn e and Is(Y,6) < Cntn? nt2s126
(ly — &P +2%) 2 (ly =P +2%) 2
Also, Vy Gs(Y, ) can be estimated as follows:
(25)
\ GS }/’f < mosp1 M L, + .
e (Jy — €2 +22)" 7 ( ly=EP+22 0y — €2+ 22

Proof. The estimate for G follows from the interpolation of two inequalities:

C n—2s a'nd GS(K 6) < Cyngn n—2s+42 °

(ly — €2 +22)" (ly - €2 +22)"
The first one is obvious, and the second one follows from the mean value theorem:

2s—n
dynn 17 Cyaba
ly — &2 + 22 Sy —€)2+ 22

Gs(Y,€) <

(26) 1— |1+

The estimate for I'y can be obtained in the same way.
The gradient Vy G5(Y, ) is given by the formulae (here i € {1,...,n —1})

2s—n—2
—_z (1 |:]_ M} 2
0.G (Y 5) (jy—€]2+22) ™ P2 ( + ly—¢&[2 422
oy 25—n—2
0y, G5 (Y, ) (y—g2422) 2 T =i
Yn nbn Yn+n -
(y—€2429) "3 (/&P al?422) 2

therefore, the first part of (28] is obvious. The second part for 0.G, and 0,,G5
can be derived using the analogue of ([26]). Inequality for 0,, G follows from the
inequality (recall that &, > 0 and y,, > 0)

0,,Gu(¥, )] < — =&l (l_{HM] )

(ly €2+ 22" by =&+
2n
+ g n—2s+2
(ly = &P +22) 2
and the analogue of (26) for the expression in large brackets. O

5. ATTAINABILITY OF S9%(R"})

In this section we prove the existence of the minimizer for the functional ([I3]) in
the case ) = R”} and discuss its properties.

Theorem 2. For Q2 = R there exists a minimizer of the functional (L3)).

Proof. We follow the scheme in [27, Theorem 3.1] and based on the concentration-
compactness principle of Lions [20]. Consider a minimizing sequence {uy}
for (I3). As was mentioned in Section 2, we can assume that ug(y) > 0 and
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10 NIKITA USTINOV

Y17~ urll . (mn) = 1. We also denote the Stinga—Torrea extensions as wy (V)

and define the functions Uk(y) as
+oo
1) Uty = [ A Vv (v) e
0

Since {uy} is bounded in 5S(R’+‘), wy, (V) are uniformly bounded in 20,(R%) as
well as Uy and ||y|” Suy|?> are uniformly bounded in L;(R"). Without loss of
generality, we assume that:
e up — uin 5S(Ri);
o Vywr — Vyw in Ly(R} xRy, 2172%) and w is an admissible extension of
u;
e ||y|”*uy|? weakly converges to a measure p on R™;
e U;, weakly converges to a measure M on m,
where M is a one-point compactification of R} .
Embedding D}, (R") < La: 10c(R}\{0,}) is compact due to 2} < 2%; thus, we

loc
have convergence |y|”*uy — |y|”~*u in Lo 10c(R\{0,}), which gives

H= ||y|a—su|2; + aO(sO(y) + @00500(9)7 o, Qoo P 0.

Here do(y) and do0(y) are Dirac delta functions at the origin and at infinity, re-

spectively.
Our next goal is to show that the measure M admits the estimate
2 2
(28) M > U + SE (R ag” So(y) + S5 (RY s Sooly).

Obviously, it suffices to prove that M majorizes separately each term in the right-
hand side of [28). The first estimate M > U follows from the weak convergence
Vywgn — Vywn in Ly (R x Ry, 2'72%) for any n € C°(R%) and from the weak
lower semi-continuity of the weighted Ls-norm:

(29) / 1 (y)dM = lim [ 9?(y)Uk(y)dy

v k—o0 R:—

k—o0

—+oo
= lim / 2172 \Vywi(Y) - n(y)2dY
o Jry

“+o0
g /0 /1 AEVyw(Y) n)dY = | n*(y)U(y)dy.

R
To obtain the second estimate we use the trial function 7. (y) := a2 (y):
6o [ wir=lim [ O
R —

n o0 n
+ R%

+oo
= lim / ZlfzS‘VY [w (Y )n:(y)] — wk(Y)vyns(y)|2dY
o Jr

k— o0

= lim O+OO /Z[Z1_28|VY [we(Y)n-(y)] |7

k—o0

— 227V w (V) Vyne (y)we(Y)n-(y)
+ ZHS\wk(Y)vyne(y)ﬂ dY =: Dy — Dy + Ds.

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 11

To estimate D; we use the Hardy—Sobolev inequality (I):

2
. _ 2%
(31) Dy > 87 (RY) - kli)ngo 1yl Suk<P2a||2L2;(R1) > S (RY oy .

