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ON THE LIMIT DISTRIBUTIONS AND ASYMPTOTICS OF
EXTREMAL VALUES FOR CERTAIN SEQUENCES OF RANDOM
VARIABLES

A. N. Livshits UDC 519.2

The limit distributions are studied for some sequences of sums of coordinate random variables over the dy-
namical system, connected with the Rudin-Shapiro substitution. The description of the limit distributions is
presented on the-basis of the ezpression for the sums of Rudin-Shapiro coefficients obtained earlier. The ez-
pression of the dernisity is given for partzcular subsequences and the Markov representation for the “stationary”
situation. The evalution of the excess is given for a wide cless of substitutions. Bibliography: 11 titles.

INTRODUCTION

In [1], questions were treated connected with the problem of finding limit distributions for some sequences
of coordinate random variables over the strictly ergodic system generated by the Rudin-Shapiro substitu-
tion. The goal of this paper is to prove certain general facts about the weak convergence of distributions
which were described in [1], to consider special cases using a method different from that used in [1], and
to continue the investigation of a general problem set up in [1] about the matrices of generating functions
of random variables for obtaining a more direct description of limit distributions. In addition, a simple
general method is suggested which enables one to obtain estimates of the excess (sometimes sufficient for
proving topological mixing) for substitutional dynamical systems on the basis of the results of [2] about
asymptotics of the sums for the fixed points of substitutions.

§1 WEAK CONVERGENCE OF SUBSEQUENCES OF DISTRIBUTIONS
Consider the class E of sequences of natural numbers
E = {{nk}z" 0; 0S5 ng <35 ngg1 =4ng+lep1; 0< g1 < 3}
Similar to [1}, let for some {n;} € E a sequence {ux} of measures on the real line be defined, describing

the distribution of the values of Sn +n2"k) = 5(n) ,0<n < oo:

. 1
pele < d} = lim m#{z.ogzgn,

S(l+ng)— S

2k S d})
where —oo < d < co. The existence of i follows from an interpretation (contained, in particular, in [1]) of
S(n) in terms of the Rudin—Shapiro substitution. We prove the following proposition:

Proposition 1. The sequence ux weakly converges to a limit measure p = u({ny}).

Proof. It is evident that for any natural k and p there exists a natural number R, < 4”7 such that
Nk+p = By p + 4Pny. Using the evaluations of [3] and the recurrency properties of substitutional dynamical
systems, it is easy to deduce (similarly to the proof of the linear evaluation of complexity) the existence of
—§(71—+u—l—-—§(1)— < C holds. Now

let a continuous function f with modulus of continuity wy be defined on the segment [—C,C]. Evaluate
the difference pxy,(f) — px(f). We have by the ergodic theorem

a constant C' > 0 such that for any n, u, and k, u < 4¥%!, the relation l

n-4P — . i
pep(f) = lim  —2 }_; f( S(z+n2;,:.:3—3(1)>
=
T L SG PRy, #)-5G-4+q)
nh_’ngo —P Z Z f( * 2k+p )
=0 ¢=0

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 216, 1994, pp. 86-103. Original article submitted April
27, 1993.

1072-3374/98/8801-0059$20.00 ©1998 Plenum Publishing Corporation 59



The definition of C implies that the argument in the last expression has the form

2C

S(j-47 +ng-4P —1+4P)— S(j - 47 — 1 } 47
— (] k ) ( )+ﬂ: .:BI<2_1='

t 2k+p

From properties of the function S(n) (Theorem 3 of [3]), it follows now that

S5(7 +nk) - S(2)
9k

t=p+

and, consequently, | ui4p(f) — pe(f) | <wg(2C/ 2¥), which implies our assertion.
Assigning to any sequence {nx} € E the number hA({n:}) = klim ni/4F, we get a bijective correspondence
—+00

between E and [0, 4], and a parametrization of limit distributions by the numbers of this segment. Let us
try to get a direct definition of the limit measure, using this parameter, similarly to the results about the
limit distributions from [1}, obtained without using the measures .
: . S(4re))
In [4], the function A(z) = nILngo R
results about the distribution of its values are obtained. Also an expression of the function A(z)+/z in
terms of the expansion of z in the 4-adic system of numeration is given. The sums and fractal functions
connected with the Rudin—Shapiro coefficients were also studied in other works. We shall use a different
expression of this function—one in terms of the diadic expansion, obtained on the basis of the formula for
S(n) from [1]. The formula is as follows. Consider the function o(c, b), defined for integer 0 < ¢ < b:

is introduced, its analytical properties are studied, and some

200+2)/2 ¢—odd, b- even,
» o(b+1)/2, ¢—odd, b-odd,
O'(C, ) = 2(1,+2)/2 _ 2c/2’ ¢ — even, b - even, (1)

