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Introduction

Statements of the dissertation are numerated as follows. The first numeral (Ro-
man) is the number of chapter, the second numeral is the number of section, and
the third numeral is the number of the statement in its section.

Consider a system of differential equations of the form

ẋ = X(x), x ∈ R3, X ∈ Cr(R3), r ≥ 3. (1)

Assume that our system generates a flow, i.e., that any its trajectory is defined on
the whole axis. Denote this flow by gt.

Definition. An invariant set Γ is called a heteroclinic contour if Γ is connected,
compact, and consists of a finite family of trajectories γi, i ∈ 1 : m, and of their
α-limit sets and ω-limit sets,

Γ = {∪i∈1:mγi} ∪ {∪i∈1:mα(γi)} ∪ {∪i∈1:mω(γi)}.

It is assumed that any limit set belonging to the contour Γ is either a hyperbolic
rest point or a hyperbolic closed trajectory.

Definition. We say that a heteroclinic contour Γ is a heteroclinic cycle if it
is possible to numerate its trajectories so that ω(γi) = α(γi+1), i ∈ 1 : m −
1, ω(γm) = α(γ1), and α(γi) ∩ α(γj) = ∅ for i ̸= j(modm).

Definition. We say that a heteroclinic cycle of a three-dimensional autonomous
system belongs to the Lorenz type if any its limit set is either a saddle-node rest
point or a closed trajectory with orientable stable and unstable manifolds.

Definition. We say that a heteroclinic contour is equidimensional if the dimen-
sions of stable manifolds of all its limit sets are the same.

Below we consider equidimensional heteroclinic cycles of the Lorenz type such
that among their limit sets there are both rest points and closed trajectories. Our
goal is to give conditions under which contours of this type generate persistent
chaos (in the sense of the following two definitions).

Definition.We say that an invariant set J is chaotic if
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(1) the set J contains a dense trajectory of the flow gt;
(2) the union of closed trajectories is dense in J ;
(3) the set J exhibits sensitive dependence with respect to initial data, i.e., there

exists a number ε > 0 such that for any point x ∈ J and for any number δ > 0
there is a point y and a number t > 0 such that ρ(x, y) < δ and ρ(gtx, gty) > ε,
where ρ(x, y) denotes the distance between x and y.

Definition.We say that a heteroclinic cycle Γ generates persistent chaos if for
any neighborhood V (Γ) of the set Γ there exists a number δ > 0 such that any
system whose C1 distance from system (1) is less than δ has a chaotic invariant
set belonging to V (Γ).

Now we formulate our conditions I–III. Consider an equidimensional heteroclinic
cycle of the Lorenz type consisting of trajectories γi, i ∈ 1 : m, m ≥ 2, and of their
limit sets α(γi), ω(γi), i ∈ 1 : m. The numeration of the trajectories is chosen so
that ω(γi) = α(γi+1), i ∈ 1 : m − 1, , ω(γm) = α(γ1), and α(γi) ∩ α(γj) = ∅ if
i ̸= j. Any limit set α(γi), i ∈ 1 : m, is either a saddle rest point Oi or a saddle
closed trajectory Pi such that its stable and unstable manifolds are orientable. We
assume that the limit set α(γ1) is a closed trajectory P1.

Since one of the limit sets of our equidimensional cycle is a closed trajectory,
for any limit set, the dimension of its stable manifold equals two. Denote by
µi > 0 > λi > νi the eigenvalues of the Jacobi matrix DX(Oi) at a saddle rest
point Oi ∈ Γ.

Our first condition has the following form:
I. λi > −µi, λi − µi > νi.

Our second condition is related to the character of approach of trajectories γi of
our heteroclinic cycle to their limit sets. This is a general position condition.

II. There exists a continuous bundle P of the planes P (x), x ∈ Γ, invariant
with respect to the differential Dgt, t ∈ R, of the shift gt for time t along trajectories
of system (1). The plane P (Oi) coincides with the plane ⟨vsi , vui ⟩ spanned by the
eigenvetors vsi , vui corresponding to the eigenvalues µi, λi. For a point x ∈ Pj , the
plane P (x) is the tangent plane at x of the unstable manifold Wu

j of the closed
trajectory Pj .