To estimate D3 we have to pass to the limit under the integral side:

Lemma 3. The following equality holds:

(32) o= [ [ 2 enwray

Proof. Let § € (0,1). We split the integral into three parts:

6 % +o0
Ds = ax + by + cx = < / + / + / ) / 220 (V)Y e () PdY-
0 g 5 T

Since the sequence wy, is bounded in Wi (K;‘ X [5, %]), W —w in Loy (Kj X [(5, %]),
and thus we can pass to the limit in bg. To complete the proof, it suffices to show
that
(33) ag, cr, < C(e) Lot

To prove ([B3) for aj we use the Green function (20):

wn ()= [ @ ve)de = ( [ /§> ur (@ (Y, §)de
twig (V) +war (Y),

/ / 1o wlk )+w2k( )] -|Vyn5(y)|2dY =! a1k + a2k-
R7l

Using (24) for b = 0, [Vypa.| < ¢, and the Cauchy-Bunyakovsky-Schwarz in-
equality we get

5 2s 2
air < 92/ 21723/ / unl) ni2s g | dy
€2 Jo lyl<2e \ Jly—el>1 (Jy — 5\24—22)
§2+2s ue()IE° 1€
<C—; / / W dg ) dy
e lyl<2ze \ JIy—¢l>1 1Y

—+o0
<@y wilayy [
1

Similarly, we get the estimate

5 25+1_S 2
azk < %/ Zfs/ / ur(8)z g nd+§2s> ay
€2 Jo lyl<2e \ Jiy—¢<t (Jy — €2 ) 2
2
<ot / ( / M)
e Jiyi<ze \ Jiy-e1<1 |y — gn—=
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12 NIKITA USTINOV

We estimate the integrand from the right-hand side as follows:

(/ “'vi(f)dg>2 <C </ Mdﬁ—‘ruk(y))Q
w—el<t |y — "7 wel<t |y — €

<c </ M%) 1 Cu(y)
| vy

y=€I<t |y —£[" 2
|uk (€) — u(y)|®

w-gl<r Yy =&t

1
<C dﬂ/ rserrCui(y).
0

Finally, using (@) we get

1
az < C()5' (<<—A>Ss,,uk,uk> s ||y|-8uk||%2(m>> '
0

To prove [B3)) for ¢ we use (24) with b = 1:

c o[t k()22 € ’
w<S [ ] Sl de) ay
e J1 ly|<2e Ry (Jly — &2+ 22)" 2

) “+o0 142 “+00 ,rn+1+2s
—s s _
<C@E)|lyl ukHLZ(Ri)/l z ( /0 (r2 + 22)nt2s+2 dr) dz

B

N

+oo

< C(€)|Hy|_sw\|%2(m)/ 2Tz = C(e)8" Iyl k|, g -

1

s

Thus, the estimate ([B3)) is completely proved and we get (32]). O

Lemma [3] implies that

34 Ds < < +OO 1=2510(Y)|?dY.
(34) 88 5 2 lw(Y)["dY.
0 |ly|<2e

For y,, < 2¢, using the inequality

Yn 8w(y’ t Z) )2 2e Ow 2
wY2=(/ — 2t <25/ — ) dt,
lw(Y)] ; o0 . \aw,

Feo ow \?
Ds < / / 2172 (—) dY = o0.(1) - E[w).
0 ly|<2v/2¢e 8yn

To estimate Do we use the Cauchy—Bunyakovsky—Schwarz inequality

(35) |D2‘ g C\/ D1 . D3 = 05(1).

To sum up, we have transformed (B0) into

we obtain

2
/ @%a dM = kEIJIrl Uk@%s dy 2 Sf:g(R+)aO + 05(1)a
R * JRY

2
which gives M > S52(R7%)ay” 8o (y).
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 13

To derive the estimate at infinity, we put 7:(y) :== 1 — pz(y) and write (B30) for
it. The estimate for D; is similar to ZI). To estimate D3 we use the analogue of

Lemma
+oo
D3 < 52/ / 2172 w(Y) |2 dY.
0 K1
In spherical coordinates (r,61,...,0,_1) we have w = 0 for 6,,_; = 0; thus

On— / 2 ™ 2
1 Jw(y't, z) ow
& 2 = - _ 2 = I <
‘w( )‘ |w(r’ 917 79“ 1)| (/O\ aen—l dt) ﬂ-/(; (39n_1> dt’

+oo B 2 4 2.2 +oo
Ds < 77252/ L1-2s (_w) dy < ”25 / / 21_25|Vyw\2dY
0 K 00,1 € 0 K1

Further arguments are similar to the estimate at the origin. The inequality (28] is
proved.

The end of the proof is rather standard. By dilations and multiplications on a
suitable constant one can achieve

o—S8 g — & 1
(36) 1917 uel o, ) = Iyl sy = 5

From (28) and the fact that w is an admissible extension of u we get

2 2
n o—s E 2%
(37) SoP(RY) <|||y| “H2L23 (rr) T 7 + Qg >

2 2

<{(—A)5,u,u) + SEE(R™)ay” + SSE (R )ass

2
2
</ 1dM = S52(R™) /1du
R ’ R™

s —s5, %5 2
= ST @®Y) (ol ullZ, gy, + 00 + o) * |

n
+

which can be true only if two of three terms from the right-hand side vanish. The
relation (B0]) keeps only the possibility that ag = as, = 0; i.e. w is a minimizer of

@3). 0

Remark 2. The minimizer existence for any cone in R™ can be proved in a similar
way.
We denote the obtained minimizer in R’} by ®(y) and its Stinga—Torrea extension
by W(Y). Without loss of generality, we can assume that [|[y[”=*®|, (R2) = 1;
o +
therefore we have & [W] = SJE(R?).

Lemma 4. ®(y) and W(Y') are radial in y' and positive for y, > 0.