2(6+1)/2 4 9¢/2 ¢ _ even, b~ odd.
Let the diadic expansion of n have the form
ug...up=1...10...01...10...01...1...;

thus the series of ones (including the series of length one) are up, ... ue;, 1 <4 < p, ¢; < b; < cip1 — 1,

P
1 <i < p—1. Introduce the numbers v; = }(bj — ¢;). Then

i=i

p-1
S(n) = (~1)" + Y (1) o(ei,b) + o(ep by). (2)

=1
For the convenience of the subsequent calculations we introduce the enumeration of b;, c; in the opposite

direction. We have b} = by 1_i, ¢} = ¢pp1-i, 1 <1 < p;
pHiI—i L ' F;
vi= 3 (¥ —c}), and S(n)=o0(c},b)+ Y (~1)% o(ch, b)) +(—1)%. (3)
=1

=2

Now extend the function o, using the same formulas (1), to all the pairs of integers ¢ < b and suppose
that the diadic expansion of an arbitrary positive real number z is of the form

b 31 by ek
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In this case, all v} are defined and finite, and

VEX(z) = o}, ) + 3 (~1)% o(cl, b,

=2

where p < oo is the number of series of ones. This is an evident consequence of the definition of A(z).
Denote v/z A(z) by ¢(z). Suppose that £ =n + @, 0 < a < 1, n is natural. Find an explicit expression for
p(z) — S(n). Let [c,b1],-..,[cp, by] be the series for z, p < oo, [¢f,87'],...,[cy,, bl ] be the series for n.

0o’ “po
]

It is evident that b = b}, 1 <7 < po; c} = ¢}, 1 <1 < pp — 1; ¢, < cp,- We have
P ’ 1 ’ 1"
p(x) = S(n)= Y (=)ol b)) = (=1)"° +(=1)""" o(c},, by,,) = (=1)""~" o(clr, bl1).
i=po+l

Note that v, _, = vy ;. H ¢, =c,, then o(c,,, b, ) — o(cp, b)) = 0. ey < Cpy» then, evidently,

¢y, = 0, and by the definition of o(c, b) (formula (1)) we get
U(CI,’N bI,’o) - U(CIIJ'N bll’lo) = G(C;Jo’ bllio) - 0(0’ b;o) = (”1)%0 (u(c;o) - U(O)),

I ! " 1
where u(l) is —-21/2(1—-4-—(2——1)——). Since (—1)6P° u(0)(=1)*70~! = (—1)"7°  in this case we have

o@) = S(r) = 3 (~1)" oleh,B) + (~1)7 u(c),).

i=po+1
Compare this expression with the expression for ¢(a):

p r ”
o(a) = a(c;,o__l, —1) + Z (—1)""'1_"%"1 a(cg,b’.).
i=po+1

7(Sher=1) = 1= u(c},), (@) =1 = (=1)™ (4(z) - S(n)),
#(2) = 5(n) = (-1 (1 - p(@)) = a(n)(1 - ¢(a)).

As for the first case (c;,O = c;,’o), we obtained instead, as is easy to understand, a(n)(tp(a) - 1).

Denote the function ¢(z + 8) — ¢(z) by gs(z), £ > 0. Now we can prove the following statement.

It is clear that

Proposition 2. If {n;} € E and h({nt}) = B, then for arbitrary w the following equality is true:

p({n})({z ]z <w}) = lim T mes{z | gp(z) <w, 0<z <T}.

Proof. For an arbitrary z, according to what has been said above, the following equality takes place:
g8(z) = S([z + B]) = S([=]) + r(a) (1 = e({z})) + r2(2)(1 = ¢({z + B})),

where ri(z) = +a([z]) and ra(z) = a([B + z]). Let £ = {A;... Ay} be the partition of the positive
real axis in accordance with the values of the vector (S[z + 8] — S[z], r1(z), r2(z)). The enumeration of 4;
corresponds to the lexicographic ordering of the possible values of the vector. It is evident that the limits