Let Pl1 , Pl2 , . . . , Plk be all closed trajectories belonging to the cycle Γ, l1 = 1 <
l2 < · · · < lk. We show in Theorem I.1.1 that condition II implies, in particular, the
following property: the unstable manifold Wu

li
of the closed trajectory Pli intersects

transversally the stable manifold W s
li+1 of the next limit set in the cycle Γ along a

trajectory γli : Wu
li
∩W s

li+1 = γli . In addition, trajectories of the cycle Γ approach
rest points along leading directions (the latter term means directions corresponding
to the eigenvalues λi).

The third condition (similarly to Condition I) is not a general position condition.
III. It is possible to fix an orientation on the bundle P so that this orientation

is continuous on the set Γ\{∪ γli , i ∈ 1 : k} and has the following properties. In the
planes P (Oi), the orientation is determined by the frame (vsi , v

u
i ), where vsi (vui ) is

the limit position of the vector X(x) as x → Oi, x ∈ γi−1 (x ∈ γi). In the plane
P (x), where a point x belongs to a closed trajectory Pli , i ∈ 1 : k, the orientation
is determined by the frame (X(x), vu(x)), where vu(x) is the tangent vector to
the unstable manifold Wu(x) of the point x ∈ Pli , directed toward the intersection
of Wu(x) with the trajectory γli .
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Chapter I: “Heteroclinic contours of the Lorenz type”.

In this chapter, we investigate general properties of heteroclinic contours.

Section 1 of Chapter 1 is devoted to equidimensional contours of the Lorenz type.
By analogy with heteroclinic cycles of the Lorenz type, we say that a heteroclinic
contour is of the Lorenz type if any its limit set is either a saddle rest point or a
saddle closed trajectory. It is assumed that our contour contains both rest points
and closed trajectories.

Condition II formulated above for heteroclinic cycles can be stated in the same
way for heteroclinic contours. Sometimes other general position conditions are ap-
plied in the investigation of dynamics near heteroclinic contours. They are formu-
lated in Section 1. In Theorem I.1.1, we prove that these conditions are equivalent
to Condition I in the case of an equidimensional contour of the Lorenz type.

Definition. We say that a heteroclinic contour is ramification free if it is possible
to numerate its trajectories so that ω(γi) = α(γi+1), i ∈ 1 : m − 1, and α(γi) ∩
α(γj) = ∅, i, j ∈ 1 : m, i ̸= j.

In Section 2, we study ramification free heteroclinic contours of the Lorenz type
that satisfy Conditions I and II and the following additional assumption: the limit
sets α(γi), i ∈ 2 : m, are saddle rest points, while the limit set α(γ1) is a saddle
closed trajectory with orientable stable and unstable manifolds. Such a contour is
called a simple contour of the Lorenz type.

Theorem I.2.2. A simple contour Γof the Lorenz type has a neighborhood V (Γ)
with the following property: system (1) has in V (Γ) a smooth invariant surface Q
containing the contour Γ. In addition, the bundle P (x), x ∈ Γ, from Condition II
coincides with the bundle of tangent planes TxQ, x ∈ Γ, of the surface Q.

Further, we describe in Section 2 the behavior of trajectories of system (1) on
the surface Q. The description is given in terms of the Poincaré mapping h sending
points of a transversal s1 ⊂ Q of the trajectory γ1 along trajectories of system (1)
to a transversal sm+1 ⊂ Q of the trajectory γm. The contour Γ ⊂ Q divides the
curve s1 into two parts s+1 and s−1 .

It is shown in Theorem I.2.3 that under Condition III, the mapping h is defined
on one of the curves s+1 or s−1 and can be written (in proper coordinates) in the
following form:

h(η1) = CηE1 + q(ηE1 ),

h′(η1) = CEηE−1
1 + r(ηE−1

1 ),

where E < 1, and the functions q, r are infinitesimally small as η1 → 0.

