A. N. Livshits

THE DECODING OF SEQUENCIES,
GENERATED BY MORPHISMS, CONNECTED
WITH PRIMITIVE SUBSTITUTIONS

There is some algorithmic construction, producing words, languages
and sequences, which has many applications in different branches of math-
ematics and other sciences. It is so called morphic generation, which is in-
tensively studied nowadays specifically in the theory of formal languages
and in the symbolic dynamics. In both theories the structure of sequences
and the questions of unicity of decoding (in some senses) are of importance
. Here we shall discuss some notions and results in these topics (among
which there are new ones).

If ¥ = {o;} is a finite alphabet, ¥* is the free monoid, consisting
of all the words over ¥ (including A), and h : ¥* — X* — morphism
(h(uwv) = h(u)h(v), for any u,v € ¥*), then, beginning with any word
w € Y1, we can form the triple G = (X, h,w), which is called DOL-
system [1] (the pair (X, h) being sometimes called the DOL-scheme) and
obtain:

1) the sequence of words S(GQ) : w, h(w), h?(w) = h(h(w)),. ..

2) the languages L(G) = {hi(w)]i > 0}.

To the morphism h the matrix #X X #X corresponds. Its ij-th element
in the number of occurrences of ¢; in the word h(o;). If not specified we
shall suppose this matrix to be primitive (some degree has only positive
elements).

Let A = {a;}}_, be arbitrary sequence of symbols (from X), —oco <
u<v<oo Ifu<p<qg< v then we shall denote by A(p,q) the
word (finite, one-sided) a, . ..aq. If B is the word, then, in order to obtain
B(p,q) we have to convert B into a sequence with w = 1 for finite and
right infinite words or to a sequence with v = 0 for left infinite words.

Now we present the well known space of two-sided infinite sequence
Xp, connected with morphism. X = {z = {z;}32_ | for every finite
p,q: p < g, there exist k,[,r, s such that z(p, q) = (hFo;)(r,s)}.

It is clear that X} coincides with the object , which is denoted in [2],
as X 4, where A = {hala € £}. X, is a Cantor set and the shift T}, is its
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homeomorphism. The elements of X}, are called admissible sequences and
the sequence A = {aj};?:u is called admissible if there exists ¢ € X}, such
that either A = z, or correctly defined and equal are the words A(u,v)
and X (u,v). We call the word admissible if its conversion is admissible.
Homeomorphism 7} is strictly ergodic and its topological and metric prop-
erties depend on properties of morphism. In some cases the combinatorial
conditions are obtained for the spectrum of such system to be continuous,
purely discrete and mixed ([3], [4], [5], [2] and bibliographies). For combi-
natorial investigation of morphically generated dynamical systems and of
formal languages, generated by the DOL-systems, the coding properties
of some collections of words are of great importance. In different circum-
stances different kinds of properties can be treated as coding ones.

Definition [1]. Nonvoid language C in alphabet ¥ is called code if for
any words x;,,... ,%;,, ,Tj,...,2;, such that z; ...x; =z, ...z, the
equality x;, = z;, takes place.

We say that the code C' has the delay p from the left if "2; ...2; is
the prefix of z;, ...z implies z;, = z;,.

The class of codes among the languages is rather small but it should
become greater if we introduce some restrictions to the classes of pos-
sible sequences {i1,...,im},{j1,---,jn} and of possible “messages”
T Xy, - . - T4, . We shall consider the concrete situations of this sort.

In the work [6] the next statement is proved.

m

Theorem 1. Let h be a homeomorphism from ¥* into ¥* such that for
at least one a in ¥h(a) # \. Let #¥ = m and let wy and wo be the words
over ¥.. Then the existence of n such that h"™(w;) = h™(w-) Is equivalent
to h™ L(wy) = y™ Hws).

It implies the following: if the language {y™ !(0})}s;ex is code then
every language {h"(0;)}s;ex for n > m — 1 is code . When investigating
the dynamical systems of importance are the properties of these languages
and of their union which is often far from being code (even with great
restrictions, corresponding to the supply of admissible words and with
taking into account the natural hierarchical relations which must not be
treated as ambiguities-corresponding hierarchical codings of admissible
words are connected with substitutional systems of numeration [7], but
there are many reasons in investigation of actual ambiguities (in known
cases discrete spectrum corresponds to great ambiguities).

