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A SUFFICIENT CONDITION FOR WEAK MIXING OF SUBSTITUTIONS 

AND STATIONARY ADIC TRANSFORMATIONS 

A. N. Livshits 

The goal of the present article is the proof of a sufficient condition for weak mixing 

for a wide class of stationary adic automorphisms introduced in [i] and [2], and substitution 

automorphisms, the method based on the results of [3]. All spaces of sequences are provided 

with the weak topology. 

We shall define a substitution automorphism following [4, 6, 8]. 

i. An initial object is an aggregate of words ~ = {Ai}1 n in an alphabet Z = {i ..... 

n}. A matrix [4-6] G~ = (gij)i,j=1 n is constructed with respect to ~ where gij ~ 0 is the 

number of occurrences of symbol j in word A i. In the following we assume that G~ is primi- 

tive (i.e., positiveness of some degree) [7, p. 378]. 

We define a transformation w~ of the set of all finite words: 0)~: ~ Z~-~ ~Z~: 0~(a I ..... 

at)=Ao,Aa,..~ Aa I where the right-hand side is a concatenation of words. The restriction 

~m [Z is called a substitution. 

A generating quadruple shall be defined as a quadruple of natural numbers (i, j, m, n'), 

i ~ n', j +i~ IAi[, such that there exist symbols a, b, c, d ~ Z, such that: i) c and d 

are respectively the j-th and j + 1-st symbols of word Ai; 2) word ,.~mc ends on a and word 
n, n I ~0 ~md begins on b; 3) c0~ (a) ends on a and ~ (b) begins on b. 

Generating quadruples always exist. We shall choose an arbitrary one, and by using its 

corresponding a and b, we shall define a sequence of concatenations of words: {a} {b}; 0)~ ({a}) 

n" " ~" ~" ({b}) we shall index c0~ ({b}); 0)~2~ ({a}) 0)~zn" ({b}), etc. In each of the concatenations co~ ({a})0)~ 
}t~%" the symbols in such a way that the last symbol 0)~ ({a}) has index 0. By the definition of a 

and b, the sequence of these concatenations is a sequence of words that is increasing on 

both sides, and its union is a sequence of symbols from Z that is infinite on both sides. 

We denote it by x(i, j, m, n' ). We consider the weak closure (in the space of all sequences 

that are infinite on both sides) of trajectory x(i, j, m, n') with respect to a two-sided 

shift. We denote it by X ~. We shall call the shift X~ -+ X~ a substitution automorphism. 

Under the condition that G~ is primitive, X~ does not depend on the choice of the gener- 

ating quadruple. It is known that T is strictly ergodic [5]. 
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The stationary automorphism defined in [i, 2] or the adic transformation, which we 

shall discuss below, is also a symbolic dynamical system, however, with a different action. 

Again let Z = {i ..... n} be an alphabet, H = {~ij} be a transition matrix. We shall assume 

that all wij equal 0 or 1 and that ~ is primitive. An adic automorphism acts on a Markov 

compactum, i.e., on the space ~H of paths zo, z I ..... x~ Z(i =0,1 .... ) that are infinite on 

one side such that nxixi+l = I. The action is described in [i] and [2]. 

2. With respect to an adic transformation matrix H, we can construct an aggregate of 

words analogous to the aggregate of words that define a substitution: ~ H = {Ai}1 n, where 

A i' is a word whose symbols are indices of all the nonnull symbols of the i-th column of H, 

enumerated in increasing order [3]. 

The substitution constructed with respect to ~ ~, as in Sec. i, is metrically isomor- 

phic to the same adic transformation in a wide class of cases. 

Below we shall describe constructions for a substitution that put it in correspondence 

to adic or generalized adic transformations that are metrically isomorphic to it. 

After fixing a substitution (i.e., Z and ~), we shall say that every sequence belong- 

b " ing to space X ~ is admissible (see above); X ~ z  = { k}~ .... 

