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 Jaakko Hintikka 

CONTINUUM HYPOTHESIS AS A MODEL-THEORETICAL PROBLEM 

1. How to study set theory 

The continuum hypothesis (CH) is crucial in the core area of set theory, viz. in the theory of the 

hierarchies of infinite cardinal and infinite ordinal numbers. It is crucial in that it would, if true, 

relate the two hierarchies to each other. It says that the second infinite cardinal number, which is 

known to be the cardinality of the first uncountable ordinal, equals the cardinality 2 o  of the 

continuum.  (Here  o  is the smallest infinite cardinal.) 

      At the same time CH offers an instructive case study of how to approach set theory. The 

question whether CH is true, known as the continuum problem, has in the last hundred years 

been usually approached as a deductive problem, viz. as the question whether CH is provable in 

a first-order axiomatic foundation of set theory, in the first place in the well-known Zermelo-

Fraenkel set theory (ZF) with suitable new axioms added. Such approaches are seriously 

misguided, and should not be pursued. Current first-order axiomatizations of set theory are 

misuses of the axiomatic method. This method is calculated to help us to study a certain class of 

structures by capturing them as the models of an axiom system. Now problems like the 

continuum problem are questions concerning certain structures of sets. However, the models of 

any first-order theory are structures of particular objects (individuals), not of sets. How the study 

of the latter is supposed to help us with the study of the former  has never been sufficiently 

clarified. It seems that set theorists initially assumed that one can simply consider sets as values 

of first-order variables. They should have seen the handwriting on the wall already at the time set 

theory was axiomatized by Zermelo.  For the so-called Basic Assumption V in Frege’s ill-fated 
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Grundgesetze essentially says just that one can do so. (Frege 1893-1903 and 1964.) And it was 

the failure of this very assumption that Frege himself quickly identified as the source of the 

paradoxes that affected his system. 

Now CH is a statement about certain structures of sets.  Hence it is wishful thinking that we 

could come to grips with it by first-order axiomatizations which pertain in the first place to 

structures of individuals.  For the same reason, it should not have been any surprise when Kurt 

Gödel (1940) and Paul Cohen (1966) showed that CH is neither disprovable nor provable in ZF.  

Their results do not even indirectly show anything about the truth or falsity of CH. Nor is any 

help forthcoming from possible additional axioms.  For already in ZF without any additions one 

can prove theorems that are false on a set-theoretical interpretation of variables of quantification.   

For instance, one can prove that there are true sentences whose Skolem functions do not all exist.  

(If this were not the case, one could define truth for a first-order set theory in the same set theory, 

which would violate Tarski’s impossibility theorem.  See here Tarski 1935, Hintikka 1998, 2004 

and forthcoming.) Such false theorems cannot be eliminated by adding new axioms.  Therefore 

the results of Gödel and Cohen should be considered not as contributions to the study of CH or 

any other set-theoretic problem, but warnings about the inadequacy of attempted first-order 

axiomatizations of set theory. It is thus ridiculous to present their results as “solutions” to the 

continuum problem, alias Hilbert’s first problem. 

In these circumstances, it is necessary to approach set-theoretical problems like the continuum 

problem by model-theoretical methods rather than by means of first-order axiomatizations.  But 

if so, the logic that is used must be stronger than the principles of reasoning codified by ZF. For 

being a first-order theory, ZF cannot deal with its own model theory. For one thing, the basic 
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concept of all model theory, the concept of truth, cannot be defined for a first-order theory in the 

theory itself  according to Tarski’s impossibility theorem (Tarski 1935). 

Fortunately, a simple and straightforward extension of the usual first-order logic yields 

everything that is needed for the purposes of this paper.  We can simply allow a quantifier (Q2y) 

to be independent of another quantifier within whose scope it occurs.  This change yields what is 

known as independence-friendly (IF) first-order logic.  (For it, see e.g. Hintikka 1996 and 2000 

(b).)  It turns out that traditional mathematicians have ever since Weierstrass tacitly used 

independent quantifiers, for instance in using notions like uniform convergence.  

Another simple way is to generalize the rule or existential instantiation.  In its present form, it 

can be applied only to a sentence-initial existential quantifier (∃x), and it allows the variable x to 

be replaced by a new individual constant (say b) while the quantifier is omitted.  In the 

generalized form, (∃x) can occur anywhere in a formula (in a negation normal form).  The only 

difference is that the variable x is now replaced by a function term f(y1,y2,…) where f is a new 

function constant and (Q1y1),(Q2y2),…  are all the quantifiers on which (∃x) depends. 

In either case the resulting first-order logic will be strong enough to enable us to discuss the 

model theory of the relevant set-theoretical structures.  For one thing, in such a first-order logic 

we can use a strong form of the axiom of choice which can be formulated by requiring the 

existence of the Skolem functions of each true sentence. 

