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THE EFFECT OF CURVATURE IN FRACTIONAL

HARDY–SOBOLEV INEQUALITY INVOLVING THE SPECTRAL

DIRICHLET LAPLACIAN

NIKITA USTINOV

Abstract. We prove the attainability of the best constant in the fractional
Hardy–Sobolev inequality with a boundary singularity for the spectral Dirich-
let Laplacian. The main assumption is the average concavity of the boundary
at the origin.

1. Introduction

In this paper we discuss the attainability of the best fractional Hardy–Sobolev
constant SSp

s,σ(Ω) in a C1–smooth bounded domain Ω ⊂ Rn, n � 2 :

(1) SSp
s,σ(Ω) · ‖|x|σ−su‖2L2∗σ (Ω) � 〈(−Δ)sSpu, u〉, u ∈ D̃s(Ω),

where 0 < σ < s < 1 and 2∗σ ≡ 2n
n−2σ . The operator in the right-hand side of (1)

is the spectral Dirichlet Laplacian; the space D̃s(Ω) is generated by its quadratic
form (see Section 2).

In the case 0 �∈ Ω the embedding D̃s(Ω) ↪→ L2∗σ (Ω, |x|(σ−s)2∗σ) is compact and

SSp
s,σ(Ω) is obviously attained. Through this paper we will consider the non-trivial

case 0 ∈ Ω.
In the local case s = 1 the inequality (1) coincides with

(2) Sσ(Ω) · ‖|x|σ−1u‖2L2∗σ (Ω) � 〈−Δu, u〉 = ‖∇u‖2L2(Ω).

The attainability of the best constant Sσ(Ω) is well-studied (even for the non-
Hilbertian case), and the following facts are known:

• If 0 ∈ Ω, σ ∈ [0, 1], and n � 3, then Sσ(Ω) does not depend on Ω. For σ ∈
(0, 1] the constant Sσ(R

n) is attained on the family of functions

uε(x) :=
(
ε+ |x|

2σ(n−2)
n−2σ

)1− n
2σ

([12, 18]; in non-Hilbertian case see [1, 32] for σ = 1, [11] for σ ∈ (0, 1));

thus Sσ(Ω) is not attained if D̃1(Ω) �= D1(Rn). If σ = 0, then Sσ is not
attained even in Rn (see [13, Sec. 7.3]).
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• In the case 0 ∈ ∂Ω the attainability of Sσ(Ω) was proved for cones: if
σ ∈ (0, 1), n � 2, and Ω is a cone in Rn, then Sσ(Ω) is attained ([7]; [27] in
non-Hilbertian case).

• The case of a bounded domain Ω with 0 ∈ ∂Ω is much more complex, and
the answer depends on the behaviour of ∂Ω at the origin. In [9] it was
shown that for n � 4 Sσ(Ω) is attained if all principal curvatures of ∂Ω are
negative at the origin. In [10] this condition was replaced by the negativity
of the mean curvature of ∂Ω at the origin. In [6] these conditions were
sufficiently weakened and the attainability was proved for all n � 2.

For s �∈ N only a few results were established before. In [35] the attainability of
SSp
s,σ(R

n) was shown for s ∈
(
0, n

2

)
. For s ∈ (0, 1) the attainability of the best

constant in Rn
+ was shown for fractional Hardy–Sobolev inequalities with restricted

Dirichlet and Neumann fractional Laplacians [21,25]. These inequalities differ from
(1) by the choice of fractional Laplacian in the right-hand side.

In this paper we prove the following results for the inequality (1):

• In the case 0 ∈ Ω and D̃s(Ω) �= Ds(Rn) the best constant SSp
s,σ(Ω) is not

attained. Moreover, if the domain Ω is star-shaped about the origin, then
the corresponding Euler–Lagrange equation does not have any non-trivial
non-negative solutions.

• The best constant SSp
s,σ(R

n
+) is attained.

• In the case 0 ∈ ∂Ω in a bounded Ω the best constant SSp
s,σ(Ω) is attained

under some geometrical assumptions on ∂Ω at the origin, analogous to the
conditions from [6].

The short announcement of these results was given in [34].
The paper consists of nine sections. In Section 2 we give basic definitions and

recall some properties of the spectral Dirichlet Laplacian (including the Stinga–
Torrea extension). In Section 3 we prove the unattainability of SSp

s,σ(Ω) in the
case 0 ∈ Ω together with the non-existence of positive solutions for the Euler–
Lagrange equation in a star-shaped Ω. In Section 4 we derive estimates for the
Green functions of some auxiliary problems. In Section 5 we prove the attainability
of the best constant SSp

s,σ(R
n
+). In Section 6 we formulate the assumptions on the

behaviour of ∂Ω in a neighbourhood of the origin, which are sufficient for the
attainability of SSp

s,σ(Ω). The proof is based on the construction of a suitable trial
function using the minimizer in Rn

+. Estimates on this minimizer and on its Stinga–
Torrea extension are given in Section 7: at first we derive the rough pointwise
estimate of the minimizer and then we derive more accurate estimates, analogous
to [6, Theorem 2.1]. Technical estimates used for the proof of the attainability in
Ω are given in Sections 8, 9.

Notation. x ≡ (x′, xn) is a point in R
n or in Ω; y ≡ (y′, yn) is a point in the

half-space

R
n
+ := {y ≡ (y′, yn) ∈ R

n | yn > 0}.
We use the coordinates X ≡ (x, t) ∈ Ω × R+ dealing with the Stinga–Torrea
extension from Ω and the coordinates Y ≡ (y, z) ∈ Rn

+ × R+ dealing with the
extension from R

n
+.

We denote by Br(x) and Sr(x) the sphere and the ball of radius r centered
in x, respectively. For brevity we use the notation Br := Br(0n), Sr := Sr(0n),
B+
r := Br ∩ Rn

+, and K+
r := B

+
2r \ B+

r (0n stands for the origin in Rn).

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 3

We fix a smooth cut-off function ϕr(y) such that

(3) ϕr(y) :=

{
1, |y| < r

2

0, |y| > r
, |∇yϕr(y)| � C

r
.

We use letter C to denote various positive constants depending on n, s, σ only. To
indicate that C depends on some other parameters, we write C(. . . ). We also write
oε(1) to indicate a quantity that tends to zero as ε → 0.

We use the notation ũ(y) and w̃(Y ) for the odd reflections of u(y) and its Stinga–
Torrea extension w(Y ) :

ũ(y) :=

{
u(y′, yn), yn � 0

−u(y′,−yn), yn � 0
, w̃(Y ) :=

{
w(y′, yn, z), yn � 0,

−w(y′,−yn, z), yn � 0.

2. Preliminaries

Recall (see, for instance, [33, Secs. 2.3.3, 4.3.2]) that the Sobolev spaces Hs(Rn)

and H̃s(Ω) are defined via the Fourier transform Fu(ξ) := 1
(2π)n/2

∫
Rn e−iξ·xu(x)dx:

Hs(Rn) =

{
u ∈ L2(R

n)

∣∣∣∣ ‖u‖2Hs(Rn) :=

∫
Rn

(1 + |ξ|2s)|Fu(ξ)|2dξ < +∞
}
;

H̃s(Ω) =
{
u ∈ Hs(Rn) | supp(u) ⊂ Ω

}
.

The fractional Laplacian (−Δ)s in Rn of a function u ∈ C∞
0 (Rn) is defined by the

identity

(4) (−Δ)su = F−1(|ξ|2sFu(ξ)), 〈(−Δ)su, u〉 =
∫
Rn

|ξ|2s|Fu(ξ)|2dξ.

The quadratic form in (4) is well-defined on Hs(Rn); thus the fractional Laplacian
in R

n can be considered as a self-adjoint operator with the quadratic form (4) on
Hs(Rn).

The spectral Dirichlet Laplacian (−Δ)sSp is the s-th power of the conventional
Dirichlet Laplacian in the sense of spectral theory. Its quadratic form in Rn coin-
cides with (4), i.e. (−Δ)sSp ≡ (−Δ)s in R

n. In the case of Ω = R
n
+ the quadratic

form is equal to

〈(−Δ)sSpu, u〉 :=
∫
Rn

+

|ξ|2s|F̂u(ξ)|2dξ

with

F̂u(ξ) :=
2

(2π)n/2

∫
Rn

u(x)e−iξ′·x′
sin(xnξn)dx;

for a bounded domain Ω,

(5) 〈(−Δ)sSpu, u〉 :=
∞∑
j=1

λs
j〈u, φj〉2.

Here λj and φj are the eigenvalues and the eigenfunctions (orthonormalized in
L2(Ω)) of the Dirichlet Laplacian on Ω, respectively.

Proposition 1 ([22, Theorem 2]). Let s ∈ (0, 1). Then for u(x) ∈ H̃s(Ω) the
following inequality holds:

(6) 〈(−Δ)sSpu, u〉 � 〈(−Δ)su, u〉.
If u �≡ 0, then (6) holds with a strict sign.
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Inequality (1) for s ∈ (0, 1) (or even for s ∈
(
0, n

2

)
) follows from (6) and the

general theorem by V.P. Il’in [15, Theorem 1.2, (22)] about estimates of integral
operators in weighted Lebesgue spaces.

Let Ω = Rn. If σ = 0, then inequality (1) reduces to the fractional Hardy
inequality

(7) 〈(−Δ)su, u〉 � Ss,0‖|x|−su‖2L2(Rn),

and for σ = s it reduces to the fractional Sobolev inequality

(8) 〈(−Δ)su, u〉 � Ss,s‖u‖2L2∗s (R
n).

The explicit values of Ss,0 and Ss,s have been computed in [14] and [5], respectively.
The explicit value of Ss,σ(R

n) for arbitrary σ ∈ (0, 1) is unknown.
Thanks to (8), we can introduce the Hilbert spaces

Ds(Rn) :=
{
u ∈ L2∗s (R

n) | 〈(−Δ)su, u〉 < ∞
}
,

D̃s(Ω) :=
{
u ∈ Ds(Rn) | u ≡ 0 outside of Ω

}
,

both endowed with the scalar product 〈(−Δ)sSpu, v〉. The space C∞
0 (Ω) is dense

in D̃s(Ω). Obviously D̃s(Rn
+) ∩ L2(R

n
+) = H̃s(Rn

+), and for any bounded Ω the

Friedrichs inequality provides D̃s(Ω) ≡ H̃s(Ω).
We recall that the spectral Dirichlet Laplacian (−Δ)sSp can be derived via the

Stinga–Torrea extension [31]. It turns out that the Dirichlet problem
(9)
Ls[w](X) ≡ −div(t1−2s∇Xw(x, t)) = 0 in Ω× R+; w|t=0 = u; w|x∈∂Ω = 0

has a unique solution wsp with finite energy

(10) Es[w] :=
∫ +∞

0

∫
Ω

t1−2s|∇Xw(x, t)|2dxdt.

