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Abstract

Consider the affine space AN (K) of homogeneous polynomials of degree d

in n + 1 variables with coefficients from an algebraic closure K of a field K of

arbitrary characteristic, so N =
(

n+d

n

)

. We prove that the variety of all reducible

polynomials from this affine space can be given by a system of polynomial

equations of degree less than 56d7 in N variables. Using this result we formulate

an effective version of the first Bertini theorem for the case of a hypersurface.

Introduction

Let K be an arbitrary field of characteristic char(K) = p with an algebraic
closure K (in what follows for any field E we denote by E an algebraic closure
of E). Let H be the primitive field of characteristic p, i.e., H = Q if p = 0 or
H = Fp = Z/pZ if p > 0. We shall assume that H ⊂ K.

It is well known that the discriminant ∆f of a polynomial f ∈ K[X1] is a
polynomial in the coefficients of f and ∆f 6= 0 if and only if f is square free
in K[X1], i.e., it does not have multiple factors in the ring K[X1] or which
is the same the polynomial f is separable. In the present paper we consider
a polynomial f =

∑
i1,...,in

fi1,...,inX
i1
1 · . . . · X in

n ∈ K[X1, . . . , Xn], n > 2, all
fi1,...,in ∈ K, of degree degX1,...,Xn

f = d > 2 and construct an analog Af of the
discriminant ∆f in the following sense. The discriminant ∆f of the polynomial
in one variable corresponds to the property “f is separable”. In the similar way
Af corresponds to the property “f is absolutely irreducible”.

The element Af ∈ Kw,v,u where Kw,v,u is a purely transcendental extension
of the field K, see Section 3. Here w, v, u are families of transcendental elements
over the field K and the field Kw,v,u is generated over K by all the elements
from these families. Actually Af ∈ K[w, v, u] where K[w, v, u] is the ring of
polynomials in all the elements from families w, v, u.

Key words and phrases: absolute irreducibility, lattices, the Bertini theorem.
UDK 513.6+518.5
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Further, Af corresponds to f canonically: it is a polynomial in all the
coefficients fi1,...,in of f . The degree of this polynomial in fi1,...,in is bounded
from above by 56d7, see a more precise estimate in Section 3. Finally, the main
property: Af 6= 0 if and only if the polynomial f is irreducible in the ring
K[X1, . . . , Xn].

Consider the affine space AN(K), N =
(
n+d
n

)
, (respectively AN1(K), N1 =(

n+d−1
n−1

)
) of polynomials (respectively homogeneous polynomials) from K[X1,

. . . , Xn] of degree at most d (respectively of degree d) in n variables with
coefficients from an algebraic closure K of a field K. In this paper we regard
0 as a reducible polynomial. Although 0 belongs to the linear space of the
homogeneous polynomial of degree d by definition deg 0 = −1. The set Ud,n of
polynomials of degree d from AN (K) is an open in the Zariski topology subset
of this affine space. As a consequence of the construction for the element Af we
get the following result.

THEOREM 1 (i) Let n > 2 and d > 1 be integers. The set Vd,n of all
reducible polynomials from K[X1, . . . , Xn] of degree d is closed in Ud,n with
respect to Zariski topology and Vd,n can be given as a set of all roots from Ud,n
of a system of polynomial equations with coefficients from a primitive field H in
N variables. The degree of this system is less than 56d7.

(ii) Similarly the set Wd,n of all reducible polynomials from the affine space
AN1(K) of homogeneous polynomials of degree d is closed in AN1(K) with respect
to Zariski topology and Wd,n is a set of all roots of a system of polynomial
equations with coefficients from the primitive field H in N1 variables. The degree
of this system is less than 56d7.

More precise statements for n > 2 and d > 2, see in Lemma 11 Section 3.
Theorem 1 follows from Lemma 11 immediately. The proof of Lemma 11 is
reduced to the case of two variables. This reduction is described in Section 3.

The case of two variables: f ∈ K[X,T ] is considered in Section 2. We suggest
here a criterion for absolute irreducibility: Rρ,f 6= 0, see (15) and Lemma 6.
To get this criterion we describe a formal (or universal) version of the Hensel
lemma, introduce a lattice corresponding to f over the ring of polynomials K[T ]
and consider a minimal vector in it. We would like to emphasize that Lemma 5
from Section 2 is one of the most important in the paper.

Estimates for a minimal vector in an arbitrary lattice overK[T ] are obtained
in Section 1. The idea to consider lattices for questions related to irreducibility
of polynomials is originated from [6] but in the present paper we have quite
different accents.