In numerous works the notion of local catenativity of DOL systems is
studied which provides the example of ambiguity.
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DOL-system G = {X,h,w} is called local catenative with cut p and
depth n [7], [6] if there exists the vector (i1, ... ,ix), n = max{i1,... ,ix}
such that hfw = h? % w...h? %*w for any ¢ > p. Among the lc. sys-
tems the class of standard l.c. systems is distinguished. Let X, denote
{0,...,n — 1}. Then the DOL-scheme S = (X,,,h) is called standard if
h(i)=i+1(i=1,...,n—2),h(n—1)=(n—141)...(n —ix). The impor-
tance of this class is clear because of the following statement proved by
Kobuchi.

Theorem 2. A DOL-system G = (X, h,w) is (i1, ... ,ix)-locally- catena-
tive if and only if there exists a standard DOL-scheme with (i1, ... ,ig) lLc.
DOL-system G' = (X,,,h/0) and a A\-free homomorphism v : ¥} — T,
such that for any x in S(G')h(y(z)) = v(h'(z)).

In [7] some types of standard l.c. systems are presented (parallel de-
composable, cyclic, semi cyclic) for which the word w # 0 exists such that
(2., h,w) is l.c.

Another property of DOL-system, which is not compatible with good
coding properties, is periodicity. It was intensively studied too. The DOL-
system is called periodic if there exist nonnegative ¢ and natural p and
e such that hP*i(w) = (h'w)® [9]. The coding properties of the DOL-
languages for periodic DOL-systems, the properties (from the point of
view of the theory of formal languages) of the set of all initial words of
periodic DOL-systems [9] given DOL-scheme and other questions were
studied. For dynamical systems the next situation is of interest : given
morphism h there exists finite admissible word (remind: admissibility
means the existence of such i, j, k,[ that w = (h'o;)(k,1)) such that sys-
tem (X, h,w) is periodic. Such substitutions (in symbolic dynamic this
term is often used and means the same as morphism) are called cyclic.

The concept of “decidability” (possibility to check algorithmically some
property of morphism or system) is of significance for the dynamical sys-
tems too and some results (for example the sufficient condition [5] of pure
discretness of spectrum) can be treated as the concrete algorithm.

Morphically generated sequences and their images (symbol by symbol)
under homomorphisms of some kinds are studied as well in the theory of
tag-systems [10], of semi groups, of avoidable patterns and so on. Note
that in [10] the next generalization of morphism is discussed — the deter-
ministic generalized sequential mapping, iterations of which can be used
to simulate the computation of Turing machines.

Now we shall consider the special questions of coding for substitutional
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dynamical systems. From the definition of admissible sequence it is easy to
deduce that every language R; = {h'o;},,ex can be used to code it, i.e., if
x € Xy, then for every [ there exists strictly monotonous infinite two- sided
sequences of integers n'. ,, —0o < r < oo, such that n | , +1 <0 <n,
and for every r there exists i = ' (r), such that z(nl. , +1,n,, ,) = hl(al).
One can say more: in spite of non-necessity for some of these codings
to be unique: we can choose (may be non-unique for some cases) the
ierarchical system of codings and functions 4;(r), forming the so-called
structurized admissible sequence. Before introducing this notion we shall
introduce the auxiliary one-the notion of general structurized sequence,
which is defined as a pair {{SL}2, {{nl ,}}72} = #°, (where for every
1:S. = {ou 172 o)), such that:
1) If l1 < 1y then {nk2,} c {nl,}; if —oo < 11 < ry < oo then
,,w<n foranyl 0.
2) ', , <0< ng, for any I > 0.
3)

o0 c O = hl(op ), 120, —oo<r<oo.