We shall say that a substitution satisfies condition UAD, i.e., uniquely admissible 

decodability, if every admissible sequence from X ~ is uniquely representable in the form 

of a union ...AikAik+l... such that b0~ Ai0 and ...ikik+1... is also admissible. The se- 

quence ...ikik+l... also has only one admissible decoding by the cited definition, etc. 

It is entirely likely that every noncyclic [6] substitution is of this type (see also 

[9, 10, 12]. We shall assume that the UAD condition is satisfied. 

With respect to the set of words ~ we construct two dynamical systems of the adic 

transformation type. For each word A~and any symbol j coming into it, we index all 

occurrences of a symbol in the order in which they are encountered in the word j(1), j(2), 

.... j(k). We shall call an indexed symbol a distinguished symbol. We denote by ~ ~ i the 

space of sequences of distingushed symbols (paths) that are infinite on one side of the type 

y0(i~ Yl (iI) ...... Ys ~Z such that for all s > 0 the distinguished symbol y~ corre- 

sponds to the is_l-st occurrence of symbol Ys-1 in word Ay s- 

We define a transformation T~:~-~ in the following manner. If A~ = a I ..... a r 

and the symbol corresponding to y0(i0) has index s < r in word Ayl, then 2~ (y~~ y~%) .... ) = 
J y~i ,) ,  

as+l, y~i,> ..... where for symbol ns+ t the index of its occurrence j is also distinguished. 

If s = r, let s be the smallest index >0 such that the symbol corresponding to ys163 is not 

last in word Ays I = bl, ..., br, , and has index s' < r' (for all but a finite set of points, 

s < ~). Then 

r~  , ~o~ ~ z ~ ,  z ~  ~, . ,  z~ ~>, y~+~ , ~+~  , ~ Y o  , Y l  . . . .  )--~- . .  ( J l . l )  .Oi+~) 

where zs = bs,+1 (j is also the index of occurrence), each of zi I, i < s is first in word 

Azi+l (Azi+1 does not depend on the index of occurrence of zi+ I in the following word). 
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Thus, in the space of paths we can define a particular ordering analogous to the lexico- 

graphic ordering in a Markov compactum. Let FI > F= if there exists m > 0 such that rl = 

T ~ImF=. It is clear that finite paths with identical length and identical ending are com- 

parable in the same manner. 

Again let ~ determine a substitution, and describe two sets: X~X~ Q ~  

each of which is an extension of a countable invariant set, and describe a one-to-one rela- 

' *' T~o~-----~o T~ tion between them: ~:X~-+~; i 

Let U~cX~ be the set of all x(i, j, m, n'), where (i, j, m, n') is a generating 

quadruple (see the definition of a substitution). The set U ~ is finite, but the set of 

generating quadruples is countable. We define a set X~' as X~--U~-~ Ti(U~) and the 

set ~" as the set of paths y0(i0 ) ..... y1(il ) .... , yk(ik ) .... , such that for an in- 

finite set of indices k the symbol yk_z(ik -I) is not first in word Ayk, and for an infinite 

set of indices k the symbol yk_1 (ik-l) is not last in word Ay k. 

If z~X~,x = ...b_~ ..... b o ..... b~ .... then it is easy to see that there exists a unique 

(corresponding to successive admissible decodings) sequence of elements of Z: Y0, Yl, Y2, 

..., where b 0 = Y0, Y0 is a symbol of word ~(yl) = Ay I, Yk is a symbol of word ~ (YK+I) = 

Ayk+1, etc.; for an infinite set of indices k, Yk is not the first symbol of Ayk+ I, and for 
�9 ~ 

an infinite set of indices k it is not last (otherwise z~U_ T U~). For ~ (x) we take the 

path y0(i0), y1(il ), ... with fixed indices of occurrences of symbols Yk in word ~(Yk+1). 

It is obvious that ~ is bijective and measurable with respect to any invariant Borel proba- 

bility measure. From the arguments presented, the following assertion follows: 

T I has a unique invariant Borel probability measure, and ~ is a metric isomorphism 

between T and T ~l. 