Proof. The positivity of ®(y) and W(Y') was proved at the end of Section 2. To
prove the first part we show that a non-trivial partial Schwarz symmetrization on
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14 NIKITA USTINOV

y' (we denote the symmetrization of u as u*) decreases (I3):

Es [wp] x Es [w;p} *x Es [w;p} Ex

_ > I, qu'].
|H37|U_SUH%2§(Q) - |||x‘a_su||%23(ﬂ) H|$|U_su*||izg(g) -

IU7Q [u]

The inequality (*) is provided by the fact that & [ws,] does not increase under sym-
metrization (see [I6, Theorem 2.31, p. 83] for the Steiner symmetrization; partial
Schwarz symmetrization can be achieved as the limit of Steiner symmetrizations).
The inequality (**) follows from [I9, Theorem 3.4]. The fact that w}, is an admis-
sible extension for u* gives (*¥**). O

Remark 3. Minimizer of ([13) with [[|y|**®][, (r2

the functional (I3) is invariant with respect to dilations and multiplications by
constant. Compositions of these transformations that keep |||y|”*®|| Ly (R7) ROTID
o +

) = 1 is not unique. Indeed,

give us multiple minimizers.

For the further discussion, we fix some minimizer and study its behaviour at the
origin and at infinity:

Lemma 5. The minimizer ®(y) and its Stinga—Torrea extension W(Y') admit the
following estimates:

(38) @(y) < T2 yeRY W(Y) < T4 [y ]r2sie Y e RY x Ry

C

—+00
— 1-2s 20, <
3 V= [ S0P <

y € RY,

where constants C depend on n,s,o, and on the choice of the minimizer ®.

The proof of Lemma [l is given in Section 7.

6. ATTAINABILITY OF S$E(Q)

We assume that in a small ball B, (centered at the origin) the surface 02
is parametrized by the equation z, = F(z'), where F € C!, F(0,_1) = 0, and
Vo F(0p—1) = 0,_1. Note that no assumptions on 0f2 outside B,, are imposed.

Following [6], we assume that 0 is average concave at the origin: for small
T >0,

1

— Fy)dy < 0.
‘ngz| gn-2 (y) Y

(40) f(r) =
Obviously, f € C! for small 7. We also assume that f is regularly varying at the
origin with the exponent « € [1,n — 2s + 3): for any d > 0,

(41) lim L9 _ o

T—0 f(T)
It is well-known (see, e.g., [29] Secs. 1.1, 1.2]) that {I]) entails f(7) := —7%(7)
with the slowly varying function ¢(7) (SVF). Note that for @« = 1 the condition
F € C! implies that lim, o4 (7) = 0.
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 15

We also introduce the functions

1 1
n) =g P pn) = o [ 9P R

1
#alr) = e [ IV Py
S777] Jsp—2
and assume that the following condition is fulfilled:

(42) lim £2(7)

7—0 f(T)
Remark 4. If 0Q € C2, then the negativity of its mean curvature at the origin
implies assumptions @0)-(@2) with o = 2 (see [6, Remark 1]). We also emphasize
that these assumptions admit the absence of mean curvature (o < 2) or its vanishing

T=0.

(> 2).
Remark 5. It was shown in [6, Sec. 4, (17)] that (42) implies that
(43) fi(r) < C7[f(7)] - 0r(1).

Theorem 3. Let 0N satisfy @Q)-{2). Then the minimizer of [[3) exists; i.e. the
problem () has a positive solution in €.

Proof. The scheme of the proof is the same as in Theorem[2l Consider a minimizing
sequence {ug} for (I3). We denote the Stinga—Torrea extensions as wy (¥) and
define functions U (y) via 2T7). As before, Uy € L1(R) and ||z ug|?>s € L1(Q),
and we can also assume that:

ug =0, up — u in 58(9);

Vxwy — Vxw in Ly(Q x Ry, t172%) and w is an admissible extension of u;
||#|7~*uy|? weakly converges to a measure p on ;

Uy weakly converges to a measure M on (2.

In contrast to the case of R”}, for the bounded (2,

p = [[2]7 " ul*s + apdo (@),
and we should show that
2
(44) M = U+ 8%2(Q)ay” §o().

The estimate M > U coincides with (29). To show that M majorizes the second
term of (@) we write the analogue of ([B0):

(45)
—+oo
/(p%ed./\/l = lim /[t172s|vX [wk(X)@Qé] |2_2t172s|vzwk'vw¢2e'wk@2€|
Q k—oo Jo Q
+ tl—QS\wk(X)vI@QE(x)\Z} dX =: Dy — Dy + Dy

2
with Dy > SSS,{;(Q)aOQ;. The next step is the analogue of Lemma [Bl Indeed, we
have

_ _ ) 3 +00
Dy = g+ B + G 1= ( / + / + / ) / 172502 (X) |V o () dX.
0 5 ] Q
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16 NIKITA USTINOV

We can pass to the limit in Ek, and the only remaining step is to obtain an analogue
of (33). For a bounded {2 there is no explicit formula for the Green function, but
we have the representation via Fourier series (see [31), (3.1)-(3.8)]):

2175 9 1/2
A s\ 71),
TN L L)
where KCs(7) is the modified Bessel function of the second kind; A;, ¢; were intro-
duced in (B). The asymptotic behavior of Ky is (see, e.g., [31, (3.7)])
(47)

Ke(r)~T(5)2° 7 % as 7=0;  Ky(1)~ (21) Pe T (1+0(r71) as T— 0.
T

(46) w(X):Zdi(t)@(x) with  dy(t) = ¢°

Since \; — oo, we can estimate

C
| OV apno)de < 53 00

%

1 for te]0,4];
ths=4 for te [%,—I—oo),

which gives

~ |~ c [~ 1-2s 25—3 2 2—2s 2

ap+cg < —2/ (t X[0,5)(t) +1 X[ +Oo)(t)> / uj, dX <C(€)6™ “[Juk |7, -
e Jo o’ Q

Further, repeating the argument from Section 5, we get [{4]). Similarly to (B7) we
have two alternatives: either g = 0 and the minimizer exists or g = 1 and u = 0.
We claim that in the second case the following inequality is fulfilled:

