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Approximation of p-summing operators by adjoints

Oleg Reinov

Abstract. We consider the following question for the ideals Πp of absolutely p-
summing operators: Is it true that, for given Banach spaces X and Y, the unit ball
of the space Πp(X,Y ) is dense, for some natural topology, in the unit ball of the
space Πp(X,Y ∗∗) or in the unit ball of the corresponding space Πdual

p (Y ∗, X∗) :=
{U : Y ∗ → X∗ | U∗|X ∈ Πp(X,Y ∗∗)}? As "natural topologies", we consider
strong and weak operator topologies, compact–open topology, topology of X×Y ∗-
convergence etc.

We discuss some questions of the following type. Let J be a normed operator
ideal. Is it true that, for given Banach spaces X and Y, the unit ball of the space
J(X, Y ) is dense, for some natural topology, in the unit ball of the space J(X, Y ∗∗)
or in the unit ball of the corresponding space J t(Y ∗, X∗) := {U : Y ∗ → X∗ | U∗|X ∈
J(X, Y ∗∗)}? As "natural topologies", we consider strong and weak operator topolo-
gies, compact–open topology, topology of X × Y ∗-convergence etc.

In this paper, we consider the case where the ideals under investigations are the
injective ideals Πp of absolutely p-summing operators (here 1 ≤ p ≤ ∞).

§1. Preliminaries

All the spaces X, Y, Z,W, . . . are Banach. For a bounded subset B of X, we
denote by XB the Banach space generated by B, with the unit ball Γ(B) (= the
closed absolutely convex hull of B); ΦB : XB → X is the natural embedding (see,
e.g., [1]). L(X, Y ) is the space of all (bounded) linear operators from X to Y with its
natural operator norm. For Y = K (scalar field), we write X∗ instead of L(X,K);
we always consider the space X as the subspace πX(X) of its second dual X∗∗

(denoting, if needed, by πX the canonical injection). Some other notations (below
p, q ∈ [1,∞]).

If X is a Banach space and µ is a measure then by Lp(µ;X) we understand the
Lp-space of all (equivalent classes of) strongly µ-measurable p-summable functions.
In the case where the measures are discrete, we use also the notations of type
lp(X), lp(Γ;X), c0(X), etc. For the quasinorm of a sequence (xk)k from the space

lp(X), we use the notation αp(xk) :=

(∑
k

‖xk‖
p

)1/p

(if p = ∞, the corresponding
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changes are needed). Recall that lp(Γ;X)∗ = lp′(Γ;X
∗) and c0(Γ;X)∗ = l1(Γ;X)

for all finite p > 1. A family (xk)
∞
k=1

⊂ X, for which the value αp(xk) is finite, is
said to be absolutely p-summable. A family (xk)

∞
k=1

is called weakly p-summable, if
(〈xk, x

′〉) ∈ lp for all x′ ∈ X∗. We set

εp(xj) := sup
‖x′‖61

(∑

j

|〈xj , x
′〉|p
)1/p

.

This is a norm in the space lp{X} of all weakly p-summable sequences in X.
We use the following notations for the classical operator ideals (all the informa-

tion on the theory of operator ideals can be found in [3]; in our work, we follow,
however, the other notation and terminology; see [4, 5]):

[Πp, πp] — the ideal of the absolutely p-summing operators;
[QNp, πp] — the ideal of quasi-p-nuclear operators;
[Np, νp] — the ideal of p-nuclear operators;
[Ip, ip] — the ideal of (strictly) p-integral operators;
Recall some important definitions (to be selfcontained; see [3, 4, 7]).
Let T ∈ L(X, Y ). The operator T : X → Y is called absolutely p-summing, if

there is a constant C > 0 such that, for any finite family {xn}
M
n=1

⊂ X, the following
inequality holds αp(Txn) 6 Cεp(xn); corresponding norm (inf C) is denoted by
πp(T ). Note that [Π∞, π∞] is exactly the operator ideal [L, ‖ · ‖]. The operator T :
X → Y is called quasi-p-nuclear, T ∈ QNp(X, Y ), if for some isometric embedding
i : Y → L∞(µ) the composition iT is in the closure of the space of all finite rank
operators in Np(X,L∞(ν)). The norm in QN p(X, Y ) is induced from the space
Πp(X,L∞(ν)).