Ii-I}(l)o T~ 'mes(A; N[0,T]) exist. Passing to the case of continuous time does not bring any particular

specific character. For the influence of the fractional part, its correlation with the number 1/2 is definitive.
It implies the existence of the limit from the formulation of Proposition 2. The sets A4; can be described
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more precisely. I_f: we consider the closures of all the connected components of all shifts A; N [n,n + 1] —n
of intersections A; N [n,n -+ 1], then among them there exist only a finite number of different ones. Order
them, for example, in order of appearance in the lists for n = 0,1...: I},...,T ,{(i) . Then there exist
increasing sequences of natural numbers m,]-,,., r=1,...,1(1), 1 £j < oo, such that 4; = J (I{ + m{r

' rj '
and if, for arbitrary n, we denote the number max{j | mf’r < n} by pir(n), then there exists a limit

iim —ei—’;(—n)— , and it is sufficient to study the behavior of gs on the segments only.
n—oo

Further, if 3 is fixed, then for any € > 0 there exists 6 such that if |8 — 8] < §, {5 = { Al
Il (i’

" .
Al ) is
the corresponding partition, and {I . ) } is the corresponding systems of segments, then numbers
1< <...<1,<k(f)and 1 <1f <. <z < k(B'), and for any p, 1 < p < s, numbers 1 <]p

. < j;,’(P) <l(p)and 1<t <. < ]’v(P) < I'(i}) can be selected such that the sequences m} .. and

:JP

m:,’ 1w coincide with one another for all p, u such that 1 <p <5, 1 < u < v(p), and, moreover,
Py

M + Z mes(IngI:-,j”u)<s,
1<p<s ’

1<uZv(p)

where M is the sum of the measures of all nonselected segments of both collections of systems. Incidentally,
this evidently implies that if 8’ — 8, then pg weakly converges to pg. The assertion we are proving now
appears to be, in fact, of the same kind. Denote the number ng / 4% by Bi. Then

St 250 — (2 +84) — (2 ) + 27 (aln + i) — ().

2k

We consider the problem for f; with the discrete parameter, but one can construct for Gx partitions and
systems of segments by the scheme considered above as well. Directing ¢ to 0, for large k one can again
single out segments in the way described above. Since the partition for § is fixed, one can (for k large
enough) assume that the collection of segments to be selected includes all the segments connected with 3.
Since gg, converges uniformly to gg on each of them, the weak convergence of the corresponding discrete
distributions to the limit one is evident. The proof is complete.

§2. CONSIDERATION OF THE CASES n, = 2-4" AND n, = 47

First, join both sequences into one and consider the general question on the distribution of values of
ul =S(n+2 -~ Sn), I > 1. It is evident that the sequential differences Al, = uf —u!_, can be simply
expressed in terms of a(z), namely, Al, = a(n+2")~a(n). We are solving the problem about the distribution
of sums

S@2'=1), SE' -1 +Al, S@' -1)+Al+AlL ...

Let n be k- 2! + ¢, where k is an integer, and 0 < ¢ < 2'. The definition of the Rudin-Shapiro coefficients
a(n) implies that if 2!~ < ¢, then a(n) = a(c) x a(2k + 1) (this can be checked by considering the series
of those ones in which the most significant digit of c is situated). Therefore,

O i N S ®
We also have
2'(k+1)—1 2=t 2! -1
wbo = Z a(i) = a(k) ; a(i) + a2k + 1) =2>:_ a(3)
=R, ;l:>k+ Rya(2k+1) - a(k)(R; +(~1)*Ry), (5)
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ualk-Z‘-I-‘Z"l—l = Ré (_1)k a(k) + Ri a(k +1),

because, as is known, a(2k + 1) = (~1)* a(k).

Thus, the value of a(k), a(k + 1) and the parity of k determine the values of u! for k- 2! —1 < i <
(k+1)- 2" — 1. Since the second of the expressions (4) is a(c:)((—l)kd'.1 a(k+1)— (—l)ka(k)), it is clear
that for any k one of these expressions is identically equal to 0.