(48) S (Q) = SIL(RY).
Indeed, if {ux} is a minimizing sequence for ([I3)), then {ugpa.} is a minimizing

2
= 045" , while the

CER
25

sequence too: the denominator of (I3]) converges to [aogpg‘:’ (0)}

convergence of the numerator is controlled by (@) and Lemma Bl (Dy = D3 = 0):

2

+o0 2
lim / 1725 |V fuog(X) o] P dX = / P2 AM = S5 (Q)al” 2. (0)
0 Q Q

k—o0
=
=S (Q)ag” .

Therefore, we can assume that ug is supported in Bo.. Let ©1(x) be the coordinate
transformation that flattens 0€) inside B, :

Y= yn) = O1(2) = (2', 2, — F(2')) =z — F(2')ey.
The Jacobian of ©1(z) is equal to 1; thus

T [U ] o ngs [’U}k]
o, [ Uk |H-’13|a_suk:||%2;(g)

I3 ey 22 Vv o+ (), 2)PdY (14 0,(1)

(0—s)2%

Sy W12 4 (o + F@2 7 07 (4 sy + F () dy
Since wi (', yn + F(y'), z) is an admissible extension of ug(y', yn, + F(y')), we have
Iy alur] = SE2(RY) - (1 + 0c(1)),
which gives (@8]).
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 17

To complete the proof we use the assumptions ({@0)-([@2) on I to construct a
function ®.(x) such that Z, o[® (x)] < SFE (R} ). We define O.(z) and O.(X) as

(49) O.(z) :=c'01(z), O.(X):= (0.(2),e't) = (¢ (x— F(2)en),e't).
The Jacobians of ©.(z) and ©.(X) are equal to e~ and e~ "1, respectively. Let
§ € (0,79). We define p(z) := 5 (01(z)) . Note that ¢(O-1(y)) is radial:

P01 () = A(ey ey + F(ey') = 95(01(071(y))) = ws(ely)).
Now we put

o(r) =2 B(O.(0)F(); we(X) =T W(O.(X)F(x)

(recall that ®(y) is a minimizer of (I3) in R?} and W(Y) is its Stinga—Torrea
extension). Obviously, w.(X) is an admissible extension of ®.(x); therefore

(—A)%,®., ) _ [ [ |V xwe (X2 dX
[|z]7 =5 (z )IILMQ h [|z]7 =5 (z )IILMQ

In Sections 8 and 9 we derive the following estimates for the numerator and de-
nominator on the right-hand side of (G0):

(50)  Zool®(r)] =

z)|%
(51) /Q||;I)|?§7<)f|)2§dx_1_‘/41(6).(1—'—05(1)—1_05(1));
(52)
Sp n
£, ] = SRY) + Ao(e) - (14 0(1) + 05(1)) — =28 4y 0y (14 0,(1),

where A (), Az(g) < 0 and, for fixed ¢ and € — 0,
Ai(e) ~ e f(e), Aa(e) ~ e f(e), c1,e0>0.
Therefore, for sufficiently small § and ¢, we have
Lo 0[®c(x)]
Sp (Ton 2557 (R})
_ SoH(RY) + As(e) - (14 0:(1) +05(1)) — —5—=Au(e) - (1 4 0:(1))
(1= A1) (14 0.(1) + 05(1)))

= SIP(RY) + Az(e) - (14 0:(1) 4 05(1)) < STE(RY).
Thus, ([@8) is not fulfilled and a minimizer exists, which proves Theorem Bl O

7. ESTIMATES FOR ®(y) AND W(Y)

This section is devoted to the proof of Lemma Bl As a first step, we obtain the
“rough” estimate for ®(y) using the method from [30, Lemma 3.5] (see also [T} Sec.
IL.5]): it bounds ® in terms of its modulus of continuity in Lebesgue space with the
critical Sobolev exponent.

Let 0 <7 <[, (B2)- Then there exists the level A := A (®, 7) such that

1@ — )\Hszg(QA) =7, where Q) :={yeR}:®(y) > A}

Lemma 6. There exists 7. (n, s,0) such that for any positive solution ®(y) of ([I4)
in R? :
+

(53) sup® < C - NP, 7).
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18 NIKITA USTINOV

Proof. For any n(Y) € W;(Ri x Ry, 2172%)

yn=0 = 0 we have

e 1-2s 0% (y)
/0 / 2 VY W(Y) - Vyn(Y)dY = / W’?(y’o) dy.
¥ ¥

Taking n(Y) := W(Y) — Al , we obtain

=+

2 1(y)

a = [ EwewwRay = [ 2
WA} o, Yl

P2
S/ %d:%
oy [yl )%

We estimate the integral from the right-hand side:

o*

o

H HL2* (Q,\ IU‘(U 5)2*) g (H(I) — )\‘|L23(Q>\’|y‘(073)2§) + AHlHLQg(Qx,|y‘(073)2§))

« * « 1
" (ICD—AHQ: #4% et )
Fas x |y‘(s_a)2°

n—2s
22””(1) )‘” (o— 5)2*) +Cl)‘2 ‘QA

n—20

Lz*( X1yl

The inequality (*) follows from the Schwarz symmetrization. Recall that 7
|® = AllL,.(0y); using the Holder inequality we get

2n(s—o) 2n(s—o)

(n—20)s (n 2a)>+
HCI) /\||L2* (Q/\ ly| <7~ 5)2*) ||‘I> A Lo (Qx,yl7%%) H(I) /\HLQ*(Q)\)
i B o
=12 = Al npy =) 12— AHLMQ» T

Due to the fractional Hardy and Sobolev inequalities

2n(s—o) 2n(s—o)

12 = Al &y -2y - 12 = Al ,f"gi”)s Co((=A)g, ,5p[® = A+, [® = Aly)
Jul- (

< CuEsn V.