What must be given up is the idea of set theory as the study of a set theoretical universe.  

What can be done is to define certain set-theoretical structures and then to study them by means 

of suitable logic.  The definitions need not be expressible by means of the logic in question, but 

can themselves be model theoretical.  Such indefinability is no obstacle to studying the resulting 
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structures by means of logic.  For practically all purposes, a first-order logic extended along the 

lines just indicated is sufficient without any specifically set-theoretical assumptions.  In many 

important cases, the usual first-order logic formulated so as to include the axiom of choice is 

enough.  

Accordingly, CH is approached here as a model-theoretical proposition. It can be discussed by 

reference to a linear continuum, but its most accessible model-theoretical formulation is probably 

the one that states that the cardinality of the second number class (the sequence of all countable 

ordinals) equals the cardinality of the continuum or 02 . This is the formulation (or equivalent 

form) of CH considered mostly in this paper. 

2. Finite constituents 

For the purpose, we need some unfamiliar model theory.  In the usual approaches to model 

theory, the focus is in effect on what can be said of the elements of the model one by one.  Here 

we are concentrating instead on sequences of elements that can be drawn from a given model.  

Accordingly, a fragment of model theory will be developed in the next few sections from this 

point of view. 

     Let us assume that a model M of a formal first-order language is given with the domain 

D(M). Without limiting the generality of the discussion it can be assumed that the vocabulary of 

the language consists of one two-place relation R(x,y) (which we will also express by x y ). 

We can then form the tree structure T(M) of all the ramified sequences of d individuals that can 

be drawn from D(M). Each node of T(M) is labeled by the (name of an) individual in D(M), 

together with a specification (in the form of a conjunction of negated or unnegated atomic 

formulas) of how it is related to the individuals lower in the same branch (and to itself).  
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From this ramified list of all sequences of d individuals in D(M) we form a related  list 

(labelled tree) of all the different  kinds of sequences that can be built from individuals in D(M).  

 The first step is to associate   o  variable to each node in L.  The choice of the variables is 

irrelevant, as long as no confusion arises.  For instance, for uniformity we could use the same 

variable for all nodes at the same height (level, aka depth) d, different at different levels. 

 Each node associated  (with a variable , say) is associated with a label indicating its position 

in the tree.  This label  C will have to specify first of all how x is related to nodes y lower down 

in the same branch and to itself.  Such a specification is accomplished by a nest of negated or 

unnegated  atomic formulas.  The conjunction of all the members of the list is said to be of the 

form 

(2.1)  C
(o)

[x,yk, yk-1, …,y1] 

 We are in this paper using the exclusive interpretation of quantifiers.  This means that (2.1) is 

always assumed in effect to include the conjuncts (x ≠ y1), (x ≠ y2),…, (x ≠ yk) 

 Furthermore, the label associated with x must specify the nodes immediately above it.  If 

these nodes are labeled  ( 1)

1 1[ , , , ,..., ]( )d

i k kC z x y y y i I ,then we can use as the label for x a 

conjunction of the form  

(2.2)   ( 1) ( 1)

1 1 1 1 1 ( 1) 1[ , , ,..., ]& ( ) [ , , , ,..., ]&( ) [ , , , ,..., ]o d d

k k i k k i i k kC x y y y z C z x y y y z C z x y y y
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Here  iϵI, the order of conjuncts and disjuncts is irrelevant, and s
o
 is the choice of the bound 

variables.  Such a label (formula) is said to be a protoconstituent with the parameters y1, y2,…,yk.  

They are  called 

(2.3)     ( )

1 1[ , , ,..., ]d

j k kC x y y y  

 Protoconstituents are not perfect structure descriptions, however, for they may contain 

repetitions of conjuncts and/or disjuncts.  These repetitions can be easily removed one by one.  

The resulting structure, which is still of the form (2.3), is said to be a c-constituent. 

     Even though this elimination is trivial in the case of finite constituents (finite ∝), its 

structure is worth attention.  If a structure C1 of the form (2.3) results from another 

structure C2 by omitting repetitions of conjuncts and/or disjuncts, then C2 can be mapped 

marry-on  onto C1 with the preservation of the order (created by the relation R).  In such a 

case, C1 is said to be denser than C2 .  This is seen to be a partially ordering  relation, and 

the C- constituents are minimal protoconstituents (with respect to the “denser than” 

relation). 

 Such minimal structures can be characterized formally. The conditions (2.1)-(2.2) (with 

no repetitions of conjuncts and/or disjuncts allowed) can be used as a recursive definition 

of a class of formulas of the form (2.3).  (The choice of bound variables is again arbitrary.)  

