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O N  T H E  L I M I T  D I S T R I B U T I O N S  A N D  A S Y M P T O T I C S  OF 
E X T R E M A L  V A L U E S  F O R  C E R T A I N  S E Q U E N C E S  OF R A N D O M  
V A R I A B L E S  

A. N.  L ivsh i t s  UDC 519.2 

The limit distributions are studied for some sequences of sums of coordinate random variables over the dy- 
namical system, connected with the Rudin-Shapiro substitution. The description of the limit distributions is 
presented on the b~7.sis of the expression Jar the sums of Rudin-Shapiro coe~cients obtained earlier. The ex- 
pression of the density is given for particular subsequences and the Markov representation for the "stationary" 
situation. The evalution of the excess is given for a wide class of substitutions. Bibliography: 11 titles. 

I N T R O D U C T I O N  

In [1], questions were treated connected with the problem of finding limit distributions for some sequences 
of coordinate random variables over the strictly ergodic system generated by the Rudin-Shapiro  substitu- 
tion. The goal of this paper is to prove certain general facts about the weak convergence of distributions 
which were described ili [1], to consider special cases using a method different from that used in [1], and 
to continue the investigation of a general problem set up in [1] about the matrices of generating functions 
of random variables for obtaining a more direct description of limit distributions. In addition, a simple 
general method is suggested which enables one to obtain estimates of the excess (sometimes sufficient for 
proving topological mixing) for substitutional dynamical systems on the basis of the results of [2] about 
asymptotics of the sums for the fixed points of substitutions. 

w W E A K  C O N V E R G E N C E  OF  S U B S E Q U E N C E S  O F  D I S T R I B U T I O N S  

Consider the class E of sequences of natural numbers 

E={{nk}~~ 0 < n 0 _ < 3 ;  nk+i = 4 n k + b , + i ;  0_<lk+l_<3}.  

Similar to [1], let for some {nk} e E a sequence {#1:} of measures on the real line be defined, descr:bing 

the distribution of the values of S(n + n~) - S(n) 2k , 0 < n < oo: 

- n - .oo  n+'--'-~ # l : O < l < n ,  2k < d  , 

where - c ~  < d < oo. The existence of/zk follows from an interpretation (contained, in particular, ill [1]) of 
S(n)  in terms of the Rudin-Shapiro substitution. We prove the following proposition: 

P r o p o s i t i o n  1. The sequence #k weakly converges to a limit measure # = #({nk}).  

Proof. It is evident that  for any natural  k and p there exists a natural  number Rk,v __< 42 such that  
nk+p = Rk,p + 42nk. Using the evaluations of [3] and the recurrency properties of substitutional dynamical 
systems, it is easy to deduce (similarly to the proof of the linear evaluation of complexity) the existence of 

a constant C > 0 such that  for any n, u, and k, u < 4 k+l, the relation I S ( n + u ) -  S(n) I 2k < C holds. Now 

let a continuous function f with modulus of continuity w I be defined on the segment I - C ,  C]. Evaluate 
the difference Pk+n(f) - #k(f)- We have by the ergodic theorem 

n-4 p --1 

P'+P(f) = n--,oolim n .14" E f ( S(i + n,+v)2,+v - S(i) ) 
i=0 

n--1 4P--1 

n---*oo n 4P f S ( j . 4  ~'+Rk, P W q + n k - 4  p ) - S ( j  4P+q)  
�9 2k+y  - 

j=O q=0 
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The definition of C implies that  the argument in the last expression has the form 

S ( j  . 4P + nk  . 4 y 
- -  ~ ( 1 A - }  2C t =  1 +  4v" - S ' -  " 4P - l - 4V" + f l :  i l l <  2k 

2k+P 

From properties of the function S(n) (Theorem 3 of [31), it follows now that  

t = # +  
S ( j  + nk)  - S ( i )  

2 k 

and, consequently, I gk(f)l < w I ( 2 c / 2 k ) ,  which implies our assertion. 

Assigning to any sequence { n k }  E E the number h({nk}) = lim n k / 4  k, we get a bijective correspondence 
k---*oo 

between E and [0, 4], and a parametrization of limit distributions by the numbers of this segment. Let us 
t ry to get a direct definition of the limit measure, using this parameter, similarly to the results about the 
limit distributions from [1], obtained without using the measures #k. 

S( [4"= ] )  
In [41, the function ~(x) = nlirnc~ vr~. 2" is introduced, its analytical properties are studied, and some 

results about the distribution of its values are obtained. Also an expression of the function A(x )v ~  in 
terms of the expansion of x in the 4-adic system of numeration is given. The sums and fractal functions 
connected with the Rudin-Shapiro coefficients were also studied in other works. We shall use a different 
expression of this f u n c t i o n - o n e  in terms of the diadic expansion, obtained on the basis of the formula for 
S ( n )  from [1]. The formula is as follows. Consider the function a(c ,  b), defined for integer 0 < c < b: 

2(b+2)/2 

2(b+1)/2, 

c7(C, b) = 2(b+2)/2 _ 2c/2 ' 

2 (b+l)/~ -4- 2 c/2, 

c - odd, b - even, 

c - o d d ,  b - o d d ,  

c - even, b - even, 

c - even, b - odd. 