As an application of Theorem 1 we get an efficient version of the first Bertini
theorem for the case of a hypersurface. Let f ∈ K[X1, . . . , Xn, Y ], n > 2, be a
polynomial of degree degY f > 1. Assume that f is absolutely irreducible, i.e.,
irreducible in the ring K[X1, . . . , Xn, Y ]. Suppose that its discriminant with
respect to the variable Y

∆ = ResY

(
f,
∂f

∂Y

)
6= 0, (1)

i.e., the polynomial f is separable with respect to Y . Denote by K the field of
fractions of the ring K[X1, . . . , Xn, Y ]/(f).
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Let L1, L2 ∈ K[X1, . . . , Xn] be two linearly independent over K linear forms
in X1, . . . , Xn. Denote by (L1, L2) ⊂ K[X1, . . . , Xn, Y ] the ideal of the last ring
of polynomials generated by L1 and L2. Consider the following conditions.

(a) The polynomial f 6∈ (L1, L2) and for all µ1, µ2 ∈ K such that µ1 6= 0 or
µ2 6= 0 the linear form µ1L1 + µ2L2 does not divide ∆.

(b) The discriminant ∆ 6∈ (L1, L2).

The discriminant ∆ is the the determinant of the Sylvester matrix of the polynomials
f, ∂f/∂Y ∈ K(X1, . . . , Xn)[Y ]. Hence if f ∈ (L1, L2) then ∆ ∈ (L1, L2).
Therefore, condition (b) implies (a).

THEOREM 2 Let f ∈ K[X1, . . . , Xn, Y ], n > 2, be an irreducible polynomial
such that degY f > 1, degX1,...,Xn,Y

f 6 d for an integer d > 1 and (1) is
satisfied. Then the following assertions hold.

(i) Assume that condition (a) or condition (b) holds for linearly independent
linear forms L1, L2. Let t∗ ∈ K and L = L2 − t∗L1. So the ring
K[X1, . . . , Xn]/(L) is isomorphic to the ring of polynomials in n − 1
variables. Then for all t∗ ∈ K, except at most 56d8, the polynomial
f mod L ∈ K[X1, . . . , Xn]/(L)[Y ] is irreducible in the last ring and ∆ mod
L 6= 0. This means that the intersection of the hypersurface Z(f) and the
hyperplane Z(L) in the affine space An+1(K) is transversal and irreducible
over K.

(ii) Suppose that L is a linear subspace of the space of all linear forms in
X1, . . . , Xn with coefficients from K and the dimension dimL > 3 (hence
also n > 3). Then there are L1, L2 ∈ L satisfying condition (b) (and
therefore also (a)). More precisely, let L′

1, L
′
2, L

′
3 ∈ L be three linearly

independent linear forms and I ⊂ K be a finite set such that the number
of elements #I = 1 + degX1,...,Xn

∆. Then there are α1, α2 ∈ I such that
L1 = L′

1 − α1L
′
3, L2 = L′

2 − α2L
′
3 satisfy condition (b).

Let us describe how to prove this theorem. Let L1, L2, L3, . . . , Ln be a basis
of the space of all linear forms in X1, . . . , Xn. Put t = L2/L1. Then f 6∈ (L1, L2)
if and only if the polynomial f is irreducible in the ring K(t)[L1, L3 . . . , Ln, Y ].
This follows from Lemma 12 with Y, L3, . . . , Ln, L1, L2 in place of X1, . . . , Xn+1

(in the sequel we refer in the Introduction also to Lemma 13, Lemma 14 and
Corollary 3; one should do the similar replacement of variables there).

Further, assume that f is irreducible in the ring K(t)[L1, L3, . . . , Ln, Y ].
Then f is an irreducible element of the ring K(t)[L1, L3, . . . , Ln, Y ] if and only
if the field K(t) is algebraically closed in the field K, see [7], Lemma 4. We give
a simple direct independent proof of this fact in Lemma 13.

In Lemma 14 we prove that if condition (a) or condition (b) is satisfied
then the field K(t) is algebraically closed in K. In spite of the simplicity of this
assertion probably this result is new.

Finally now assertion (i) follows from Corollary 3 of Lemma 14 immediately.
Let us prove assertion (ii). Performing a nondegenerate linear transformation of
variablesX1, . . . , Xn one can suppose without loss of generality that L′

1 = Xn−1,
L′
2 = Xn, L

′
3 = X1. Then ∆ 6∈ (L1, L2) if and only if

∆(X1, . . . , Xn−2, α1X1, α2X1) 6= 0.
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Thus the required α1, α2 ∈ I exist. Theorem 2 is proved (modulo Lemmas 12—
14 and Corollary 3).