These formulas are called constituents of depth d.  (For somewhat obscure historical 

reasons, what intuitively is the height of a tree is here called its depth.) Such constituents 

have the structure of a tree with constituents of more parameters serving as labels of its 

nodes, as indicated by (2.2).  
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 If repetitions of conjuncts and disjuncts are not allowed in (2.2), constituents are minimal in 

the partial order of  “denser than” .        

 The basic relationships between the structures (formulas) so defined are easily seen from the 

way they are defined 

Lemma 2.1    Every c-constituent is a protoconstituent 

Lemma 2.2 Every protoconstituent is consistent (satisfiable) 

Proof:  By construction it is satisfied in the model from which it is formed. 

Lemma 2.3 Every c-constituent is satisfiable 

Proof.  From lemmas (2.1)-(2.2) 

Not all constituents are satisfiable, however.  The question as to which of them are satisfiable is 

crucial in the theory of constituents.  

Lemma 2.4 Every c-constituent is a constituent 

Lemma 2.5 A constituent is satisfiable if and only if it is a c-constituent. 

Proof:  “If” part follows from Lemma 2.3. the “only if” part is seen by considering a model M of 

the constituent C in question.  From M we can form C as one of its c-constituents.  

Theorem (Exclusivity Theorem):   If two instantiated constituents are satisfied in the same 

model, they are identical.  

Proof:  They can both be formed from the same model M by the same procedure.  

The structure of a constituent is illustrated by Fig. 1.  It is more complicated than is needed here 

because it will be used later to formulate more complex arguments.  
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[Fig. 1] 
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Theorem:  Two different constituents of the same depth occurring as conjuncts of the same 

conjunction (in a consistent constituent) say 

(2.4)     ( )

1 1 1[ , , ,..., ]d

k kC x y y y   

(2.5)      ( )

1 1[ , , ,..., ]d

z k kC z y y y  

Cannot be satisfied by the same individual.  

Proof:  If they could, we consistently could add to the conjunction of (2.4) and (2.5) the identity 

(x=z).  But then we could simply identify x and z and obtain a denser protoconsituent.  This 

would contradict the definition of a c-constituent.  

3.  Properties of constituents 

The role of constituents in model theory is illustrated by the following theorems and lemmas:  

Theorem 3.0:  An infinite sequence of deeper and deeper compatible constituents without 

parameters defines a complete theory.  

Theorem 3.1:  An infinite sequence of deeper and deeper compatible constituents with one free 

variable defines a type (in the model-theoretical sense). 

Theorem 3.2:  Any formula with ≤d layers of quantifiers and with the free variables y1, y2, …, yk 

is equivalent to a disjunction of disjuncts of the form  

(3.1) 
( )

1 1,[ , ,..., ]d

i k kC y y y   
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 When the depth is increased to d+1, each disjunct (   ) is split into a disjunction of similar 

constituents but with depth d+1.  Each constituent in (   ) is split into a disjunction of 

constituents, say 

(3.2) ( 1)

1 1[ , , ,..., ]d

k kC x y y y  

is split into a disjunction of constituents of the form  

(3.3)  ( )

1 1[ , , ,..., ]d

j k kC x y y y                                                                        

and so on.  

 Constituents have many interesting relations to each other and many symmetry properties.   

Lemma 3.1  If we omit from a constituent (2.3) one layer of quantifiers, together with all atomic 

formulas (and identities) containing variables xj bound to them plus all connectives that thereby 

become idle, we obtain a unique constituent of the form 

(3.4) ( 1)

1 1 1 1[ , , ,..., , ,..., ]d

k k j jC x y y y y y
 

This constituent is implied by (2.3).  

Proof:  follows from the construction of a constituent 

Clearly (3.4) is the only constituent of depth d-1 that is compatible with (2.3). 

  In the direction of greater depth constituents split into disjunctions of deeper constituents.   

We can also omit from a constituent  ( )

1 1[ , , ,..., ]d

i k kC x y y y  all atomic formulas (and identities) 

involving  y, together with all connectives that are thereby made idle and obtain a constituent of 

the same depth d but without the parameter yj.  This constituent will be referred to as   

(3.5)       ( )

1 1 1 1[ , , ,..., ,( ), ,..., ]d

i k k j j jC x y y y y y y   
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This notation can be generalized in an obvious way.  The result (3.3) is implied by the original.  

It follows that two constituents ( )d

mC  and ( )d e

nC  are compatible (satisfiable in the same model) 

only if the latter is an extension of the former. For if ( )d e

nC  is an extension of ( )d

mC , it obviously 

implies it. 