4) If for some rA,r’ according to 1) nlr,w = pltl gt I1+1

rax ) r' A = nr+1 T’
then h(U 1+1 ) =oy Ce oy .
r+1,z r 41,2 r A2

Of course 4) implies 3). Evidently n%z = r for every r, °. We can define
the shift (7%)¢ (for any integer ¢) of ° in the following way. Let for every
Il >0 H(l,q) stand for p, such that np 171 <g< nl . (for example

H(0,q) = q). Denote by {nh2} the sequence {n,+p(,q), — 4172 oo an
by (T%)4z* the pair {{T7® Q){Slz}}lzo, {{nh2}203}, where T is ordlnary
shift of sequence. It is easy to check 1)-4) for (7°%)?z*. Notice that by
1)-4) the knowledge of Slk,né’“w for some l;, — oo uniquely determines
x®. Basing on this remark we shall present some class of concrete gen-
eral structurized sequences. Quadruple (ig, jo, mo, ) is called generating
quadruple [2], if the numbers p,q,u, v exist, such that o,,0, are the jo-
th and jo + 1-th symbols of ho;, h™ 0, = woy,, K0, = oow', hog, =
W10y Ko, = oywy. If it is the case we define z4(ip, jo, Mo, ny), as the
general structurized sequence {{S%}720, {{nl . }}720}, such that all ko
are identical

S50 (=00,0) = W6 (0,); S5™(1,00) = h™(0,),), 0< k< o0
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and ng , = 0 for all [, what determines x”(iy, jo,m0,np). Notice that
9’;“6 is wgp of [11], where a = 0,,b = 0,, and that Skno ¢ X, what is
easy to check. We say that general structurized sequence is structurized
admissible sequence if it satisfies the following additional condition.
5) Three possibilities take place
a)n', , — o0, nfy, — 0o, when I — oo,

b) there exist k, L, such that nl_Lz =k <0 forl > L —in this case for
some generating quadruple we have

® = (T°) " (io, jo, mo, np);

c) there exist k, L, such that nf, , = k > 0 for [ > L — in this case for
some generating quadruple we have too

:I/.S = (Ts)_kxs(i():j():m():n(/))'

The space of all structurized admissible sequences with natural metric is
a Cantor set. We denote it by X and the homeomorphism of shift — by
T7. It is easy to see that the projection p : X§ — X, p(z®) = SY turns
to be surjection. For metric and topological theory it is interesting, for
which h it is bijection. So the coding properties of some words, connected
with h, are to be studied. We present three definitions of such properties,
some of which are adapted here for more general situation (in our case
only formally). These properties of h are: to be UAD — yield unique ad-
missible decoding [2], to be recognizable [3] (in the recent work [12] the
notion of bilateral recognizability is introduced and investigated) and to
be determined ([13], [14]).

Let us notice that in spite of coding properties of h the transformation
Ty is defined correctly (and metrically isomorphic to its analog , appear-
ing as adic representation [2], which is still not always good from the
topological point of view).

The word w € ¥V is called determined if for any admissible words
0 Bioj = Bi; 052 Byoj2 = By and natural numbers

mé—, 1<1,7 <2, suchthat (hB;)(m!,mb) =w;

mt < lhoji| < [h(o; By)| < mb < |hBy|, 1 <1 < 2 the equalities B} = B,

|loj1| = mi = [hojz| —m7 take place.
It is possible that m! = m? =1, j§ # j2.
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The morphism A is called determined if there exists such IV, that every
A € 7T is determined whenever |A| > N.

In [13] there is a definition of determinism to order &, which is the same
as the determinism relatively to h¥.

The morphism h is called recognizable if there exists such k, that if
for some natural numbers r,s,t and admissible word A the following 3
condition are fulfilled:

1) |hA| > max(r + k, s + k),

2) (hA)(r+1,r+k)=(hA)(s+1,s+k),

3) [R(AQL,8))| =,

then there exists ¢ > 0 such that |hA(1,¢")| = s. We can compare this
definition with one of code with delay p.

Remind that we assume the primitively of morphism’s matrix, that
means, that such [ exists, that for any a € ¥ h'a contains all letters
from X.

The morphism is called UAD if for any & € X}, there exists precisely one

sequence y = {y;}32 _, € Xp, such that there exists sequence {n,}72

r=-—00"

—00 < ...<n <0< g <...< o0, for which z(n,.—1 + 1,n,) = hy,;

—o0 < 1 < 0o. Note that if z = p(z*) for some z* € X}, then the y = S}
and n},z are suitable. UAD is just equivalent to bijectivity of p.