(1 )  

Let the diadic expansion of n have the form 

u k . . . u 0  = 1 . . .  1 0 . . . 0 1 . . . 1 0 . . . 0 1 . . . 1 . . .  ; 

thus the series of ones (including the series of length one) axe Ub~ . . .  uc,, 1 < i < p, ci < bi < Ci+l - -  1, 
p 

1 < i < p -- 1. Introduce the numbers vi --- }--](bj - c j ) .  Then 
j=i  

p--1 

s ( . )  = ( -1)  ~ + ( - 1 T  §  (ci, bd + o(c,, b,). (2) 
i : 1  

For the convenience of the subsequent calculations we introduce the enumeration of bi, ci in the opposite 
! direction. We have b[ = bp+l - i ,  ci = cv+l - i ,  1 < i < p; 

p + l - i  p 
l I I I I t 

= = ( - I )  ' - '  a(ci, bi) -4- ( - - 1 ) %  (3 )  v i ~ ( b ) - c j ) ,  and S ( n )  a ( c l , b l ) + ~  ~' 
j : l  i=2 

Now extend the function a, using the same formulas (1), to all the pairs of integers c < b and suppose 
that  the diadic expansion of an arbitrary positive real number x is of the form 

I . . .  I 0 . . . 0 1  . . I O  . . . .  
b~ ' ' ' c 1 bk ck 
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! 
In this case, all v i are defined and finite, and 

p 
v' , / 7a (~ )  = ~ ( ~ ,  b;) + ~ ( - 1 )  '-~ ~(c~, b~), 

i=2 

where_p < co is the number of series of ones. This is an evident consequence of the definition of A(x). 
Denote V~A(x) by qp(x). Suppose that x = n + a, 0 < a < 1, n is natural. Find an explicit expression for 

t t " [c" h" l ~v(x) - S(n). Let [el ,hi]  , [C; ,D; I  b e  the series for x, p < cr [clt, bl 1, be the series for n. 
"''~ -- "'',L po, ~po J 

' " ' <c" We have It is evident that  b~ = b~', 1 _< i _< po; c i = C i , 1 < i < Po - 1; %0 - p~ 

~(~) - s ( . )  = 
P 

I i i  i I t  

E (-1)" '- 'a(c: 'b~) ( - 1 ) ' ~  + ( - 1 ) % ~  ' ' - '  - ~(c,0, b,o) - (_i)~,o ,, ,, ~ bp0)" 
i=po+l  

Note that Vpo_l' = v"p0_l. If C'po = c"p0, then a(C'po, b'~,o) - a(Cpo,bpo ) ' '  " = O. If c'po < c"p0, then, evidently, 
" = O, and by the definition of a(c, b) (formula (1)) we get cp0 

_ I ,, b"" i , b' ~-a(O,b' = ~(~;o,b;o) ~ , o ,  ,o~ = ~ , o ,  ,o) ~o) ( -1 )~;~  ~(o)) ,  

I I i# it where u(l) is - 2  t/2 1 + (-1)' Since ( - 1 )  b~~ u(0) ( - 1 )  v'~ = ( - 1 )  %~ in th i s  case  we have 
2 " 

~(~) - s ( . )  = 
P 

E ! vtl ( - i )  ~'-' ~(c~, b~) + ( - ~ )  .0 ~ ( c ;0 )  
i----po-l-1 

Compare this expression with the expression for ~0(a): 

P 
- -  O" t v t- - - v "  - -  r (Cpo-l ' - - l )  + E ( - - 1 ) . - t  J'o lo-(c~,b}). 

i=po+l  
It is clear that  

to 
! 

~ ( % 0 , - i )  = ~ - ~(c;0), ~ (~)  i - ( - i )  ~,0 (~(x) - s (~ ) ) ,  

~(~)- s(~)  = (-i)~;'o (1 -~(~)) = ~(~)(~ -~(~)). 
C tl As for the first case (c;0 = po/, we obtained instead, as is easy to understand, a(n)(~(o 0 -- 1). 

Denote the function ~o(z +/9) - ~(x) by g~(x), x > 0. Now we can prove the following statement.  

P r o p o s i t i o n  2. //' {nk} E E and h({nk}) = fl, then t'or arbitrary w the following equality is true: 

# ( { n k } ) ( { x l x < w } ) =  lim T - l m e s { x [ g p ( x ) < w ,  0 < x < T } .  
T - , - *  o o  - -  

Proof. For an arbitrary x, according to what has been said above, the following equality takes place: 

g#(~) = s([= + Z]) - s([x]) + r1(=)(1 - ~ ( (~} ) )  + r 2 ( ~ ) ( 1 .  ~ ( ( ~  + Z})),  

where r l (x)  = -t-a([x]) and r2(x) = -t-a([fl + x]). Let ~# = {A1 .. .Ak(p)} be the parti t ion of the positive 
real axis in accordance with the values of the vector (Six + ~ ] -  Six], rl(x),  r2(x)). The enumeration of Ai 
corresponds to the lexicographic ordering of the possible values of the vector. It is evident that the limits 
lira T -1 rues (Ai Cl [0, T]) exist. Passing to the case of continuous time does not bring any particular 

specific character. For the influence of the fractional part, its correlation with the number 1/2 is definitive. 
It implies the existence of the limit from the formulation of Proposition 2. The sets Ai can be described 