One crucial question here is:  When is a (formally defined) constituent consistent, that is, 

obtainable as a c-constituent from some model or other?  The beginning of an answer is obtained 

by considering how two parallel constituents occurring as subconstituents of a larger one must be 

related to each other.  A moment’s reflection shows that the following two conditions must be 

satisfiable (see Fig. 1):  

      Compatibility condition: For any  Ci[x] and Cm[x] there must be j and n such that 

(3.6)  Cij[y,x] = Cmn[x,y] 

Here all four constituents may depend on the same further parameter variables so that (3.2) can 

be generalized into  

  Cij[y,x,zk, zk-1, … , z1]  = 

  Cmn[x,y,zk, zk-1,…, z1] 

 

The structure of a constituent can be illustrated by Fig. 1, in more than one way. The branches of 

the tree are thought of as being all continued to some finite length (depth). The entire figure can 

be thought of as a displaying the structure of the constituent C0 without variables 

(3.6)    
1 2 1 2( ) [ ]&( ) [ ]&...&( ) [ ]&...&( )( [ ] [ ] ... [ ])m mx C x x C x x C x x C x C x C x . 
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The same figure can be thought of as illustrating the structure of the part of constituent that is 

above a given node 
0 1 2[ , ,...]C w w . Then we must think of all the constituents in (3.1) and in Fig. 

1 as having suppressed additional arguments 
1 2, ,...w w   

Constituents have an important property which will be called exclusivity. 

Theorem 3.3 (Exclusivity Theorem): If two constituents (i.e. minimal proto-constituents of the 

same depth) are satisfied in the same model, they are identical. 

Proof: Let the proto-constituents C1 and C2 be satisfied in the same model M. When they are 

formed from M, the only reason why they might differ are repetitions of conjuncts or disjuncts. 

But if there are such repetitions, C1 and C2 cannot be both minimal. 

Completability condition 

For any Cij[x] as in Fig.1, there must be m  and n such that (3.2) holds. 

Here further variables may likewise be present.  These two requirements are basic in the theory 

of constituents and distributive normal forms.  (See Hintikka 1953.)  The requirements do not 

alone guarantee consistency, however.  For consistency, a stronger condition must be satisfied.  

     Consistency theorem. A formally defined constituent is consistent iff it has an infinite 

sequence of deeper and deeper extensions all satisfying the compatibility and completability 

conditions. 

   Constituents can serve many of the same purposes as the notions of the more familiar 

model theory.  For instance, a sequence of increasingly deeper compatible consistent constituents 

(extensions of the previous ones) with no argument variables  ( )

( )( 1,2...)d

i dC d .   A sequence of 
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increasingly deep compatible constituents with one (and the same) free variable defines a type in 

the usual model-theoretic sense. 

4. Infinite constituents 

The notion of constituent and many of the properties can be extended to countably infinite 

constants.  (The qualification “countable” will be omitted in the rest of this paper.)  Such 

constituents are obtained from countably infinite sequences of individuals in the same way as 

finite constituents are obtained from sequences of individuals of a fixed finite length d.  The 

main difference is that the nodes of the tree structures are now labeled by sequences of deeper 

compatible finite constituents rather than single finite constituents.  If infinite conjunctions and 

disjunctions are allowed constituents will be infinite formulas analogous to finite constituents.  

No infinitary logic is nevertheless presupposed here.   

 Some of the properties of constituent are made simpler by the admission of infinite 

sequences.  For instance, omitting a layer of nodes does not yield a compatible constituent of a 

lower depth, but the same (infinite) constituent.  Likewise 

 Lemma  :  If C[y,x] occurs in C1[x], then the constituent C[x,y] occurs in C2[(x),y].  

The structure of countably infinite constituents can be illustrated by the same  Fig. 1 as in the 

finite case. The main difference, besides the infinity of the index sets, is that the C’s are now, not 

finite constituents, but countable sequences of deeper and deeper (finite) constituents. 

Furthermore, the branches of the tree now grow to (countable) infinity. 

The most striking thing about infinite constituents is that the same structure, possibly with 

permutations, repeats itself everywhere. In the finite case, these repetitions were limited by the 
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fact that a constituent with a smaller height d could reproduce only partially the structure of a 

constituent with a greater height e>d. This repetitive structure is manifested in different ways. 

Among the relevant properties of constituents there are the generalizations of the Compatibility 

and Completability Requirements to the infinite case. (Cf. Fig.1.) 

Unlike what was found about finite constituents, these two requirements suffice, when applied 

to all the subconstituents of an infinite constituent, to guarantee its consistency 

Again, consistent infinite constituents are precisely the ones that can be constructed as 

minimal proto-constituents from some model M.  Intuitively, Compatibility and Completability 

Requirements together guarantee that the claims of the next individuals in forming the different 

ramified sequences of individuals all are made from the same store of individuals. 

Thus, a consistent constituent is precisely one that can be formed as a minimal proto-

constituent from a model M.  Conversely, the models of C are the structures from which it can be 

so formed.   