REMARK 1 According to the construction described Sections 1–3 the number
of equations in the polynomial system from Theorem 1 (i) (respectively (ii)) is

bounded from above by d(d+n)
O(1)

.
One can obtain a system with a smaller number of equations as follows. Let

us replace in the formulation of Theorem 1 the field H by an infinite extension
H1 of H . We assume that H1 ⊂ K. Then there is a modified system giving Vd,n
(respectivelyWd,n) similar to the one from the statement (i) (respectively (ii)) of
Theorem 1 and consisting of N +1− dimVd,n (respectively N1 +1− dimWd,n)
polynomial equations with coefficients from H1. To get the last system it is
sufficient to take linear combinations with coefficients from H1 of the initial
equations from Theorem 1 (i) (respectively (ii)) in general position. Still these
linear combinations are given not efficiently. It is difficult to construct them.

On the other hand, using [5] one can construct explicitly the elements Ai,f ∈
K, 1 6 i 6 N2 = dO(n) satisfying the following properties. Every

Ai,f = Af |w=w∗

i
,v=v∗

i
,u=u∗

i

is obtained by the substitution in Af some special values w∗
i , v

∗
i , u

∗
i of families

w, v, u such that the elements of w∗
i , v

∗
i , u

∗
i are from the field H1. The element

Af 6= 0 if and only if Ai,f 6= 0 for some 1 6 i 6 N2. If the field K is
finitely generated over H (of fixed transcendency degree) and given similarly
to the ground field from the Introduction of [2] then for a polynomial f one can
compute all Ai,f within the time polynomial in the size of the polynomial f and
dn. We shall not prove and use this result in the present paper.

REMARK 2 It would be interesting to improve the upper bound 56d8 from
assertion (i) of Theorem 2 (or the similar more precise upper bound from
Corollary 3) for an arbitrary characteristic of the ground field. It is possible
if char(K) = 0. In this case one can replace 56d8 by 4d4. It can be deduced
from the Irreducibility Criterion given in the Introduction of [4].

Note also that in zero–characteristic one can not improve the estimate 56d7

from Theorem 1 in the similar way.

The present paper is important. In future we hope to consider from the
algorithmic point of view the effective version of the first Bertini theorem in
general case and in arbitrary characteristic of the ground field. Still there
we are able to obtain only less strong results than the ones from [4] in zero–
characteristic. As an application the main result of [3] will be improved for the
case of a finite ground field.

1 Estimates for a minimal vector in a lattice

Let K be an arbitrary field. Let A = (ai,j)16i6n1, 16j6n2 be an (n1 × n2)-mat-
rix with the elements ai,j from the ring B = K[T ] where T is a transcendental
element over the field K. Let ai = (ai,1, . . . , ai,n2) ∈ Bn2 , 1 6 i 6 n1, be the
rows of the matrix A. Denote by M the B-submodule of Bn2 generated by all
the rows ai of the matrix A (in other words M is a lattice in Bn2).
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For an element b ∈ B set |b| = degT b (we assume that degT 0 = −1). So
|ai,j | = degT ai,j . Put |A| = max16i6n1, 16j6n2 |ai,j | and for an arbitrary vector
y = (y1, . . . , yn2) ∈ Bn2 set |y| = max16j6n2 |yi|. We shall suppose in what
follows in this section that |A| = D. Let r = rank(A) be the rank of the matrix
A.

The minimal vector of M is an arbitrary nonzero element q ∈ M such that
|q| = min{|y| : 0 6= y ∈M}, i.e., |q| is minimal possible.

LEMMA 1 Let q be an arbitrary minimal vector of the latticeM . Then |q| 6 D
and one can represent

q =
∑

16i6n1

λiai, (2)

where λi ∈ B and |λi| 6 (2r + 1)D for all 1 6 i 6 n1.

PROOF Obviously |q| 6 |A| = D. Permuting the columns of the matrix A
we shall suppose without loss of generality that the first r columns of the matrix
A are linearly independent over the field K(T ). Let us represent A = (A1, A2)
where the matrix A1 has r columns and A2 has n2−r columns. So rank(A1) = r.
There is a matrix A3 of the size n1 × (n1 − r) such that rank(A1, A3) = n1 and
each column of the matrix A3 contains only one nonzero entry and this entry
is equal to 1 (if r = n1 then A3 has 0 columns, i.e., it is empty). Hence
(A1, A3) = A4 is a nondegenerate square matrix, its determinant det(A4) 6= 0
and |det(A4)| 6 rD.