Consider the following two measures:

2l-1 2l

py = Z 8oy and pp = Z b5(i)—S(2t-1-1)-

=0 j=al-1

Further, for an arbitrary measure p and numbers a, 8, denote u, g(A) = p(A/a — B), where A is an
arhitrary measurable set (we assume that po g = 6(0) for any §). It is easy to see that all the measures of
(k+1)-2'~2

2

i=k-21—1
Form for the p), the corresponding table on the basis of correlations (4) and (5) (see Table 1).

the form 6,1 are in fact 2!71§(z) + pl, where u} are p! a8 OF s wp @ =12, B=+R + R}

TABLE 1
k even k odd
aky=-1 & a(k+1)=-1p} 2,-Ri~R} #5-2,-R;+R;
a(ky=-18& a(k+1)= 1|} , pipi B! 5 pisns
(k)= 1& a(k+1)==1|n!_, pisps | i 2 ri-ry
a(ky= 1& a(k+1)= 1|1} , pipi|Hs o mi-my

Studying the bivariate distributions of coordinates for the dynamical system in the space of sequences
generated by the Rudin-Shapiro substitution (cf. (1)) shows that the probability of each of the 8 situations
presented in Table 1 is 1/8. Denote by u' the sum of measures from the table. Now our task is to study the

measures where r = [/2 for [ even, and r = (I — 1)/2 for [ odd (continuous measures are being

243 /"é-f,o’
accumulated “half of the time”). One can find all the necessary information about R/ in [3}], and about g/
and ) below. (Corresponding facts are obtained in [1] on the basis of the results of [3].)

Now we consider the cases of even and odd [ separately.

L lis even; R{ =27, R} = 0. The simple application of the argument of the proof of Theorem 22 in (3]
gives in this case

, 0<v<2,
#{n:03n§21_1—115(n)=”}={ 11—1 __Uf-
Zrh v=2 ()
-1 ! 27t —y, W< <2t
#{n:27<n<2' -1|5(n)=v} = =1 oy =27,

When finding the limit distribution, we use the principle of equality of the spatial averages and the
temporal ones. That is why it must be clear that turning an expression in (4) into 0 corresponds to adding
d-measures with some factors to the tabular measures. Of course, these §-measures are either of the form
6,1 or §,

k-2 uk.21+2l—l_x

63



TABLE 2

k even k odd
a(ky=-1 & a(k+1)=-1|-R{ -R}| -R! + R}
a(k)=-1 & a(k+1)= 1| R{-R}| R!+R}
a(k)= 1 & a(k+1)=-1|-R!+R}| —R! - R}
a(k)= 1 & a(k+1)= 1| R{+R)| R!-R}

Form the corresponding table (Table 2), suitable for odd ! as well. The numbers included must be
interpreted as follows: a number v is assigned to 2716, (cf. (5)).

For even | we get that the contribution to the limit measure equals LOLALIGD )

Now replace every measure in Table 1 by the corresponding limit measure (by the contribution to the
total one), denoting beforehand the measure on the segment [0, 1] with density 2z by u}, and the measure
on the segment [0,1] with density 2(1 — z) by p3. We have (see Table 3):

TABLE 3
* *
B2 2,-1 | K2 —2,-1
* *
By 2,1 | K1 2,41
* *
K1 -2, 1| H1—2, 1
* *
Ba 3 1| K2 2,1

The total continuous component is the measure on the segment [—3, 3] with density

(z +3)/8, -3<z< -1,
pi(z) = 3/16, -1<z<1],
(3—1z)/8, 1<z<3.

IL lis odd, Ry = Ry = 2". The discrete component, as follows from Table 2, is (§(—2) + 28(0) + §(2)) /8.

. 1-1 . v 0<v=2,

2v —27H 2" < v < 2™

L ol-1 1 _ . b) H]
#{n.2 <Sn<2 "IIS(")—v}*‘{ ar. v = 9r+l

Here pf is the measure on [0, 2] with density equal to z on [0,1] and equal to 2 — z on [1,2], while u3 is
the measure on [0,1] with density 2z. The contributions to the continuous component of the measure are
presented in Table 4.

TABLE 4

* *
B2 22| K220

* *
B o221 H1 20

* *
Br -2, 2| K120

L] *
Bo 2, 2| K2 20
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The resulting measure is concentrated on the segment [—4,4], and its density is

4 - |z|

et 2<|z| <4,

pAz) =9 5 T,
— =l

2 T e 0<|z] L2

It is useful to consider the general case n,. = 5 - 4", where S is a fixed natural number. We have (for an

arbitrary [ > 1)

24 (k+5)—1 k+S—-1 k+S-1 )
Yo ai)=Ri Y a()+R: Y, (-1a(),
1=2'k j=k =k
2'-1428(k+S5)—-1 k+S k+5-1 . 0
Y a®)=R Y ai)+R Y, (-1)a(j)
i=21-142/k j=k+1 j=k

In our case (I = 2r, S may be even) R; = 0. Here is an analog of formula (4):

a(c)(a(k + S) — a(k)) = ura(c); 0<e<2i,

a(c)((—l)k+sa(k +5) —(-1)* a(k)) =uza(c); 271 <c< 2l ®)