In addition, the following relation holds in the sense of distributions:
(11)

(−Δ)sSpu(x) = Cs
∂wsp

∂νs
(x, 0) := −Cs lim

t→0+
t1−2s∂twsp(x, t) with Cs :=

4sΓ(1+s)
2s·Γ(1−s) .

Moreover, wsp is the minimizer of (10) over the space

Ws(Ω) :=
{
w(X) | Es[w] < +∞, w|t=0 = u, w|x∈∂Ω = 0

}
,

and the quadratic form (5) can be expressed in terms of Es[wsp] (see, e.g., [23, (2.6)]):

(12) 〈(−Δ)sSpu, u〉 = CsEs [wsp] .

We refer to any function w(X) ∈ Ws(Ω) as an admissible extension of u(x). Obvi-
ously, for any admissible extension w we have Es [w] � Es [wsp] . As we noted above,
for Ω = Rn the spectral Dirichlet Laplacian coincides with the fractional Laplacian
(−Δ)s in Rn, and its extension (the Caffarelli–Silvestre extension) was introduced
earlier in [2].

The attainability of Ss,σ(Ω) is equivalent to the existence of a minimizer for the
functional Iσ,Ω:

(13) Iσ,Ω[u] :=
〈(−Δ)sSpu, u〉

‖|x|σ−su‖2L2∗σ (Ω)

.
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A standard variational argument shows that each minimizer of (13) solves the
following problem (up to multiplication by a constant):

(14) (−Δ)sSpu(x) =
|u|2∗σ−2u(x)

|x|(s−σ)2∗σ
in Ω, u ∈ D̃s(Ω).

The s-Kelvin transform in W(Rn) is defined by the formula

(15) w∗(X) :=
1

|X|n−2s
w
( X

|X|2
)

∀X ≡ (x, t) ∈ R
n × R+ \ {0n+1}.

The following properties hold for the s-Kelvin transform (see, e.g., [8, Proposition
2.6]):{

Ls [w
∗] (X) = |X|−n−2s−2Ls [w]

(
X

|X|2
)

∀X ≡ (x, t) ∈ Rn × R+ \ {0n+1},
∂w∗

∂νs
(x, 0) ≡ |x|−n−2s ∂w

∂νs

(
x

|x|2 , 0
)

∀x ∈ Rn \ {0n}.

The relation

∂w∗

∂νs
(x, 0) ≡ |x|−n−2s ∂w

∂νs

( x

|x|2 , 0
)
=

w2∗σ−1
(

x
|x|2 , 0

)
|x|−n−2s∣∣ x

|x|2
∣∣(s−σ)2∗σ

=
(w∗)

2∗σ−1
(x, 0)

|x|2∗σ(s−σ)

shows that the problem (14) is invariant under the s-Kelvin transform. This fact
allows us to derive estimates of w near the origin and at infinity from each other.

In what follows, we need the following propositions:

Proposition 2 ([24, Theorem 3]). Let u(x) ∈ D̃s(Ω), s ∈ (0, 1). Then |u(x)| ∈
D̃s(Ω) and

〈(−Δ)sSpu, u〉 � 〈(−Δ)sSp|u|, |u|〉.
Moreover, if both the positive and the negative parts of u are non-trivial, then strict
inequality holds.

The proof in [24] is given for bounded domains but works for unbounded domains
without any changes.

Proposition 3 ([4, Lemma 2.6], [26, Proposition A.1]). Let s ∈ (0, 1), let u �≡ 0,

let u(x) ∈ D̃s(Ω) or u(x) ∈ Ds(Rn), and let (−Δ)sSpu � 0 hold in the sense of

distributions. Then u > 0 for any compact K ⊂ Ω (or K ⊂ Rn, respectively).

According to Proposition 2 the substitution u → |u| decreases Iσ,Ω. Therefore,
if u is a minimizer of (13), then the right-hand side of (14) is non-negative. Thus,
the maximum principle from Proposition 3 shows that u preserves a sign.

Proposition 4 ([24, Proposition 3]). Let u(x)∈D̃s(Ω) and let uρ(x) :=ρ
n−2s

2 u(ρx).
Then

〈(−Δ)su, u〉 = lim
ρ→∞

〈(−Δ)sΩ,Spuρ, uρ〉.

3. Non-existence results

In this section we consider the case 0 ∈ Ω.

Theorem 1. Let 0 ∈ Ω and D̃s(Ω) �= Ds(Rn).

(1) The constant SSp
s,σ(Ω) is not attained.

(2) If Ω is star-shaped about 0, then the only non-negative solution of (14)
is u ≡ 0.
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Proof. (1) In the local case s = 1 this statement is well-known. We adapt it for the
non-local case. At first we notice that Ss,σ(R

n) can be approximated with C∞
0 (Rn)

functions since such functions are dense in Ds(Rn). Proposition 4 shows that for

each u ∈ C∞
0 (Rn) we have uρ ∈ D̃s(Ω) for sufficiently large ρ and the following

relation holds:

lim
ρ→∞

Iσ,Ω[uρ] = Iσ,Rn [u].

This means that SSp
s,σ(Ω) � Ss,σ(R

n).

Let SSp
s,σ(Ω) be attained on some u ∈ D̃s(Ω). We extend u by zero to obtain a

minimizer in Rn. Indeed, the inequality (6) gives

Iσ,Rn [u] � SSp
s,σ(Ω) � Ss,σ(R

n),

which leads to a contradiction due to D̃s(Ω) �= Ds(Rn) and the maximum principle
from Proposition 3.

(2) To prove the statement we invent a non-local variant of the Pohozhaev iden-
tity for (−Δ)sSp (see [28] for (−Δ)s in Rn). Note that each solution of (14) has
a singularity at the origin but is smooth outside the neighbourhood of the origin.
Integrating by parts, we derive from (9) (here ηε(x) := 1−ϕε(x), where ϕε(x) was
introduced in (3)):

0 = Cs

∫ +∞

0

∫
Ω

div
(
t1−2s∇Xw(X)

)
〈X,∇Xw(X)〉ηε(x)dX

=

∫
Ω

u2∗σ−1(x)

|x|(s−σ)2∗σ
〈x,∇xu(x)〉ηε(x)dx

+ Cs

∫ +∞

0

∫
∂Ω

t1−2s〈∇xw(X), �n〉〈x,∇xw(X)〉ηε(x)dX

− Cs

∫ +∞

0

∫
Ω

t1−2s|∇Xw(X)|2ηε(x)dX

− Cs

2

∫ +∞

0

∫
Ω

t1−2s〈X,∇X

(
|∇Xw(X)|2

)
〉ηε(x)dX

− Cs

∫ +∞

0

∫
Ω

t1−2s〈∇xw(X),∇xηε(x)〉〈X,∇Xw(X)〉dX

=: B1 +B2 +B3 +B4 +B5;

B1 and B2 contain ∇x only since wt|x∈∂Ω = 0 and twt|t=0 = 0 due to (11).
Further,

B1 =

∫
Ω

n∑
i=1

[
u2∗σ (x)

]
xi

2∗σ

xiηε(x)

|x|(s−σ)2∗σ
dx

=

∫
Ω

u2∗σ (x)

2∗σ

n∑
i=1

(
ηε(x)

|x|(s−σ)2∗σ
− 2∗σ(s− σ) · x2

i ηε(x)

|x|(s−σ)2∗σ+2

)
dx+

∫
Ω

u2∗σ (x)

2∗σ

n∑
i=1

xi [ηε(x)]xi

|x|(s−σ)2∗σ
dx

=

(
n

2∗σ
− (s− σ)

)∫
Ω

u2∗σ (x)(1− ϕε(x))

|x|(s−σ)2∗σ
dx−

∫
Ω

u2∗σ (x)

2∗σ

n∑
i=1

xi [ϕε(x)]xi

|x|(s−σ)2∗σ
dx

= −n− 2s

2
〈(−Δ)sSpu, u〉 −

n− 2s

2

∫
Ω

u2∗σ (x)ϕε(x)

|x|(s−σ)2∗σ
dx

−
∫
Ω

u2∗σ (x)

2∗σ

n∑
i=1

xi [ϕε(x)]xi

|x|(s−σ)2∗σ
dx.
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Since w|x∈∂Ω = 0, vectors ∇xw(X) and �n are parallel, which gives

B2 = Cs

∫ +∞

0

∫
∂Ω

t1−2s〈x, �n〉 · |∇xw(X)|2ηε(x)dX.

For B3 we have

B3 = −〈(−Δ)sSpu, u〉+ Cs

∫ +∞

0

∫
Ω

t1−2s|∇Xw(X)|2ϕε(x)dX.

Integrating by parts in B4 we obtain (using t2−2s|wt(X)|2
∣∣
t=0

= 0)

B4 = −Cs

2

∫ +∞

0

∫
∂Ω

t1−2s〈x, �n〉|∇xw(X)|2ηε(x)dX

+
Cs(n− 2s+ 2)

2

∫ +∞

0

∫
Ω

t1−2s|∇Xw(X)|2 (ηε(x) + 〈x,∇xηε(x)〉) dX

= −Cs

2

∫ +∞

0

∫
∂Ω

t1−2s〈x, �n〉|∇xw(X)|2ηε(x) dX +
n− 2s+ 2

2
〈(−Δ)sSpu, u〉

− Cs

2

∫ +∞

0

∫
Ω

t1−2s|∇Xw(X)|2 ((n− 2s+ 2)ϕε(x) + 〈x,∇xϕε(x)〉)dX.

Summing up, we get

Cs

2

∫ +∞

0

∫
∂Ω

t1−2s〈x, �n〉|∇xw(X)|2dX

=
Cs

2

∫ +∞

0

∫
∂Ω

t1−2s〈x, �n〉|∇xw(X)|2ϕε(x) dX

+
n− 2s

2

∫
Ω

u2∗σ (x)ϕε(x)

|x|(s−σ)2∗σ
dx+

∫
Ω

u2∗σ (x)

2∗σ

n∑
i=1

xi [ϕε(x)]xi

|x|(s−σ)2∗σ
dx

+
Cs

2

∫ +∞

0

∫
Ω

t1−2s|∇Xw(X)|2 ((n− 2s)ϕε(x) + 〈x,∇xϕε(x)〉) dX

− Cs

∫ +∞

0

∫
Ω

t1−2s〈∇xw(X),∇xϕε(x)〉〈X,∇Xw(X)〉 dX.

The right-hand side of this equality tends to zero as ε → 0; therefore, the left-hand
side is zero. The assumption that Ω is star-shaped about 0 gives 〈x, �n〉 > 0, thus
∇xw = 0 on ∂Ω. Integrating by parts, we get

0 =

∫ +∞

0

∫
Ω

div(t1−2s∇Xw(X))dX

=

∫
Ω

u2∗σ−1(x)

|x|(s−σ)2∗σ
dX + lim

t→∞

∫
Ω

div(t1−2s∇Xw(X)) dx.

The second term in the right-hand side is zero (for more details see (46) and (47)
in Section 6), but the first term is positive for u(x) � 0, u �≡ 0, a contradiction. �

Remark 1. The second statement of Theorem 1 is also valid in the case 0 ∈ ∂Ω.