61 



more precisely. If we consider the closures of all the connected components of all shifts -4i f'l [n, n + 11 - n 
of intersections Ai fq [n ,n  + 1], then among them there exist only a finite number of different ones. Order 

l(i) them, for example, in order of appearance in the lists for n = 0 , 1 . . .  : I ~ , . . . , I  i . Then there exist 

increasing sequences of natural  numbers mi,r,J r = i , .  . . ,  l(i), 1 _< j < 0% such that  A i  = [.J ( I f  + mi,r) 
r, j  

J < n } by pi,~(n), then there exists a limit and if, for arbitrary n, we denote the number max{ j [ rni, ~ _ 

lira pi,,(n) , and it is sufficient to s tudy the behavior of ga on the segments only. 
n - - * ~  12 

Further, if fl is fixed, then for any e > 0 there exists 6 such that if [ fl' - fl ] < 6, ~ ,  { A~. ' = Ak(z,) } is 

�9 I i, } is the corresponding systems of segments ,. then numbers the corresponding partition, and {I~, 1 .. ,,'(i') 
�9 " <_ k(fl'), and for any p, 1 _< p _< s, numbers  1 <_ 3p < --- 1_<il  < . < i ,  _< k(//) and l_<z~ < . . . < z ,  -1 

" t l  < j;(P) < l(ip) and I < 3,, < ' < Jp"(P) < l'(i~) can be selected such that the sequences rn d and 
�9 - �9 - -  - -  " " - -  i p , j ~  

'J coincide with one another for all p ,  u such that 1 _< p < s, 1 < u < v(p), and, moreover, m i'p,j;~ - _ 

M +  ~ m e s (  j;Ii, A [i,p'J~'") < e, 
l_<p_<, 

l < u _ < v ( p )  

where M is the sum of the measures of all nonselected segments of both collections of systems. Incidentally, 
this evidently implies that  if fl' --+ fl, then p~, weakly converges to/~Z. The assertion we are proving now 
appears to be, in fact, of the same kind. Denote the number n k / 4  k by fla. Then 

S(n+nk)-S(n)2 ~ =~o(  n --~- + f l k ) - W  (n)+_~_ 2 _ k ( a ( n + n k ) _ a ( n ) ) .  

We consider the problem for flk with the discrete parameter, but  one can construct for flk parti t ions and 
systems of segments by the scheme considered above as well. Directing ~ to 0, for large k one can again 
single out segments in the way described above�9 Since the partition for fl is fixed, one can (for k large 
enough) assume that the collection of segments to be selected includes all the segments connected with ft. 
Since g ~  converges uniformly to g~ on each of them, the weak convergence of the corresponding discrete 
distributions to the limit one is evident. The proof is complete. 

w CONSIDERATION OF THE CASES nr = 2 �9 4 r AND nr = 4 r 

First, join both sequences into one and consider the general question on the distribution of values of 
, u /  u~ = S ( n + 2 ' )  - S(n),  l > 1. It is evident that the sequential differences A~ = u,~ - n - i  can be simply 

expressed in terms of a(i), namely, A~ = a(n + 2 ' ) - a ( n ) .  We are solving the problem about  the distribution 
of sums 

s ( 2 '  - 1), s ( 2 '  - 1) + a'o, s ( 2 '  - 1) + a'o + . . . .  

Let n be k. 21 + c, where k is an integer, and 0 _< c < 2 t. The definition of the Rudin-Shapiro  coefficients 
a(n) implies that  if 2 '-1 < c, then a(n) = a(c) x a(2k + 1) (this can be checked by considering the series 
of those ones in which the most significant digit of c is situated). Therefore, 

f a(c)(a(k  + 1 ) - a ( k ) ) ,  0 < c < 2 l-1, 
A / 

a(c) (a(2k  + 3) - a(2k + 1)), 2 ' - 1  < c < 2'. (4) 

We also have 

2 t (k+1) - -1  2~- t - -1  2 t_1  

' = a ( i ) = a ( k )  Uk.2t--1 
i=21 k i=0 i=2 I- 1 

= R 1 a(k) + lrl~ a(2k + 1) = a(k ) (R  I + (-1)kR2t), 

a(0 

(5) 
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' - R ~ ( - 1 ) i a ( k ) + n ~ a ( k + l ) ,  Ztk-2t+21--i--1 - -  

because, as is known,  a(2k + 1) = (--1)t' a(k). 
Thus,  the value of a(k),  a(k + 1) and  the pari ty of k determine the values of u~ for k - 2 t - 1 _< i < 

(k H- 1)- 2 t - 1. Since the second of the expressions (4) is a(c)((-1)k+aa(k + 1) -- ( - 1 ) k a ( k ) ) ,  it is clear 
tha t  for any  k one of these expressions is identically equal to 0. 

Consider the  following two measures: 

21-t_ 1 2t_l  

i=0 i=2 t - t  

Further ,  for an  a rb i t ra ry  measure # and numbers a ,  /3, denote #~,#(A) = #(A/a -/3), where A is an 
arb i t ra ry  measurable  set (we assume tha t  #0,# = 6(0) for any/3).  It is easy to see t ha t  all the measures  of 

(k+ l ) -2 t - -2  
l the form ~ 6,4 are in fact 2t-16(x) + #'k, where #~ are #~ a,# or #2 a,#, a = ~ 2 , / 3  = =t=R~ + R9 t, 

i = k . 2  I - 1  

Form for the  #~ the corresponding table on the basis of correlations (4) and  (5) (see Table 1). 