S5 = afn+ 52— afm) = {

Since S is fixed, consider a measure pg on the set E of triples {(a, 8,7) : & = £1; B = %1; v = —2,0, 2}
and specified by the equality

ps(a,8,7) = P (a(k) = & a(k + 5) = B; u2 = 1) =P (Aa,p,)-

For each collection (e, 3,7) € E, define a probability measure v, g,y on the set of integers that describes

k+4-5-1
the distribution of values of ) a(j) under condition As g, +-
i=k
We have the following expression for the required measure:

b= S s Bi7) vt (B e + 8o * ), )
(a,8,7)EE

where p}, ¢ = 1,2, relates to the case S = 1 considered above.

§3. MARKOV REPRESENTATION FOR THE LIMIT MEASURES

In 1], we studied sequences of matrices of generating functions of probability distributions, which were
constructed in the following way. Let A(t) be a polynomial matrix such that all the coefficients of all
these polynomials are nonnegative and the number matrix A(1) is primitive. Let a sequence of polynomial

matrices Bn(t) be defined by the recursion Bo(t) = E, Bny1(t) = A(t)Ba(t?), Ba(t) = {b?j(t)}:vjzl,
b:tj(t) p— p:,,(z,J) ts"(i)j) + ass + p;’n(l,J) tyﬂ(i)j).
Probability measures v} were considered, defined as follows:
1 yn(i,3)
vh=(05) ). pRé(kE/27).
k=3n(i)j)

It was claimed that these measures converge to limit measures. The proofs (using methods of harmonic
analysis and other methods) were carried out for particular cases only (for the sake of simplicity). It turned
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out that the matrix of measures obtained (in fact, a row of measures, since the limit measure does not
depend on the index of the row) satisfies certain relations (in a bivariate particular case presented in [1] by
system (4)). Using these relations, we obtain in this paper explicit expressions for the values these measures
take on binary segments. In the general case (i.e., for not necessarily nonatomic limit measures), v; stands
for its purely continuous component.

Since A(t) = Bi(t), we can interpret the measures p;; = b};(1)v}; as measures corresponding to the
matrix A(t), considered as a matrix of generating functions. Thus, we have a vector of limit measures v;
such that for each segment [e, f]

1 N
ejvi(le, f]) = (7 > i i+ Vi) ([2e,2f]), 1<USN, (10)

i=1

where ) is the Perron-Frobenius eigenvalue, and {¢;} is the corresponding eigenvector-row of the number
matrix A(1).

For any measure v; we denote the intersection of all closed segments of v;-full measure by [a;, b;]. Then
the following relations hold:

m?x (b,‘ + ﬂ%"’—)) = ij, miin (a; + —3—1(—;’!‘2‘) = 2(1]', (11)

as evidently follows from (10). This, in turn, implies that all a; and b; are rational ([1], §2).
Take the maximal number 7 such that 1/(27), k; = (b; — a;)/7, and a;/7 are integers for all . Consider
all possible segments of the form
[a; + k7, ai + (K +1)7],
0<k<k —1,1<1:< N. Weindex these segments by the corresponding pairs (7, k) (without identification

N
of the coinciding segments). Denote by N* the number of all such segments, equal to ) ki, and by M the
set of these segments. =1
Let v be a natural number, and u;...u, be an arbitrary sequence of zeros and ones. Denote by

K k), uy,..pu, the value of

u,-{a: € [ai +kr,a; +(k+ 1)1'] | the first digits of the binary expansion of

z — a4

—k are ul...u,,}.
-

The system (10) allows one to get all the values p(i x) uy,...,u, Sequentially for v =1,2,... . Thus, matrices

Ag = {a‘(’i1 ,kl)(iz,kz)} and 4; = {a%ihkx)(i'z,k:)} can be defined such that

Bk = D 58 (k) Ak, % =0,1. (12)
(ilykl)
These matrices are completely specified by the coefficients of system (10), i.e., by the values of A, {¢;}, and

discrete measures {u;;}.
Further applications of system (10) prove that, similarly for any collection a = u,,...,u, of zeros and

ones there exists (and can be constructed in a natural way) a matrix A, = {a?‘ih k1) (i k2) } such that

B(ik),a = Z a‘();',k)(il,k‘)/‘(ihkl)'
(i1,k1)EM

The matrix A, can be expressed in terms of Ag and A;. Equality (10) implies the following simple remark.
If o' = af is the concatenation of words consisting of zeros and ones, then