The ring B is Euclidean. Hence as it is well known there is a matrix Q ∈
GLn1(B) (the matrix Q is a product of the elementary matrices over the ring
B corresponding to the some elementary transformations of the rows of the
matrix A4) such that QA4 = A′ = (a′i,j)16i,j6n1 is an upper triangular ma-
trix (this means that a′i,j = 0 for all 1 6 j < i 6 n1). Moreover, applying
(if it is necessary) elementary transformations of rows to the obtained upper
triangular matrix we shall suppose without loss of generality in the sequel that
|a′i,j | < |a′j,j | for all 1 6 i < j 6 n1.

Since Q ∈ GLn1(B) the determinant det(A′) = αdet(A4) for an element
0 6= α ∈ K. Hence

∑

16j6n1

max
16i6n1

{|a′i,j|} =
∑

16j6n1

|a′j,j | = |det(A4)| 6 rD. (3)

This implies of course |A′| 6 |det(A4)|. We have Q = A−1
4 A′. Put ∆1 =

det(A4). Now
|∆1Q| 6 |∆1A

−1
4 |+ |A′| 6 rD + |∆1|.

(if n2 = n1 = r then one can replace here rD by (n1 − 1)D but in the next
section we have n1 > n2; so we don’t take into account this minor improvement).
Hence |Q| 6 rD.

Put QA = A′′ = (a′′i,j)16i6n1, 16j6n2 . Let a′′1 , . . . , a
′′
n1

be the rows of the
matrix A′′ and A′′

1 be the matrix consisting of the first r rows of the matrix A′′.
Now according to our construction a′′1 , . . . , a

′′
r is the basis of the module M (it

is a free module) over the ring B, a′′i = 0 for all r + 1 6 i 6 n1 and a′′i,j = a′i,j
for all 1 6 i, j 6 r.

Therefore there are µi ∈ B, 1 6 i 6 r, such that q =
∑

16i6r µia
′′
i .

Henceforth
qj =

∑

16i6r

µia
′
i,j , 1 6 j 6 r.
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Notice that det((a′i,j)16i,j6r) 6= 0. Therefore, using Cramer’s rule and (3) we
get

|µi| 6 |q|+
∑

16j6r

max
16i6r

{|a′i,j |} 6 D + rD = (r + 1)D.

Let Q1 be the matrix consisting of the first r rows of the matrix Q. Then
Q1A = A′′

1 and (µ1, . . . , µr)Q1A = q. Put (λ1, . . . , λn1) = (µ1, . . . , µr)Q1. Now
(2) holds and for all 1 6 i 6 n1

|λi| 6 max
16i6r

|µi|+ |Q1| 6 (2r + 1)D.

The lemma is proved.

Under conditions of Lemma 1 let us represent λi =
∑

06γ6(2r+1)D λi,γ T
γ,

1 6 i 6 n1, and ai,j =
∑

06γ6(2r+1)D ai,j,γ T
γ, 1 6 i 6 n1, 1 6 j 6 n2, where

all the coefficients λi,γ ∈ K, ai,j,γ ∈ K (if γ > D then ai,j,γ = 0 for all i, j).
Let Zi,ν , 1 6 i 6 n1, 0 6 ν 6 (2r+1)D, be new variables. Let −1 6 µ0 6 D

be an integer. Consider the homogeneous linear system with coefficients from
the field K with respect to the variables Zi,ν

∑

06ν6µ

∑

16i6n1

Zi,ν ai,j,µ−ν = 0, µ0 < µ 6 (2r + 2)D, 1 6 j 6 n2. (4)

Let CA,−1 be the matrix of system (4) with µ0 = −1. It has ν1 = ((2r+2)D+
1)n2 rows and ν2 = ((2r+1)+1)Dn1 columns. The rows (respectively columns)
of the matrix CA,−1 correspond to different pairs (µ, j) (respectively (i, ν)), see
(4). We order pairs (µ, j) lexicographically: (µ1, j1) > (µ2, j2) if and only if µ1 >
µ2 or µ1 = µ2 and j1 > j2. Similarly we order pairs (i, ν). Next, we identify the
linear ordered set of pairs (µ, j) (respectively (i, ν)) and {1, . . . , ν1} (respectively
{1, . . . , ν2}). Now the matrix CA,−1 has the form CA,−1 = (ci,j)16i6ν1, 16j6ν2
where elements ci,j are uniquely defined by (4) and these identifications of linear
ordered sets. Let c1, . . . , cν1 be all the rows of the matrix CA,−1.