There are other basic relationships connecting different constituents with each other. From 

any constituent 0[ , ]C y x  with the arguments y, x we can form a constituent with x as its only 

argument by omitting all uses of y in  0[ , ]C y x . Formally speaking, we omit all atomic formulas 

containing  y, all occurrences of & and  that thereby become idle, and all quantifiers with y as 

its variable. The result is referred to as 
0[( ), ]C y x . This notation can be extended to all sequences 

of free variables as arguments of constituents in the obvious way. Using this notation, other 

properties of constituents can be formulated. 

Lemma 4.1. For any [ , ]ijC y x , there is precisely one m such that [ ,( )] [ ]ij mC y x C y . 
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This can be generalized to any sequence of arguments. 

Lemma 4.2. For any [ ]iC x  and [ ]mC x , there is at least one j such that [ ,( )] [ ]ij mC y x C y . 

One useful property of infinite constituents is the following criterion of satisfaction: 

A sequence 1 2, ,...a a  of individuals is compatible with the complete theory defined by an 

infinite constituent 
0C  iff there is in 

0C  a branch where each (4.1) is satisfied by 

1 2 1, ,..., ,k ka a a a . 

Thus every sequence of individuals in a model of 
0C  satisfies a branch in its infinite 

constituent and conversely every sequence of individuals satisfying such a branch is a part of a 

model of 
0C . 

Another pair of obvious facts about finite constituents can be extended to infinite constituents: 

Lemma 4.3. A set of individuals { }iI e , with i I , constitutes a model of an infinite 

constituent 
0C  iff the following conditions are satisfied: 

Assume that Fig. 1 represents a constituent that is one of the approximations in 
0C , with each 

constituent in Fig. 1 containing as parameters the same sequence a,b,c,… of members of I. Then 

(i) For each individual d I  there is m such that d satisfies [ ]mC d  (Universality requirement.) 

(ii) For each [ ]m

mC x  there is an individual d I  that satisfies [ ]mC d  (Existence requirement.) 

It is important to appreciate what infinite constituents can and cannot express.  Assume (as we 

have done) that our only nonlogical constant is an order relation.  Then a consistent infinite 
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constituent has an infinite descending sequence of individuals iff its models have the same 

property.  Hence we can express well-ordering by means of an infinite constituent.  

However, an infinite constituent does not require that each of its branches is instantiated in its 

models.  It only requires that each initial segment of each branch is instantiated, which is 

tantamount to requiring that each node is reached by at least one instantiated branch.  Hence an 

indefinitely branching branch need not be instantiated in a model of a consistent infinite 

constituent.   

These observations throw some light on the nature of the continuum and the ways its structure 

can be specified logically.  Suppose we have a linear continuum without end points defined by 

means of an ordering relation.  The infinite constituent representing it is an indefinitely 

branching binary tree like that in Fig. 2. (Only a part is indicated.)  But a model of such a 

constituent is a continuum only if all its branches are instantiated, in other words that the model 

in question is maximal.  But this requirement cannot be enforced by means of  a (countably) 

infinite constituent. In order for the model to form a continuum, all its branches must be 

instantiated.   
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Fig. 2 

       

 

      

 

 

 

 

 

 

                     

                     

                     

                     

                     

                     

                     

                     

  

       

 Similarly, consider the structure of the second number class , and the infinite constituent C  

true in it.  This constituent imposes a linear ordering on each of its models M and also impose a 

well-ordering on M.  Hence the models M of C  are well-orderings.  However, C  is uniquely 

determined by the requirement that it is the totality of such well-ordering. 

5. Branches and Trees 

Hence the branching structure of constituents can be expected to repay further examination. By a 

branch of a given infinite constituent C0 we mean a sequence of compatible infinite constituents 

in it: 
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(5.1)  C1[x1], C2[x2, x1], C3[x3, x2, x1], … 

Such branches have many interesting properties. Instantiated branches are in some sense building 

blocks of models. Not all branches of C0 are instantiated in every model of C0. However, each 

branch is compatible with C0. 

Lemma 5.1. Each initial segment of a branch of C0 is instantiated in every model of C0. 

Lemma 5.2. Given a model M1 of C0 with the domain {a1, a2, …} and a branch (5.1) of C0, there 

is a model M2 of C0 with the domain {a1, a2, … b1, b2, …} (it is not assumed that 
i ja b  always) 

in which the branch is instantiated, i.e. the following are all there 

(5.2)  C1[b1], C2[b2, b1], … 

The structure formed by b1, b2,… is a substructure of M2.  In brief, each branch of Co can be 

satisfied by adding new individuals to any one of its models.    