Below we assume that 0 ∈ ∂Ω. We also can assume that u(x) > 0 in Ω by
Proposition 3 and ‖|x|σ−su‖L2∗σ (Ω) = 1 due to the invariance of (13) under dilations

and multiplications by a constant.

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



8 NIKITA USTINOV

4. Estimates on Green functions

The simplest problem involving the fractional Laplacian in Rn
+ is

(16) (−Δ)sSpu(y) = h(y) in R
n
+.

The boundary value problem (BVP) (9) in Rn
+ looks like

(17)
Ls[w] (Y ) ≡ −div(z1−2s∇Y w (Y )) = 0 in R

n
+ ×R+; w|z=0 = u; w|yn=0 = 0.

The Stinga–Torrea extension w (Y ) can be derived from h(y) by solving the BVP

(18) Ls[w] (Y ) = 0 in R
n
+ × R+; Cs

∂w

∂νs
(y, 0) = h(y); w|yn=0 = 0.

Lemma 1. The Green functions of problems (16)-(18) are as follows:

For (18): Gs(Y, ξ) :=
C̃n,s

(|y − ξ|2 + z2)
n−2s

2

(
1−

[
1 +

4ynξn
|y − ξ|2 + z2

] 2s−n
2

)
.

(19)

For (17): Γs(Y, ξ) :=
Ĉn,sz

2s

(|y − ξ|2 + z2)
n+2s

2

(
1−

[
1 +

4ynξn
|y − ξ|2 + z2

]−n+2s
2

)
.

(20)

For (16): Gs(y, ξ) := Gs(y, 0, ξ).

(21)

Proof. To obtain required Green functions, we consider the odd reflections ũ(y)
and w̃ (Y ) . Notice that w̃ (Y ) is the Stinga–Torrea extension of ũ(y) because of
w|yn=0 = 0. In [2] and [3, Remark 3.10] the Green functions in Rn were calculated
for two problems: for the BVP

−div(t1−2s∇X w̃(X)) = 0 in R
n × R+; Cs

∂w̃

∂νs
(x, 0) = h̃(x)

we have the Green function G̃s(X):

(22) w̃(X) =

∫
Rn

G̃s(x− ξ, t)h̃(ξ)dξ with G̃s(X) :=
C̃n,s

(x2 + t2)
n−2s

2

;

for the BVP

−div(t1−2s∇X w̃(X)) = 0 in R
n × R+; w̃|t=0 = ũ

we have the Green function Γ̃s(X):

(23) w̃(X) =

∫
Rn

Γ̃s(x− ξ, t)ũ(ξ)dξ with Γ̃s(X) :=
Ĉn,st

2s

(x2 + t2)
n+2s

2

.

The required representation (19) follows from (22) and from the identity

Gs(Y, ξ) = G̃s(y
′, yn, t, ξ)− G̃s(y

′,−yn, t, ξ) with yn > 0.

Similarly, (20) follows from (23); the representation (21) is obvious. �
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 9

Lemma 2. For any b ∈ [0, 1] the Green functions Gs(Y, ξ) and Γs(Y, ξ) satisfy the
following estimates:

(24) Gs(Y, ξ) � Cybnξ
b
n

(|y − ξ|2 + z2)
n−2s+2b

2

and Γs(Y, ξ) � Cybnξ
b
nz

2s

(|y − ξ|2 + z2)
n+2s+2b

2

.

Also, ∇Y Gs(Y, ξ) can be estimated as follows:
(25)

|∇Y Gs(Y, ξ)| � C

(|y − ξ|2 + z2)
n−2s+1

2

·min

(
1,

ynξn
|y − ξ|2 + z2

+
ξn√

|y − ξ|2 + z2

)
.

Proof. The estimate for Gs follows from the interpolation of two inequalities:

Gs(Y, ξ) � C

(|y − ξ|2 + z2)
n−2s

2

and Gs(Y, ξ) � Cynξn

(|y − ξ|2 + z2)
n−2s+2

2

.

The first one is obvious, and the second one follows from the mean value theorem:

(26) 1−
[
1 +

4ynξn
|y − ξ|2 + z2

] 2s−n
2

� Cynξn
|y − ξ|2 + z2

.

The estimate for Γs can be obtained in the same way.
The gradient ∇Y Gs(Y, ξ) is given by the formulae (here i ∈ {1, . . . , n− 1})

⎛⎝ ∂zGs(Y, ξ)
∂yi

Gs(Y, ξ)
∂yn

Gs(Y, ξ)

⎞⎠ = C ·

⎛⎜⎜⎜⎜⎜⎝
z

(|y−ξ|2+z2)
n−2s+2

2

(
1−

[
1 + 4ynξn

|y−ξ|2+z2

] 2s−n−2
2

)
yi−ξi

(|y−ξ|2+z2)
n−2s+2

2

(
1−

[
1 + 4ynξn

|y−ξ|2+z2

] 2s−n−2
2

)
yn−ξn

(|y−ξ|2+z2)
n−2s+2

2

− yn+ξn

(|y′−ξ′|2+|yn+ξn|2+z2)
n−2s+2

2

⎞⎟⎟⎟⎟⎟⎠ ;

therefore, the first part of (25) is obvious. The second part for ∂zGs and ∂yi
Gs

can be derived using the analogue of (26). Inequality for ∂yn
Gs follows from the

inequality (recall that ξn > 0 and yn > 0)

|∂yn
Gs(Y, ξ)| � |yn − ξn|

(|y − ξ|2 + z2)
n−2s+2

2

(
1−

[
1 +

4ynξn
|y − ξ|2 + z2

] 2s−n−2
2

)

+
2ξn

(|y − ξ|2 + z2)
n−2s+2

2

and the analogue of (26) for the expression in large brackets. �

5. Attainability of SSp
s,σ(R

n
+)

In this section we prove the existence of the minimizer for the functional (13) in
the case Ω = Rn

+ and discuss its properties.

Theorem 2. For Ω = R
n
+ there exists a minimizer of the functional (13).

Proof. We follow the scheme in [27, Theorem 3.1] and based on the concentration-
compactness principle of Lions [20]. Consider a minimizing sequence {uk}
for (13). As was mentioned in Section 2, we can assume that uk(y) � 0 and
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10 NIKITA USTINOV

‖|y|σ−suk‖L2∗σ (R
n
+)

= 1. We also denote the Stinga–Torrea extensions as wk (Y )

and define the functions Uk(y) as

(27) Uk(y) :=

∫ +∞

0

z1−2s|∇Y wk(Y )|2dz.

Since {uk} is bounded in D̃s(Rn
+), wk (Y ) are uniformly bounded in Ws(R

n
+) as

well as Uk and ||y|σ−suk|2
∗
σ are uniformly bounded in L1(R

n
+). Without loss of

generality, we assume that:

• uk ⇁ u in D̃s(Rn
+);

• ∇Y wk ⇁ ∇Y w in L2(R
n
+ ×R+, z

1−2s), and w is an admissible extension of
u;

• ||y|σ−suk|2
∗
σ weakly converges to a measure μ on Rn

+;

• Uk weakly converges to a measure M on Rn
+,

where Rn
+ is a one-point compactification of Rn

+.

Embedding D̃s
loc(R

n
+) ↪→ L2∗σ,loc(R

n
+\{0n}) is compact due to 2∗σ < 2∗s ; thus, we

have convergence |y|σ−suk → |y|σ−su in L2∗σ ,loc(R
n
+\{0n}), which gives

μ = ||y|σ−su|2∗σ + α0δ0(y) + α∞δ∞(y), α0, α∞ � 0.

Here δ0(y) and δ∞(y) are Dirac delta functions at the origin and at infinity, re-
spectively.

Our next goal is to show that the measure M admits the estimate

(28) M � U + SSp
s,σ(R

n
+)α

2
2∗σ
0 δ0(y) + SSp

s,σ(R
n
+)α

2
2∗σ∞ δ∞(y).

Obviously, it suffices to prove that M majorizes separately each term in the right-
hand side of (28). The first estimate M � U follows from the weak convergence
∇Y wkη ⇁ ∇Y wη in L2

(
Rn

+ × R+, z
1−2s

)
for any η ∈ C∞

0 (Rn
+) and from the weak

lower semi-continuity of the weighted L2-norm:∫
Rn

+

η2(y)dM ≡ lim
k→∞

∫
Rn

+

η2(y)Uk(y)dy(29)

= lim
k→∞

∫ +∞

0

∫
Rn

+

z1−2s|∇Y wk(Y ) · η(y)|2dY

�
∫ +∞

0

∫
Rn

+

z1−2s|∇Y w(Y ) · η(y)|2dY =

∫
Rn

+

η2(y)U(y)dy.

To obtain the second estimate we use the trial function ηε(y) := ϕ2ε(y):∫
Rn

+

η2ε(y)dM ≡ lim
k→∞

∫
Rn

+

Ukη
2
ε(y)dy(30)

= lim
k→∞

∫ +∞

0

∫
Rn

+

z1−2s|∇Y [wk(Y )ηε(y)]− wk(Y )∇yηε(y)|2dY

= lim
k→∞

∫ +∞

0

∫
Rn

+

[
z1−2s|∇Y [wk(Y )ηε(y)] |2

− 2z1−2s∇ywk(Y )∇yηε(y)wk(Y )ηε(y)

+ z1−2s|wk(Y )∇yηε(y)|2
]
dY =: D1 −D2 +D3.
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 11

To estimate D1 we use the Hardy–Sobolev inequality (1):

(31) D1 � SSp
s,σ(R

n
+) · lim

k→∞
‖|y|σ−sukϕ2ε‖2L2∗σ (Rn

+) � SSp
s,σ(R

n
+)α

2
2∗σ
0 .

To estimate D3 we have to pass to the limit under the integral side:

Lemma 3. The following equality holds:

(32) D3 =

∫ +∞

0

∫
Rn

+

z1−2sw2(Y )|∇yηε(y)|2dY.

Proof. Let δ ∈ (0, 1). We split the integral into three parts:

D3 = ak + bk + ck :=

(∫ δ

0

+

∫ 1
δ

δ

+

∫ +∞

1
δ

)∫
Rn
+

z1−2sw2
k(Y )|∇yηε(y)|2dY.

Since the sequence wk is bounded in W 1
2

(
K+

ε ×
[
δ, 1δ

])
, wk→w in L2

(
K+

ε ×
[
δ, 1δ

])
,

and thus we can pass to the limit in bk. To complete the proof, it suffices to show
that

(33) ak, ck < C(ε) · δ1−s.

To prove (33) for ak we use the Green function (20):

wk (Y ) =

∫
Rn
+

uk(ξ)Γs(Y, ξ)dξ =

( ∫
|y−ξ|>1

+

∫
|y−ξ|�1

)
uk(ξ)Γs(Y, ξ)dξ

=: w1k (Y ) + w2k (Y ) ,

ak � 2

∫ δ

0

∫
Rn
+

z1−2s [w2
1k(Y ) + w2

2k(Y )
]
· |∇yηε(y)|2 dY =: a1k + a2k.