We say that an operator T ∈ L(X, Y ) belongs to the ideal Np (p-nuclear), if it
can be represented in the form

T :=

∞∑

n=1

x′
n ⊗ yn,

where the sequences (x′
n) and (yn) are such that εp′(yn) < ∞, αp(x

′
n) < ∞. With the

norm, given by νp(T ) := inf εp′(yn)αp(x
′
n), the class Np is a normed operator ideal.

Let us give other characteristics of the operators T from Np(X, Y ). An operator T
is an Np-operator iff it factors in the following way:

X
A
→ l∞

∆
→ lp

B
→ Y,

where ∆ is a diagonal operator with a diagonal from lp, A and B are the operators
of norm 1; moreover, νp(T ) is just the infimum (over all possible factorizations) of
the norms of the diagonals in lp.

Let us say that an operator T ∈ L(X, Y ) belongs to the ideal Ip (strictly p-
integral), if it admits a factorization of the kind

X
A
→ L∞(µ)

j
↪→ Lp(µ)

B
→ Y,
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where µ is a probability measure, j is the identity injection, A and B are contin-
uous operators. We put ip(T ) = inf ‖A‖‖B‖, where the inf is taken over all the
factorizations of T of the mentioned kind.

Now, finally, some important words on the notions of the Banach tensor products.
We consider, mainly, the tensor norms on the tensor products of the kind X∗ ⊗ Y.
In this case, the tensor product X∗ ⊗ Y can be identified naturally with the linear
space of all finite dimensional operators from X to Y . In the general case, the tensor
product X⊗Y can be considered as the linear space of all weak∗-to-weak continuous
finite rank linear mappings from X∗ to Y (or from Y ∗ to X).

On the class T of all such tensor products there is a maximal (the strongest)
and a minimal (the weakest) tensor norms [3]. The strongest tensor norm ν0

1 on
X∗⊗ Y generates (after completion with respect to this norm) the projective tensor
product of Grothendieck X∗⊗̂Y [3], and the weakest one — ‖ · ‖ — injective tensor

product X∗ ̂̂⊗Y , which can be considered as the completion of the linear space of all
finite dimensional operators from X to Y , equipped with the usual operator norm

‖ · ‖ (for the case of X ⊗ Y, we can say the analogous words). Thus, X∗ ̂̂⊗Y can be
identified with the closed linear subspace of L(X, Y ). Therefore, for any tensor norm
α between ν0

1
and || · ||, the natural mapping X∗ ⊗α Y → L(X, Y ) can be extended

to the canonical map from X∗⊗̂αY to L(X, Y ). Analogously, in the general case
of products of the kind X ⊗ Y , the natural mapping X ⊗α Y → L(X∗, Y ) can be
extended to the canonical map from X⊗̂αY to L(X∗, Y ), and the image of this map
belongs to the subspace (of L(X∗, Y ) = L(Y ∗, X)) of all weak∗-to-weak continuous
operators from X∗ to Y (or from Y ∗ to X).

Let us give the main examples of the tensor products we will working with.
The finite p-nuclear tensor norm ‖ · ‖p for p ∈ [1,+∞] is defined on the product

X ⊗ Y by the following way: if z ∈ X ⊗ Y , then

‖z‖p := inf

( N∑

k=1

‖xk‖
p

)1/p

sup
‖y′‖61

{( N∑

k=1

|〈yk, y
′〉|p

′

)1/p′}
,

where 1/p+1/p′ = 1 and the infimum is taken over all representations of the tensor

element z in the space X ⊗ Y in the form z =
N∑
k=1

xk ⊗ yk (formally, (**) has sense

only for finite exponents p > 1, and for the case p = 1 and p = +∞, the definition
have to be modified). The completion of the tensor product X ⊗ Y with respect to
the norm ‖ · ‖p, 1 ≤ p 6 ∞, is denoted by X⊗̂pY .