Thus, we have given a definition of one-ergodicity for mapping T i that is not every- 

where defined (naturally generalizable for arbitrary adic mappings). Specifically, we have 

given the definition of minimality, i.e., compactness of all elements of the partition is 

required everywhere on the trajectory, which in our case does take place. 

We note that for an adic transformation with matrix n we have the equation (~n, T) = 

I 1 (~n' T~n) which can be considered simply the definition of an adic transformation. If a 

substitution with set of words ~ satisfies the UAD condition, then it is metrically iso- 

morphic to (~, T). 

2 . ~ 2 Now we define a dynamical system T~. ~ -+~ or more precisely, a class of equivalent 

adic transformations that define it. 

Let N-----~IAi]. We cite the elements of alphabet Z' = {i ..... N} in one-to-one corre- 

spondence with a set of pairs of natural numbers of type (f, g) where 1 ~ f ~ n, 1 ~ g 

IAfl: s + {fs gs 1 ~ s ~ N. Accordingly, we shall show a unique requirement: for each 

q: 1 ~ q ~ n, the relation on set {(q, s); 1 ~ s ~ IAql} must be strictly monotonic in s. 

We define matrix 
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I ~i=I' if fi is a symbol with index gi in Afj, 
N H={ 

ij}ij=1--[ �9 ~iJ= 0 otherwise. 

As ~ 2 we take the Markov compactum fl~. 

Dynamical system T~:~-+~ is defined as an adic transformation of Markov compactum 

~H. This definition is correct since up to a trivial isomorphism which is a homeomorphism, 

our dynamic system does not depend on the choice of relation that defines ~. However, we 

may assume that we are dealing not with a class of isomorphic dynamical systems, but with 

adic transformations, if in the definition of an adic transformation we require an ordering 

not of the entire state space Z', but of each of the subsets of type Yq c Z': yq = {s~ 

Z'l~sq = i}, I ~ q ~ N. It is clear as well that all these transformations are equivalent 

! i ! to T~: ~-+~. 

Let T be a substitution automorphism constructed with respect to the substitution de- 

fined by set of words ~ , or the adic automorphism defined by matrix ~. We denote by /T(t)= 

tn--~n~1=iti the characteristic polynomial of matrix G ~ (respectively matrix ~). Further 

arguments shall be cited for the case of the (more general) transformation i. i T~. ~ 

which under fulfillment of UAD is a generalized adic representation of the substitution 

transformation. 

We shall formulate an obvious assertion. Let Pz = Y0 (i~ .... ys and P2 = z0 (j~ 

..., zs be two paths of length s where 

Yo = zo, Yz = zz, PI<P~. (i) 

We define a sequence of natural numbers Nm(Pz, P2) in the following manner: for any 

sequence (path) xo(So ), ..., xm(Sm), yo(io ), .... yo (io), .... ys163 Xm+s163 .... 

belonging to ~ ~ z, we have 

r yl'" 4 <  , �9 . . ,  . . . ,  , X ~ + l + 2  , . . . )  = X ~  ~ . , X m  , . . .  , X , , + / + ~  , . . .  

It is clear that the number Nm(Pz, P2) does not depend on the choice of x i. Our assertion 

is that Nm(Pz, P2) satisfies recurrence relation 

~ n - - I  I 
N,,+,,(Pl, P~)=~i=o~iA m+i(Pz, P~). 

We shall formulate the primary theorem of the article. 

THEOREM. For substitution automorphism T with the UAD condition (for a stationary 

adic or generalized adic transformation) let all roots of the characteristic polynomial 

fT(t) lie outside the circle B = {z[[z[ < I} and let there exist two paths Pz, P2 of identi- 

cal length with conditions (i) such that for any index m0, when m > m0, all Nm(Pz, P2) in 

the aggregate do not have a common divisor larger than one. Then the corresponding automor- 

phism has weak mixing. 

Proof of the Theorem. The theorem follows from the following propositions and lemmas. 