Using (24) for b = 0, |∇yϕ2ε| � c
ε , and the Cauchy–Bunyakovsky–Schwarz in-

equality we get

a1k � C

ε2

∫ δ

0

z1−2s

∫
|y|<2ε

( ∫
|y−ξ|>1

uk(ξ)z
2s

(|y − ξ|2 + z2)
n+2s

2

dξ

)2

dY

� C
δ2+2s

ε2

∫
|y|<2ε

( ∫
|y−ξ|>1

uk(ξ)|ξ|−s|ξ|s
|y − ξ|n+2s

dξ

)2

dy

� C(ε)δ2+2s‖|y|−suk‖2L2(R
n
+)

∫ +∞

1

r−n−2s−1dr.

Similarly, we get the estimate

a2k � C

ε2

∫ δ

0

z−s

∫
|y|<2ε

( ∫
|y−ξ|�1

uk(ξ)z
2s+ 1−s

2 dξ

(|y − ξ|2 + z2)
n+2s

2

)2

dY

� C
δ1−s

ε2

∫
|y|<2ε

( ∫
|y−ξ|�1

uk(ξ)dξ

|y − ξ|n− 1−s
2

)2

dy.
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12 NIKITA USTINOV

We estimate the integrand from the right-hand side as follows:( ∫
|y−ξ|�1

uk(ξ)

|y − ξ|n− 1−s
2

dξ

)2

� C

( ∫
|y−ξ|�1

uk(ξ)− uk(y)

|y − ξ|n− 1−s
2

dξ + uk(y)

)2

� C

( ∫
|y−ξ|�1

uk(ξ)− uk(y)

|y − ξ|n− 1−s
2

dξ

)2

+ Cu2
k(y)

� C

∫
|y−ξ|�1

|uk(ξ)− uk(y)|2
|y − ξ|n+2s

dξ ·
∫ 1

0

rsdr + Cu2
k(y).

Finally, using (6) we get

a2k � C(ε)δ1−s

(
〈(−Δ)sSpuk, uk〉 ·

∫ 1

0

rsdr + ‖|y|−suk‖2L2(Rn
+)

)
.

To prove (33) for ck we use (24) with b = 1:

ck � C

ε2

∫ +∞

1
δ

z1−2s

∫
|y|<2ε

( ∫
Rn

+

uk(ξ)z
2s|yn|ξn

(|y − ξ|2 + z2)
n+2s+2

2

dξ

)2

dY

� C(ε)‖|y|−suk‖2L2(Rn
+)

∫ +∞

1
δ

z1+2s

( ∫ +∞

0

rn+1+2s

(r2 + z2)n+2s+2
dr

)
dz

� C(ε)‖|y|−suk‖2L2(Rn
+)

∫ +∞

1
δ

z−1−ndz = C(ε)δn‖|y|−suk‖2L2(Rn
+).

Thus, the estimate (33) is completely proved and we get (32). �

Lemma 3 implies that

(34) D3 � C

ε2

∫ +∞

0

∫
|y|<2ε

z1−2s|w(Y )|2dY.

For yn � 2ε, using the inequality

|w(Y )|2 =

(∫ yn

0

∂w(y′, t, z)

∂yn
dt

)2

� 2ε

∫ 2ε

0

(
∂w

∂yn

)2

dt,

we obtain

D3 �
∫ +∞

0

∫
|y|<2

√
2ε

z1−2s

(
∂w

∂yn

)2

dY = oε(1) · Es[w].

To estimate D2 we use the Cauchy–Bunyakovsky–Schwarz inequality

(35) |D2| � C
√
D1 ·D3 = oε(1).

To sum up, we have transformed (30) into∫
Rn

+

ϕ2
2ε dM ≡ lim

k→+∞

∫
Rn

+

Ukϕ
2
2ε dy � SSp

s,σ(R
n
+)α

2
2∗σ
0 + oε(1),

which gives M � SSp
s,σ(R

n
+)α

2
2∗σ
0 δ0(y).
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 13

To derive the estimate at infinity, we put ηε(y) := 1− ϕ 2
ε
(y) and write (30) for

it. The estimate for D1 is similar to (31). To estimate D3 we use the analogue of
Lemma 3:

D3 � ε2
∫ +∞

0

∫
K 1

ε

z1−2s|w(Y )|2 dY.

In spherical coordinates (r, θ1, . . . , θn−1) we have w = 0 for θn−1 = 0; thus

|w(Y )|2 = |w(r, θ1, . . . , θn−1)|2 =

(∫ θn−1

0

∂w(y′, t, z)

∂θn−1
dt

)2

� π

∫ π

0

(
∂w

∂θn−1

)2

dt,

D3 � π2ε2
∫ +∞

0

∫
K 1

ε

z1−2s

(
∂w

∂θn−1

)2

dY � 4π2ε2

ε2

∫ +∞

0

∫
K 1

ε

z1−2s|∇yw|2dY

= oε(1) · Es[w].

Further arguments are similar to the estimate at the origin. The inequality (28) is
proved.

The end of the proof is rather standard. By dilations and multiplications on a
suitable constant one can achieve

(36) ‖|y|σ−suk‖L2∗σ (B+
1 ) = ‖|y|σ−suk‖L2∗σ (Rn

+\B+
1 ) =

1

2
.

From (28) and the fact that w is an admissible extension of u we get

SSp
s,σ(R

n
+)

(
‖|y|σ−su‖2L2∗σ (Rn

+) + α

2
2∗σ
0 + α

2
2∗σ∞

)
(37)

� 〈(−Δ)sSpu, u〉+ SSp
s,σ(R

n
+)α

2
2∗σ
0 + SSp

s,σ(R
n
+)α

2
2∗σ∞

�
∫
Rn

+

1dM = SSp
s,σ(R

n
+)

( ∫
Rn

+

1dμ

) 2
2∗σ

= SSp
s,σ(R

n
+)

(
‖|y|σ−su‖2

∗
σ

L2∗σ (Rn
+) + α0 + α∞

) 2
2∗σ ,

which can be true only if two of three terms from the right-hand side vanish. The
relation (36) keeps only the possibility that α0 = α∞ = 0; i.e. u is a minimizer of
(13). �

Remark 2. The minimizer existence for any cone in R
n can be proved in a similar

way.

We denote the obtained minimizer in Rn
+ by Φ(y) and its Stinga–Torrea extension

by W(Y ). Without loss of generality, we can assume that ‖|y|σ−sΦ‖L2∗σ(R
n
+)

= 1;

therefore we have Es [W ] = SSp
s,σ(R

n
+).

Lemma 4. Φ(y) and W(Y ) are radial in y′ and positive for yn > 0.

Proof. The positivity of Φ(y) and W(Y ) was proved at the end of Section 2. To
prove the first part we show that a non-trivial partial Schwarz symmetrization on
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14 NIKITA USTINOV

y′ (we denote the symmetrization of u as u�) decreases (13):

Iσ,Ω[u] =
Es [wsp]

‖|x|σ−su‖2L2∗σ (Ω)

∗
�

Es
[
w�

sp

]
‖|x|σ−su‖2L2∗σ (Ω)

∗∗
>

Es
[
w�

sp

]
‖|x|σ−su�‖2L2∗σ (Ω)

∗∗∗
� Iσ,Ω[u�].

The inequality (*) is provided by the fact that Es [wsp] does not increase under sym-
metrization (see [16, Theorem 2.31, p. 83] for the Steiner symmetrization; partial
Schwarz symmetrization can be achieved as the limit of Steiner symmetrizations).
The inequality (**) follows from [19, Theorem 3.4]. The fact that w�

sp is an admis-
sible extension for u� gives (***). �

Remark 3. Minimizer of (13) with ‖|y|σ−sΦ‖L2∗σ(R
n
+)

= 1 is not unique. Indeed,

the functional (13) is invariant with respect to dilations and multiplications by
constant. Compositions of these transformations that keep ‖|y|σ−sΦ‖L2∗σ (R

n
+)

norm

give us multiple minimizers.

For the further discussion, we fix some minimizer and study its behaviour at the
origin and at infinity:

Lemma 5. The minimizer Φ(y) and its Stinga–Torrea extension W(Y ) admit the
following estimates:

Φ(y) � Cyn
1 + |y|n−2s+2

, y ∈ R
n
+; W(Y ) � Cyn

1 + |Y |n−2s+2
, Y ∈ R

n
+ × R+;(38)

V(y) :=
∫ +∞

0

z1−2s|∇Y W(Y )|2dz � C

1 + |y|2n−2s+2
, y ∈ R

n
+,(39)

where constants C depend on n, s, σ, and on the choice of the minimizer Φ.

The proof of Lemma 5 is given in Section 7.

6. Attainability of SSp
s,σ(Ω)

We assume that in a small ball Br0 (centered at the origin) the surface ∂Ω
is parametrized by the equation xn = F (x′), where F ∈ C1, F (0n−1) = 0, and
∇x′F (0n−1) = 0n−1. Note that no assumptions on ∂Ω outside Br0 are imposed.

Following [6], we assume that ∂Ω is average concave at the origin: for small
τ > 0,

(40) f(τ ) :=
1

|Sn−2
τ |

∫
S
n−2
τ

F (y′) dy′ < 0.

Obviously, f ∈ C1 for small τ. We also assume that f is regularly varying at the
origin with the exponent α ∈ [1, n− 2s+ 3): for any d > 0,

(41) lim
τ→0

f(dτ )

f(τ )
= dα.

It is well-known (see, e.g., [29, Secs. 1.1, 1.2]) that (41) entails f(τ ) := −ταψ(τ )
with the slowly varying function ψ(τ ) (SVF). Note that for α = 1 the condition
F ∈ C1 implies that limτ→0 ψ(τ ) = 0.
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 15

We also introduce the functions

f1(τ ) :=
1

|Sn−2
τ |

∫
S
n−2
τ

F 2(y′) dy′; f2(τ ) :=
1

|Sn−2
τ |

∫
S
n−2
τ

|∇y′F (y′)|2 dy′;

f3(τ ) :=
1

|Sn−2
τ |

∫
S
n−2
τ

|∇y′F (y′)| dy′

and assume that the following condition is fulfilled:

(42) lim
τ→0

f2(τ )

f(τ )
τ = 0.

Remark 4. If ∂Ω ∈ C2, then the negativity of its mean curvature at the origin
implies assumptions (40)-(42) with α = 2 (see [6, Remark 1]). We also emphasize
that these assumptions admit the absence of mean curvature (α < 2) or its vanishing
(α > 2).

Remark 5. It was shown in [6, Sec. 4, (17)] that (42) implies that

(43) f1(τ ) � Cτ |f(τ )| · oτ (1).

Theorem 3. Let ∂Ω satisfy (40)-(42). Then the minimizer of (13) exists; i.e. the
problem (14) has a positive solution in Ω.