Since E < 1, the mapping h is expanding for small η1. Consider the part of the
surface Q covered by trajectories intersecting the curve on which the mapping h
is defined. It follows from our reasons that it is natural to call this part of Q the
unstable surface of the contour Γ.

Below, in Chapter II, we show that simple cycles of the Lorenz type satisfying
Codition III generate persistent chaos. By definition, a saddle-focus rest point
cannot be a limit set in a simple cycle of the Lorenz type. We extend the class of
heteroclinic cycles generating persistent chaos. In Section 3, we consider a class of
heteroclinic contours having saddle-focus rest points as their limit sets. This class
includes simple heteroclinic contours of the Lorenz type satisfying Conditions I – III
considered above. It is shown in Theorem I.3.1 that any neighborhood of a contour
of this class contains a simple heteroclinic contour of the Lorenz type satisfying
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Conditions I – III. If the unperturbed contour is a cycle, then the generated simple
contour is also a cycle. It follows that cycles of the introduced class generate chaos.

Chapter II. “Persistent chaotic invariant sets generated by cycles of the
Lorenz type”.

In this chapter, we prove the main results of the dissertation. Everywhere in
this chapter, we assume that the unperturbed system (1) has a heteroclinic cycle
Γ of the Lorenz type satisfying Conditions I, II, and III. We also assume that all
systems of differential equations (both unperturbed and perturbed) are of class C4.

Denote by gtε the flow of the perturbed system

ẋ = X(x) + Y (x), Y ∈ Cr(R3), r ≥ 4, ||Y ||C1 < ε, (2)

let Dgtε be its derivative.
The first step in the proof of the main result of Chapter II is to establish the fol-

lowing statement (having an independent interest). In this statement, we construct
an invariant strongly stable fiber bundle over a neighborhood of a cycle Γ.

heorem II.2.1. Assume that an equidimensional cycle Γ of the Lorenz type
satisfies Conditions I, II, and III. Then there exist numbers ε0 > 0, C > 0, λi <
0, Λi < 0, λi < Λi, i ∈ 1 : m, a neighborhood V (Γ) of the heteroclinic cycle Γ,
and neighborhoods Vi ⊂ V (Γ) of the limit sets α(γi), i ∈ 1 : m, such that for ε < ε0
there exists a continuous Dgtε - invariant decomposition

R3 = Ess
ε (x)⊕ Ev

ε (x), x ∈ V (Γ), (3)

where Ess
ε (x) is a line and Ev

ε (x) is a plane for which the following estimates hold:

||Dgtε(x)v|| ≤ C exp(λit)||v||, t ≥ 0, v ∈ Ess
ε (x), [x, gtε(x)] ∈ Vi, (4)

||Dgtε(x)v|| ≤ C exp(Λit)||v||, t ≤ 0, v ∈ Ev
ε (x), [x, gtε(x)] ∈ Vi. (5)

Here [x, gtε(x)] denotes the arc of the trajectory of a point x with ends x and gtε(x).
In addition, the bundle of lines Ess

ε (x), x ∈ V (Γ), is locally Lipschitz continuous.
The heteroclinic cycle Γ does not have a neighborhood invariant with respect to

the mapping gtε, hence we have to give a special definition.
Definition. The bundles Ess

ε (x), Ev
ε (x), x ∈ V (Γ), over a neighborhood V (Γ)

of the cycle Γ are invariant with respect to Dgtε if

Dgtε(x)E
ss
ε (x) = Ess

ε (gtε(x)), D gtεE
v
ε (x) = Ev

ε (g
t
ε(x)),

provided gτε (x) ∈ V (Γ) for τ ∈ [0, t].
We prove Theorem II.1.1 in two steps. In Section 1, we construct decomposition

(3) over the heteroclinic cycle Γ for the unperturbed system (1). In this proof, we
show that both terms in (3) are locally Lipschitz continuous and satisfy estimates
(4) and (5).