TABLE I 

~(k) = - i  & ~(k+ ~ ) = - 1  

a ( k ) = - I  & a ( k + l ) =  1 

a(k)= 1 &: a ( k + l ) = - I  

a(k)= 1 & a(k+Z)= 1 

k even k odd 

l 
#2 2,-n~-n'~ 

].t~ 2 , _ R I _ R ~  

I'Z ~ - 2 ,  RI+RI2 

l #2-2, RI+R'= 

I 
~zl 2,-hi+n; 

I 
I _  I 1 - 2 ,  R 1 R 2 

I 
I~ .  t r 2, R t - R 2 

Studying  the  bivariate distr ibutions of coordinates for the dynamical  sys tem in the space of sequences 
generated by  the  Rud in -Shap i ro  subst i tu t ion (d .  (1)) shows tha t  the probabil i ty of each of the 8 s i tuat ions 
presented in Table 1 is 1/8. Denote by/z  t the sum of measures from the table. Now our task is to s tudy  the 

1 z where r = I/2 for I even, and r - (l - 1)/2 for I odd  (continuous measures are being measures ~ #2-%0, 
accumulated  "ha l f  of the t ime") .  One can find all the necessary informat ion about  Ri t in [3], and  about  #1 t 
and #2 l below. (Corresponding facts are obtained in [1] on the basis of the results of [3].) 

Now we consider the cases of even and odd I separately. 
I. l is even; R1 ~ = 2 ~, R2 t = 0. The simple application of the argument  of the proof  of Theorem 22 in [3] 

gives in this case 

: o  < ,  < 2 '-~ - 11 s ( . )  = , }  = .f " '  #{~ 
- -  _ _  [. 2 r - I  , 

2 r + l  - -  V, 
#{~ :2'-' _<~_<2'-~ Is(~)=~} = 2~_, 

O < v < 2  r ,  

v = 2~;. 

2 T < v < 2 T+a - 1, 

v - - 2  r .  

(6) 

When  finding the limit distribution,  we use the principle of equali ty of the spatial  averages and  the 
temporal  ones. T h a t  is why it must  be clear that  turning an expression in (4) into 0 corresponds to adding 
&measures wi th  some factors to the tabular  measures. Of course, these &measures are either of the form 
6~.~,_, or 'L,'.~,+~,_~_, 
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TABLE 2 

a ( k ) = - I  & a ( k + l ) = - I  

a ( k ) = - I  &: a ( k + l ) =  1 

a(k)= I &: a(k+l)=-I  

a ( k ) =  1 &: a(k+l)= I 

k even k odd  

- n l  Pg -RI' + R:' 

R~ - R~ R~ + R~ 

-RI  + R~' .n~' - R~' 

F o r m  the corresponding table  (Table 2), suitable for odd  l as well. The  n u m b e r s  included must  be  
interpreted as follows: a n u m b e r  v is assigned to 21-15v (cf. (5)). 

For even l we get tha t  the  cont r ibut ion  to the limit measure  equals 6(1) + 6(-1) 
" 4 

Now replace every measure  in Table  1 by  the corresponding limit measure  (by  the  cont r ibut ion  to the  
total  one), denot ing be fo rehand  the  measure  on the segment [0, 1] wi th  densi ty  2x  by  #~, and the measure  
on the segment [0, 1] wi th  dens i ty  2(1 - x) by  #~. We have (see Table  3): 

TABLE 3 

#~ 2,--1 ]A~--2,--1 
v~ * 2,--1 ~1 2,--1 
#~-2, 1 /~-~-, 1 

# ~ - - 2 ,  1 ~ 2, 1 

The total  cont inuous componen t  is the measure  on the segment [ - 3 ,  3] with dens i ty  

{ (x+3) /s ,  
p l (x)=  3/16, 

( 3 - x ) / s ,  

- 3  < x < - 1 ,  

- 1  < x < 1, 

1 < x < 3 .  

II. l is odd,  R1 = R2 = 2 r. Th e  discrete component ,  as follows from Table  2, is ( 6 ( - 2 )  + 26(0) + 6 (2 ) ) /8 .  

73, 
# { =  :0 < = < 2 ' - 1 - 1 1  s(=) = , }  = 2".+1 _ , ,  

2v - 2 "+1, 
#{~:2 '-I <_n<_2'-lts( ,o=v}= 2"., 

0 < v _ <  2"., 

2". < v < 2 ".+1, 

2 r < v < 2 r'+l, 

v = 2 r+ l .  

Here #~ is the  measure  on [0, 2] wi th  densi ty equal to x on [0,1] and  equal to 2 - x on  [1,2],  while/z~ is 
the measure  on [0,1] wi th  dens i ty  2 x. The  contributions to the cont inuous c o m p o n e n t  of  the measure  are 
presented in Table  4. 