If p ∈ [1,∞], then the conjugate space to the tensor product X⊗̂pY is equal to
Πp′(Y,X

∗∗) (with the natural duality defined by trace).
For a tensor z ∈ X∗⊗̂X, the trace of z is well defined: if z =

∑∞
k=1

x′
k ⊗ xk is a

representation of z in the space X∗⊗̂X (see [1]) then

trace z =
∞∑

k=1

〈x′
k, xk〉.
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For T ∈ Πp(X, Y ∗∗) and z ∈ Y ∗⊗̂p′X, the trace of T ◦z is well defined (since T ◦z
belongs to the projective tensor product Y ∗⊗̂Y ∗∗). This trace gives us a possibility
to consider the space Πp(X, Y ∗∗) as the Banach dual to Y ∗⊗̂p′X. Moreover, the
dual to any p-projective tensor product Z⊗̂p′W is Πp(W,Z∗) (again, with duality

defined by trace). Analogously, let Y ∗ ̂̂⊗pX be the closure of finite rank operators

in Πp(Y,X); then the dual to the space Y ∗ ̂̂⊗pX is Ip′(X, Y ∗∗) (and the Banach dual

to any product Z ̂̂⊗pW of such a kind is Ip′(W,Z∗)). Note that in the case p = 1
we can write X⊗̂1Y = Y ⊗̂1X (and only in this case, generally). For p = ∞,
(Π∞, π∞) = (L, || · ||).

§2. Results

We need the following notation. For an operator T ∈ L(X, Y ), we write T ∈
Πd

p(X, Y ) iff T ∗ ∈ Πp(Y
∗, X∗), and we define a norm on the linear space Πd

p(X, Y )

by setting πd
p(T ) := πp(T ) (so, Πd

p is the ideal which is dual to the ideal Πp in the
sense of [3]).

Lemma 1. Let T ∈ L(X, Y ). We have: T ∈ Πp(X, Y ) iff T ∗ ∈ Πd
p(Y

∗, X∗).

Proof. If T ∗ ∈ Πd
p(Y

∗, X∗) then T ∗∗ ∈ Πp(X
∗∗, Y ∗∗); so, by injectivity of Πp, one

has T ∈ Πp(X, Y ). If T ∈ Πp(X, Y ) then T ∗∗ ∈ Πp(X
∗∗, Y ∗∗). It is clear, but let

us explain this: it is enough, e.g., to consider an isometric imbedding of Y into an
L∞-space and to use the fact that the second adjoint to a p-integral (with values in
the space with the metric approximation property) is p-integral itself.

Lemma 2. Let C > 0, {Aβ}β∈B be a net in Πp(Z,W ), A ∈ Πp(Z,W ). The
following are equivalent:

1) for each β πp(Aβ) ≤ C and for every x ∈ Z we have Aβx →
β
Ax in W ;

2) for each β πp(Aβ) ≤ C and for every ε > 0 and any compact subset K ⊂ Z
there is a βε so that for each β > βε and for every k ∈ K ||Aβk − Ak|| ≤ ε.

Proof. We have to prove only that the second part of the assertion 1) is equivalent
to the second part of the assertion 2), if we suppose only that the usual norms of
all operators from the net {Aβ}β∈B are bounded by C. But in this case, the lemma
is proved, e.g., in [6].

Let us say that a net {Bα}α∈A of operators from X to Y (⊂ Y ∗∗) is X ×
Y ∗-pointwise convergent to an operator B ∈ L(X, Y ∗∗) (or, to an operator D ∈
L(Y ∗, X∗)), if for all x ∈ X and y′ ∈ Y ∗ one has 〈Bαx, y

′〉 →
α

〈Bx, y′〉 (or,

〈Bαx, y
′〉 →

α
〈x,Dy′〉).

Recall also the definition of the topology τp of πp-compact convergence. For
Banach spaces X, Y, the topology τp of πp-compact convergence in the space Πp(Y,X)
is the topology, a local base (in zero) of which is defined by sets of type

ωK,ε = {U ∈ Πp(Y,X) : πp(UΦK) < ε} ,

where ε > 0, K = Γ(K) is a compact subset of Y.
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Proposition 3. Let C > 0, B ∈ Πp(X, Y ∗∗) and {Bα}α∈A be a net in Πp(X, Y ∗∗).
The following are equivalent:

(i) for every α πp(Bα) ≤ C and the net {Bα}α∈A is X×Y ∗-pointwise convergent
to the operator B;

(ii) for every α πp(Bα) ≤ C and the net {Bα}α∈A is σ(Πp(X, Y ∗∗), Y ∗⊗̂p′X)
convergent to the operator B.