 Intuitively, a branch is just that: a sequence of compatible constituents with variables 

(parameters) constituting a branch in the tree formed by the overall constituent Co . Formally 

speaking, this means that  

(5.3)  1 2 1( ) [ , , ,..., ]i i iz C z y x x  

occurs as a conjunct in  

(5,4) 1 1[ , ,..., ]i i iC x x x  
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We can form another sequence by as it were tracing an individual through in relation to a 

sequence of arbitrarily selected nodes of the constituent tree,  for example from Ci[x] in fig. 1 to 

Cmi[y,x] to Cmni[z,y,x] and so on. 

 If the resulting sequence is  

(5.5) 
1 1 2 1 2 1 2[ ], [ , ],..., [ , ,..., ]...j jC x C y x C x x x  

then 

(5.6) 
1 1 2( ) [ , ,..., , ]j jz C x x x z  

must occur as a conjunct in  

(5.7) 
1 2[ , ,..., ]j jC x x x  

But it is immediately seen that traces and branches are the same sequences, except for a different 

order of the parameter variables.  Considering branches as traces nevertheless helps to see some 

of their characteristic properties.  For instance, we can immediately see that the following holds 

Lemma 5.1.  A given individual a can satisfy only one trace (5.5) 

By satisfying (5.5), we mean there is a value of x1 in it  

6.  Perfect Branches  

One fundamental question here is: Can we impose maximality conditions on branches of 

constituents and not only on entire constituents?  It can be shown that there are branches (5.1) 

such that the class of individuals 1 2, ,...a a  satisfying it satisfies the entire constituent. Such 

branches will be called perfect.  
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     What is required of a branch to be perfect? An answer is provided by Lemma 4.3.   It requires 

that at each depth two conditions are satisfied, the universality condition and the existence 

condition. 

Fig. 3 
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It is obvious that the successive formulas of any branch of any infinite constituent C are 

compatible with C. This means that all the universality requirements codified by C are satisfied. 

Hence it suffices, in order to show the existence of perfect branches, to see what happens when 

we try to construct one by one a branch whose successive members satisfy as many existence 

requirements as possible. For the purpose, consider Fig. 3. It can be taken to represent a 

constituent without free variables. However, only some subconstituents are indicated. An 

argument will be presented in terms of this figure. 

 Assume that 
1[ ]iC a  is the first member of some (instantiated) branch C. This means that 

[ ]iC x  is instantiated in C. However, any other constituent [ ]C x  must also be instantiated in C. 

For a given [ ]jC x , this can be guaranteed by choosing as the second member of C a constituent 

[ , ]imC y x  such that [ , ]imC x y  is identical with [ , ]jmC x y . Such a constituent exists because the 

completability requirement is satisfied.  Since the second member of C is [ , ]imC y x , then some 

2a  instantiates 
2 1[ , ]imC a a  and hence we have 2 1 2[ , ( )] [ ]im jC a a C a . Hence [ ]jC x  is also 

satisfied in the branch in question. 

Likewise, by choosing the third member of the branch appropriately we can make sure that 

any third constituent [ ]kC x  is instantiated in the branch C. 

This can be generalized to any countable number of constituents [ ]C x  with one free variable. 

They can be satisfied by a countable number of choices of members of a branch. We cannot 

always satisfy all of them, for they may have an uncountable cardinality. But by a countable 

number of choices we can satisfy all the finite approximations to the infinite constituents [ ]C x . 

This leaves a countable number of choices to be used for other purposes 
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Fig. 4 

 

 

 

 

 

 

 

 

In the same way we can by a countable number of choices make sure that the individuals 

1 2, ,...b b  substituted for 1 2, ,...x x  in (5.1) satisfy every approximation to each member of the 

sequence (5.1). This suffices to show that 1 2, ,...a a  satisfy all the formulas in the branch (5.1). 

This proves the following:  

Perfection Theorem: In every infinite constituent there is at least one perfect branch. 

This can immediately be extended: 

Corollary 6:  Every initial segment of a branch is compatible with a perfect branch.  
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initial member) only one trace, the same holds for branches.  

a2   o  

a3   o  

. 

. 

. 

an-1   o  

 

  o  

  o     o    o  

 

 

an a1 

  o  

a1 

b1 



Continuum hypothesis as a model-theoretical problem. JHintikka.0509.0610.090110       23 
 

The existence of perfect branches is thus virtually obvious on the basis of cardinality 

considerations.  Yet it is a highly nontrivial conclusion.  Their existence in the preceding line of 

thought is guaranteed by a sequence of complex applications of the axiom of choice.  There does 

not seem to be any reason to expect that it could for instance be justified by the form of the 

axiom of choice that is built into the usual axiomatizations of set theory.  A function that tells 

how far in a perfect branch we have to go in order to find the satisfying a given constituent 

number m, grows extremely rapidly. 

