
CFT and SLE

and 2D statistical physics

Stanislav Smirnov



Recently much of the progress in 
understanding  2-dimensional critical 
phenomena resulted from

Conformal Field Theory (last 25 years)

Schramm-Loewner Evolution (last 10 years)

There was very fruitful interaction     
between mathematics and physics

We will try to describe parts of these three 
subjects



An example: 2D Ising model

Squares of two colors, 
representing spins s=±1

Nearby spins tend to be the 
same:

Prob  x#{+-neighbors}

 exp(-β∑ neighbors s(u)s(v))
[Peierls 1936]:
there is a phase transition 
[Kramers-Wannier 1941]: 
at )21/(1 +=critx



Ising model: the phase transition

x>xcrit x=xcrit x<xcrit

Prob  x#{+-neighbors}



Ising model is “exactly solvable”

Onsager, 1944: a famous calculation
of the partition function (unrigorous).

Many results followed, by different methods:
Kaufman, Onsager, Yang, Kac, Ward, Potts, 
Montroll, Hurst, Green, Kasteleyn, 
Vdovichenko, Fisher, Baxter, …
• Only some results rigorous
• Limited applicability to other models



Renormalization Group

Petermann-Stueckelberg 1951, …
Kadanoff, Fisher, Wilson, 1963-1966, …
Block-spin 
renormalization 
≈ rescaling
Conclusion: 
At criticality 
the scaling limit 
is  described by a massless field theory. 
The critical point is universal and hence
translation, scale and rotation invariant



Renormalization Group
A depiction of the space of 
Hamiltonians H showing initial 
or physical manifolds and the 
flows induced by repeated 
application of a discrete RG 
transformation Rb with a 
spatial rescaling factor b (or 
induced by a corresponding 
continuous or differential RG). 
Critical trajectories are shown 
bold: they all terminate, in the 
region of H shown here, at a 
fixed point H*. The full space 
contains, in general, other 
nontrivial (and trivial) critical 
fixed points,…

From [Michael Fisher,1983]



2D Conformal Field Theory
Conformal transformations
= those preserving angles
= analytic maps
Locally translation +
+ rotation + rescaling
So it is logical to conclude 
conformal invariance, but 
• We must believe the RG
• Still there are 

counterexamples
• Still boundary conditions 

have to be addressed



well-known example: 2D Brownian Motion 
is the scaling limit of the Random Walk
Paul Lévy,1948: BM is conformally invariant
The trajectory is preserved (up to speed change)     
by conformal maps.    Not so in 3D!!!

Conformal invariance



2D Conformal Field Theory

[Patashinskii-Pokrovskii; Kadanoff 1966]
scale, rotation and translation invariance
• allows to calculate two-point correlations
[Polyakov,1970] postulated inversion       
(and hence Möbius) invariance
• allows to calculate three-point correlations
[Belavin, Polyakov, Zamolodchikov, 1984]
postulated full conformal invariance
• allows to do much more
[Cardy, 1984] worked out boundary fields, 
applications to lattice models



2D Conformal Field Theory

Many more papers followed […]
• Beautiful algebraic theory (Virasoro etc)
• Correlations satisfy ODEs, important role 

played by holomorphic correlations
• Spectacular predictions e.g.

HDim (percolation cluster)= 91/48
• Geometric and analytical parts missing
Related methods
• [den Nijs, Nienhuis 1982] Coulomb  gas
• [Knizhnik Polyakov Zamolodchikov; 

Duplantier]  Quantum Gravity & RWs



More recently, since 1999

Two analytic and geometric approaches
1) Schramm-Loewner Evolution: a 

geometric description of the scaling 
limits at criticality

2) Discrete analyticity: a way to rigorously 
establish existence and conformal 
invariance of the scaling limit

• New physical approaches and results
• Rigorous proofs
• Cross-fertilization with CFT



Robert Langlands spent 
much time looking for an 
analytic approach to CFT.
With Pouilot & Saint-Aubin, 
BAMS’1994: study of crossing 
probabilities for percolation. 
They checked numerically
• existence of 

the scaling limit, 
• universality,
• conformal invariance 

(suggested by Aizenman)
Very widely read!