Proof. The scheme of the proof is the same as in Theorem 2. Consider a minimizing
sequence {uk} for (13). We denote the Stinga–Torrea extensions as wk (Y ) and

define functions Uk(y) via (27). As before, Uk ∈ L1(Ω) and ||x|σ−suk|2
∗
σ ∈ L1(Ω),

and we can also assume that:

• uk � 0, uk ⇁ u in D̃s(Ω);
• ∇Xwk ⇁ ∇Xw in L2(Ω×R+, t

1−2s) and w is an admissible extension of u;
• ||x|σ−suk|2

∗
σ weakly converges to a measure μ on Ω;

• Uk weakly converges to a measure M on Ω.

In contrast to the case of Rn
+, for the bounded Ω,

μ = ||x|σ−su|2∗σ + α0δ0(x),

and we should show that

(44) M � U + SSp
s,σ(Ω)α

2
2∗σ
0 δ0(x).

The estimate M � U coincides with (29). To show that M majorizes the second
term of (44) we write the analogue of (30):

(45)∫
Ω

ϕ2
2εdM = lim

k→∞

∫ +∞

0

∫
Ω

[
t1−2s|∇X [wk(X)ϕ2ε] |2−2t1−2s|∇xwk·∇xϕ2ε·wkϕ2ε|

+ t1−2s|wk(X)∇xϕ2ε(x)|2
]
dX =: D̃1 − D̃2 + D̃3

with D̃1 � SSp
s,σ(Ω)α

2
2∗σ
0 . The next step is the analogue of Lemma 3. Indeed, we

have

D̃3 = ãk + b̃k + c̃k :=

(∫ δ

0

+

∫ 1
δ

δ

+

∫ +∞

1
δ

)∫
Ω

t1−2sw2
k(X)|∇xϕ2ε(x)|2 dX.

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



16 NIKITA USTINOV

We can pass to the limit in b̃k, and the only remaining step is to obtain an analogue
of (33). For a bounded Ω there is no explicit formula for the Green function, but
we have the representation via Fourier series (see [31, (3.1)-(3.8)]):

(46) w(X) =
∑
i

di(t)φi(x) with di(t) = ts
21−s

Γ(s)
λ
s/2
i 〈u, φi〉Ks(λ

1/2
i t),

where Ks(τ ) is the modified Bessel function of the second kind; λi, φi were intro-
duced in (5). The asymptotic behavior of Ks is (see, e.g., [31, (3.7)])
(47)

Ks(τ )∼Γ(s)2s−1τ−s as τ→0; Ks(τ )∼
( π

2τ

) 1
2

e−τ
(
1 +O(τ−1)

)
as τ→∞.

Since λi → ∞, we can estimate∫
Ω

w2
k(X)|∇xϕ2ε(x)|2dx � C

ε2

∑
i

〈uk, φi〉2 ·
{
1 for t ∈ [0, δ];

t4s−4 for t ∈
[
1
δ ,+∞

)
,

which gives

ãk+c̃k � C

ε2

∫ ∞

0

(
t1−2sχ[0,δ](t) + t2s−3χ[ 1δ ,+∞)(t)

)∫
Ω

u2
k dX�C(ε)δ2−2s‖uk‖2L2(Ω).

Further, repeating the argument from Section 5, we get (44). Similarly to (37) we
have two alternatives: either α0 = 0 and the minimizer exists or α0 = 1 and u ≡ 0.
We claim that in the second case the following inequality is fulfilled:

(48) SSp
s,σ(Ω) � SSp

s,σ(R
n
+).

Indeed, if {uk} is a minimizing sequence for (13), then {ukϕ2ε} is a minimizing

sequence too: the denominator of (13) converges to
[
α0ϕ

2∗σ
2ε (0)

] 2
2∗σ = α

2
2∗σ
0 , while the

convergence of the numerator is controlled by (45) and Lemma 3 (D̃2 = D̃3 = 0):

lim
k→∞

∫ +∞

0

∫
Ω

t1−2s |∇X [wk(X)ϕ2ε]|2 dX =

∫
Ω

ϕ2
2εdM = SSp

s,σ(Ω)α
2
2∗σ
0 ϕ2

2ε(0)

= SSp
s,σ(Ω)α

2
2∗σ
0 .

Therefore, we can assume that uk is supported in B2ε. Let Θ1(x) be the coordinate
transformation that flattens ∂Ω inside Br0 :

y ≡ (y′, yn) = Θ1(x) := (x′, xn − F (x′)) = x− F (x′)en.

The Jacobian of Θ1(x) is equal to 1; thus

Iσ,Ω[uk] =
CsEs [wk]

‖|x|σ−suk‖2L2∗σ (Ω)

=

∫ +∞
0

∫
Rn

+
z1−2s|∇Y wk(y

′, yn + F (y′), z)|2 dY · (1 + oε(1))∫
Rn

+
||y′|2 + (yn + F (y′))2|

(σ−s)2∗σ
2 · u2∗σ

k (y′, yn + F (y′)) dy
.

Since wk(y
′, yn +F (y′), z) is an admissible extension of uk(y

′, yn +F (y′)), we have

Iσ,Ω[uk] � SSp
s,σ(R

n
+) · (1 + oε(1)),

which gives (48).
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 17

To complete the proof we use the assumptions (40)-(42) on ∂Ω to construct a
function Φε(x) such that Iσ,Ω[Φε(x)] < SSp

s,σ(R
n
+). We define Θε(x) and Θε(X) as

(49) Θε(x) := ε−1Θ1(x), Θε(X) :=
(
Θε(x), ε

−1t
)
=

(
ε−1(x− F (x′)en), ε

−1t
)
.

The Jacobians of Θε(x) and Θε(X) are equal to ε−n and ε−n−1, respectively. Let
δ ∈ (0, r0). We define ϕ̃(x) := ϕδ (Θ1(x)) . Note that ϕ̃(Θ−1

ε (y)) is radial:

ϕ̃(Θ−1
ε (y)) = ϕ̃(εy′, εyn + F (εy′)) = ϕδ(Θ1(Θ

−1
ε (y))) = ϕδ(ε|y|).

Now we put

Φε(x) := ε−
n−2s

2 Φ(Θε(x))ϕ̃(x); wε(X) := ε−
n−2s

2 W(Θε(X))ϕ̃(x)

(recall that Φ(y) is a minimizer of (13) in Rn
+ and W(Y ) is its Stinga–Torrea

extension). Obviously, wε(X) is an admissible extension of Φε(x); therefore

(50) Iσ,Ω[Φε(x)] =
〈(−Δ)sSpΦε,Φε〉

‖|x|σ−sΦε(x)‖2L2∗σ (Ω)

�
∫ +∞
0

∫
Ω
t1−2s|∇Xwε(X)|2 dX

‖|x|σ−sΦε(x)‖2L2∗σ (Ω)

.

In Sections 8 and 9 we derive the following estimates for the numerator and de-
nominator on the right-hand side of (50):∫

Ω

|Φε(x)|2
∗
σ

|x|(s−σ)2∗σ
dx = 1−A1(ε) · (1 + oε(1) + oδ(1));(51)

Es [wε] = SSp
s,σ(R

n
+) +A2(ε) · (1 + oε(1) + oδ(1))−

2SSp
s,σ(R

n
+)

2∗σ
A1(ε) · (1 + oε(1)),

(52)

where A1(ε),A2(ε) < 0 and, for fixed δ and ε → 0,

A1(ε) ∼ c1ε
−1f(ε), A2(ε) ∼ c2ε

−1f(ε), c1, c2 > 0.

Therefore, for sufficiently small δ and ε, we have

Iσ,Ω[Φε(x)]

�
SSp
s,σ(R

n
+) +A2(ε) · (1 + oε(1) + oδ(1))−

2SSp
s,σ(R

n
+)

2∗σ
A1(ε) · (1 + oε(1))(

1−A1(ε) · (1 + oε(1) + oδ(1))
) 2

2∗σ

= SSp
s,σ(R

n
+) +A2(ε) · (1 + oε(1) + oδ(1)) < SSp

s,σ(R
n
+).

Thus, (48) is not fulfilled and a minimizer exists, which proves Theorem 3. �

7. Estimates for Φ(y) and W(Y )

This section is devoted to the proof of Lemma 5. As a first step, we obtain the
“rough” estimate for Φ(y) using the method from [30, Lemma 3.5] (see also [17, Sec.
II.5]): it bounds Φ in terms of its modulus of continuity in Lebesgue space with the
critical Sobolev exponent.

Let 0 < τ < ‖Φ‖L2∗s (R
n
+)
. Then there exists the level λ := λ (Φ, τ ) such that

‖Φ− λ‖L2∗s (Qλ) = τ, where Qλ := {y ∈ R
n
+ : Φ(y) > λ}.

Lemma 6. There exists τ∗ (n, s, σ) such that for any positive solution Φ(y) of (14)
in Rn

+ :

(53) supΦ � C · λ(Φ, τ∗).
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18 NIKITA USTINOV

Proof. For any η(Y ) ∈ W 1
2 (R

n
+ × R+, z

1−2s), η|yn=0 = 0 we have∫ +∞

0

∫
Rn

+

z1−2s∇Y W(Y ) · ∇Y η(Y ) dY =

∫
Rn

+

Φ2∗σ−1(y)

|y|(s−σ)2∗σ
η(y, 0) dy.

Taking η(Y ) := [W(Y )− λ]+ , we obtain

Es,λ [W ] :=

∫
{W>λ}

z1−2s|∇Y W(Y )|2 dY =

∫
Qλ

Φ2∗σ−1(y)

|y|(s−σ)2∗σ
[Φ(y)− λ] dy

�
∫
Qλ

Φ2∗σ (y)

|y|(s−σ)2∗σ
dy.

We estimate the integral from the right-hand side:

‖Φ‖2
∗
σ

L2∗σ (Qλ,|y|(σ−s)2∗σ )
�

(
‖Φ− λ‖L2∗σ (Qλ,|y|(σ−s)2∗σ ) + λ‖1‖L2∗σ (Qλ,|y|(σ−s)2∗σ )

)2∗σ

� 22
∗
σ

(
‖Φ− λ‖2

∗
σ

L2∗σ
+ λ2∗σ

∫
Qλ

1

|y|(s−σ)2∗σ
dy

)
∗
� 22

∗
σ‖Φ− λ‖2

∗
σ

L2∗σ (Qλ,|y|(σ−s)2∗σ )
+ C1λ

2∗σ |Qλ|
n−2s
n−2σ .

The inequality (*) follows from the Schwarz symmetrization. Recall that τ ≡
‖Φ− λ‖L2∗s (Qλ); using the Hölder inequality we get

‖Φ− λ‖2
∗
σ

L2∗σ (Qλ,|y|(σ−s)2∗σ )
� ‖Φ− λ‖

2n(s−σ)
(n−2σ)s

L2(Qλ,|y|−2s) · ‖Φ− λ‖
2− 2n(s−σ)

(n−2σ)s
+2∗σ−2

L2∗s (Qλ)

= ‖Φ− λ‖
2n(s−σ)
(n−2σ)s

L2(Qλ,|y|−2s) · ‖Φ− λ‖
2− 2n(s−σ)

(n−2σ)s

L2∗s (Qλ)
· τ2∗σ−2.