Yet the existence of perfect branches can be proved by a seemingly much simpler argument.  

An infinite constituent C is equivalent to (specifies the same models as) a countable sequence of 

finite constituents.  If it is satisfiable, by Skolem-Löwenheim theorem it is satisfiable in a 

countable model, say in a model with the domain [a1,a2,…].  Then a1, a2, …  satisfy a branch of 

C, which shows the existence of perfect branches.  

An interesting result is obtained by noting that (5.1) can be transformed by a permutation of 

individuals into an equivalent sequence of the form 

     (6.1) 1 1[ ]C x , *

2 1 2[ , ]C x x , *

3 1 3 2[ , , ]C x x x , … 

Hence a perfect branch of a constituent specifies how each of the individuals in the branch 

finds a slot in all the different constituents occurring in the branch. 

It is seen immediately that the following results hold: 

Lemma 6.1. An individual can satisfy at most one perfect branch as its first element. 

Lemma 6.2. The cardinality of a model M0 of an infinite constituent C0 is the same or larger 

than the cardinality of perfect branches of C0 instantiated in M0. 
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7. Second number class 

By means of these model-theoretical results, CH can be proved fairly easily. CH is equivalent 

with the statement that says that the cardinality of the second number class  is 02 . The second 

number class is the structure formed by the set of all countable ordinals. For its properties, see 

any treatise of general set theory, for instance Kuratowski and Mostowski (1970).  The structure 

of  and by implication the structure of C( ) are  easily described. In  there is a countable 

initial segment 
0

 consisting of the definable elements of .  The rest is a well-ordered sequence 

1 2 ... ...  (   is an arbitrary countable ordinal) of segments of a countable number of   

elements. Within each , each of its members is definable by reference to any one of them but 

not definable by reference to any one element or finite set of elements in other segments 

The second number class has itself the structure of an ordinal, viz. the smallest uncountable 

ordinal. Its being uncountable means that the structure of each countable ordinal is a substructure 

of . We will call this the Comprehensiveness Requirement. In order to prove CH, it thus 

suffices to show that every ordinal satisfying the Comprehensiveness Requirement has the 

cardinality of at least 02 . 

Consider now the infinite constituent C( ) true in . It can be formed from  as described in 

sec. 4 above. One of its models is , but it has other models M as well. What are these models 

like? There are no infinite descending chains in , hence none in C( ) or in M, either. Moreover, 

M must be a linear ordering in which each element has an immediate successor. Hence the 

models M are simply infinite ordinals. All smaller ordinals are initial segments G of M, and each 

initial segment of M satisfying C( ) is an ordinal smaller than G. The infinite constituent C( ) 



Continuum hypothesis as a model-theoretical problem. JHintikka.0509.0610.090110       25 
 

has a number of perfect branches B. If B is not satisfied in a given model M of C( ), we can 

according to Lemma 5.2 extend M so as to make it satisfied by adding to its domain D(M) a 

countable number of individuals A={a1, a2, …} in such a way that a1, a2, … satisfy B and 

together with the old elements also C( ). Both C(B) and M have the structure of ordinals smaller 

than M*. If D(M) is countable, then so is D(M)  {a1, a2, …}.  Since  is larger than any 

countable ordinal, a model M of C( ) is  only if all perfect branches of C( ) are satisfied in it. 

As is illustrated by Fig. 4, different perfect branches go together with different paths through the 

tree that is C( ) in the sense indicated by the figure. If there is a subset of such paths each of 

which keeps splitting up indefinitely, there will be 02  perfect branches in C( ). Each of the 

paths is satisfied by a different individual as its first member, according to Lemma 5.1.   If all of 

them are satisfied in a model M, then the cardinality of D(M) is at least the same as the number 

of different perfect branches.  This number is determined by the way perfect branches split.  If 

they keep on splitting indefinitely, this number will be 02 .  Hence, in order to show that the 

cardinality of  Γ is 02 it suffices to show that the paths characterizing perfect branches with 

undefinable first members are always splitting, as in Fig. 4. 

In order to see that such indefinite splitting happens with each perfect branch of C( ), 

consider once again Fig. 1. 

Let us assume that Fig. 1 depicts the beginning of C( ). Consider two constituents [ ]iC x  and 

[ ]mC x  in C( ) neither of which defines x in . If [ ]iC a  and [ ]mC b , is the order a ≥ b or b ≥ a 

fixed?  The answer is: never.  
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In order to prove this answer, note first that among the ordinals x in , there are arbitrarily 

large a, b, c, in any order and arbitrarily far apart such that  [ ]iC a , [ ]mC b , Cm[c], a ≥b, c ≥ a. 