The inequality (**) follows from the fact that n(Y) is an admissible extension of
[@ — Al+. To sum up,

Eox W] < 25028, V] 72072 4+ C1A%5| Q) [+ 75

n—20

Suppose that 7, satisfies 22 0273:_2 < % For all A > A(®,7.) we have
n—2s

(54) Cs||® — A||2Lz:(gx) < Eox W] < 2010% |Qy | 727
From (B4) we obtain

(55)

n+2s o(n—2s)
o)) = /Q [@(y) = Al dy < [|® = Allz,. (0y) - |27 < CuAT57 | Q| Fre=2e),
A
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 19

Using the layer cake representation for the Lebesgue integral

=/ / X{0<<1>(y)}d9dy=/ |Qpl db,
O\ JA A

we get g'(\) = —|Q,| for a.e. A\. Thus (B3] takes the form

__nn=20) W2
L) O s con
By integrating over the segment [\, sup ®] we get

no—20s no+20s no+20s

—g(\) e e < C {(Sup = )\—nzﬂmzas} :

___no42os ___no420s ne—20s

(Sup (I)) n2 _—no—20s 2 A n2—no—20s — 6 g()\) —no—20s |

n?2-_no—20s

_ n+2s
Using (B3) for 7. < (S2) ™% . [Sot- 8P (R%)] 229 we obtain
V25

n+2s

* "277, *
(56)  SOATE <[ = Alr,.con (1200%) 7 <m0l

< ST V)T — 1 [s0L sS )T E

n2—no—20s

Cﬁﬁ
\ 2 b

which gives the required inequality (G3]):

— _jpot2es — _jpot2es
(sup @) »Z-no—20s > 2)\ "Z—no—205 0
Corollary 1. Any minimizer ®(y) admits the estimate (1. was introduced in
Lemma [0):
C(n, 8,0, A (P, 7%), A (P*, 7))
(57) ®(y) < :

(1+ [y[)r—2s

Proof. For |y| < 1 the estimate (B7)) coincides with (B3). For |y| > 1 the estimate
(D) can be obtained via the s-Kelvin transform (I5):

1 Y C(n,s,o,A(®*, 7,
(y) < 5 sup @ ( 2) = nf(zs )
Yl lyl ly

O

Proof of Lemma Bl The estimate for ®(y) in [B8) follows from the estimate for
W(Y) due to ®(y) = W(y,0). Moreover, the s-Kelvin transform argument shows
that it suffices to prove (B8] for |Y| < 1 only. Using the Green function (I9), we

can write
(1)2;71

W) = ArFAp 4 4y o= / / l€]<2 / e | Gs(Y58) gg) ds.

€l>2 a S €]t

—&|>4% l[y—€l< ¥
To estimate A;, we use (B7)) and (24) with b = 1:
(58) Ar < Cyn/ \f|(2;_1)(23_n)|§|(a_s)2‘*’%Hg 3
€1>2 iy

_(n2—2ns 1
< Cyn/ € (s 1) d¢ < Cys.
[g]>2
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20 NIKITA USTINOV

The estimates on A, and As are obtained iteratively. Recall that we have fixed the
minimizer ®(y). Let the following a priori estimate with p € [0,1) be fulfilled (for
p = 0 it was proved in Lemma [6]):

(59) D(y) < Cyb.

We claim that (B9) implies that

(60) W(Y) < Cyp and &(y) < Oy
with p, := min(q + p,1) and

_o(n—2s) (s —0)2%
Q= ——5 =5 5 € (0,s).

Indeed, to estimate Ay we notice that on the integration set one has
En <€ —yl+yn <3E—yl

Therefore the inequalities &, < [¢|, (E1), and 24) with b = 1 give us

( D
< o—s) 2 n
(61) A2 <C l€]<2 €] ly — £|n2512 dg
ly—&|> 4+
< Cypr / | |62y — g| et Ea R b g
<2

which in particular implies that As is finite, because both of the exponents are
negative and their sum is greater than —n.
To estimate Ag, we notice that on the integration set one has

Yn Yn 3Yn
|€‘>|y‘_|y_£|>|y|__>_a <|yn_€n|+yn<—-
2 2 2
Therefore (24]) with b = 0 gives us
Can ~1)p
(62) m< [ de
ly—el<n [EP572y — £[n2e
_ ; 1
Cyn Lp—2 +2q/ ﬂdﬁ < Cyn*.
ly—el<n |y — &

Putting (B8), [©I)), and (62) together, we obtain (G0)); i.e. we have increased the
exponent in (B9) by at least min(q, 1 — p). Iterating this process, we get ([G0) with
p. = 1. The estimate (38]) is completely proved.