Due to the fractional Hardy and Sobolev inequalities

‖Φ− λ‖
2n(s−σ)
(n−2σ)s

L2(Qλ,|y|−2s) · ‖Φ− λ‖
2− 2n(s−σ)

(n−2σ)s

L2∗s (Qλ)
� C2〈(−Δ)sQλ,Sp[Φ− λ]+, [Φ− λ]+〉
∗∗
� C2Es,λ [W ] .

The inequality (**) follows from the fact that η(Y ) is an admissible extension of
[Φ− λ]+. To sum up,

Es,λ [W ] � 2∗σC2Es,λ [W ] τ2
∗
σ−2 + C1λ

2∗σ |Qλ|
n−2s
n−2σ .

Suppose that τ∗ satisfies 22
∗
σC2τ

2∗σ−2
∗ � 1

2 . For all λ > λ(Φ, τ∗) we have

(54) C3‖Φ− λ‖2L2∗s (Qλ)
� Es,λ [W ] � 2C1λ

2∗σ |Qλ|
n−2s
n−2σ .

From (54) we obtain
(55)

g(λ) :=

∫
Qλ

[Φ(y)− λ] dy � ‖Φ− λ‖L2∗s (Qλ) · |Qλ|
n+2s
2n � C4λ

n
n−2σ |Qλ|1+

σ(n−2s)
n(n−2σ) .
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 19

Using the layer cake representation for the Lebesgue integral

g(λ) =

∫
Qλ

∫ ∞

λ

χ{θ<Φ(y)} dθ dy =

∫ ∞

λ

|Qθ| dθ,

we get g′(λ) = −|Qλ| for a.e. λ. Thus (55) takes the form

−g
′(λ) [g(λ)]

− n(n−2σ)

n2−nσ−2σs � C5λ
− n2

n2−nσ−2σs .

By integrating over the segment [λ, supΦ] we get

−g(λ)
nσ−2σs

n2−nσ−2σs � C6

[
(supΦ)

− nσ+2σs

n2−nσ−2σs − λ
− nσ+2σs

n2−nσ−2σs

]
;

(supΦ)
− nσ+2σs

n2−nσ−2σs � λ
− nσ+2σs

n2−nσ−2σs − C−1
6 g(λ)

nσ−2σs

n2−nσ−2σs .

Using (55) for τ∗ �
(
C6

2

)n2−nσ−2σs
nσ−2σs ·

[
S−1
s,s · SSp

s,σ(R
n
+)

]− n+2s
2(n−2s) we obtain

g(λ)λ
n+2s
n−2s � ‖Φ− λ‖L2∗s (Qλ)

(
|Qλ|λ2∗s

)n+2s
2n � τ∗‖Φ‖2

∗
s−1

L2∗s
(56)

� τ∗
[
S−1
s,sEs [W ]

] n+2s
2(n−2s) = τ∗

[
S−1
s,s · SSp

s,σ(R
n
+)

] n+2s
2(n−2s)

�
(
C6

2

)n2−nσ−2σs
nσ−2σs

,

which gives the required inequality (53):

(supΦ)
− nσ+2σs

n2−nσ−2σs � 1

2
λ
− nσ+2σs

n2−nσ−2σs . �

Corollary 1. Any minimizer Φ(y) admits the estimate (τ∗ was introduced in
Lemma 6):

(57) Φ(y) � C(n, s, σ, λ (Φ, τ∗) , λ (Φ∗, τ∗))

(1 + |y|)n−2s
.

Proof. For |y| � 1 the estimate (57) coincides with (53). For |y| � 1 the estimate
(57) can be obtained via the s-Kelvin transform (15):

Φ(y) � 1

|y|n−2s
· supΦ∗

(
y

|y|2

)
� C(n, s, σ, λ (Φ∗, τ∗))

|y|n−2s
.

�

Proof of Lemma 5. The estimate for Φ(y) in (38) follows from the estimate for
W(Y ) due to Φ(y) = W(y, 0). Moreover, the s-Kelvin transform argument shows
that it suffices to prove (38) for |Y | � 1 only. Using the Green function (19), we
can write

W(Y ) = A1 +A2+A3 :=

( ∫
|ξ|>2

+

∫
|ξ|�2

|y−ξ|> yn
2

+

∫
|ξ|�2

|y−ξ|� yn
2

)
Gs(Y, ξ)

Φ2∗σ−1(ξ)

|ξ|(s−σ)2∗σ
dξ.

To estimate A1, we use (57) and (24) with b = 1:

A1 � Cyn

∫
|ξ|>2

|ξ|(2∗σ−1)(2s−n)|ξ|(σ−s)2∗σ
ξn

|ξ|n−2s+2
dξ(58)

� Cyn

∫
|ξ|>2

|ξ|−
(

n2−2ns
n−2σ +n+1

)
dξ � Cyn.
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20 NIKITA USTINOV

The estimates on A2 and A3 are obtained iteratively. Recall that we have fixed the
minimizer Φ(y). Let the following a priori estimate with p ∈ [0, 1) be fulfilled (for
p = 0 it was proved in Lemma 6):

(59) Φ(y) � Cypn.

We claim that (59) implies that

(60) W(Y ) � Cyp∗
n and Φ(y) � Cyp∗

n ,

with p∗ := min(q+ p, 1) and

q :=
σ(n− 2s)

n− 2σ
= s− (s− σ)2∗σ

2
∈ (0, s).

Indeed, to estimate A2 we notice that on the integration set one has

ξn � |ξ − y|+ yn � 3|ξ − y|.

Therefore the inequalities ξn < |ξ|, (57), and (24) with b = 1 give us

A2 � C

∫
|ξ|�2

|y−ξ|> yn
2

|ξ|(σ−s)2∗σ
ynξ

1+(2∗σ−1)p
n

|y − ξ|n−2s+2
dξ(61)

� Cyp∗
n

∫
|ξ|�2

|ξ|2(q−s)|y − ξ|−n+2s+(2∗σ−1)p−p∗ dξ,

which in particular implies that A2 is finite, because both of the exponents are
negative and their sum is greater than −n.

To estimate A3, we notice that on the integration set one has

|ξ| � |y| − |y − ξ| � |y| − yn
2

� yn
2
; ξn � |yn − ξn|+ yn � 3yn

2
.

Therefore (24) with b = 0 gives us

A3 �
∫
|y−ξ|� yn

2

Cξ
(2∗σ−1)p
n

|ξ|2s−2q|y − ξ|n−2s
dξ(62)

� Cy
(2∗σ−1)p−2s+2q
n

∫
|y−ξ|� yn

2

1

|y − ξ|n−2s
dξ � Cyp∗

n .

Putting (58), (61), and (62) together, we obtain (60); i.e. we have increased the
exponent in (59) by at least min(q, 1− p). Iterating this process, we get (60) with
p∗ = 1. The estimate (38) is completely proved.

To prove (39) we have to derive estimates at the origin and at infinity separately
because V(y) is not invariant under the s-Kelvin transform. For |y| � 1, we write
the integral representation for ∇Y W(Y ) as

∇Y W(Y ) =

( ∫
|ξ|�2

+

∫
|ξ|<2

)
Φ2∗σ−1(ξ)

|ξ|(s−σ)2∗σ
∇Y Gs(Y, ξ) dξ =: A4 +A5.

Licensed to Cornell Univ. Prepared on Thu Sep 10 12:39:16 EDT 2020 for download from IP 132.174.252.179.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 21

Obviously,

(63) V(y) � 2

∫ +∞

0

z1−2sA2
4(Y ) dz+2

∫ 2

0

z1−2sA2
5(Y ) dz+2

∫ +∞

2

z1−2sA2
5(Y ) dz.

We estimate A4 using (25) and (38):

A4 �
∫
|ξ|�2

ξ
2∗σ−1
n

|ξ|(s−σ)2∗σ+(2∗σ−1)(n−2s+2) (|y − ξ|2 + z2)
n−2s+1

2

dξ.

Therefore, taking into account |y − ξ| � |ξ| − |y| � 1 we get∫ +∞

0

z1−2sA2
4(Y ) dz

� C

∫ +∞

0

z1−2s

(1 + z2)n−2s+1
dz ·

(∫ +∞

2

r2
∗
σ−1rn−1

r(s−σ)2∗σ+(2∗σ−1)(n−2s+2)
dr

)2

� C.

The convergence of the last integral follows from the equality

2∗σ − 1 + n− 1− (s− σ)2∗σ − (2∗σ − 1)(n− 2s+ 2) = −2σ(n− 2s+ 2)

n− 2σ
− 2.

The estimate of A5 also follows from (25) and (38):

A5 �
∫
|ξ|<2

ξ
2∗σ−1
n

|ξ|(s−σ)2∗σ (|y − ξ|2 + z2)
n−2s+1

2

dξ.

Using this inequality, we estimate the second term in (63):∫ 2

0

z1−2sA2
5(Y ) dz

� C

∫ 2

0

z−1+min(s,1−s) dz ·
( ∫

|ξ|<2

ξ
2∗σ−1
n

|ξ|(s−σ)2∗σ |y − ξ|n−s+
min(s,1−s)

2

dξ

)2

� C.

The convergence of the last integral follows from the inequality

2∗σ − 2− (s− σ)2∗σ + s− min(s, 1− s)

2
=

2σ(n− 2s+ 2)

n− 2σ
− s− min(s, 1− s)

2
> −1.

Finally, the third term in (63) can be estimated as

∫ +∞

2

z1−2sA2
5(Y ) dz � C

∫ +∞

2

z1−2s

z2n−4s+2
dz ·

(∫ 2

0

r2
∗
σ−1rn−1

r(s−σ)2∗σ
dr

)2

� C,

and (39) is proved for |y| � 1.
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For |y| > 1, we write the integral representation for ∇Y W(Y ) as

∇Y W(Y ) =

(∫
|y−ξ|< |y|

10

+

∫
|y−ξ|� |y|

10

)
Φ2∗σ−1(ξ)

|ξ|(s−σ)2∗σ
∇Y Gs(Y, ξ) dξ =: A6 +A7.

Then V(y) can be estimated with an obvious inequality:

(64) V(y) � 2

∫ +∞

0

z1−2sA2
6(Y ) dz + 2

∫ +∞

0

z1−2sA2
7(Y ) dz.

We estimate A6 using (25), (38), and |ξ| � 9|y|
10 � 9

10 :

A6 � C

∫
|y−ξ|< |y|

10

|ξ|(σ−s)2∗σ−(2∗σ−1)(n−2s+1)

(|y − ξ|2 + z2)
n−2s+1

2

dξ

� C

|y|(s−σ)2∗σ+(2∗σ−1)(n−2s+1)

∫ |y|
10

0

rn−1

(r2 + z2)
n−2s+1

2

dr.