Let −1 6 ρ 6 D be an arbitrary integer. Then the matrix CA,ρ of system
(4) with µ0 = ρ is identified with a submatrix of CA,−1. Namely, CA,ρ consists
of ((2r + 2)D − ρ)n2 rows of matrix CA,−1. These are rows cν3 , . . . , cν1 where
ν3 = 1 + ν1 − ((2r + 2)D − ρ)n2 = (ρ+ 1)n2 + 1.

Set ν0 = max{ν1, ν2}. Let u = {ui,j}16i6ν1+ν2, 16j6ν0 be a family of
algebraically independent over the field K elements. Denote by Ku = K(u)
the extension of the field K by all the elements from the family u. Hence the
transcendency degree of Ku over K is (ν1 + ν2)ν0. Put

hi,j =
∑

ν36i16ν1, 16j16ν2

ui,i1uj+ν1,j1ci1,j1 , ν3 6 i 6 ν1, 1 6 j 6 ν2,

h′i,j =
∑

16i16ν1, 16j16ν2

ui,i1uj+ν1,j1ci1,j1 , 1 6 i 6 ν1, 1 6 j 6 ν2.

So all hi,j , h
′
i,j ∈ Ku. In other words the matrix (h′i,j)i,j is obtained from CA,−1

in two steps. At first one takes ν1 generic linear combinations c′1, . . . , c
′
ν1

of the
rows of the matrix CA,−1 and get the matrix C′ with the rows c′1, . . . , c

′
ν1
. After

that one takes ν2 generic linear combinations c′′1 , . . . , c
′′
ν2

of the columns of the
matrix C′ and get the matrix C′′ = (h′i,j)i,j . In the similar way one obtains the
matrix (hi,j)i,j starting from CA,ρ.
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Let 0 6 γ 6 min{ν1 − ν3 + 1, ν2} = r1 be an integer. Put

∆A,ρ,γ = det((hi,j)16i,j6γ), ∆′
A,γ = det((h′i,j)16i,j6γ).

Set ∆′
A,r1+1 = 0. We have rank(CA,−1) = rank(CA,ρ) = γ if and only if

∆A,ρ,γ 6= 0 and ∆′
A,γ+1 = 0.

LEMMA 2 Under conditions of Lemma 1 let q be a minimal vector of the
lattice M . Then |q| > ρ if and only if every solution of system (4) with µ0 = ρ
is a solution of system (4) with µ0 = −1, i.e., if and only if there is 1 6 γ 6 r1
such that ∆A,ρ,γ 6= 0 and ∆′

A,γ+1 = 0.
Assume additionally that rank(CA,−1) = r0. Then |q| > ρ if and only if

∆A,ρ,r0 6= 0.

PROOF This follows from the previous considerations and Lemma 1. The
lemma is proved.

2 An irreducibility criterion: the case of two

variables

Let K, T , B = K[T ] be the same as in the previous section. Let X be a
variable and f ∈ K[X,T ] be a polynomial such that the degree 0 6 degT f 6 ρ
for an integer ρ > 1. Further, let degX f = degX f(X, 0) = m > 2 and the
leading coefficient lcXf ∈ K (the last condition means that degX(f−f(X, 0)) <
degX f). Put

∆f = ResX(f(X, 0), f ′(X, 0)) ∈ K (5)

to be the discriminant of the polynomial f(X, 0). We shall assume that ∆f 6= 0,
i.e., the polynomial f(X, 0) is has m pairwise distinct roots in the algebraic
closure K. We shall suppose that all these conditions are satisfied throughout
this section.

Set n2 = m. Put the ring B1 = K[T ], B2 = B1[Z] where Z is a variable. We
shall identify the set of polynomials g ∈ K[X,T ] (respectively g ∈ K[Z,X, T ])
of degree degX g < m with Bm1 (respectively Bm2 ). Under this identification

g = g0 + g1X + . . .+ gm−1X
m−1 7→ (g0, g1, . . . , gm−1), (6)

here all gi ∈ B1 (respectively all gi ∈ B2). We shall use the notation |...| for
polynomials, elements of Bm1 , Bm2 , matrices and so on, see the previous section.
So at present |g| = degT g for any polynomial g. We shall apply the results of
the previous section for the ring B1 in place of B.

Set f0 = f(X, 0). Let us represent f0 = f0(Z) + (X −Z)g0 for a polynomial
g0 ∈ K[Z,X ]. Notice that g0(Z,Z) = f ′

0(Z) =
d f0
dZ

. Write δ = f ′
0(Z).