TABLE 4 

#~ 2,-~ #~-2,o 
#~ 2,-2 #~ 2,o 

- 2 ,  2 # 1 - 2 , 0  

-2 ,  2 #2  2,0 
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The  resul t ing measure  is concentra ted  on the segment [ - 4 ,  4], and its densi ty  is 

4 - Iz l  2 < bl < 4, 
64 ' 

p 2 ( z )  = 3 2 - I~1  0 < I~1 < 2. 
- ~ - +  6------~--' - - 

It is useful  to consider  the general case n~ = S .  4 ~, where S is a fixed na tura l  number .  We have (for an 
arb i t rary  I > 1) 

2t (k+S)--I k + S - - 1  k+S-I 

a(i) = .R1 ~ a(j) + R2 ~ (-1)Ja(j), 
i=2# k j = k  j = k  

2 t - l + 2 t ( k - I " S ) - - I  k + S  k + S - - 1  

a(i) = R1 ~ a(j) + R2 ~ ( - 1 ) J a ( j ) .  
i=2~- 1-F21k jmk-t-1 j = k  

In our  case (l = 2r ,  S may  be even) R2 = 0. Here is an analog of  formula (4): 

(7) 

a(c)(a(k + S ) -a ( k ) )  = ula(c); 
6~, s = a(n + S .  2 ' ) -  a(n)= a(c)((--1)k+Sa(k + S ) -  ( - 1 )  k a(k)) = u2a(c); 

0 < c < 2  t-~ 
(s) 

2 1-1 < c < 2  I. 

Since S is fixed, consider a measure  # s  on the set E of triples { (5, fl, 3') : a = 4-1; fl = 4-1; 3" = - 2 ,  0, 2 } 
and specified by  the equal i ty  

g s ( a , f l ,  7)  = P (a(k)= a; a(k + S ) =  fl; u2 = 3") = P (Aa,#,.r). 

For each collection (a ,  fl, 3') E E ,  define a probabi l i ty  measure  ua,~,7 on the set of integers tha t  describes 
k + S - - 1  

the dis t r ibut ion of values of E a(j) under  condit ion A~,a,7. 
j=k  

We have the following expression for the  required measure:  

1 * * y (9) 
(~,/L-r)eE 

where/z*,  i = 1, 2, relates to the case S = 1 considered above. 

w MARKOV REPRESENTATION FOR THE LIMIT MEASURES 

In [1], we s tudied sequences of matr ices  of generat ing functions of probabi l i ty  dis t r ibut ions ,  which were 
cons t ruc ted  in the  following way. Let A(t) be a polynomial  mat r ix  such that  all the  coefficients of all 
these polynomials  are non.negative and the number  matr ix  A(1) is primitive. Let a sequence of polynomial  

matr ices  Bn(t) be defined by  the recursion Bo(t) : E, S n + l ( t )  = A(t)B~(t2), Bn(t) = {bij(t)}i,j=l,~ N 

b~,j( t )  = ~ ~ . ( i , j )  • o n  + y ~ ( i , j )  
l ' s , , ( i , j )  ~ q- "" " T l . 'yn(i , j )  ~ . 

Probabi l i ty  measures  u~ were considered, defined as follows: 

y~(i,j) 
n n - - I  

ViJ .= ( b i j ( 1 ) )  ~ pr~ ~ ( k / 2 n ) .  
k=~,(i j)  

It was claimed that  these measures converge to limit measures.  The  proofs (using me thods  of harmonic  
analysis and other  methods)  were carried out  for part icular  cases only (for the sake of simplicity).  It tu rned  
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out that the matrix of measures obtained (in fact, a row of measures, since the limit measure does not 
depend on the index of the row) satisfies certain relations (in a bivariate particular case presented in [1] by 
system (4)). Using these relations, we obtain in this paper explicit expressions for the values these measures 
take on binary segments. In the general case (i.e., for not necessarily nonatomic limit measures), vi stands 
for its purely continuous component. 

Since A(t)  = B l ( t ) ,  we can interpret the measures #ii = b~j(1)vlj as measures corresponding to the 
matrix A(t) ,  considered as a matr ix  of generating functions. Thus, we have a vector of limit measures r'i 
such that for each segment [e, f ]  

([2e, 2fl), l_<j-< N, II )  -- a- (10) 
i=1 

where A is the Perron-Frobenius eigenvalue, and {~i} is the corresponding eigenvector-row of the number 
matrix A(1). 

For any measure ui we denote the intersection of all closed segments of r,i-full measure by [ai, bi]. Then 
the following relations hold: 

max, (bi + ,, (i, ) --- 2 bj, re:in. (ai + s1(i, ) = 2aj, (11) 

as evidently follows from (10). This, in turn, implies that all ai and bi are rational ([1], w 
Take the maximal number 7- such that 1/(2r),  ki = (hi - e l ) Iv ,  and ai/T are integers for all i. Consider 

all possible segments of the form 
[ai + k~', ai + (k + 1)7"], 

0 < k < ki - 1, 1 < i < N .  We index these segments by the corresponding pairs (i, k) (without identification 
N 

of the coinciding segments). Denote by N* the number of all such segments, equal to ~ ki, and by M the 
set of these segments, i=1 

Let v be a natural  number, and u l . . . u v  be an arbitrary sequence of zeros and ones. Denote by 
la(i,k),,~ ..... ~,, the value of 

vi{ x E [ai + k r, ai + (k + 1)v] ] the first digits of the binary expansion of 

x -- al k a r e  u 1 . . . ?A v ) .  
T 

The system (10) allows one to get all the values #(i,k),,t ..... ~,. sequentially for v = 1,2, . . . .  Thus, matrices 
0 a 1 

A o  = ( a ( i l , k l ) ( i 2 , k 2 )  } a n d  A1 = ((il ,kt)(i2,k2) } can be defined such that 

E "  P ( i , k ) , , ,  - - - -  a(i,k)(il,kl)la(ix,k~), ~ =  0,1. (12) 
( i t ,kx)  

These matrices are completely specified by the coefficients of system (10), i.e., by the values of A, {~oi}, and 
discrete measures {#i1}. 