'u(ixk)ya, = Z a?irk)(ihkl) 'u(il’kl)’ﬂ.
(i1,k1)
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Thus, {#¢x),a0} = Aa{tg, k)00 = Aedo{fii )}, and we have Ago = AgAp. Similarly, A, = AyA4;.
Hence, if @ = uy...u,, then Ay = Ay, -.. Ay,, and the collection of numbers {y; x} in combination with
matrices determines completely all the measures v;. It follows from (12) that the vector-column {u(; 5}
is invariant with respect to the matrix Ag + A;. If this matrix is primitive, then the last property of the
vector {u(; )} specifies it uniquelly. (Recall that v; are normalized.)

Now we study measures defined in the space {(z,k)} x --- x {0,1} x --- = {{s,u1,...}}. Compute the
values of measures of cylindrical sets, which have the form

{S',ul,...Iu,,+1...up+k=B, S’ =S=(Z,k)} = C%’p,

where p > 0, and B 5 a word of length k consisting of zeros and ones. Certainly, one can interpret the model
described above as a measure p defined on the union N* of disjoint abstract segments of length 7. The
restrictions of 4 to the corresponding subsets are the measures v;, multivariate distributions g gy u,,... u,
being coordinated in the usual sense. Consider the vector { uC B }s=(i’ Nem = { Vi(s) C}’?,p }s M where B
and p are fixed. From what has been proved above, it follows that

{£Ch,} = (Ao + A1) AB x {1ein}-

Continuing with the supposition of primitivity, denote some invariant vector-row of the matrix A9 + A; by
{li,py}- According to the Perron-Frobenius theorem in the formulation of [6] for an arbitrary vector £, we

h
ave ' _ {ri,0}
nlggo (Ao + Al) &= ({l(i,k)}af) ({I(;,k)},{#(i k)}) ’

where the parentheses mean scalar products. Hence,

. i, {ri,m}
tim {1057} = (HamhAsluen)) oy ey (13)

p—0

It is evident that in {0,1} x {0,1}... a shift-invariant probability measure p* can be introduced such that

* s . ({13})‘43{/‘3})
# (L.;JCB’P) B ({13},{#,}) ’

and for every pair (i, k)
(i,k)

lim pCgY,) = piw -+ (UCH,)-
p—oo s
The direct product of measures, which is described by the right-hand side of the last formula, is, of

course, equivalent to the measure u because of the uniform boundedness from above and from below of the
ratios of measures for cylinders of the form Cpg. It is easy to understand that the shift in the space with
measure p* mixes. This facilitates checking singularity if the matrices Ap and A4, are known.
Ao A
A1 Ao
problems. For example, in [5], which is devoted to construction of C*-algebras with various properties,

Consider now a block matrix ( ) The matrices of such a type may often occur in various

such a matrix (more exactly, a matrix of order 2mx2n with (2x2)-blocks of the form (z " Z‘J )) is called
ij Pij

twice symmetrical (Definition 6.2.3), and a natural analog of the matrix Ag + A; is called its symmetrical

collapse.

The invariant vectors (a row and a column) of our block matrix are, respectively, {ui x) i r} and
{l;i, {0} Recall a formula expressing the measure with maximal entropy for the topological Markov
chain ([7, 8] and others). If the state space of the topological Markov chain is {1 : n], and the matrix of
multiplicities of edges is (h;;), then the measure of an arbitrary cylinder, corresponding to the word ¢; .. . 7g,
is g1 % ©F Pix H’?—ll hi; i; 4., Where 8 is the maximal eigenvalue of the matrix of multiplicities, {pI}} is an

J=
eigenvector-row, and {y;}7 is an eigenvector-column, such that ({¢}}, {v:}) = 1. Note here that the central
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measure of the adic stationary transformation of the Markov compact described by this matrix has the same
transition probabilities p;; = hi; p; / B¢;, but the initial distribution is a normalized vector column ([7] and
others). Now.let @ = {{w;}{°} be the space of one-sided sequences of numbers 1,...,2N*. Consider a mea-
sure 77 on it, specified by the following definition. Its multivariate distributions can be expressed in terms of
the matrix (Ao 4

Ay Ao
and {I(; 1} ) {{ii,x)}) by the same formulas by which multivariate distributions of the measure with maxi-
mal entropy are expressed in terms of the matrix {h;;} and its Perron-Frobenius eigenvectors. Of course,
Ap A1
A] Ao
sarily integer-valued and even rational. In order to describe a natural correspondence between the sets of
the form Cp ¢ and subsets of 2, we consider the events