Let us represent f =
∑

i>0 fi T
i where all fi ∈ K[X ] (hence if i > |f | then

fi = 0). Set f i = δ2i−2fi for all i > 1. Put z0 = Z.
For all i > 1 let us define recursively polynomials gi,j ∈ K[Z], 0 6 j 6 m−2,

and zi ∈ K[Z]. Put gi =
∑

06j6m−2 gi,jX
j ∈ K[Z,X ].

Assume that gj and zj are defined for all 0 6 j < i for some i > 1. Then

(X − Z)gi − g0zi = δ
(
f i +

∑

16w6i−1

gwzi−w

)
. (7)
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Now to find all gi,j ∈ K(Z), 0 6 j 6 m − 2 and −zi ∈ K(Z) one should
solve using (7) a linear system with coefficients from K(Z) by Cramer’s rule.
The coefficients matrix of this system is the Sylvester matrix of the polynomials
X − Z and g0. Its determinant is ±δ. All the free terms of this system are
divisible by δ. Hence actually all gi,j ∈ K[Z] and zi ∈ K[Z]. The recursive step
for the definition of gi and zi is described.

LEMMA 3 (i) For all i > 1 the degrees

degZ gi 6 (2i− 1)(2m− 2), degZ zi 6 (2i− 1)(2m− 2).

(ii) Let us extend the field K till the field K(t) where t is a new variable.
Assume that f ∈ K[t,X, T ]. Now g0 ∈ K[t, Z,X ] and using (7) in the similar
way as it was above one can prove that gi ∈ K[t, Z,X ] , zi ∈ K[t, Z] for all
i > 1. Assume additionally that degt f 6 s for an integer s. Then for all i > 1
the degrees

degt gi 6 (3i− 1)s, degt zi 6 (3i− 1)s.

PROOF (i) The degrees with respect to Z of all the minors of the Sylvester
matrix of the polynomials g0, X−Z are bounded from above by 2m−3. We have
degZ f i 6 (2i− 2)(m− 1). Now the required assertion follows by the induction
on i using Cramer’s rule.

(ii) The degrees with respect to t of all the minors of the Sylvester ma-
trix of the polynomials g0, X − Z are bounded from above by s. We have
degt f i 6 (2i − 1)s. Now the required assertion follows by the induction on i
using Cramer’s rule. The lemma is proved.

Consider the separable K-algebra K ′ = K[Z]/(f0(Z)). Put z = Z mod
f0(Z) ∈ K ′. Then f0 = (X − z)g0(z,X) where g0(z,X) ∈ K ′[X ]. Notice that
δ(z) = g0(z, z) is an invertible element ofK ′ since the polynomial f0 is separable.
Let K ′[[T ]] be the ring of formal power series in T over the algebra K ′. One
can apply Hensel’s lifting to the decomposition f(X, 0) = (X − z)g0(z,X) and
get

f =
(
X −

∑

i>0

zi T
i
)(
g0(z,X) +

∑

i>1

gi T
i
)

(8)

in the ring K ′[[T ]][X ]. Here z0 = z, all zi ∈ K ′, the polynomials gi ∈ K ′[X ],
degX gi 6 m− 2, for all i > 1.

LEMMA 4 For all i > 1

zi =
zi(z)

δ(z)2i−1
, gi =

gi(z,X)

δ(z)2i−1
. (9)

PROOF Equality (8) implies that for all i > 1 the polynomials gi and the
elements zi satisfy the recursive relation

(X − z)gi − g0(z,X)zi = fi +
∑

16w6i−1

gwzi−w. (10)

Now (9) is obtained by the induction on i using (10) and (7). The lemma is
proved.
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REMARK 3 Similarly to (8) and (9) one can obtain the decomposition

f − f0(Z) =

(
X − Z −

∑

i>1

zi
δ2i−1

T i
)(

g0 +
∑

i>1

gi
δ2i−1

T i
)

in the ring K(Z)[[T ]][X ]. This is a formal (or universal) version of the Hensel
lemma.

Set D = (2m− 1)ρ+ 1 and

η = δ2D−3X − δ2D−3
(
Z +

∑

16i6D−1

zi T
i

δ2i−1

)
= (11)

δ2D−3X −
(
δ2D−3Z +

∑

16i6D−1

ziδ
2(D−1−i)T i

)
∈ K[Z,X, T ],

Let x ∈ K be a root of the polynomial f(X, 0), i.e., f(x, 0) = 0. Put

ai = η(x,X, T )X i−1, ãi = ηX i−1, 1 6 i 6 m− 1,
ai = TDX i−m, ãi = TDX i−m, m 6 i 6 2m− 1.