In Section 2, we construct the needed decomposition (3) over a neighborhood
V (Γ) of the heteroclinic cycle Γ. First we extend the decomposition constructed
in Section 1 to a neighborhood W (Γ) of Γ preserving its local Lipschitz continuity.
The extension

R3 = Ẽss
1 (x)⊕ Ẽv

1 (x), x ∈ W (Γ),
4



is not necessarily invariant with respect to Dgtε. We obtain invariant terms in (3)
by analogous reasons, let us describe them for the first term.

Consider a bundle L over a neighborhood W (Γ) of the heteroclinic cycle Γ such
that its fiber L(x) over x ∈ W (Γ) is the set of all lines transverse to the plane

Ẽv
1 (x). Any such line is the graph of a linear mapping P (x) : Ẽss

1 (x) → Ẽv
1 (x),

we identify the mapping and the line.
Take a neighborhood V (Γ) of Γ such that it belongs to W (Γ) together with its

closure. Consider the space L of continuous sections of the bundle L, i.e., the family
of continuous mappings P : V (Γ) → L such that any P (x) is a linear mapping

from Ẽss
1 (x) to Ẽv

1 (x).
We take the neighborhood V (Γ) to be closed, hence L is a Banach space in the C

norm. For ε small enough, we define a mapping Hε taking a closed convex subset of
L to itself and contracting on this subset. This mapping is a graph transformation
of linear mappings P (x), x ∈ V (Γ), under Dg−lτ

ε for some fixed l ∈ N, τ ∈ R.
It follows that the bundle Ess

ε (x), x ∈ V (Γ), corresponding to the fixed point of
Hε is invariant with respect to Dg−lτ

ε . Now the uniqueness of a fixed point of the
contraction Hε implies the invariance of Ess

ε (x), x ∈ V (Γ), under Dgtε for all t ∈ R.
Further, we prove that the bundle Ess

ε (x), x ∈ V (Γ), is locally Lipschitz in V (Γ).
Similarly one constructs the second term Ev

ε (x), x ∈ V (Γ), in decomposition (3).
Note that the family Ev

ε (x), x ∈ V (Γ), may be not Lipschitz in a neighborghood
of Γ.

We apply the bundle Ess
ε (x), x ∈ V (Γ), in Section 3 (Theorem II.3.1) to

construct a strongly stable one-dimensional lamination W ss
ε (x), x ∈ V (Γ), in a

neighborhood of the cycle Γ. Let us give a definition.
Definition. We define a one-dimensional lamination on a neighborhood V (Γ)

as a decomposition of this neighborhood into a union of smooth one-dimensional
submanifolds called laminae such that for any point x ∈ V (Γ) there is a neighborhood
U of this point, a subset W ⊂ In−1, and a homeomorphism φ : I × In−1 →
U mapping I × w, w ∈ W, diffeomorphically onto a connected component of the
intersetion of some lamina with U . In addition, in some local coordinates v, w ,
the derivative ∂φ

∂v (v, w) is continuous in v, w.
In the definition above, I denotes (−1, 1), and we use coordinates v, w, v ∈

I, w ∈ In−1 in the n-dimensional cube In = I × In−1.
The tangent bundle W ss

ε (x), x ∈ V (Γ), of our lamination is the bundle of lines

Ess
ε (x), x ∈ V (Γ).

