HOMOLOGY PROPERTIES OF Y-SYSTEMS

A. N. Livshits UDC 513.83

Suppose that a Y-system Tt(Tk) acts on a manifold MD. We present a criterion of zero
homology for Holder functions with respect to this dynamical system, as well as some con-
sequences of this criterion and a generalization for functions taking their values in a Lie
group.

Let M™ be a smooth closed Riemannian manifold of class C? with a metric p, let Tt (Tk) be a smooth
flow (cascade) [1], and f a real function on M™ that satisfies a Holder condition; fis said to be homologous
to zero in the class of Holder functions if there exists a Hiélder function g, such that

1) =L g(T'e)my  (f(2) = g(T2) — g (@),

The main result of this note is the following criterion of zero homology of a function.

THEOREM 1. 1f T! is a Y-flow (TX a Y-cascade) [1] with everywhere-dense trajectories, then for f
to be homologous to zero in the class of Holder functions, it is necessary and sufficient that the following
condition hold for any periodic trajectory {Ttx}%zg (Thx}D_0):

Crama=o (3 1(rme =0), 1)

and if the Holder modulus of continuity of the function fis wlp) = Cp9, then the modulus of continuity of the
function g will not exceed Cané, where C§ is a constant that depends on 6 and on the dynamical system.

Proof. The necessity is evident. Let us prove the sufficiency. For simplicity we shall consider the
case of a cascade. The manifold M™ is assumed to be endowed with a Lyapunov metric which is matched
with the Y-condition for our cascade [2]. Let us prove the principal lemma.

I.LEMMA. There exists a positive K such that for any € there exists an Ng, and if n > Ng, then it fol-
lows from p(T"x, x) < ¢ that there exists an xq: Tx = xy and a p(T!x, T¢x) < Ky for 1 = < n.

Proof. Let ek and &% be invariant contracting and expanding foliations, respectively. We shall use
the following assertion, a consequence of the continuous dependence of the fibers (foliations) on the initial
points: there exists a positive a such that if Iy and II; are smooth areas that lie in the fibers &K and such
that any point wy € Il; can be connected by a path of length < a that lies in a fiber &/ with a point w; € Iy,
then the mapping U:Ily— Iy, u{wg) = wy will be continuous, and in the case of a small continuous de-
formation of these areas this mapping will vary continuously ([1], p. 26). Hence, it follows from the
compactness of M™ that all the U constructed in this way have moduli of continuity that do not exceed
a common & (g) (6 (¢) — 0), where an induced metric is taken in the fibers. Moreover, there exist positive

=0

y and C such that for any two points A and B of the manifold M™ with p(A, B) < y it is possible to find a
point S that lies in one contracting fiber containing A and in one expanding fiber containing B, with the dis-
tance from S to A and from S to B in the fibers being smaller than CD(A, B).
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Now let p(x, T"x) < e. For x;TPx we shall consider the point Sx,Thx- About the point x in a contract-
ing fiber we shall describe a sphere D of radius (C +1)e. If ¢ is smaller than some fixed quantity, where-
as n is sufficiently large, then (firstly) according to the Y-property the diameter of the image of T"D will
be sufficiently small for defining a mapping U that carries TUD into a contracting fiber that passes through
the point x, and (secondly) for a given ¢ it is possible to take n so large that U(TRD) will lie in a sphere of
radius & with its center at the point S in a contracting fiber, or U{Tlx) = 8. From the presence of a "uni-
versal” modulus of continuity for U follows the presence of a universal Ng that can be taken as a lower
limit for such n. But a sphere of radius ¢ with center at the point S is contained in the initial sphere of
radius (C +1)e with center at the point x. Hence, according to Browder's theorem there exists in a circle
of radius (C + 1)e with center at the point x a fixed point of the mapping UeTR. This point has the property
that its image under a mapping TR lies in an expanding fiber at a distance from it that is smaller than C'e
along the expanding fiber; here, C'is a constant. In this fiber, T is a contraction mapping. Therefore,
there exists a fixed point of the mapping T2 at a distance from it that is smaller than C"e. Tt is evident
that this will be the periodic point sought. This completes the proof of the lemma.