To prove [B9)) we have to derive estimates at the origin and at infinity separately
because V(y) is not invariant under the s-Kelvin transform. For |y| < 1, we write
the integral representation for VyW(Y) as

% )
VYWY V Gs(Y,6)d¢ = Ay + A
' </5>2 /£|<2> )=z Y (Y,8) d§ =: Ay + As.
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CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 21

Obviously,
—+o00 2 +o0o
(63) V(y) < 2/0 2172 AL(Y) dz+2/0 2172 AZ(Y) dz+2/2 272 AL(Y) dz.

We estimate A4 using ([25)) and (38):

2 —1

A4 S/ gn n—2s+1 df
1€[>2 |§|(s—a)2j;+(2§—l)(n—2s+2) (‘y _ §|2 + 2’2) 2

Therefore, taking into account |y — &| > [£] — |y| = 1 we get
—+o0
/ AT2AYY) dz
0
2

+o0 L1-2s +o0 F2e—1ym—1
< _ . <
= CA (1 + 22)n72s+1 dz (/2 r(s—0)25+(25—1)(n—25+2) dT) <G

The convergence of the last integral follows from the equality

20(n —2s+2)
n— 20

2, —14+n—-1—-(s—0)2; — (2, = 1)(n—25+2) = — -2

g

The estimate of As also follows from ([25) and (B8):

25 —1

A5 g/ = n—2s+1 d§
<2 [€]s=20% (Jy — €2 + 22)" 7

Using this inequality, we estimate the second term in (G3)):

2
/ ZT2AL(Y) d
0

? ; g2 2
< C/ 2_1+m1n(s71—5) dz - / n — dg <c.
0 [g]<2 |§|(S*‘7)2§‘y _ gln—s—&-f*

The convergence of the last integral follows from the inequality

2;—2—(8—0)2§+s—min(s’l_s) _20(n—-2s+2)  min(s1—5)

2 n— 20 5 2 > -L

Finally, the third term in (63]) can be estimated as

too +oo L 1-2s 2,25 -1,m—1 2
— 48
/2 27 AL(Y) dz < 0/2 T dz - </0 o dr) <C,

and (B9) is proved for |y| < 1.
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22 NIKITA USTINOV
For |y| > 1, we write the integral representation for VyW(Y) as
‘?2*_1(5)
Vyw(Y) = + =2 VyG (Y f) d§ =: Ag + Ar.
y-el<i J-gzy ) [€]

Then V(y) can be estimated with an obvious inequality:
+oo “+o0
(64) V(y) < 2/0 AT2AL(Y ) dz + 2/0 2T AZ(Y) dz.

We estimate Ag using [25), B8), and || > —g >

|§‘(0—5)2;—(2;—1)(n—25+1)
Ag < C 72&«#1 d§
=el<hs (ly — €2 +22)

C J0 7,,nfl
S TG 1@ D211 peeresalE
‘y| 7 7 0 r2 2

By changing the variable we see that

Lyl

2
+oo 30 n—1
/ 2’1728 / T—nwdT dZ
0 0 (r2422) 2z
2
2s +o0 1 n—1
— |y‘2 / 21725 / T—n—'z;-{-ldr dZ,
1025 Jq 0 (r2422) 2

which gives the estimate of the first term in (64):

+oo 2s
/ 2172514%(}/) dz < Cly| _ C
0

|y|2((s=)25 +(25 ~1) (n—25+1)) |y‘2n72s+2+40%'

Finally, we estimate A7 using (28] and (38):

o
Ar < / COENYE ( Un +1> "
=€z |g|(5=25 (|y — £]2 4 22) 2 VIv—EZ+ 22

o

C &
< nZeiT z < d
(ly|2 + 22) 2 /y ezl [€]6=2 (1 4 [¢] (2 -Dn—25+2)) £

= 10
Convergence of the last integral follows from the inequality,

n? —4so + 4o n—2s+2

2 —(s—0)2% — (25 —1)(n—2s4+2) = — 0T 9, TS

n— 20 n— 20
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This gives the estimate of the second term in (64)),

/+oo | 9% io +o0 21_25 C
z_sA(Y)dz<C/ 55 dz < ,
0 7 0 (|y|2 +z2) 25+2 |y|2n72s+2

and the estimate ([B9) is completely proved. |

8. ESTIMATE ON THE DENOMINATOR AND DERIVATION OF ()

To get (BI) we modify the calculations from [6, Sec. 4]. We use the change of
variables ([#9]) and obtain the following equality by the Taylor formula:

Q ‘.’[,'|(ng)25
- |2(y)[* e
B /Rr; g+ e LF (e )en| =02 ¥ (0. (y) dy

> 2yl

_ [ 12wl D (y) |2 .
_/R ol RnW(l—% (v)) dy
+

d(y)|2s o s—o0)2% n  F2(ey
= [ S e (1- S pen b+ ) o) ) ay
:

n
* 2*
(s =0)2512(W) 1> 05" (eW)¥n 1,
B /R ely[G—2+2 Fley)dy
n
By)[2e o F2(ey
+

Lemma 7. The following relations hold:

n(n—2s42)

1) h=land L, <C(5) =7

T +oo +oo ) 27
(65) lin}) e3_ C/ TO‘+"/ (2, )" sds dr < 4o00;
0 0

72 4 22

(3) lim._yo ‘5% -

Proof. (1) The equality I; = 1 is just a normalizing condition for ®(y). Further,