Further applications of system (10) prove that,  similarly for any collection a = u l , . . . ,  u~, of zeros and 
ones there exists (and can be constructed in a natural  way) a matrix Aa = { a~,,k,)( i2,k,)}  such that 

#(i,k),~ = a(i,k) (i~,k~) P(i~,k~). 
( i l , k x ) E M  

The matrix A~ can be expressed in terms of A0 and At.  Equality (I0) implies the following simple remark. 
If o: = aft is the concatenation of words consisting of zeros and ones, then 

E #(i,k),,~' = a(i,k)(h,k~) #(h,k~),/~. 
(il,kl) 
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T h u s ,  {tz(i,k),ao} = A~{#(~,,kO,0} = A,~Ao{#(i~,kO}, and we have A~0 = A~,Ao. Similarly, Ao = A,~A~. 
Hence, if a = u l . . .  uo, then A~ = A ~  . . .  A~,, and the collection of numbers {tZi,k} in combination with 
matrices determines completely all the measures vi. It follows from (12) that  the vector-column {#(i,k)} 
is invariant with respect to the matr ix  A0 + A1. If this matrix is primitive, then the last property of the 
vector {#(i,k)} specifies it uniquelly. (Recall that vi are normalized.) 

Now we study measures defined in the space {(i, k)} x - - .  x {0, 1} x . . . .  {{s, u l , . . .  }}. Compute the 
values of measures of cylindrical sets, which have the form 

s '  = B ,  s '  , ?all,--, [ U,+l .  �9 .up+k = s = ( i , k ) }  = Cs,v ,  

where p > 0, and B ':s a word of length k consisting of zeros and ones. Certainly, one can interpret the model 
described above as a measure # defined on the union N* of disjoint abstract segments of length T. The 
restrictions of/~ to the corresponding subsets are the measures vi, multivariate distributions #(i,k),,,1 ..... ~o 
being coordinated in the usual sense. Consider the vector { # Cb,p }~=(iJ,)eM -- { r iO)C ~ -- B,v }~EM' where B 
and p are fixed. From what has been proved above, it follows that 

{#C~,v} = (A0 + A1)VAn x {/z(i,k)}. 

Continuing with the supposition of primitivity, denote some invariant vector-row of the matrix A0 + A1 by 
{l(Lk)}. According to the Perron-Frobenius theorem in the formulation of [6] for an arbitrary vector (, we 
have 

{~'(i,k)} 
limoo (A0 + A, ) '~  = ({/(i,k)},() ({l(,,k)},{t~(,,k)}) ' 

where the parentheses mean scalar products. Hence, 

f ,-~(i,k) {tt(i'k) } ( 13 )  l i ra t/It....,v } = ({l(i,k)},AB{#(i,k)}) ({l(,,,~)},(.(,,~.)}) . 
p---.~oo 

It is evident that  in {0, 1} x {0, 1} . . .  a shift-invariant probability measure #* can be introduced such that  

(U ) if* C/~,p = ( {M, {~ , } )  ' 

and for every pair (i, k) 
,,-~(i,k) * s 

lira #~/3,, =#( i , k ) ' / ~  (UCB,o)-  
p--*OO 8 

The direct product of measures, which is described by the right-hand side of the last formula, is, of 
course, equivalent to the measure # because of the uniform boundedness from above and from below of the 
ratios of measures for cylinders of the form CB,0. It is easy to understand that  the shift in the space with 
measure #* mixes. This facilitates checking singularity if the matrices A0 and A1 are known. 

( a ~  a l ) .  T h e m a t r i c e s o f s u c h a t y p e m a y o f t e n o c c u r i n v a r i o u s  Consider now a block matrix A1 A0 

problems. For example, in [5], which is devoted to construction of C*-algebras with various properties, 

such a matrix (more exactly, a matrix of order 2rnx2n with (2x2)-blocks of the form _Pii ) is called 
\ qij pij 

twice symmetrical (Definition 6.2.3), and a natural  analog of the matrix A0 + A1 is called its symmetrical 
collapse. 

The invariant vectors (a row and a column) of our block matrix are, respectively, {#(i,k)}{#(i,k)} and 
{l(i,k) } {l(i,k)}. Recall a formula expressing the measure with maximal entropy for the topological Markov 
chain ([7, 8] and others). If the state space of the topological Markov chain is [1 : n], and the matr ix of 
multiplicities of edges is (hi j),  then the measure of an arbitrary cylinder, corresponding to the word il �9 .. ik, 

is 01-k haixhai~* I-[/=lk-1 hii,,j+l " where 0 is the maximal eigenvalue of the matrix of multiplicities, {ha~}~' is an 
eigenvector-row, and {hai}~ is an eigenvector-column, such that ({ha*}, {ha/}) = 1. Note here that the central 
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measure of the adic stationary transformation of the Maxkov compact described by  this matr ix  has the same 
transition probabilities pl j  = h~i qoj/OT~, but the initial distribution is a normalized vector column ([7] and 
others). Nowlet  f / =  { {wi}  ~o } be the space of one-sided sequences of numbers 1 , . . . ,  2N*. Consider a mea- 
sure 7? on it, specified by the following definition. Its multivariate distributions can be expressed in terms of 

the matrix A1A~ AoA1 and its eigenvectors {~9i}12N~ I.Vi $" *12N*]1 (which are proportional to {/z(i,k)} 1 {#(i,k)} 

and {l(i,k)} N" {l(~,k)}) by the same formulas by which multivariate distributions of the measure with maxi- 
mal entropy are expressed in terms of the mat r ix  { h i j }  and its Perron-Frobenius eigenvectors. Of course, (A0 
this is only a formal analog of the topological Markov chain, because the matrix A1 A0 is not neces- 

sarily integer-valued and even rational. In order to describe a natural  correspondence between the sets of 
the form CB,o and subsets of f~, we consider the events 

