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Grothendieck-Lidskǐı theorem for subspaces of

Lp-spaces

Oleg Reinov and Qaisar Latif

Abstract. In 1955, A. Grothendieck [1] has shown that if the linear operator T
in a Banach subspace of an L∞-space is 2/3-nuclear then the trace of T is well
defined and is equal to the sum of all eigenvalues {µk(T )} of T. V.B. Lidskǐı [2], in
1959, proved his famous theorem on the coincidence of the trace of the S1-operator
in L2(ν) with its spectral trace

∑
∞

k=1
µk(T ). We show that for p ∈ [1,∞] and

s ∈ (0, 1] with 1/s = 1 + |1/2− 1/p|, and for every s-nuclear operator T in every
subspace of any Lp(ν)-space the trace of T is well defined and equals the sum of
all eigenvalues of T. Note that for p = 2 one has s = 1, and for p = ∞ one has
s = 2/3.

§1. Definitions and a theorem

All the terminology and facts (now classical), given here without any explana-
tions, can be found in [7–10].

Let X, Y be Banach spaces. For s ∈ (0, 1], denote by X∗⊗̂sY the completion of
the tensor product X∗⊗Y (considered as a linear space of all finite rank operators)
with respect to the quasi-norm

||z||s := inf{

(
N∑

k=1

||x′
k||

s ||yk||
s

)1/s

: z =

N∑

k=1

x′
k ⊗ yk}.

Let Φp, for p ∈ [1,∞], be the ideal of all operators which can be factored through
a subspace af an Lp-space. Put Ns(X, Y ) := image of X∗⊗̂Ys in the space L(X, Y )
of all bounded linear transformations under the canonical factor map X∗⊗̂sY →
Ns(X, Y ) ⊂ L(X, Y ). We consider the (Grothendieck) space Ns(X, Y ) of all s-
nuclear operators from X to Y with the natural quasi-norm, induced from X∗⊗̂sY.

Finally, let Φp,s (respectively, Φs,p) be the quasi-normed product Ns ◦Φp (respec-
tively, Φp ◦ Ns) of the corresponding ideals equipped with the natural quasi-norm
νp,s (respectively, νs,p): if A ∈ Ns ◦ Φp(X, Y ) then A = ϕ ◦ T with T = βα ∈ Φp,
ϕ = δ∆γ ∈ Ns and

A : X
α
→ Xp

β
→ Z

γ
→ c0

∆
→ l1

δ
→ Y,
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where all maps are continuous and linear, Xp is a subspace of an Lp-space, con-
structed on a measure space, and ∆ is a diagonal operator with the diagonal from
ls. Thus, A = δ∆γβα and A ∈ Ns. Therefore, if X = Y, the spectrum of A, sp (A),
is at most countable with only possible limit point zero. Moreover, A is a Riesz op-
erator with eigenvalues of finite algebraic multiplicities and sp (A) ≡ sp (B), where
B := αδ∆γβ : Xp → Xp is an s-nuclear operator, acting in a subspace of an
Lp-space.

Let T be an operator between Banach spaces Y and W. The operator 1 ⊗ T :
X∗⊗̂sY → X∗⊗̂sW is well defined and can be considered also as an operator from
X∗⊗̂sY into X∗⊗̂W (the Grothendieck projective tensor product), the last space
having the space L(W,X∗∗) as dual.

Definition. We say that T possesses the property APs (written down as "T ∈
APs") if for every X and any tensor element z ∈ X∗⊗̂sY the operator T ◦ z :
X → W is zero iff the corresponding tensor (1⊗ T )(z) is zero as an element of the
space X∗⊗̂W. If Y = W and T is the identity map, we write just Y ∈ APs (the
approximation property of order s).

This is equivalent to the fact that if z ∈ X∗⊗̂sY then it follows from

trace (1⊗ T )(z) ◦R = 0, ∀R ∈ W ∗ ⊗X

that trace U ◦ (1 ⊗ T )(z) = 0 for every U ∈ L(W,X∗∗). There is a simple charac-
terization of the condition T ∈ APs in terms of the approximation of T on some
sequences of the space Y, but we omit it now, till the next time. We need here only
one example which is crucial for our note (other examples, as well as more general
applications will appear elsewhere).

Example. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/p− 1/2|. Any subspace as
well as any factor space of any Lp-space have the property APs (this means that,
for that space Y, idY ∈ APs). Thus, in the case of such a space Y, we have the
quasi-Banach equality X∗⊗̂sY = Ns(X, Y ), whichever the space X was.

Lemma. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/2− 1/p|. Then the system
of all eigenvalues (with their algebraic multiplicities) of any operator T ∈ Ns(Y, Y ),
acting in any subspace Y of any Lp-space, belongs to the space l1. The same is true
for the factor spaces of Lp-spaces.