(12)

Hence all ai ∈ Bm1 , ãi ∈ Bm2 under identification (6). Put n1 = 2m − 1.

Let A (respectively Ã) be the matrix with the rows a1, . . . , an1 (respectively

ã1, . . . , ãn1). Hence D = |A| = |Ã|. Let us apply the construction of Section 1

to the matrices A and Ã (replacing there the ground field K by K[x ] and K(Z)

respectively). Now the following objects corresponding to A and Ã are defined,
see Section 1: the integers νi, 0 6 i 6 3, r1, the matrices CA,−1, CA,ρ, CÃ,−1,

C
Ã,ρ

, the determinants ∆A,ρ,i,∆
′
A,i+1 ∈ Ku[x ], ∆Ã,ρ,i

,∆′

Ã,i+1
∈ Ku[Z] for all

1 6 i 6 r1. Notice that r = rank(A) = rank(Ã) = m by (12).

LEMMA 5 Let f be a polynomial satisfying all the conditions formulated at
the beginning of the section and the matrices CA,−1, CÃ,−1 correspond to f .
Then the ranks of matrices

rank(CA,−1) = rank(C
Ã,−1) = ((2m+ 2)D + 1)m−D.

Put r0 = ((2m+ 2)D + 1)m−D (recall that D = (2m− 1)ρ+ 1).

PROOF We shall prove this assertion for the matrix CA,−1. The proof for
C
Ã,−1 is similar and left to the reader. It is sufficient to show that r0 is the

maximal number of linearly independent equations of system (4) from Section 1
with µ0 = −1. By (12) the last system has the form





Zj+m−1,µ−D+∑
06ν6µ

∑
16i6m−1 Zi,νai,j,µ−ν = 0, D 6 µ 6 (2r + 2)D, 1 6 j 6 m,

Zj−1,µδ
2D−3(x) = 0, 0 6 µ < D, j = m,

Zj−1,µδ
2D−3(x)+∑

06ν6µ Zj,νaj,j,µ−ν = 0, 0 6 µ < D, 2 6 j 6 m− 1,∑
06ν6µ Zj,νaj,j,µ−ν = 0, 0 6 µ < D, j = 1.

(13)
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Let us delete from system (13) D equations

∑

06ν6µ

Z1,νa1,1,µ−ν = 0, 0 6 µ < D. (14)

and denote by (*) the new obtained system. Then system (*) has the trapezoidal
form (after a permutation of equations) with the elements Zj+m−1,µ−D, D 6

µ 6 (2r + 2)D, 1 6 j 6 m; Zj+1,µδ
2D−3(x), 0 6 µ < D, 2 6 j 6 m− 1, on the

slanting side of the trapezoid. Hence all the equations of system (*) are linearly
independent. The number of equation of system (*) is r0. Finally (*) implies
that Zj,µ = 0 for all 1 6 j 6 m− 1, 0 6 µ < D. Hence equations (14) are linear
combinations of the ones from system (*). The lemma is proved.

Let f1 and f2 be two polynomials in the variable Z. Denote by ResZ(f1, f2)
the resultant with respect to Z of the polynomials f1 and f2. This resultant is
defined usually as the determinant of the Sylvester matrix for nonzero polynomials
f1, f2 (in the case degZ f1 = degZ f2 = 0 one obtains the empty Sylvester ma-
trix, its determinant is 1 in the natural way). If f1 = 0 or f2 = 0 then by
definition ResZ(f1, f2) = 0.

Put
Rρ,f = ResZ(∆Ã,ρ,r0

, f(Z, 0)) ∈ Ku. (15)

Thus Rρ,f depends on ρ and the coefficients of the polynomial f ∈ K[X,T ].
Denote by M the lattice in Bm1 generated by the rows of the matrix A. The
minimal vector of the lattice M is defined as in Section 1 (now with the ring B1

in place of B).

LEMMA 6 Let f ∈ K[X,T ] be a polynomial satisfying all the conditions
formulated at the beginning of the Section. Then the following assertions hold
true.

(i) Let q be an arbitrary minimal vector of M . Then |q| > ρ if and only if the
polynomial f is irreducible in the ring K[X,T ].

(ii) The element Rρ,f 6= 0 if and only if the polynomial f is irreducible in the
ring K[X,T ].