B]) gives

P(y)[% . +oo .
I = % (1 - @;0 (5?/)) dy<C prmim2s(nms—otl) gy
n |y|( )25 5
R+ 2e

n(n—2s+2)

o)
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24 NIKITA USTINOV

(2) We note that

els _ (s—0)2; 25 12(y)]* yn
= 4/11@ ©57 (ey )mﬂ&/)dy

fe) f(e)
too too 2% ® T,Yn 2; n n—
/ / (e/T2+ 42 )( 2| ( 2y)(1|_a)12/;+2/ 2F(€y/)dS.r *(y') dyn dr
T24yd) = st
nf(eT Foo 2% (7,76 25 ¢ de
_C/ T f((s)) 057 (eV/ T2 + 7262) il )|(S_a)2;+2 dr
0 0 (72 4 72¢2) 3o
+o0 +oo 27
atn W(eT 2% — O(7,7¢)|* ¢ dg
N C/o ~ 1/)((6))/0 #5TEVTEH T 2| : 2 2)7[57‘7)2?’+2 ar
(r2 4 7262) %
—+oo
=C P.(7)dt.

0

The pointwise limit of P-(7) as € — 0 coincides with the integrand in the right-hand
side of (65]). To get the final result we use the Lebesgue dominated convergence
theorem. To construct a summable majorant for P.(7) we notice that ¢(7) is an
SVF and therefore ¢(7)7# increases and v (7)7~# decreases in the neighbourhood
of the origin for any 8 > 0; see [29], Sec 1.5, (1)-(2)]. This implies that

Y(er) _ pler)(en)’

Y(eT)(eT)”
(66)  xo,4](7) ORI CIOE X(0,1(T)7" +Wi)ﬁx[ 5)(m)7”
< C©) (X0, (N7 P + X(1,400) (T)77) .
Thus
+oo T 1) |20
P.() < C0) (o (M g (r)retn) [ OIS g
0 (1247225

By B8), for 7 € [0, 1] we have

(1—s+0)2} (1—s+o0)2} -2

—2
+o0 (7_2 +T2§2)f§ 1 +oo 3
(n—2s42)2% d§ = —27_2 T (n—2s+2)2% dr
0 1+ (24722 o 1+

(1—s40)2k -2

1 [tee 2
< 2,7_2 / (n—2s5+2)2% dr’
0 1+7r Pl

while for 7 > 1 we have

(1—s+0)2k -2

e (T2 + T2§2)7 —(n—s—o+1)2} e S
(n—25+2)25 ds<t (n—s—o+1)2%+2 ds.
0 14+(r2473%)" = 0 (14¢2) =

So, choosing sufficiently small 3, we get an estimate
P.(r)<C (X[o,l] (r)rotn=2=F 4 X[1,400) (T)T A 2)

with the summable majorant in the right-hand side (recall that o < n — 2s + 3):

20(n —2s+2)

< —1.
n— 20

a+n+p—-—n—s—oc+1)2) —2<-1+5—
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(3) Using ([3)), we obtain

3 82 2
I s ~n—2 =7 P s Un 2 od "
<o [ 7 (VT i
Niclh o elfEl Jo (12 4 92) 7
s n L—l o*
e e272 (P s o d
< 06(]‘)/ a f(ET) / | (T Tg)(‘s—a)f*+2 dT'
0 f(e) 0 (12 4 712 2)+

Similar to the previous estimate, the integral in the right-hand side has the finite
limit as € — 0, which completes the proof. O

To get (BI)) we put A; () := I3; estimates Iy = 05(1).A;1 (¢) and Ir = 0.(1).A; (¢)
follow from Lemma [0 and the inequality

n(n—2s+42)

I, <C@0)-e 2 =o0.(1)- e <o.(1)- e f(e) = 0.(1) - Ay (g).

9. ESTIMATE ON THE NUMERATOR AND DERIVATION OF (B2)
For brevity, we denote y := ”‘TQS For i€ {1,...,n— 1} we have

Owe (X)
O, we (X)
Oz, we (X)

e TIWL(O: (X)) B(2)
=|e ! Wy, (0:(X)) = Wy, (0:(X)) Fy, (2')]0(x) + e "W(O:(X)) @, (2)
e Wy, (0:(X))@(x) + e "W(O:(X))%s, (x)
Using these formulae we get the representation for the energy

Es [we]

+oo
_ / t1725 /
0 Q

— 27722 (2 )Wy

3
|
—-

= J1—Jo+ -+ Jg + Jio.

First, we estimate J, + J7 + J1o as follows:

J1+J7+J10—/ w5 (ey) VYWY )| dYy

=SSP (RY) [1—3(ey)] - V(y) dy.

e
L,

+3
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From (39) we get

—+o0

)

e ) n—2s+2

Pt g = O (5

[ b-sien) vom<c

which gives

Ji+ Jr 4 Jig = SEE(RY) + C(6)O(e" > 12).

Further, using (38) and (BY) we estimate J3 + Js :

“+o00
Js+ Js < 2 / / 5(cn)[Vyps(ey)| - W) [Ty W) dY

\C— V(y dyx/ / ZTEWY) P dY
5 Ky

L
2e
1
2

)
Ce B —3+2s5—n B —142s—n _ €
< — /5 r dr X N r dr =C (5

) n—2s+2
5 5 .
2e 2e

We estimate J4 in a similar way:

+oo
al<ze [ 2 [ ol Vs ) WO Ty WY, Fey)|dY
0 7

S N

< C‘Sn725+2 /5 F2572n 4 %n72f3(7~—) d,]:d,;;
= Fy 5 o 7P _ 72

= C(8)e" 2

é r ,n—2
< g/ r2572n T fS(ET) drdr
S 0

Also, (3]) allows us to estimate Jg + Jy :