Proposition. If a sequence of whole numbers N m satisfies recurrence relation N~+,= 

~:f: ~,Nm+i where ~i are rational coefficients of polynomial ti--~inL 1 air* with roots modulo ~ i, 
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and there does not exist an index m 0 beginning with which all N m in the aggregate have 

a common divisor > I, then there does not exist a nonintegral I such that 

e ~iNm~ ~ i. 

In the proof, the case with rational i is considered with the help of the condition 

that a common divisor of N m be lacking, and the case with irrational ~ is considered by 

analogy with [ii, p. 166]. 

That is, Nml is a sequence satisfying the same recurrence relation; beginning at a 

certain place, it is satisfied by a sequence 8m + 0, where 8m = -Rm + Nml (Rm is the inte- 

ger nearest to Nm%), which contradicts the assumption about the roots of the polynomial. 

LEMMA. If a strictly ergodic substitution (stationary adic automorphism) with the UAD 

condition has eigenvalue e 2~il, and PI and P2 are two paths of identical length that satisfy 

(I), then 

e 2~iNm(P*' P')~ --> I, m --> O0. 

Proof of Lemma. The assertion follows from the coincidence of the invariant measure 

with the topological structure of ~ , i.e., an analogue of the theorem about "density 

points" in the theory of functions of a real variable. 

Let C c C~ i be a measurable set, ~(C) > 0. The for almost every point x there exists 

a sequence of cylindrical sets Vl x > ... > Vj x > ... ~ x, corresponding to paths that begin 

at time 1 such that 
ix x 

From this assertion it follows that if U is an eigenfunction of automorphism T with 

eigenvalue e =~il, then for arbitrary positive sequences ek ~ 0, 6 k § 0 it is possible to 

choose a sequence of sets Ak, ~(A k) > 0, and cylinders B k such that the deviation of U on 

A k is ~E k and 

Since G~ is primitive, and from the properties of measure ~, we get constants D > 0 

and M > 0 such that if Ym,Pi is a set of those x for which the coordinates from m + 2 to 

m + s + 2 form path Pi (i = i, 2) then for any n z, n 2 with n 2 - n I > M and any path B of 

length n I we have ~(Yn=,Pi fl B) ~ D~B, where B is the cylindrical set corresponding to B. 

From this and from the definition of Nm(P I, P2) it "follows that if for cylinder B k 

the length of a path generating it is N k, and D > 26k, then for m > N k + M we have 

le=~iNm(Pi,P=)1 - 11 ~ E k .  

The lemma and thus also the theorem are proved. 

As an example we can consider the substitution 0 + 001, i + i0110 from [4], where a 

somewhat different method of equivalent substitution does not make it possible to establish 

weak mixing. The theorem of the present article is applied for this along with the method 

of [4] for other examples from [4]. It is sufficient to take paths P I = 010 and P= = 020. 

In this case [4] 
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4 
N,~ (P,, P,)-----@ (2.4" + 1) toot, IT (t) a te  1 and 4). 

The results on the discrete spectrum of substitutions (obtained by a somewhat different 

method), which imply the analogous theorem on weak mixing, are contained in [12], which was 

published as the present article went to press. By the method described in the present 

article, we can prove also the assertion from [12] (obtained independently by the author) on 

the fact that every measurable eigenfunction almost everywhere coincides with a continuous 

function. A continuous eigenfunction can be constructed as well by the method of extension 

from an everywhere dense trajectory, by considering that reduction to the above-proved lemma 

is exponential, and by considering the obvious existence of a natural M for the primitive 

matrix such that for any two infinite paths of type 

�9 " "~ Xn" ~ ~i ~ " " "~ 

X~ "~*) ..... X(ni, n') Z~I,) Z; ''), 

there exist two sequences of natural numbers Nk, Lk, Nk_ I < L k < N k < Lk+1, INk+1 - Nk], 

[Lk+ I - Lk] < M, and the path 

z 7  , . . . ,  , d , . . .  

tNk = yN k, tca.= ZL~ (k = 1, 2 . . . .  ). 
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