    This can be proved by the following argument: 

Let a satisfy [ ]iC x . Then there is for each e an ordinal o(e) such that there are arbitrarily large 

ordinals be satisfying the approximation to Cm[b] at depth c, that is, satisfying.    

(7.1)                
( )[ ]c

m eC b   

  

For if that is not the case, there is the least ordinal r beyond which there are no ordinals 

satisfying (7.1).  This would define r, which is impossible because it would hope to be a member 

of the initial sequence of definable individuals and yet greater than some undefinable ordinal.  

But this is impossible because it was assumed that a, b, c are larger than all definable ordinals 

According to the properties of the second number class, 
0 lim ( )e eb b  exists and is a member 

of . Hence beyond b0 there are arbitrarily large ordinals b such that [ ]mC b , b>a. 

By reversing the argument we can see that there are arbitrarily large a, b, c, such that b>a, 

a>c, [ ]iC a , [ ]mC b , [ ]mC c . 

In terms of C(Γ) this indeterminacy of the order of a and b means that in C( ) there are two 

different perfect traces emanating from an x satisfying [ ]iC x  and splitting from each other at the 

very first step. In the second member of one of them we have in the one case 
, [ , ]m nC x y  = 

Cij[y,x] for suitable j, n and with x>y and m,n in the other case with  y<x  and hence Cik[y,x] = 
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Cmp[x,y] for suitably different k≠j and p≠n.  Intuitively, in one perfect trace  Ci[x] is extended 

to Cmn[x,y] and on the other one to C mp[x,y].    

Essentially the same argument applies at any stage of a perfect trace.  The argument can again 

be formulated by reference to Fig.1 except that we have to assume that each of the constituents 

depicted there contains a finite number of “hidden variables” h1,h2, …, hd with specified relations 

to each other.  Let us assume that a perfect trace has been continued all the way to  Ci[x] = 

Ci[x,h1, h2, …,hd]. Here Ci[x] determines between which of the h1,h2,…,hd  x is located.  

However, otherwise the order of an x with Ci[x] and one with Cm[x] is not determined. 

From the properties of the second number class it follows that the ordinals satisfying h1,h2,…, 

hd can be arbitrarily large and arbitrarily far apart from each other.  The argument is similar to the 

argument in the case of  the h1,h2, …, hd.  Let these two constituents be Ci[x]=Ci[x,h1,h2,…,hd] 

and Cm[x] = Cm[x,h1,h2,…,hd].  By the same argument as in the case d=0 it can be shown that the 

perfect trace can be continued from Ci[x] to a constituent of the form Cm,n[x,y] in two different 

ways.  This shows that perfect traces [branches] always split, therefore the number of perfect 

traces [branches] is 2 o .  According  to Lemma 6.1 this suffices to show that the cardinality of Γ 

is 2 o .    This completes the proof for CH.  A different (but related) argument for the same 

conclusion is given in Hintikka (2009).  The guiding ideas of both arguments go back to 

Hintikka (1993 and 2004).  

8.  CH and maximality 

According to his biographers, Gödel conjectured that the key to a proof or disproof of CH would 

be some kind of maximality assumption not unlike Hilbert’s Axiom of Completeness.  (For this 

axiom, see Hilbert 1899, Baldus 1928 and Freudenthal 1957.)  If this conjecture is correct, the 
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difficulty of proving CH could perhaps be understandable.  The way a usual logical language 

specifies a class of models (structures) is to impose different conditions on them one by one.  In 

contrast, the maximality of a model turns on comparisons between different models.  

     In view of Gödel’s conjecture, it is of some interest to see what role the notion of maximality 

plays in the argument of this paper.  Various maximality properties are indeed the 

methodological key to the argument presented here.  Constituents codify maximally fine 

distinctions between different models and between different kinds of individuals in them, given 

certain restrictions on their structure.  The notion of perfect branch involves an interesting kind 

of maximality.  

      The crucial instances of maximality in the present argument nevertheless concerned the 

maximality in the sense of maximal richness of the intended models of a complete theory.  A 

model of dense linear order is continuous if and only if it is maximal.  Likewise, the second 

number class can be said to have the cardinality of the continuum because it contains all 

countable well-orderings as its substructures. Gödel’s conjecture thus seems to have been an 

inspired one. 

     But notice how the relevant kind of maximality entered the argument of this paper.  It was 

neither proved nor assumed as any kind of general set-theoretical principle.  It was an attribute of 

the structures that were being studied.  Maybe there is a methodological moral to our story.  

Maybe the business of set theory is not to study an elusive “set-theoretical universe”, whatever it 

is or may be, but simply to study certain particular and particularly interesting mathematical 

structures that can be called set-theoretical.  To adapt a phrase of Wittgenstein’s to the present 

context, maybe there is no set theory, but there certainly are set-theoretical problems. 
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