) and its eigenvectors {p;}2V", {p?}3" (which are proportional to {La Y {pan)

this is only a formal analog of the topological Markov chain, because the matrix ( 1s not neces-

V" =(1<wn <N)N(1 Swmyr SN7);
Vit = (N* 41 < wm <2N)N(N* +1 < wmyy < 2N%);
Vi =(1<wm SN NN +1 Swmyy S 2N7);

Vi =(N*"+1<wm <2N")N(1 Swmtr S N¥);

U =wrvy U=V vy

For an arbitrary word B consisting of zeros and ones, B = b; ... b,, denote by Up the event U,,l1 A ATy
It follows from the definition of U;? that Up is a union of not more than 2° intersections of V;™. But, in
fact, every Up consists of precisely two such intersections, for example, Uyo11 = (Vi AVZAVIAVH)V (VA
VEAVEAVY). Ifa=0,1and b:2a<b< 2a+ 2 are fixed, and to any binary sequence U = ¢;...ca-10
one of two events corresponding to it, namely V& ()" K:'_‘ll(u)Vb“, is assigned, then when enumerating the
sequences U in the natural order, parities 7;(u) form a segment of the Morse sequence. The following is an
immediate consequence of the definitions.

Proposition 3. For any binary word B we have
#Cpp=nUs.

In fact, we have found the multivariate distributions for a process with consolidated states [9]. Using
system (10), it is not difficult to write down an explicit expression for the matrices Ao, A;:

e .0 yi(i,i) sl d) 0 _ a3
if T(,k) (i k1) = 2a; + 2kt — a;, — k7T € [ 2 y 2 ], then A, k) (i, k1) = &p;i\ pzr?i,k)(il,kl)’

Y1 (il)i) s(ilxi)

. Pi
lf T%i,k)(il,kl) = Zai + (2k + l)T - a{l -_ le E [ 2 ) 2 }, then a%i,k)(il,kl) = ——-——(P‘IA 1

1 .
Part aytiyi)

The remaining coefficients of matrices are equal to 0.

t+1  t7l4e
1+t ¢!
were found by solving a system similar to (11). (Note that because of the uniqueness of the solution of (11)

one can assume that the segments [a;, b; ] are minimal in the sense described above, if the scale is fixed.) We
—14+2k—Fk
2

As an example we consider the polynomial matrix A(t) = )from [1]. In (1], @i, b

have ¢; = a2 = —1/2, by = by = 1/2. One can take 1/2 as 7. We have "?i,k)(il,kl) = . Moreover,

the expression for a(()i’ k) (iy ky) BUITS into 0:
fori=1,51=1,if 2k # k1 + 1, k1 + 2;
fori =14 =2,1f 2k # k1, k1 + 1;
for:=2,¢ =1,if 2k # k1, k1 + 2;
fori=2,i1 =2,if2k¢k1.
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TABLE 5

GO LD @0 [ GD
(1,0)] o 0 |wi/X| 0
OO Ix [ 1/x | 0 Jw/r
(2,0) [wa/A| 0 | I/x | 0
(2,1) LU2/)\ 0 0 0

TABLE 6

O GLD [0 [ @D
(1,0) 1//\ 0 wl//\ wl//\
(L] 0 | 1/x] 0 0
(2,0)] 0 |we/X| 0 | 1/X
2,0 0 |w/Xx| 0 0

Here all the nonzero Pj. are equal to 1. We get the matrix Ay (see Table 5)

(5 E) (i k1)
The matrix A; arises in a similar way (see Table 6)

Here (1, wy) = (1, (V17— 1)/4) is the eigenvector corresponding to the eigenvalue A = (3 + V17)/2 of
the matrix A(1), wy = wi.

§4. ESTIMATE OF THE EXCESS FOR SUBSTITUTIONS

A simple corollary of the estimates from [2] is obtained for primitive substitution of the general form such
that its matrix has two eigenvalues > 1. Generally speaking, this corollary does not imply the topological
mixing (the corresponding algorithmic investigation of the asymptotic behavior of the excess for admissible
words of a special kind requires a rather complicated treatment). Still, for a particular case considered in
[9], this corollary is identical to “the fact 2” proved there by other methods.

The following result is obtained in [2].