By changing the variable we see that

∫ +∞

0

z1−2s

(∫ |y|
10

0

rn−1

(r2 + z2)
n−2s+1

2

dr

)2

dz

=
|y|2s
102s

∫ +∞

0

z1−2s

(∫ 1

0

rn−1

(r2 + z2)
n−2s+1

2

dr

)2

dz,

which gives the estimate of the first term in (64):

∫ +∞

0

z1−2sA2
6(Y ) dz � C|y|2s

|y|2((s−σ)2∗σ+(2∗σ−1)(n−2s+1))
=

C

|y|2n−2s+2+4σ n−2s+2
n−2σ

.

Finally, we estimate A7 using (25) and (38):

A7 �
∫
|y−ξ|� |y|

10

CΦ2∗σ−1(ξ)ξn

|ξ|(s−σ)2∗σ (|y − ξ|2 + z2)
n−2s+2

2

(
yn√

|y − ξ|2 + z2
+ 1

)
dξ

� C

(|y|2 + z2)
n−2s+2

2

·
∫
|y−ξ|� |y|

10

ξ
2∗σ
n

|ξ|(s−σ)2∗σ(1 + |ξ|(2∗σ−1)(n−2s+2))
dξ.

Convergence of the last integral follows from the inequality,

2∗σ−(s−σ)2∗σ−(2∗σ−1)(n−2s+2) = −n2 − 4sσ + 4σ

n− 2σ
= −n−2σ

n− 2s+ 2

n− 2σ
< −n.
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 23

This gives the estimate of the second term in (64),∫ +∞

0

z1−2sA2
7(Y ) dz � C

∫ +∞

0

z1−2s

(|y|2 + z2)n−2s+2 dz � C

|y|2n−2s+2
,

and the estimate (39) is completely proved. �

8. Estimate on the denominator and derivation of (51)

To get (51) we modify the calculations from [6, Sec. 4]. We use the change of
variables (49) and obtain the following equality by the Taylor formula:∫

Ω

|Φε(x)|2
∗
σ

|x|(s−σ)2∗σ
dx

=

∫
Rn

+

|Φ(y)|2∗σ
|y + ε−1F (εy′)en|(s−σ)2∗σ

ϕ̃2∗σ (Θ−1
ε (y)) dy

=

∫
Rn

+

|Φ(y)|2∗σ
|y|(s−σ)2∗σ

ϕ
2∗σ
δ (εy) ·

(
1− (s− σ)2∗σ

ε
F (εy′)

yn
|y|2 +

F 2(εy′)

ε2|y|2 ·Oδ(1)

)
dy

=

∫
Rn

+

|Φ(y)|2∗σ
|y|(s−σ)2∗σ

dy −
∫
Rn

+

|Φ(y)|2∗σ
|y|(s−σ)2∗σ

(
1− ϕ

2∗σ
δ (εy)

)
dy

−
∫
Rn

+

(s− σ)2∗σ|Φ(y)|2
∗
σϕ

2∗σ
δ (εy)yn

ε|y|(s−σ)2∗σ+2
F (εy′) dy

+Oδ(1)

∫
Rn

+

|Φ(y)|2∗σ
|y|(s−σ)2∗σ

ϕ
2∗σ
δ (εy)

F 2(εy′)

ε2|y|2 dy =: I1 − I2 − I3 + I4.

Lemma 7. The following relations hold:

(1) I1 = 1 and I2 � C
(
ε
δ

)n(n−2s+2)
n−2σ ;

(2)

(65) lim
ε→0

ε
I3
f(ε)

= C

∫ +∞

0

τα+n

∫ +∞

0

|Φ(τ, τ ς)|2∗σ ςdς
|τ2 + τ2ς2|

(s−σ)2∗σ+2

2

dτ < +∞;

(3) limε→0

∣∣∣ε I4
f(ε)

∣∣∣ = oδ(1).

Proof. (1) The equality I1 = 1 is just a normalizing condition for Φ(y). Further,
(38) gives

I2 ≡
∫
Rn

+

|Φ(y)|2∗σ
|y|(s−σ)2∗σ

(
1− ϕ

2∗σ
δ (εy)

)
dy � C

∫ +∞

δ
2ε

rn−1−2∗σ(n−s−σ+1) dr

= C
(ε
δ

)n(n−2s+2)
n−2σ

.
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24 NIKITA USTINOV

(2) We note that

εI3
f(ε)

=
(s− σ)2∗σ

f(ε)

∫
Rn
+

ϕ
2∗σ
δ (εy)

|Φ(y)|2∗σyn
|y|(s−σ)2∗σ+2

F (εy′) dy

=
C

f(ε)

∫ +∞

0

∫ +∞

0

ϕ
2∗σ
δ (ε

√
τ2 + y2

n)
|Φ(τ, yn)|2

∗
σyn

(τ2 + y2
n)

(s−σ)2∗σ+2

2

∫
S
n−2
τ

F (εy′) dSn−2
τ (y′) dyn dτ

= C

∫ +∞

0

τn f(ετ)

f(ε)

∫ +∞

0

ϕ
2∗σ
δ (ε

√
τ2 + τ2ς2)

|Φ(τ, τς)|2∗σ ς dς
(τ2 + τ2ς2)

(s−σ)2∗σ+2

2

dτ

= C

∫ +∞

0

τα+nψ(ετ)

ψ(ε)

∫ +∞

0

ϕ
2∗σ
δ (ε

√
τ2 + τ2ς2)

|Φ(τ, τς)|2∗σ ς dς
(τ2 + τ2ς2)

(s−σ)2∗σ+2

2

dτ

=: C

∫ +∞

0

Pε(τ) dτ.

The pointwise limit of Pε(τ ) as ε → 0 coincides with the integrand in the right-hand
side of (65). To get the final result we use the Lebesgue dominated convergence
theorem. To construct a summable majorant for Pε(τ ) we notice that ψ(τ ) is an
SVF and therefore ψ(τ )τβ increases and ψ(τ )τ−β decreases in the neighbourhood
of the origin for any β > 0; see [29, Sec 1.5, (1)-(2)]. This implies that

(66) χ[0, δε ]
(τ )

ψ(ετ )

ψ(ε)
=

ψ(ετ )(ετ )β

ψ(ε)(ε)β
χ[0,1](τ )τ

−β +
ψ(ετ )(ετ )−β

ψ(ε)(ε)−β
χ[1, δε ]

(τ )τβ

� C(δ)
(
χ[0,1](τ )τ

−β + χ[1,+∞)(τ )τ
β
)
.

Thus,

Pε(τ ) � C(δ)
(
χ[0,1](τ )τ

α+n−β + χ[1,+∞)(τ )τ
α+n+β

) ∫ +∞

0

|Φ(τ, τ ς)|2∗σς
(τ2 + τ2ς2)

(s−σ)2∗σ+2

2

dς.

By (38), for τ ∈ [0, 1] we have∫ +∞

0

(τ2 + τ2ς2)
(1−s+σ)2∗σ−2

2 ς

1 + (τ2 + τ2ς2)
(n−2s+2)2∗σ

2

dς =
1

2τ2

∫ +∞

τ2

r
(1−s+σ)2∗σ−2

2

1 + r
(n−2s+2)2∗σ

2

dr

� 1

2τ2

∫ +∞

0

r
(1−s+σ)2∗σ−2

2

1 + r
(n−2s+2)2∗σ

2

dr,

while for τ > 1 we have∫ +∞

0

(τ2 + τ2ς2)
(1−s+σ)2∗σ−2

2 ς

1 + (τ2 + τ2ς2)
(n−2s+2)2∗σ

2

dς�τ−(n−s−σ+1)2∗σ−2

∫ +∞

0

ς

(1 + ς2)
(n−s−σ+1)2∗σ+2

2

dς.

So, choosing sufficiently small β, we get an estimate

Pε(τ ) � C
(
χ[0,1](τ )τ

α+n−2−β + χ[1,+∞)(τ )τ
α+n+β−(n−s−σ+1)2∗σ−2

)
with the summable majorant in the right-hand side (recall that α < n− 2s+ 3):

α+ n+ β − (n− s− σ + 1)2∗σ − 2 < −1 + β − 2σ(n− 2s+ 2)

n− 2σ
< −1.
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CURVATURE IN FRACTIONAL HARDY–SOBOLEV INEQUALITY 25

(3) Using (43), we obtain∣∣∣∣ε I4
f(ε)

∣∣∣∣ � Oδ(1)

∫ δ
ε

0

τn−2f1(ετ )

ε|f(ε)|

∫ √
δ2

ε2
−τ2

0

|Φ(τ, yn)|2
∗
σdyn

(τ2 + y2n)
(s−σ)2∗σ+2

2

dτ

� oδ(1)

∫ δ
ε

0

τnf(ετ )

f(ε)

∫ √
δ2

ε2τ2 −1

0

|Φ(τ, τ ς)|2∗σ dς
(τ2 + τ2ς2)

(s−σ)2∗σ+2

2

dτ.

Similar to the previous estimate, the integral in the right-hand side has the finite
limit as ε → 0, which completes the proof. �

To get (51) we put A1 (ε) := I3; estimates I4 = oδ(1)A1 (ε) and I2 = oε(1)A1 (ε)
follow from Lemma 7 and the inequality

I2 � C(δ) · ε
n(n−2s+2)

n−2σ = oε(1) · εα−1 � oε(1) · ε−1f(ε) = oε(1) · A1 (ε) .

9. Estimate on the numerator and derivation of (52)

For brevity, we denote y := n−2s
2 . For i ∈ {1, . . . , n− 1} we have⎛⎝ ∂twε(X)

∂xi
wε(X)

∂xn
wε(X)

⎞⎠

=

⎛⎜⎝ ε−y−1Wz(Θε (X))ϕ̃(x)

ε−y−1[Wyi
(Θε(X))−Wyn

(Θε(X))Fxi
(x′)]ϕ̃(x) + ε−yW(Θε(X))ϕ̃xi

(x)

ε−y−1Wyn
(Θε(X))ϕ̃(x) + ε−yW(Θε(X))ϕ̃xn

(x)

⎞⎟⎠ .

Using these formulae we get the representation for the energy

Es [wε]

=

∫ +∞

0

t1−2s

∫
Ω

(
n−1∑
i=1

[
ε−2y−2ϕ̃2(x)W2

yi
(Θε(X))

− 2ε−2y−2ϕ̃2(x)Wyi
(Θε(X))Wyn

(Θε(X))Fxi
(x′)

+ 2ε−2y−1ϕ̃xi
(x)ϕ̃(x)Wyi

(Θε(X))W(Θε(X))

− 2ε−2y−1ϕ̃xi
(x)ϕ̃(x)Fxi

(x′)Wyn
(Θε(X))W(Θε(X))

+ ε−2y−2ϕ̃2(x)F 2
xi
(x′)W2

yn
(Θε(X)) + ε−2yϕ̃2

xi
(x)W2(Θε(X))

]
+ ε−2y−2ϕ̃2(x)W2

yn
(Θε(X)) + 2ε−2y−1ϕ̃xn

(x)ϕ̃(x)Wyn
(Θε(X))W(Θε(X))

+ ε−2yϕ̃2
xn
(x)W2(Θε(X)) + ε−2y−2ϕ̃2(x)W2

z (Θε(X))

)
dX

=: J1 − J2 + · · ·+ J9 + J10.