[
o 2 toe 1—2s 29712 Ce* € _142s—n
Js + Jo = Ce z [Vypes(ey) ' W (Y)dY < 5 [s 7 dr
0 R™ =
+

(s 26

Now we transform the main term J,. Integrating by parts, we obtain

=2 [T [ S [ W (VW ()Pl

S
+ =1

+ [95(ey)],, Wa (Y )Wy, (V) F(ey)
+ @3 ey Was (V) Wy (V) F(ey)] .
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Next, we use the BVP ([@) to express the sum of second derivatives:
2 +o0 N N
B _/ / W (V) [ W, (V) + [ 2 WLV )LL) Fley) ay
2 +oo n—1
L e, oW, 0@ ay

1o[ree
- —/ / 2703 (ey) [\Vy/W(Y)F]yn F(ey')dY = H + Ey + E;.

Intergrating by parts once more, we transform H as follows:

+o0
=2 / AR [ D,
+2W,,

)[1 25W( )} ]dY
+oo
ey | M (AT
+ [ I W2, () PGy dy s

Sp (RN 25 —1
4 ) / P 10y, 1) S dy

+oo
——/ / pi(ey)Fley') ['2WE(Y)], dY

= —E3+E4+IC+E7.

We integrate by parts K and E-, taking into account W, (y’,0, z) = 0, and obtain

2558 (RY) [ [_ i Y s V1 B SAC) ROy

IC:
e 2 w2 | JylG-oz
= E5+E67
1 [t
Bt [ 2 [ e, FeyWiY)ay
0 n "

Lemma 8. The following relations hold:

(1) |Er + E> 4+ Eq + Eq7| = C(0)e™ 2512

(2)
+oo +oo

/ T"+"_2/ zl_QS\VT)ZW(T,O, 2)|? dzdr < +oo;
0 0

(3) |Bs| = o(e"—2=+2);

(1) By = 22 4 (0) - (14 0.(1)).
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28 NIKITA USTINOV

Proof. (1) The statement follows from the following inequalities:
+oo +oo
|Er+ Ey + By + Eq| = ’ / / / el W (Y)W, (V)
+ (3l [WAY) = W2 (¥) + WA(Y)]] dy

/ F(ey')dS"2(y/) drdz
Sn -2

<C/ / /+°° 1-2s (2 — 72 z)rdz ' per) | drdr
Ay T n - T ] B = T T
6 Ja v N
)
¢ /g —ongas—1 [T T3S (eT)]
< — nres —————drdr
6 265 0 AT 2 _ 7—2
7 ~72n+2s 1~ Fn— 2
— n 25+2/ / ‘f( )| d%d'f’
N
(2) As for the estimate of I3 in Lemma/[7l we use the Lebesgue theorem: since
E3 /JrOo o f(eT) o AR 2
e——==0C TR (67‘)/ 27728\ (T, 0, 2)|* dzdr
f(e) 0 fle) ™ 0

—+o0

=C Q:(7)dr
0

we get the integrand in the right-hand side of ([€7) as the pointwise limit of Q. (7)
To construct the majorant we use ([BY) and (6d):

+oo
< n_2+O‘M/ 1—2s 2
QE(T) B X[O,g](T)T w(e) ) z |v,,-vz)/\}(7'7 O’ Z)| dz
Pler) Crr—2te
P(g) 1+ |7|2n—2s+2
< C(6) (xp0,1(7) L potn—p—2 4 X(1400) () Ta—n—4+6+25)

N

X[o.£] (™)

s

b

which is summable for sufficiently small 8 due to a < n — 2s + 3.
(3) We have

SSp R" +oo
/ / F(ey') dS}2(y)
. S" 2
+o00 q)2 T, Un
></ {@a(f\ﬂ”yn)]y Mdyndr
/ / |®[% (1, V2 = 72) r7" 2| f(eT)]
6 2 — 72
"2 f(eT)]
5/ / 25 (n s— U+1)\/7127d7—dr

n—s—o n 1
< 062"( +h- 7»;172:(n7570+1) 2|f( )| drdi = O(€n72s+2)
X (5 g o 'r2 .

— 72

|Es| =

drdr

«
25 -7
(s 0)2*

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CURVATURE IN FRACTIONAL HARDY-SOBOLEV INEQUALITY 29

(4) Notice that the expression for Eg coincides with the expression for Is up to
* S n
two differences: we replace go?" (ey) with p?(ey) and multiply by % Thus
the statement follows from the argument from Lemma [7l O
Lemma [§] together with estimates I3 < f(¢)e™! < E3 and e" =272 = o(f(e)e™!)
gives
2578 (RY)
25
It remains to estimate Js. Using (89) and @3] we get

Jy=—E5-(14+0s(1) +0.(1)) + Ai (g) - (1 + 0:(1)).

+oo
Js = / / P2 (ey) [V Fley)PWE (V) dY
0 R?

2

s 2,
< C/E 7'”_2f2(57') dT/ : V(7,yn) dyn
0 0

S o
< / /+ Or_hlen dyndr
0 0 (
)

1 + 7—2 + y%)n—s-‘rl

)
e Ot 2fy(eT) os(1) [= 173 f(e)|
< /0 ( dr = /0 ( dr.

2n—2s+1 = 2n—2s5+1
14+ 72)™ =2 € 1+72)" 2

The last integral can be estimated in the same way as Fs3 in Lemmal[8 This estimate
gives J5 = 05(1)Es.
Denoting Ay(e) := Es5, we obtain (52)).
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