In both cases, we have πp(B) ≤ C.
If, in addition, {Bα}α∈A ⊂ Πp(X, Y ) and B ∈ Πp(X, Y ), then every of these two

assertions implies the following ones (and (iii) ⇐⇒ (iv) ⇐⇒ (v) ):
(iii) the operator B is in the closure of the ball of radius C of the space Πp(X, Y )

in the strong operator topology, i.e. there exists a net {Aβ}β∈B such that for every
x ∈ X we have Aβx →

β
Bx in Y ;

(iv) the operator B is in the closure of the ball of radius C of the space Πp(X, Y )
in the topology of compact convergence;

(v) the operator B is in the closure of the ball of radius C of the space Πp(X, Y )
in the topology of τp-convergent to the operator B.

In all the cases, we have πp(B) ≤ C.

Proof. The natural mapping jp : Y ∗⊗̂X → Y ∗⊗̂p′X has a dense image, so its
adjoint gives us a homeomorphism from the unit ball of Πp(X, Y ∗∗) with its weak∗-
topology onto a weak∗-compact subset of L(X, Y ∗∗). To prove (i) ⇐⇒ (ii), it
remains to note that X × Y ∗-pointwise convergence of our net to B is just its
convergence to the operator B in the topology σ(L(X, Y ∗∗), Y ∗⊗̂X).

In the cases (iii)–(v), the topology σ(L(X, Y ∗∗), Y ∗⊗̂X), considered on the linear
subspace Πp(X, Y ), gives the same closure of the ball of radius C of the space
Πp(X, Y ) as the topologies of compact convergence (follows from [1]) and τp [5].
Therefore, (i)–(ii) imply (iv) and (v), and (iv) ⇐⇒ (v). The fact, that these last
two assertions are equivalent to the assertion (iii), follows from Lemma 2.

By Lemma 1, we can identify the Banach space Πp(X, Y ∗∗) with the Banach
space Πd

p(Y
∗, X∗). Also, these two Banach spaces give us realizations of the dual

space to the tensor product Y ∗⊗̂p′X. Considering in the first part of the proof of
Proposition 3 the space Πd

p(Y
∗, X∗) instead of Πp(X, Y ∗∗), we get

Proposition 4. Let C > 0, B ∈ Πd
p(Y

∗, X∗) and {Bα}α∈A be a net in Πd
p(Y

∗, X∗).
The following are equivalent:

(i) for every α πd
p(Bα) ≤ C and the net {Bα}α∈A is Y ∗×X-pointwise convergent

to the operator B;
(ii) for every α πd

p(Bα) ≤ C and the net {Bα}α∈A is σ(Πd
p(Y

∗, X∗), Y ∗⊗̂p′X)
convergent to the operator B.

In both cases, we have πd
p(B) ≤ C.

Corollary 5. 1) With notations of Proposition 3, if a πp-bounded net {Bα}α∈A
converges in the space Πp(X, Y ∗∗) to B in the topology of compact convergence (or
strongly), then this net is σ(Πp(X, Y ∗∗), Y ∗⊗̂p′X) convergent to the operator B.
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2) With notations of Proposition 4, if a πd
p-bounded net {Bα}α∈A converges in

the space Πd
p(Y

∗, X∗) to B in the topology of compact convergence (or strongly),

then this net is σ(Πd
p(Y

∗, X∗), Y ∗⊗̂p′X) convergent to the operator B.

Corollary 6. With notations of Proposition 3, if a πp-bounded net {Bα}α∈A
converges X × Y ∗-pointwise to B, then B∗

α|Y ∗ →
α

B∗|Y ∗ Y ∗ ×X-pointwise and vice
versa.

We are going now to reformulate the definitions of the approximation properties
of order q, q ∈ [1,∞], which were considered in [7] and, e.g., in [4], in terms of some
convergences (by analogue with the approximation properties of Grothendieck; see
[1]). Recall the "tensor language" definitions. We say that the Banach space X
has the APq, if for every Banach space Y the natural mapping Y ∗⊗̂qX → N(Y,X)
is one-to-one (and thus, an isometric isomorphism between these spaces). In [4],
there were introduced the notions of bounded approximation properties of order q.
To recall them, we need some new notations.