Since this last bundle is Lipschitz continuous, it is easy to show that the home-
omorphism φ from the definition of a lamination satisfies the Lipschitz condition
with respect to w locally in our case. In addition, it is shown in Sect. 3 that
the family of curves W ss

ε (x), x ∈ V (Γ), is invariant under the mapping gτε , i.e.,
gτεW

ss
ε (x) ∩ V (Γ) ⊂ W ss

ε (gτε (x)), x ∈ V (Γ), τ ∈ R, and the mapping gτε contracts
along laminae. The last statement has the following meaning: there exist numbers
λ > 0, K > 0, σ > 0, such that for z, y ∈ W ss

ε (x)∩Bσ(x), x ∈ V (Γ), the inequality

d(gtε(z), g
t
ε(y)) ≤ K exp(−λt) d(z, y),

holds if the points gτε (y), gτε (z) ∈ V (Γ) for τ ∈ [0, t]. (Here d(z, y) denotes the
distance between the points z, y, and Bσ(x) is the ball of radius σ centered at x.)
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For a segment γ̃ of a trajectory of system (2), different from a rest point and
such that γ̃ ⊂ V (Γ), we define its strongly stable set

W ss
ε (γ̃, δ) =

∪
x∈γ̃

W ss
ε (x, δ),

whereW ss
ε (x, δ) = W ss

ε (x)∩Bδ(x). For δ small enough, this set is a two-dimensional
smooth manifold.

The set W ss
ε (γ̃, δ) is called the strongly stable manifold of the segment γ̃ of a

trajectory of system (2) of size δ.
Let S be an arbitrary transversal to trajectories of system (2) belonging to the

neighborhood V (Γ). For a point x ∈ S, the connected component of the intersection
W ss

ε (γ̃, δ) ∩ S, containing the point x lying on a small enough segment γ̃ of its
trajectory does not depend on the segment γ̃ if the number δ is small enough. If S
is a smooth transversal, then the component wss

ε (x, δ) is a smooth curve.
We say that wss

ε (x, δ) is the strongly stable manifold (or a strongly stable curve)
of the point x of size δ on the transversal S.

It is shown at the end of Sect. 3 that if a Poincare mapping is defined for two
transversals, then this mapping contracts along strongly stable curves.

In Sect. 4, we construct a chaotic invariant set J for the unperturbed system
(1). The following statement is proved.

Theorem II.4.2. For any neighborhood Ṽ of the heteroclinic cycle Γ, satisfying

conditions I, II, and III, there exists a chaotic invariant set J ⊂ Ṽ .
The invariant set J is defined as the set of all trajectories of system (1) through

points of an invariant set I of the Poincare mapping F of a transversal S(1) ⊂ Ṽ .
We construct the invariant set I in Lemmas II.4.1 – II.4.8. This set is constucted

as the image of the space Ω whose elements are two-sided infinite sequences ω =
{ωs}, s ∈ Z, under a one-to-one mapping Ψ. Elements of the sequences above
belong to an infinite set E of integer k-dimensional vectors. If the space Ω is
endowed with a standard metric, then the mapping Ψ is a homeomorphism Ψ :
Ω → ΨΩ = I. This statement is proved in Lemma II.4.9. Consider the shift
homeomorhism σ on the space Ω. It follows from the construction of the mapping
Ψ that this mapping conjugates the mapping σ on the space Ω with the mapping
F on I. Thus, a symbolic dynamics for the mapping F |I is constructed. This
construction is applied in Theorem II.4.1 to show that the invariant set I is chaotic.
This method for establishing chaotic structure of an invariant set is well known [22,
2]. Note that in our case, the alphabet E used in construction of symbolic sequences
is infinite. As a result, we see that both the space Ω and the set I are not compact,
and it is impossible to extend the mapping F to the closure of the set I preserving
its continuity.

Coding of points of the set I by sequences {ωs}, s ∈ Z, has a simple geomet-
ric interpretation. If a vector ωs has coordinates (es1, . . . , e

s
k), esi ∈ N, then the

trajectory of the point x makes, after its sth crossing of the transversal S(1), es1
turns around the closed trajectory Pl1 not leaving a small neighborhood of this
closed trajectory, then it makes es2 turns around the closed trajectory Pl2 and so
on, then it makes esk turns around Plk ⊂ Γ, and then it crosses the transversal S(1)
at (s+ 1)th time.

It is easy to show that the shift σ has the same basic properties as the shift on
the space of sequences with finite number of symbols. Thus, we can prove that the
mapping σ is chaotic.
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In Theorem II.4.1, we apply the topological conjugacy of the mappings F |I and
σ to show that the set I is chaotic.