Corrolary. If s ∈ (0, 1], p ∈ [1,∞] with 1/s = 1 + |1/2 − 1/p| then the quasi-
normed ideals Φp,s and Φs,p are of (spectral) type l1.

Theorem. Let Y be a subspace of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y, Y ),
1/s = 1 + |1/2− 1/p|, then

1. the (nuclear) trace of T is well defined,
2.

∑∞
n=1 |λn(T )| < ∞, where {λn(T )} is the system of all eigenvalues of the

operator T (written in according to their algebraic multiplicities)
and

trace T =
∞∑

n=1

λn(T ).
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§2. Proofs

Proof of Lemma. Let Y be a subspace or a factor space of an Lp-space and
T ∈ Ns(Y, Y ) with an s-nuclear representation

T =
∞∑

k=1

µky
′
k ⊗ yk,

where ||y′k||, ||yk|| = 1 and µk ≥ 0,
∑∞

k=1 µ
s
k < ∞. The operator T can be factored

in the following way:

T : Y
A

−→ c0
∆1−s

−→ lr
j
↪→ c0

∆s−→ l1
B

−→ Y,

where A and B are linear bounded, j is the natural injection, ∆s ∼ (µs
k)k and

∆1−s ∼ (µ1−s
k ) are the natural diagonal operators from c0 into l1 and from c0 into

lr, respectively. Here, r is defined via the conditions 1/s = 1 + |1/p − 1/2| and∑
k µ

s
k < ∞ : we have to have

∑
k µ

(1−s)r
k < ∞, for which (1 − s)r = s is good.

Therefore, put 1/r = 1/s− 1, or 1/r = |1/p− 1/2|.
From now and on in the proof we assume (surely, without loss of generality) that

p ≥ 2. Then 1/r = 1/2− 1/p and r(1− s) = s. Note that if s = 1 then r = ∞, p = 2

and j∆1−s ≡ j; and if s = 2/3 then r = 2, p = ∞ and ∆1−s ∼ (µ
1/3
k )k ∈ l2.

Now, let us factorize the diagonal ∆s as ∆s = ∆1∆2 : c0
∆2−→ l2

∆1−→ l1 in such a
(clear) way that diagonals ∆2 is in Π2 and ∆∗

1 is in Π2 too, respectively.
Case (i). Y is a subspace of an Lp-space. Denoting by l : Y ↪→ Lp an isomorphic

embedding of Y into a corresponding Lp = Lp(ν), we obtain that the map ∆∗
2B

∗l∗ :

Lp′
l∗

−→ Y ∗ B∗

−→ l∞
∆∗

2−→ l2 is of type Π2, so is in Πp. Thus its preadjoint lB∆2 :

l2
∆2−→ l1

B
−→ Y

l
−→ Lp is order bounded and, therefore, p-absolutely summing.

Case (ii). Y is a factor space of an Lp-space. Denoting by q : Lp → Y a factor
map from a corresponding Lp = Lp(ν) onto Y and taking a lifting Q : l1 → Lp for B

with B = qQ, we obtain that the map ∆∗
2Q

∗ : Lp′
Q∗
−→ l∞

∆∗

2−→ l2 is of type Π2, so is

in Πp. Thus its pre-adjoint Q∆2 : l2
∆2−→ l1

Q
−→ Lp is order bounded and, therefore,

p-absolutely summing. Hence, B∆2 : l2
∆2−→ l1

Q
−→ Lp

q
−→ Y is also p-absolutely

summing.
It folows from all that’s said that in all the cases our operator T : Y → Y can

be written as a composition:

T = U1U2U3 with U3 ∈ Πr, U2 ∈ Π2, U1 ∈ Πp,

all the exponents being not less than 2. Now, 1/r+1/2+1/p = (1/2−1/p)+1/2+
1/p = 1. �

Proof of the statement of Example. It follows from:
(α) every finite dimensional subspace E of any factor space of any Lp-space is

cp (dimE)|1/2−1/p|-complemented.
For more general statements on APs and their proofs, we refer to [4] and [5]; see also
an old paper of O.I. Reinov [3] for the idea to apply the projections in the questions
which are under consideration in this note. �
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Proof of Corrolary. Apply Lemma. �

Proof of Theorem. Apply Lemma, Example, Corrolary and the main result of
M.C. White [6].

Remark: Since finite rank operators are dense in Ns, Theorem can be proved
without referring to the paper of M.C. White; but this would take a little bit longer
explanations.

References

[1] A. Grothendieck: Produits tensoriels topologiques et éspaces nucléaires, Mem. Amer. Math.
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