Consider, in the space Iq(Y,X
∗∗), the subspace Y ∗⊗̃qX, the closure of the space

of all finite rank operators from Y to X in that space Iq(Y,X
∗∗). Let C ∈ [1,∞).

We say that the space X has the property C-MAPq, if for each Banach space Y
the natural map iq : Y ∗⊗̂qX → Y ∗⊗̃qX is C-isometric, i.e., iq is one-to-one and
||i−1

q || ≤ C. This is the same as to tell that for each Banach Y the adjoint map

i∗q takes the unit ball of the space Gq′(X, Y ∗∗), dual to Y ∗⊗̃qX (it is, evidently,
some Banach space of operators), into the weak∗-compact set, containing the ball of
radius 1/C of the space Πq′(X, Y ∗∗) (which is a representation of the dual space to
the space Y ∗⊗̂qX). If the space X has C-MAPq for some constant C, we say that
it has the property BAPq. Clearly, BAPq implies APq (the inverse is not true [4]).

Now, consider the subspace X∗⊗q′ Y of the space X∗ ̂̂⊗q′Y, which is, in turn, the
closure of the space of all finite rank operators X∗ ⊗ Y in Πq′(X, Y ∗∗). The dual to
the space X∗⊗q′ Y is just Iq(Y,X

∗∗), so, by the bipolar theorem, the unit ball of the
space X∗ ⊗q′ Y is weak∗-dense in the unit ball of the space Gq′(X, Y ∗∗). Thus, the
space X has the C-metric approximation property of order q, C-MAPq, if and only
if for any Banach space Y the ball of radius C of the space X∗⊗q′ Y is weak∗-dense
in the unit ball of the space Πq′(X, Y ∗∗) (or, if one wishes, of the space Πd

q′(Y
∗, X∗)).

Also, we can see that the assertion "for each reflexive Banach space Y, the natural
map iq : Y

∗⊗̂qX → Y ∗⊗̃qX is C-isometric" is equivalent to the assertion "for any
reflexive Banach space Y, the ball of radius ≤ C of the space X∗⊗q′ Y is weak∗-dense
in the unit ball of the space Πq′(X, Y )". By Proposition 3, the last is equivalent
to the assertion "for any reflexive Banach space Y, the ball of radius C of the space
X∗ ⊗q′ Y is dense in the unit ball of the space Πq′(X, Y ) in the topology of compact
convergence (or, in τq′)". Consider the case where q ∈ (1,∞). Since the subspaces
of Lq′ in Grothendieck-Pietsch factorizations for absolutely q′-summing operators
are reflexive (see also [3], 17.3.11), we get easily (taking in account the second part
of Proposition 3):

Proposition 7. Let q ∈ (1,∞). A Banach space X has the C-metric approxi-
mation property of order q, C-MAPq, if and only if, for any Banach space Y, the
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ball of radius ≤ C of the space X∗ ⊗q′ Y is dense in the unit ball of the space
Πq′(X, Y )" in the topology of compact convergence (or, in the topology τq′). Also,
this is equivalent to the fact that for each reflexive Banach space Y, the natural map
iq : Y

∗⊗̂qX → Y ∗⊗̃qX is C-isometric.

Of course, the proposition is valid in the case q = 1 (A. Grothendieck [1]). What
about the case q = ∞, we have no place to discuss this at the moment.

We are able to get now, as a consequence of our considerations, the first result,
concerning the question in the very beginning of our paper.

Theorem 8. Let p ∈ [1,∞]. If the Banach space X has the metric approximation
property of order p (i.e., the 1-MAPp), then, for every Banach space Y, the unit ball
of Πp(X, Y ) is dense in the unit ball of the space Πp(X, Y ∗∗) in the topology of
compact convergence.

By Corollaries 5 and 6, we get also

Theorem 9. Let p ∈ [1,∞]. If the Banach space X has the metric approximation
property of order p then, for every Banach space Y, the unit ball of Πp(X, Y ) is
dense in the unit ball of the space Πp(Y

∗, X∗) in the topology of Y ∗ ×X-pointwise
convergence.