Now let {Tkx}f" be an everywhere-dense trajectory that exists by virtue of the assumption of the

theorem. On it let us assign a function gt g(T%z) = 2:—1 f(T'z). We have to prove that there exists a posi-
tive L such that

| g (T'2) — g (T') | < Lo (I, T'2)° ‘ @
where 0 < 8 =1 (we shall prove that & can be taken as the Hslder index of the function f). By virtue of con-
tinuity it is then possible to continue g to all M™ in a Hélder manner, and the continuation will be the fune-
tion sought. For the proof we shall assume at first that [I—I'|> N o (Tl'x, Thx) (in the notation of the lemma).

By virtue of the lemma. there exists in this case an x' such that T¢'-/x' =x' (let {'> ) and o(Thy, TR=Hy) ¢
Kp(T’, T¢'x) for 1+1 <K <1'. Let us consider the difference g(I'z) — g (T'z)= le;lf(Tkz). By virtue of
the assumption of the theorem, it is equal to

U—i—1

S 100 = 5 0 - 5, 10— e 0

To each pair Tk=1x and TE 1! we shall assign a point S, as in the proof of the lemma; if o(Thx, T¢'x) is
sufficiently small, it is possible to assume that Siq = TS; for any k, and each difference (3) can be repre-
sented in the form [f (7%t 2) — f (S} + [F (Sw) — F (T*11 a)<Lip (T2 2, S3) 8 + L'p (S, TH-1z1)3,

where L' is Holder's constant of the function f. But

l' 7 . ‘ ad 7 -, ” ‘
S L p(T* %z, 8, < S L o(T* %, 8,)° < Lo (T2, 811)* << 170 (T, TV,

The convergence and the bound of the series follow from the fact that 515 and Si lie in the same contract-
ing fiber, and hence, the general term of the series varies exponentially. In the same way it is possible

to estimate the sum of the second terms of {3). Thus, we have proved for the case under consideration the
bound (2). For arbitrary 7 and {' the proof reduces to the following: since the trajectory of the point x is
everywhere dense, there exist (for arbitrarily large N) quantities n > N with TBx that are as close as de=
sired to T!x, and (2) can be applied to T!x and T%, as well as T¢'x and TBx. This complete the proof of
the theorem. The proof for flows is basically the same, apar{ from the formulation of the lemma. For
flows, the lemma will be as follows.

LEMMA. There exist K; and K; such that for any € there exists an N, and if t > N, then from
p(Ttx, x) < & it follows that there exist xq and t, with |tg—t|< Kje; p(TSx, TSx,) < Kye for 0 =s =min(ty,t)
and Ttﬂxo = Xge

The proof is entirely analogous. The origin of K1> is as follows. If Tt is close to x, then there
exists a ty close to t, such that Thx can be connected with x by a two-section broken line that has one con-
tracting and one expanding section.
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Remark 1. Letus consider a continuous function f on a manifold MM that satisfies the condition of

© ()
)

convergence of the integral g d6, where w(0) is the modulus of continuity of f.
Jo
In this case the vanishing of sums over periodic trajectories in the case of a cascade, and of inte-
grals over periodic trajectories in the case of a flow, implies that f is homologous to zero in C(M™), which
follows from the proof of Theorem 1.

It is evident that the function g is also obtained in this case by continuation from an everywhere -
dense trajectory.

Remark 2. The zero homology of a function that satisfies the condition of Remark 1 in the class of
essentially bounded measurable functions implies its zero homology in C(M™). Indeed, suppose that for a
function f that satisfies the condition of Remark 1 there exists an essentially bounded measurable function
such that f(x) = g(Tx)—g(x) for almost all x (for simplicity we are considering the case of a cascade). By

assuming that for-a periodic trajectory {Tkxo}?, we have ZTf(TkxD) =c¢==0, we obtain IZT"]‘(T%,,)I =

| me | << vrai sup lz’l""f(Tkx)l » owing to the continuity of 7, but ZTnj(Tkx)zg(TmM]x)—g(x), ©i.e., by let-

ting m tend to infinity, we can see that the condition of essential boundedness of g is violated. Thus, the
sums over periodic trajectories are equal to zero, and according to Remark 1 the function F is homologous
to zero in C.

Remark 3. If M is a torus and T its automorphism or endomorphism, we find that for a function f
that satisfies Holder's condition and the condition of absolute convergence of the Fourier series, (zero
homology in L'(M, u), where u is Lebesgue's measure) will be equivalent to zero homology in C. Indeed,
if £ is homologous to zero in L' and there exists a g€ L' such that for almost all x we have fx) = g(Tx)—g(x),
then, by considering the Fourier series of the function g with respect to the characters of a torus, we can
see that in an expansion of the function f,the sum of the Fourier coefficients over any complete trajectory
of an endomorphism (conjugate to T),of a group of characters, will be equal to zero.