Vim = (1 _< w,,, < N*) N (1 <_ 0/m+ 1 < N*); 

V2 ~ = (N* + 1 _< w., _< 2N*) fl (N* + 1 _< w.,+l _< 2N*); 

V ~  = (1 <win _< N * ) N ( N *  + 1  _< w..+l _< 2N*); 

V~  = (N* + 1  < w . .  < 2N*) N (1 < W m + l  <_ N*); 

ug" = v y  v = v v g .  

For an arbitrary word B consisting of zeros and ones, B = bl b,, denote by UB the event U~I A A U" . . . . . .  b,,- 
It follows from the definition of U~' that Us is a union of not more than 2" intersections of V/"~. But, in 
fact, every UB consists of precisely two such intersections, for example, U101a = (V # A V 2 A V43 A V 4)  V (V~ A 
V12 A V 3 A V44). If a = 0, 1 and b : 2a < b _< 2a + 2 are fixed, and to any binary sequence U = c l . . .  C n - l a  
one of two events corresponding to it, namely V a trn-1 V, n is assigned, then when enumerating the il(u) ' ' '  " i~-l(u)  b ' 
sequences U in the natural  order, parities i l(u) form a segment of the Morse sequence. The following is an 
immediate consequence of the definitions, 

P r o p o s i t i o n  3. For  a n y  b i n a r y  word  B we have  

*C = r/Us. # B,/, 

In fact, we have found the multivariate distributions for a process with consolidated states [9]. Using 
system (10), it is not difficult to write down an explicit expression for the matrices A0, An: 

0 [ ] t h e n  , if r(i,k)(it,kx) -- 2a i  + 2 k T  aix -- k i t  E yl(il  ,i) s l (Q, i )  o ~oil I 
2 ' 2 ' a(i,k)(Q,kl) qoiA 2 U,k)(il,kl ) 

if  v~i,k)(ix,kx) ~- 2a i  + (2k-~- 1)7"--cti t -- k i t  E [ y l ( i l , i )  s( i l , i )  ] then a I _ r 1 
' 2 ' ( i ' k ) ( i x ' k l )  - -  ~oiA P2r~i,k)(il,kx)" 

The remaining coefficients of matrices are equal to 0. 
( t + l  t - a +  t ) 

As an example we consider the polynomial matrix A(*) = 1 + t -1 t -1 f rom [1]. In [1], ai, bi 

were found by solving a system similar to (11), (Note that because of the uniqueness of the solution of (11) 
one can assttrne that  the segments [ai, b/] are minimal in the sense described above, ~f the scale is fixed.) We 

havea l=a2  _112, b1=b2=112" One can take l/2 as T W e h a v e r 0  - 1 + 2 k - k 1  Moreover, 
= �9 ( i , k ) ( i l , k l )  - -  2 " 

the expression for a ~ turns into 0: (i,k)(i~ ,k~) 
f o r i = l ,  ia = l ,  i f 2 k # k l + l ,  k l + 2 ;  
f o r i = l ,  il = 2 ,  i f 2 k # k l ,  k l + l ;  
f o r i = 2 ,  il = l ,  i f 2 k # k l ,  k a + 2 ;  
for i = 2, il = 2, if 2k # kx. 
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(1,0) 
(1,1) 
(2,0) 
(2,1) 

TABLE 5 

(I,0) (1,1) (2,0) (2,1) 
0 0 ~x/A 0 

I/A 1/A 0 WI/~ 
w2/A 0 I/A 0 
w2/A 0 0 0 

TABLE 6 

(I,0) ( I , I )  (2,0) (2,1) 
(i,0) I /A 0 031/~ WllA 
( I , I )  0 I /A 0 0 
(2,0) 0 ~2/~ 0 I/A 
(2,1) 0 ~ / ~  0 0 

Here all the nonzero P~e are equal to 1. We get the matrix A0 (see Table 5) 
(i,k)(ix,kl) 

The matrix A1 arises in a similar way (see Table 6) 
Here (1, wl) = (1, ( v ~ -  1)/4) is the eigenveetor corresponding to the eigen~alue ,~ = (3 + v ~ ) / 2  of 

--1 the matrix A(1), w2 = w 1 

w ESTIMATE OF THE EXCESS FOR SUBSTITUTIONS 

A simple corollary of the estimates from [2] is obtained for primitive substitution of the general form such 
that its matrix has two eigenvalues > 1. Generally speaking, this corollary does not imply the topological 
mixing (the corresponding algorithmic investigation of the asymptotic behavior of the excess for admissible 
words of a special kind requires a rather compIicated treatment). Still, for a particular case considered in 
[9], this corollary is identical to "the fact 2" proved there by other methods. 