By this theorem, the invariant set J defined above has a dense half-trajectory,
and closed trajectories are dense in J .

The third property from the definition of a chaotic set (the sensitive dependence
on the initial point) is established in Theorem II.4.2. Finally, we see that the
invariant set J of system (1) is chaotic. The invariant set J is also chaotic. Since
the set I is not compact, J ̸= J .

Theorem II.4.3 and its corollaries describe the structure of invariant sets J ∩
Wu

li
, i ∈ 1 : k. In particular, it is shown that the heteroclinic cycle Γ belongs to the

closure of the invariant set J .

In the last Sect. 5, we study the perturbed system (2) such that the perturbation
Y (x) is C1-small. Let us formulate the main result.

Theorem II.5.1. Assume that system (1) has a heteroclinic cycle Γ of the
Lorenz type satisfying conditions I, II, III. For any neighborhood V (Γ) of the cycle
Γ there exists a number ε0 such that if ε < ε0, then the perturbed system (2) has a
chaotic set lying in V (Γ).

The proof of this theorem is contained in Lemmas II.5.1 –II.5.7. This proof is
to some extent parallel to the proof of Theorem II.4.2. Indeed, the chaotic set
J(ε) is constructed as the union of trajectories of system (2) through points of
a chaotic invariant set I(ε) for the mapping F (ε) defined by first return to the
transversal S(1) of trajectories of system (2) belonging to a neighborhood W (Γ) of
the heteroclinic cycle Γ. Here and below, dependence on ε means that we consider
the perturbed system (2) such that ||Y ||C1 < ε.

The mapping F (ε)|I(ε) is topologically conjugate to the shift σ on an invariant

subset of the space Ω(ε); this space consists of infinite sequences ω = {ωs}+∞
s=−∞, ωs ∈

E(ε), s ∈ Z. The subset invariant under σ on which the shift σ is chaotic is deter-
mined by a condition on regularity of intersection of some sets. This last condition
is quite complicated and similar to condition from [2].

The main difference with the case of the nonperturbed system is that the al-
phabet E(ε) applied for coding of points of the set I(ε) may be finite for some
perturbations. In this case, the invariant set I(ε) is compact and locally maximal
(see Lemma II.5.8.) In the next lemma, we show that if the alphabet E(ε) is finite,
then the invariant set J(ε) constructed in Theorem II.5.1 is compact and locally
maximal. By definition, the invariant set J(ε) does not contain rest points of the
perturbed system belonging to the neighborhood W (Γ); it also does not contain
trajectories double-asymptotic to rest points. Since the set J(ε) is compact, in the
case of finite alphabet E(ε), the chaotic set is separated from rest points of the
perturbed system.

It is shown in Theorem II.5.2 that, under some additional condition that guar-
antees that the mapping F (ε)|I(ε) is topologically conjugate to the shift σ on the
whole space Ω(ε), the set J(ε) is a maximal compact chaotic invariant set belong-
ing to the neighborhood W (Γ) and containing neither rest points of system (2) nor
their double-asymptotic trajectories.

In Theorem II.5.3, we describe the structure of the invariant set J(ε) \ J(ε) in
the case where the first condition of Theorem II.5.2 (the condition of finiteness of
the set E(ε)) is violated. The proof of this theorem is contained in Lemmas II.5.10
– II.5.14.

7



Conditions of Theorem II.5.2 providing the maximality of the invariant set J(ε)
in the neighborhoodW (Γ) are formulated in terms of the perturbation Y (x). At the
end of the last section, we construct a perturbation Y (x) satisfying the conditions
of Theorem II.5.2 and having arbitrarily small C1-norm.

This construction is contained in Theorem II.5.5. This theorem shows that it is
possible to separate a chaotic invariant set J(ε) from rest points by an arbitrarily
C1-small perturbation of system (1).

Translated into English by S. Yu. Pilyugin.
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