It is easy to see, that determined morphism is UAD, that non cyclic rec-

ognizable is UAD, that cyclic morphism is neither UAD nor determined.

Still it can be recognizable. The following statement is obvious.

Proposition. Cyclic morphism is recognizable if there exist the admis-
sible word C', containing all the letters of ¥ and not equal to D" for any
D, v > 1, and the collection of natural numbers r, ny,... ,ng, v < s such
that if to denote mg = 0; m; = Z{:l ng, 1 < j < s, then

1) my = |C;

2) h(c(la l)) = c(m(r—i-l—l) mod s T 17m1+(r+l—1) mod s)'

For noncyclic case the question about the decoding was considered by
several authors (for example, [3], [14]). There are some definitive results
for different kinds of decoding in [12]. Particularly, the assertion of the
following theorem 4 can be deduced from the result of [12] or be proved
almost identically. Still it admits formulation and some proofs (together
with theorems 5,6) in terms of structurized sequences and substitutional
systems of numeration. Here are the formulation of the main results about
decoding for substitutions.
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Theorem 3. Every noncyclic morphism with primitive matrix is UAD.

Theorem 4. Morphism h with p.m. is nonrecognizable if there exists
collection of admissible words M, M, My, X,Y, D1, Dy, W1, W5, symbols
e1,es € X and natural number T, for which the following holds: the
words Wie1 X and WseyY are admissible, h! (Wie1 X) = DiWiet XM,
hT(W2€2Y) = D2W262YM, M # /\, M1h61 = Mzh@z,‘ hX = hY.

Theorem 5. Morphism h with p.m. is not determined if for some collec-
tion, consisting of admissible words M, My, Ms, X, X', Y,Y' D1, Dy, D, W1, W,
symbols ey, €], ea, ey € ¥, e1 # es and natural number T takes place either

(i) words Wieje1 X and Waeheoy are admissible,

RT(Wiele1 X) = DiWieles XM; AT (WaeleaY) = DaWaehes VY M
M # /\7 h(X) = h(Y), h(ellel) = XID;
h(eyes) =Y'D, |D| > min(|heil, |hes|)

or (ii) words Xeje} W, and YesebWs are admissible,

hl'(Xei W) = MXe el WDy, hT(YVexetWs) = MY eqeb Wo Do,
M # ), hX =hY,
h(eie)) = DX', h(ezey) = DY', |D| > min(|hey|,|hes]).

Here we prove the sufficiency for theorem 4. Let such collection ex-
ist. Consider the words AT!(Wieix) = AT-VUD, .. .hTD;D\Wiey XM
AT A and BTN (WaeoY) = RTUU D, . DyWae, Y M .. RTUD M,
Let © be the arbitrary admissible word of sort ... Wiejz...WsesY ...
(its existence is evident and connected with recurrence properties). Sup-
posing the condition of recognizability to be fulfilled, choose [ such that
|M...hTE=D| > k and take the word hT'Q as A. Consideration of sub-
words h(ey XM ... hTU=D M) and h(esY M ... KTV M) leads to contra-
diction.

It is easy to check the fulfilling of conditions of the theorems.
Examples.

1) Morphism A : h(0) = 101110, h(1) = 110 is not recognizable.

2) Morphism h : h(1) = 332, h(2) = 32, h(3) = 122 is recognizable.

3) Morphism & : h(1) = 413, h(2) = 132, h(3) = 24, h(4) = 4132 is
cyclic nonrecognizable, b’ : h'(1) = 213, h'(2) =4, h'(3) =4,h'(4) = 213
— cyclic recognizable.
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4) Let us consider the morphism h : h(1) = 123312, h(2) =
123123, h(3) = 312123. The listed words form the code from the point
of view of definition, but do not from point of view of natural two-
sided infinite “extension”. If we claim “allowed” the sequences {if}>,;
irig+1 # 13; —oo < k < oo, then any concatenation ...h(ig)h(igt+1) - -

with allowed ...igig41 ... has second representation ...h(iy) (i, ). ..
with allowed .. .44}, ... Still by theorem 3 our morphism is UAD.
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