The proof of the following result use the main theorem from J. Lindenstrauss’
paper [2].

Theorem 10. Let p ∈ [1,∞]. Let Z be such a space that for every Banach
space W, each operator U ∈ Πd

p(W
∗, Z∗) with πd

p(U) = 1 belongs to the closure in
the topology of W ∗ × Z-convergence of the unit ball of the space Πp(Z,W ). Then,
for every Banach space E, each operator S ∈ Πp(Z,E) with πp(S) = 1 belongs to
the closure in the topology of compact convergence (or, in the τp-topology) of finite
rank operators with πp-norms ≤ 1.

Proof. Fix E and S. We can assume that the space E is separable. By [2],
there is a separable Banach space Y such that Y ∗ has the metric approximation
property of Grothendieck and Y ∗∗ = E∗ ⊕ Y, with the natural projector P from
Y ∗∗ onto E having the norm one, and with the natural inclusion j : E∗ ↪→ Y ∗∗

being weak∗-to-weak∗ continuous. Consider the operator S∗P : Y ∗∗ → E∗ → Z∗.
It can be approximated, Y ∗∗ × Z-pointwisely, by T ’s: Z → Y ∗ with πp(T ) ≤ 1.
Apply Proposition 4 with C = 1 to the operator S∗P ∈ Πd

p(Y
∗∗, Z∗) to get that

there is a net {Tα} ⊂ Πp(Z, Y
∗) such that πp(Tα) ≤ 1 for all α and Tα →

α
S∗P

is in the weak∗-topology σ(Πd
p(Y

∗∗, Z∗), Y ∗∗⊗̂p′Z). The family {Tα} belongs to the

closure in σ(Πd
p(Y

∗∗, Z∗), Y ∗∗⊗̂p′Z) of finite rank operators from the unit ball of the
space Πp(Z, Y

∗) (since the space Y ∗ has the MAP ). The operator S∗P belongs to
the closure in the same topology of the set {Tα}. Thus, S∗P belongs to the closure
in σ(Πd

p(Y
∗∗, Z∗), Y ∗∗⊗̂p′Z) of finite rank operators from the unit ball of the space

Πp(Z, Y
∗). Since S∗ = S∗Pj : E∗ → Y ∗∗ → E∗ → Z∗, we have that S lies in the

closure in the weak∗-topology σ(Πp(Z,E
∗∗), E∗⊗̂p′Z) of finite rank operators from

the unit ball of the space Πp(Z,E), hence in the closure of finite rank operators from
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the unit ball of the space Πp(Z,E) in τptopology (or, if one wish, in the topology of
compact convergence).

Taking in account the last three theorems and Proposition 7 before them, we
obtain, as by-product (at least, for C = 1), that the proposition 7 is true also in the
cases where q = 1 or ∞. It is not hard to see that the theorems can be formulated
and proved for general cases "for any constant C ≥ 1", — e.g., for C-MAPp, for
"closures of C-balls" etc. But this is the theme of the next papers (as well as the
considerations of some "(counter)examples").
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Soc., 16(1955).

[2] J. Lindenstrauss: On James’ paper "Separable Conjugate Spaces", Israel J. Math. 9 (1971),
279-284.

[3] A. Pietsch: Operator Ideals, North Holland (1980).
[4] O.I. Reinov: Approximation properties of order p and the existence of non-p-nuclear operators

with p-nuclear second adjoints, Math. Nachr. 109(1982), 125-134.
[5] O.I. Reinov: Approximation of operators in Banach spaces, Application of functional analysis

in the approximation theory (KGU, Kalinin) (1985), 128-142.
[6] O.I. Reinov: Approximation of Operators in Dual Spaces by Adjoint Operators, Journal of

Mathematical Sciences 173, No. 5 (2011), 632-641.
[7] P. Saphar: Produits tensoriels d’espaces de Banach et classes d’applications lineaires, Studia

Math. 38(1970), 71–100.

Department of Mathematics and Mechanics, St. Petersburg State University,

Saint Petersburg, RUSSIA.

Abdus Salam School of Mathematical Sciences, 68-B, New Muslim Town, Lahore

54600, PAKISTAN.

E-mail address : orein51@mail.ru