SLE prehistory



Langlands, Pouilot , 
Saint-Aubin paper was 
very widely read and 
led to much research. 
John Cardy in 1992
used CFT to deduce a 
formula for the limit 
of the crossing probability in terms of the 
conformal modulus m of the rectangle:

CFT connection

Lennart Carleson: the formula simplifies for 
equilateral triangles



Schramm-Loewner Evolution

A way to construct     
random conformally 
invariant fractal curves, 
introduced in 1999 by 
Oded Schramm (1961-2008),
who decided to look at a 
more general object than 
crossing probabilities.
O. Schramm. Scaling limits of
loop-erased random walks 
and uniform spanning trees. Israel J. Math., 
118 (2000), 221-288; arxiv math/9904022 

 
  



a slide from Oded’s talk 1999



Loewner Evolution



Loewner Evolution



Loewner Evolution



Schramm-Loewner Evolution



Relation to lattice models 



Relation to lattice models

Even better: it is enough to find one 
conformally invariant observable



Relation to lattice models

Percolation� SLE(6)            UST� SLE(8) [Lawler-
[Smirnov, 2001] Schramm-Werner, 2001]



[Chelkak, Smirnov 2008-10] Interfaces in critical 
spin-Ising and FK-Ising models on rhombic 
lattices converge to SLE(3) and SLE(16/3)

Relation to lattice models



Lawler, Schramm, Werner; Smirnov
SLE(8/3) coincides with
• the boundary of the 2D Brownian motion
• the percolation cluster boundary 
• (conjecturally) the self-avoiding walk ?

Relation to lattice models



New approach to 2D integrable models 
• Find an observable F (edge density, spin 

correlation, exit probability,. . . ) which is 
discrete analytic and solves some BVP.

• Then in the scaling limit F converges to a 
holomorphic solution f of the same BVP.

We conclude that
• F has a conformally invariant scaling limit.
• Interfaces converge to Schramm’s SLEs, 

allowing to calculate exponents.
• F is approximately equal to f, we infer some 

information even without SLE.

Discrete analytic functions



Several models were approached in this way:
• Random Walk –

[Courant, Friedrich & Lewy, 1928; ….]
• Dimer model, UST – [Kenyon, 1997-...]
• Critical percolation – [Smirnov, 2001]
• Uniform Spanning Tree –
[Lawler, Schramm & Werner, 2003]

• Random cluster model with q = 2 and 
Ising model at criticality – [Smirnov; 
Chelkak & Smirnov 2006-2010]

Most observables are CFT correlations!

Discrete analytic functions



Energy field in the Ising model
Combination of two disorder 
operators is a discrete analytic 
Green’s function solving 
Riemann-Hilbert BVP, then:
Theorem [Hongler - Smirnov] 
At βc the correlation of 
neighboring spins satisfies
(± depends on BC: + or free, 
ε is the lattice mesh, ρ is the 
hyperbolic metric element):



Interactions

• Same objects studied from different angles
• Exchange of motivation and ideas
• SLE should have been invented in 1960s 

(Loewner evolution and Itô calculus)!        
But it would have developed much slower

• A paper with no theorems can play a role 
[Langlands , Pouilot, Saint-Aubin]

2D statistical 
physics

SLECFT



What is next?

• Better understand relations
• Build rigorous renormalization theory

[Schramm & Smirnov]: black noise
• Construct CFTs from branching SLE

[Sheffield; Kemppainen & Smirnov]
• Construct CFT correlations from 

discrete analyticity [Kenyon; Hongler]
• Relate random planar graphs to 

Liouville Quantum Gravity via SLE 
[Duplantier & Shefield]



THANK YOU!
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