The following result is obtained in [2]. 

T h e o r e m .  Let a be a substitution with primitive matrix M such that for the .second (by ordering by 
magnitude) eigenva/ue 02 of it we have 02 < 0 (where 0 is the Perron-Frobenius eigenvalue), 02 is real, 
majorizing I and the modules of other eigenra/ues. Let the eigenva/ue 02 be os order a + 1 in the minima/ 
polynomiM os the matr ix  M and ~ = log o 02. Then for an arbitrary mapping f of the alphabet os a to R 
such that the vector of its va/ues is orthogonal to the eigensubspace of M corresponding to O, and for each 
fixed point o fa  {ui}i_>l there exists a reM function F I E C([1, +oo]) such that for a/1 x E [1, +oo) we have 
Fs(Ox) = Fs(~) and 

S S ( N )  = E f (ui )  = (log0 N) '~N#FI(N)  -P O(ff2(N)), 
I < / < N  

where ~ = o((log N)~W~). 

We suppose that  F I is not a constant (this follows, however, from the nondifferentiability, which is also 
proved in [2] for the case F I ~ 0). We prove that there exist constants a, b, No > 0 such that  if n > No, 
then 

i ~ f (S ( l ) (N  + n ) -  S I ( N ) )  < -an#( logon)  <~ < <  bn#(logo n<~) < sup(S ( l ) (N  + n ) -  S I ( N ) ) .  
N 

L e m m a .  Let on an interval [u, v] a continuous function h(z) be defined. Then one can find 6 such that f f  
h(z + A) h ( z )  h (v )  h(u) 

A < 6, then there exists x such that u < z < x + 6 < v and -- 
A v - - u  

The assertion of the lemma is evident (the simplest case: x e (u, v) => h(x) > 0 = h(v) = h(v)). 
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Our assumption about  the function F f  and its properties implies that  there exist xl < x2, xa > 1 
such that  F f  is of constant  sign on the closed interval [x~, x~] (without loss of generality, one can suppose 

that  F f  > 0 0 n  [xl ,x2])  and FI(zx ) < Fl(x2 ). Let 0 < e < Ff(x2)-FI(x~) = el .  Denote C l - e  by 
~2  - -  ~1 

e0. By the l emma applied to F I and [x~,x2] we have the following: there exist constants  Cl,C2 > 0, 
such that  if n is large enough,  then there exist natural  l, N' ,  N'  e (c~n, c2n) such tha t  ~/8 < n/8 i < ~, 
FI(N'  + n) - Fy(N') > ~0 ~/8, V(N') is small enough in comparison with S / ( N  ') and  SY(N ' + n), and  

S'f(N ' + n ) .  S I ( N  ') = (logoN')'~N'~(FI(N ' + n ) -  Ff(N' ) )  

+Ff (N '  + n) (( loga(U'  + n))'~(N ' +n)  ~ - (log 0 N')'~N 0 )  + w, (14) 

where w is small enough and the second i tem is positive. This proves the existence of the constant  b. 
The  proof of the existence of the constant  a (revised in proofreading) is connected with additional 

difficulties. It is clear tha t  (14) implies the existence of a if for any c, 0 < c < s u p F f ( x ) ,  A > 0 there 
x 

exist d,y E [1,8] d < y, Fy(d)-Fi(y) > A, inf Fy(x ) > c, A < ~ (by the lemma,  6 corresponds to the 
' y - -  d z e [ d , y ]  

segment [d, y]), cl, c2 > 0, such that  if n is large enough, then there exist l, N' ,  N'  e (cl n, c2n), such that  
A/O < n/8' < A, F f (N '  + n) :- r ( Y ' )  > AA/8 ,  I~(Y')l  is a number  small enough in comparison with 
S I ( N  ') and S f ( N  ' + n), and (14) is valid with w small enough. But  the existence of d, y (which implies 
all the rest) follows from the representation of real numbers in the subst i tut ional  system of numera t ion  
obtained in [2]. Namely, f rom the expression for the increments of the function if(x) = x#Fy(x) on the 
admissible intervals ([2], n~ in the case FI ~ 0 one can get the existence of constants  D, E,  G > 0 
such that  for any na tura l  l there exists a system of disjoint segments I~,, . . ,  I tv(t) C [1, 0]; I /  = [uj,t vii ]; 
(vJ -- uJ) < D S - ' ;  I Ff(vJ)  - F(u~) ] > GS~-'; j = 1,...,v(1); ~.(vJ - uJ) > Z ( 8 -  1), which is an e(/)-net 

3 

in [1,81 with ~(1) ~ 0. 
1---~oo 

Either for any segment Y C [1, 8] and for any / l a rge  enough one can find I] C J with Ff ( vJ ) -  Fl(uJ) < 0 
(this would be enough for our  purposes), or, supposing that  for some A (c being fixed) the required d, y do 
not exist, we obtain a contradict ion with the boundedness of F I. 

In this case, the condit ion for the constants Cl, c2 to obey is the following one: (cxA, c2 + 1 A~ - - - 7 -  , D [d,y]. 

R e m a r k .  After this paper  was sent to t h e  editorial board, the paper  [11] appeared.  It turned out  that  
our equation (10) is a par t icular  case of condition (2.3) of [11], so our family of measures proves to be 
self-similar from the point  of view of ~he definition suggested there. 

Translated by the au thor  and V. Sudakov. 
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