Let {Tkxo}fn be aperiodictrajectoryof T in a torus. Let us prove that ZTf(Tkxo) = 0. In fact, to

any complete trajectory of T* in the group of characters of a torus (T* being the conjugate endomorphism)
there corresponds S = {T*Py}(° (or S = {T*py}:::); by taking the function @s=3} aST"%, where the
S ; i *P - T*Pyeg
a’are the Fourier coefficients of f for T*Py, we obtain

m k ot 8P A
Stes(Ta) =SS, 5 STy (@)

= By () = 3

8 Q™ E
a T724)=0
i+ Pres s " 21 1 (Tz0)

P T*pve

(since TMx, = x), but since =D\ ¥s, we have also for f the relation f:Z:f(Tkxo) =0. It hence follows
from Remark 1 that f is homologous to zero in C.

THEOREM 2. Zero homology of a continuously differentiable function f in the class of essentially
bounded measurable functions is equivalent to zero homology in the class of continuously differentiable
functions.

Proof. According to Remark 2 the function f is homologous to zero in C, and the corresponding g
can be obtained by continuation from an everywhere~dense trajectory TL of a cascade (for convenience we
confine ourselves also here to the case of a cascade). Now let us consider a point A, as well as a "con-
tracting” vector X of unit length, and a smooth curve a(t); a(0) = A; 0 =<t =< ty; A(t) lies in a contracting
fiber, and the vector tangent to a(t) at the point A for t =0 is X. Let {Tkx}?f’ be an everywhere-dense tra-
jectory from which we continue the function g. By taking t'€ [0, ty], we obtain pairs (n, n') of natural num-
bers with an arbitrarily large difference n'—n such that T%x is as close as desired to A, and TB'x is as
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close as desired to a(t'). If t'is sufficiently small, there will exist for a sufficiently large n'—n a periodic
point A' of period n'—n that approximates the point TH'x according to the lemma; from the proof of the
lemma we can see that by taking n'—n sufficiently large, TMx sufficiently close to a(0) = A, and T'x suffi-
ciently close to aft'), it is possible to achieve that our periodic point A'is close to a(t"). Then the differ-
ence gla(t")—g(A) will be close to

eIy — g () = 3 F(T*0)=3" " [H(T*5)— (T*"4)1.

1

By letting n'—n tend to + by varying n and n' in such a way that T'x tends to A and T'x to alt"), we can
achieve that our difference will tend, on the one hand, to gla(t))—g(A), and on the other hand to

2? [/ (T*A) — F(T*(a ("))} (this series converges in view of the fact that A and a(t) lie in the same contract-

ing fiber, and f is differentiable). Suppose that the vector tangent to a(t) at the point A is £ (t); hence,
FI*a)— 1T @) = — T* € @), diT* (@), where T is the differential of a diffeomorphism TX. Since
LX)} -

¢(t) is a "contracting" vector, we find at once that g is differentiable in the direction ¢ (0) = X, and that the
derivative is equal to — ZT(T”’ (X), df (T* 4)). In the same way we obtain differentiability along any "expand-

ing" inequality, by evidently considering T~!. From the transversality of contracting and expanding folia=
tions, and from the continuous dependence of fibers on the initial data, it is now easy to obtain the differen-
tiability of the function g (taking into account the uniform convergence of the series for the derivative).

Remark. In the general case it is apparently not evident that the function g can be differentiated as
many times as f, even if we assume that f is only twice differentiable. Yet nevertheless, for semisimple
ergodic endomorphisms of the torus (i.e., for endomorphisms whose matrices have one~dimensional Jor-
dan cellgs) we have the following result. If f € CT+9, where 6 =1 and all the r~th derivatives have abso-
lutely convergent Fourier series, then the zero homology of f in C implies its zero homology in CT+0, Let
us outline the proof of the existence of mixed derivatives with respect to characteristic directions of an
endomorphisms (this is sufficient). If the characteristic directions selected by us are such that the prod-
ucts of the corresponding eigenvalues are different from unity, it is possible to prove the existence of a
mixed derivative in the same way as in Theorem 2 (the corresponding series converges, of course, to a
Holder function with index 8). If the product of the eigenvalues is equal to unity, i.e., the series diverges,
we shall denote by D the corresponding differentiation operator. If g(Tx)—g) = f(x) and if there exists a
continuous function Dg, we obtain (in view of the fact that the product of the eigenvalues is equal to unity)
the formula

Dg (T2) — Dg (z) = Df (a).