Theorem. Let o be a substitution with primitive matrix M such that for the .second (by ordering by
magnitude) eigenvalue 6, of it we have ; < 6 (where 6 is the Perron-Frobenius eigenvalue), 0, is real,
majorizing 1 and the modules of other eigenvalues. Let the eigenvalue 83 be of order a + 1 in the minimal
polynomial of the matrix M and = log, ;. Then for an arbitrary mapping f of the alphabet of o to R
such that the vector of its values is orthogonal to the eigensubspace of M corresponding to 8, and for each
fixed point of o {u;};>1 there exists a real function Fy € C([1,+00]) such that for all z € [1, +0c0) we have
Ff(gl') = Ff(x) and
SI(N)= ) f(ui) = (logs N)*N?F(N) + O(%(N)),
1<i<N

where ¥ = o((log N)*N?).

We suppose that F is not a constant (this follows, however, from the nondifferentiability, which is also
proved in [2] for the case Fy # 0). We prove that there exist constants a,b, No > 0 such that if n > N,
then

irl\lif(S(f)(N +n) = SH(N)) < —an(logyn)™ << bnP(logy n*) < sup(S(f)(N +n) — SH(V)).
N

Lemma. Let on an interval [u,v] a continuous function h(z) be defined. Then one can find § such that if

- -~ h
A < §, then there exists z such that u <z < z +§é < v and hz + AZ) Aa) - h(uz — u(u) .

The assertion of the lemma is evident (the simplest case: z € (u,v) = h(z) > 0 = h(v) = h(v)).
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Our assumption about the function F; and its properties implies that there exist z; < z2, ; > 1
such that Ff is of constant sign on the closed interval [z, z;] (without loss of generality, one can suppose

that Ff > 0 on [z1,22]) and Fg(z1) < Fy(z2). Let 0 < e < Fylz) = Filz) €;1. Denote £; — € by

Iy —
€o. By the lemma applied to Fy and [z;,z;] we have the following: there exist constants c¢;,c; > 0,

such that if n is large enough, then there exist natural I, N', N’ € (c1n,c2n) such that 6§/ < n/6 < 6,
Fs(N' +n)— F;(N') > e06/8, ¥(N') is small enough in comparison with Sf(N') and S¥(N' + n), and

ST(N' 4+ n) — SI(N") = (logy N')*N'"? (Fy(N' +n) — Fy(N'"))
+F5(N' + 1) ((logg(N' +n))*(N' +n)f —(logg N')°N') + w, (14)

where w is small enough and the second item is positive. This proves the existence of the constant b.

The proof of the existence of the constant a (revised in proofreading) is connected with additional
difficulties. It is clear that (14) implies the existence of a if for any ¢, 0 < ¢ < sup Ff(z), A > 0 there
exist d,y € [1,0), d <y i(‘g—:ff—(y)— > A,
segment [d,y]), c1,c2 > 0, such that if n is large enough, then there exist I, N', N’ € (¢yn, cyn), such that
AJ8 < n/8 < A, Ff(N'+n) =~ F(N') > AA/S, "I’(N')I is a number small enough in comparison with
Sf(N') and Sf(N' + n), and (14) is valid with w small enough. But the existence of d,y (which implies
all the rest) follows from the representation of real numbers in the substitutional system of numeration
obtained in [2]. Namely, from the expression for the increments of the function ®(z) = z#Fy(z) on the
admissible intervals ([2], n°4) in the case Fy # 0 one can get the existence of constants D E,G>0

1

such that for any natural ! there exists a system of disjoint segments I},..., I I(;) C[1,0); I = [u },v]’]

(vj —ul) < DO, | Fr(v)) - F(ub)| > GOl i =1,...,0(); Y(vf—ul) > E(6-1), whlch is an e(I)-net
7
in [1, 8] with g(1) 2 0.

Either for any segment J C [1,6] and for any [ large enough one can find I C J with Ff(v})——Ff(u}) <0
(this would be enough for our purposes), or, supposing that for some A (c being fixed) the required d, y do
not exist, we obtain a contradiction with the boundedness of Fy.

ix[1f ]Ff(z) > ¢, A < § (by the lemma, § corresponds to the

~A) o[yl

Remark. After this paper was sent to the editorial board, the paper [11] appeared. It turned out that
our equation (10) is a particular case of condition (2.3) of [11], so our family of measures proves to be
self-similar from the point of view of the definition suggested there.

Translated by the author and V. Sudakov.

In this case, the condition for the constants ¢;, c2 to obey is the following one: (
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