First, we estimate J1 + J7 + J10 as follows:

J1 + J7 + J10 =

∫ +∞

0

z1−2s

∫
Rn
+

ϕ2
δ(εy)|∇Y W(Y )|2 dY

= SSp
s,σ(R

n
+)−

∫
Rn
+

[
1− ϕ2

δ(εy)
]
· V(y) dy.
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26 NIKITA USTINOV

From (39) we get

∫
Rn
+

[
1− ϕ2

δ(εy)
]
· V(y) dy � C

∫ +∞

δ
ε

r−3+2s−n dr = C
( ε

δ

)n−2s+2

,

which gives

J1 + J7 + J10 = SSp
s,σ(R

n
+) + C(δ)O(εn−2s+2).

Further, using (38) and (39) we estimate J3 + J8 :

J3 + J8 � 2ε

∫ +∞

0

z1−2s

∫
Rn
+

ϕδ(εy)|∇yϕδ(εy)| · W(Y )|∇Y W(Y )| dY

� Cε

δ

⎛
⎝∫

K δ
2ε

V(y) dy ×
∫
K δ

2ε

∫ +∞

0

z1−2s|W(Y )|2 dY

⎞
⎠

1
2

� Cε

δ

⎛
⎝ ∫ δ

ε

δ
2ε

r−3+2s−n dr ×
∫ δ

ε

δ
2ε

r−1+2s−n dr

⎞
⎠

1
2

= C
( ε

δ

)n−2s+2

.

We estimate J4 in a similar way:

|J4| � 2ε

∫ +∞

0

z1−2s

∫
Rn
+

ϕδ(εy)|∇yϕδ(εy)|W(Y )|∇Y W(Y )||∇y′F (εy′)| dY

� Cε

δ

∫ δ
ε

δ
2ε

r2s−2n

∫ r

0

τn−2f3(ετ)√
r2 − τ2

dτdr

� Cεn−2s+2

δ

∫ δ

δ
2

r̃2s−2n

∫ r̃

0

τ̃n−2f3(τ̃)√
r̃2 − τ̃2

dτ̃dr̃

= C(δ)εn−2s+2.

Also, (38) allows us to estimate J6 + J9 :

J6 + J9 = Cε2
∫ +∞

0

z1−2s

∫
Rn
+

|∇yϕδ(εy)|2W2(Y ) dY � Cε2

δ2

∫ δ
ε

δ
2ε

r−1+2s−n dr

= C
( ε

δ

)n−2s+2

.

Now we transform the main term J2. Integrating by parts, we obtain

J2 = −2

ε

∫ +∞

0

z1−2s

∫
Rn
+

n−1∑
i=1

[
ϕ2

δ(εy)Wyiyi(Y )Wyn(Y )F (εy′)

+
[
ϕ2

δ(εy)
]
yi
Wyi(Y )Wyn(Y )F (εy′)

+ ϕ2
δ(εy)Wyi(Y )Wyiyn(Y )F (εy′)

]
dY.
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Next, we use the BVP (9) to express the sum of second derivatives:

J2 =
2

ε

∫ +∞

0

∫
Rn

+

ϕ2
δ(εy)Wyn

(Y )
[
z1−2sWynyn

(Y ) + [z1−2sWz(Y )]z
]
F (εy′) dY

− 2

ε

∫ +∞

0

∫
Rn

+

z1−2s
n−1∑
i=1

[
ϕ2
δ(εy)

]
yi
Wyi

(Y )Wyn
(Y )F (εy′) dY

− 1

ε

∫ +∞

0

∫
Rn

+

z1−2sϕ2
δ(εy)

[
|∇y′W(Y )|2

]
yn

F (εy′) dY =: H + E1 + E2.

Intergrating by parts once more, we transform H as follows:

H =
1

ε

∫ +∞

0

∫
Rn

+

ϕ2
δ(εy)F (εy′)

[
z1−2s

[
W2

yn
(Y )

]
yn

+2Wyn
(Y )

[
z1−2sWz(Y )

]
z

]
dY

= −1

ε

∫ +∞

0

z1−2s
[∫

Rn−1

ϕ2
δ(εy

′)W2
yn
(y′, 0, z)F (εy′)dy′

+

∫
Rn

+

[ϕ2
δ(εy)]yn

W2
yn
(Y )F (εy′) dy

]
dz

+
2SSp

s,σ(R
n
+)

ε

∫
Rn

+

ϕ2
δ(εy)F (εy′)Φyn

(y)
Φ2∗σ−1(y)

|y|(s−σ)2∗σ
dy

− 1

ε

∫ +∞

0

∫
Rn

+

ϕ2
δ(εy)F (εy′)

[
z1−2sW2

z (Y )
]
yn

dY

=: −E3 + E4 +K + E7.

We integrate by parts K and E7, taking into account Wz(y
′, 0, z) = 0, and obtain

K =
2SSp

s,σ(R
n
+)

ε

∫
Rn

+

[
−

[
ϕ2
δ(εy)

]
yn

2∗σ
+ ϕ2

δ(εy)
(s− σ)yn

|y|2

]
Φ2∗σ (y)

|y|(s−σ)2∗σ
F (εy′) dy

=: E5 + E6,

E7 =
1

ε

∫ +∞

0

z1−2s

∫
Rn

+

[
ϕ2
δ(εy)

]
yn

F (εy′)W2
z (Y ) dY.

Lemma 8. The following relations hold:

(1) |E1 + E2 + E4 + E7| = C(δ)εn−2s+2;
(2)

(67) lim
ε→0

ε
E3

f(ε)
= C

∫ +∞

0

τn+α−2

∫ +∞

0

z1−2s|∇τ,zW(τ, 0, z)|2 dzdτ < +∞;

(3) |E5| = o(εn−2s+2);

(4) E6 =
2SSp

s,σ(R
n
+)

2∗σ
A1 (ε) · (1 + oε(1)).
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Proof. (1) The statement follows from the following inequalities:

|E1 + E2 + E4 + E7| =
∣∣∣∣1ε

∫ +∞

0

z1−2s

∫ +∞

0

∫ +∞

0

[
−2[ϕ2

δ(εy)]τWτ (Y )Wyn
(Y )

+ [ϕ2
δ(εy)]yn

[
W2

τ (Y )−W2
yn
(Y ) +W2

z (Y )
]]

dyn

×
∫
S
n−2
τ

F (εy′) dSn−2
τ (y′) dτdz

∣∣∣∣
� C

δ

∫ δ
ε

δ
2ε

∫ r

0

∫ +∞

0

z1−2s
∣∣∣∇τ,yn,zW(τ,

√
r2 − τ2, z)

∣∣∣2 dz rτn−2

√
r2 − τ2

|f(ετ )| dτdr

� C

δ

∫ δ
ε

δ
2ε

r−2n+2s−1

∫ r

0

τn−2|f(ετ )|√
r2 − τ2

dτdr

= C(δ)εn−2s+2

∫ δ

δ
2

∫ r̃

0

r̃−2n+2s−1τ̃n−2|f(τ̃)|√
r̃2 − τ̃2

dτ̃dr̃.

(2) As for the estimate of I3 in Lemma 7, we use the Lebesgue theorem: since

ε
E3

f(ε)
= C

∫ +∞

0

τn−2 f(ετ )

f(ε)
ϕ2
δ(ετ )

∫ +∞

0

z1−2s|∇τ,zW(τ, 0, z)|2 dzdτ

=: C

∫ +∞

0

Qε(τ ) dτ,

we get the integrand in the right-hand side of (67) as the pointwise limit of Qε(τ ).
To construct the majorant we use (39) and (66):

Qε(τ ) � χ[0, δε ]
(τ )τn−2+αψ(ετ )

ψ(ε)

∫ +∞

0

z1−2s|∇τ,zW(τ, 0, z)|2 dz

� χ[0, δε ]
(τ )

ψ(ετ )

ψ(ε)

Cτn−2+α

1 + |τ |2n−2s+2

� C(δ)
(
χ[0,1](τ ) · τα+n−β−2 + χ[1,+∞)(τ ) · τα−n−4+β+2s

)
,

which is summable for sufficiently small β due to α < n− 2s+ 3.
(3) We have

|E5| =
∣∣∣∣∣2SSp

s,σ(R
n
+)

2∗σ · ε

∫ +∞

0

∫
S
n−2
τ

F (εy′) dSn−2
τ (y′)

×
∫ +∞

0

[
ϕ2
δ(ε

√
τ2 + y2n)

]
yn

|Φ|2∗σ (τ, yn)
|y|(s−σ)2∗σ

dyndτ

∣∣∣∣
� C

δ

∫ δ
ε

δ
2ε

∫ r

0

|Φ|2∗σ (τ,
√
r2 − τ2)

r(s−σ)2∗σ

rτn−2|f(ετ )|√
r2 − τ2

dτdr

� C

δ

∫ δ
ε

δ
2ε

∫ r

0

rτn−2|f(ετ )|
r2

∗
σ(n−s−σ+1)

√
r2 − τ2

dτdr

� Cε2
∗
σ(n−s−σ+1)−n

δ

∫ δ

δ
2

r̃1−2∗σ(n−s−σ+1)

∫ r̃

0

τ̃n−2|f(τ̃)|√
r̃2 − τ̃2

dτdr̃ = o(εn−2s+2).
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(4) Notice that the expression for E6 coincides with the expression for I3 up to

two differences: we replace ϕ
2∗σ
δ (εy) with ϕ2

δ(εy) and multiply by
2SSp

s,σ(R
n
+)

2∗σ
. Thus

the statement follows from the argument from Lemma 7. �

Lemma 8 together with estimates I3 � f(ε)ε−1 � E3 and εn−2s+2 = o(f(ε)ε−1)
gives

J2 = −E3 · (1 + oδ(1) + oε(1)) +
2SSp

s,σ(R
n
+)

2∗σ
A1 (ε) · (1 + oε(1)).

It remains to estimate J5. Using (39) and (43) we get

J5 =

∫ +∞

0

z1−2s

∫
Rn

+

ϕ2
δ(εy)|∇y′F (εy′)|2W2

yn
(Y ) dY

� C

∫ δ
ε

0

τn−2f2(ετ ) dτ

∫ √
δ2

ε2 −τ2

0

V(τ, yn) dyn

�
∫ δ

ε

0

∫ +∞

0

Cτn−2f2(ετ )

(1 + τ2 + y2n)
n−s+1

dyndτ

�
∫ δ

ε

0

Cτn−2f2(ετ )

(1 + τ2)
2n−2s+1

2

dτ =
oδ(1)

ε

∫ δ
ε

0

τn−3|f(ετ )|
(1 + τ2)

2n−2s+1
2

dτ.

The last integral can be estimated in the same way as E3 in Lemma 8. This estimate
gives J5 = oδ(1)E3.

Denoting A2(ε) := E3, we obtain (52).
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