This means that we must prove first of all that Df is homologous to zero in C. Let us consider the Fourier
series and Df. From the fact that the product of eigenvalues is equal to unity, it easily follows that these
series differ along the trajectories of an endomorphism (conjugate to T) of the group of characters of the
torus by factors that are constant on the trajectories; therefore, the sums of the coefficients along the tra-
jectories are equal to zero in f and Df simultaneously. By acting in the same way as in Remark 3 to the
previous theorem, we can see that the function Df is homologous to zero in C, and hence, in the space of
Holder functions. Among the functions realizing this homology, we shall select the function that has in the
Fourier expansion a zero coefficient in a trivial character. This function will be precisely Dg. Indeed, by
formally applying the operator D to the Fourier series of the function g, the obtained series will likewise
_realize (in the space of formal Fourier series) a zero homology of . Therefore, the difference between
them and the Fourier series of the function obtained by us will be constant on the trajectories of the endo=-
morphism of the group of characters, conjugate to T. But this constant will be zero on each trajectory,
since the Fourier coefficients of the function g and of the formal series Dg differ by factors that are con-
stant on the trajectories, and hence, they tend simultaneously to zero along the trajectories in the same
way as in the Fourier series of our "candidate" in Dg, and hence, also in the same way as in the difference
under consideration. Thus, Dg exists by virtue of ordinary theorems of differentiability of uniformly con~
vergent functional series. Its Hilder property with index 6 follows from Theorem 1.
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It is of interest to study homologies of Y~systems with coefficients in a Lie group. Suppose that a
group G acts on a Riemannian manifold M™, and that T is a Lie group. Let I'(M) denote a group of Hslder
mappings of M into T" (the Hélder property does not depend on the metric, in view of the compactness of M).
A cycle is a function f(x, g) that maps Mx G into T' and such that

Fx, g) f (g1, &) =1 (2, £:8)-
Two cycles fi and f, are said to be homologous if
filz, ) = ¢7" (z) [, (x8) © (8)

for a Holder function ¢: M— I'. In the case G = Z, a cycle will be defined by the function f(x) = fix, 1),
and the homology condition will be

i@ =91 fa @0 (Tx),

where T is the action-of a generating element of the group G. If G is an additive group of real numbers and
if we require the differentiability of cycles and of the function ¢(xg) with respect to g, we shall define a
cycle by the function 73 M — @ (8 is a Lie algebra of the group TI):

Fla)= lim ttexp™|f (2, 0y f(z, 1)],
—0

where exp"1 is defined for small t, and the condition of zero homology of a cycle will be expressed in terms
of 7 as follows:

7 (@) = lim ™t exp™ (97 (2) ¢ (T'2)),
t—0
where Tt is a flow defined by the action of the group R and ¢ is a function
¢: M —T.
Thus, we can justify the definitions preceding Theorem 1, and we can refer to functions that are

homologous to zero. Let us formulate without proof a theorem that generalizes Theorem 1.

THEOREM 3. If the group G is either Z or R and its action on a Riemannian manifold M specifies
a Y-cascade (or Y~flow) with an everywhere-dense trajectory, there will exist in any Lie group I' a neigh-
borhood of unity U (in the Lie algebra of the group T' there exists a neighborhood of zero U) such that the
Ho6lder function

MU

defines a null element H'(G, I'(M)) if and only if for the corresponding cycle f(x,g) xg=x implies f(x,g) =er.

Remark 1. If the group T has a two-sided invariant metric or is finite~dimensional, then we can
take U in the form of the entire group T (the entire Lie algebra of the group I'). For the action of Z it is
sufficient that I should have a two-sided invariant metric, which is not necessarily a Lie group.

Remark 2. It is evident that the condition of Theorem 3 is equivalent to the fact that e is equal to
products over periodic trajectories as in Theorem 1. In the case of a two-sided invariant metric in the
group, the proof of Theorem 3 will be a simple repetition of the proof of Theorem 1.

In the proof of Lemma 1 on approximation of a trajectory by periodic trajectories, we used the re-
marks made by G. A. Margulis.

Theorem 3 constitutes the answer to the question posed by A.M. Vershik in connection with Theorem1.
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