PROOF (i) Suppose that f is reducible in K[X,T ]. Then there is a divisor
g ∈ K[X,T ] of f such that the degree 1 6 degX g < m andX−x divides g(X, 0).
The definition of the latticeM and the uniqueness of the the decomposition into
the irreducibles in the ring K[x]((T ))[X ] (here K((T )) is the field of fractions
of the ring K[[T ]]) imply that g ∈ M (under identification (6)). We have
|q| 6 |g| 6 |f | 6 ρ.

Conversely, suppose that |q| 6 ρ. Consider the resultant

R = ResX(q, f) ∈ K[x ][T ]

of the polynomials q and f with respect to X . As it is well known there are
polynomials p1, p2 ∈ K[x ][X,T ] such that R = p1q + p2f . Since q ∈ M the
linear polynomial η(x,X, T ) mod TD divides q mod TD in the ring B1/(T

D)[X ].
By (8), (9) and (11) also η(x,X, T ) mod TD divides f mod TD in the ring
B1/(T

D)[X ]. Therefore, η(x,X, T ) mod TD divides R mod TD in the last ring.
But degX R 6 0. Consequently R mod TD = 0 and hence |R| > D or R = 0.
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On the other hand, the conditions |f | 6 ρ, |q| 6 ρ imply that |z| 6 ρ for each
element z of the Sylvester matrix of the resultant R. The size of this matrix is
bounded from above by 2m − 1. Therefore, |R| 6 (2m − 1)ρ = D − 1. Thus
R = 0. This means that GCD(f, q) 6= 1 in the ring K[x ][X,T ]. Hence f is a
reducible polynomial in K[X,T ] and (i) is proved.

(ii) Recall that ∆A,ρ,r0 ∈ Ku[x ], ∆
Ã,ρ,r0

∈ Ku[Z] and according to our

definitions ∆
Ã,ρ,r0

(x) = ∆A,ρ,r0 . By Lemma 2 (with the ring B1 in place of B)

and Lemma 5 we have ∆A,ρ,r0 6= 0 if and only if |q| > ρ for a minimal vector
q of M . Hence by (i) ∆A,ρ,r0 = ∆

Ã,ρ,r0
(x) 6= 0 if and only if the polynomial f

is irreducible in the ring K[X,T ]. But x is an arbitrary root of the polynomial
f0(Z). Hence f is irreducible in the ring K[X,T ] if and only if the polynomials
∆
Ã,ρ,r0

and f0(Z) are relatively prime in the ring Ku[Z], i.e., if and only if their

resultant Rρ,f 6= 0. Assertion (ii) and all the lemma are proved.

LEMMA 7 Let f ∈ K[X,T ] be a polynomial satisfying all the conditions
formulated at the beginning of the Section. Then the following assertions hold.

(i) The degree

degZ ∆
Ã,ρ,r0

6 2(m− 1)(4mρ− 2ρ− 1)×
(
4m3ρ+ 2m2ρ+ 2m2 − 4mρ+ 3m+ ρ− 1

)
.

(ii) Under conditions of assertion (ii) of Lemma 3 the degrees

degt∆Ã,ρ,r0
6 s(6mρ− 3ρ− 1)× (16)

(
4m3ρ+ 2m2ρ+ 2m2 − 4mρ+ 3m+ ρ− 1

)
,

degtRρ,f 6 s
(
14m2ρ− 15mρ− 3m+ 4ρ+ 2

)
× (17)

(
4m3ρ+ 2m2ρ+ 2m2 − 4mρ+ 3m+ ρ− 1

)
.

Hence if 2 6 degX f = m = d, 1 6 degT f 6 ρ = d, degt f 6 s = d then

degtRρ,f 6 d
(
14d3 − 15d2 + d+ 2

) (
4d4 + 2d3 − 2d2 + 4d− 1

)
. (18)

PROOF We shall suppose without loss of generality that the conditions of
assertion (ii) of Lemma 3 hold. From Lemma 3 and (11) we get

degZ η 6 (2D − 3)(2m− 2), degt η 6 (3D − 4)s (19)

Let C
Ã,ρ

= (c̃i,j)i,j be the matrix corresponding to Ã. According to (12) and

(19) we have also degZ c̃i,j 6 (2D− 3)(2m− 2), degt c̃i,j 6 (3D− 4)s for all i, j.
Hence degZ ∆

Ã,ρ,r0
6 r0(2D − 3)(2m − 2), degt∆Ã,ρ

6 r0(3D − 4)s (one can

check direcly that r0 is no more than the number of the rows ((2r+2)D− ρ)m
of the matrix C

Ã,ρ
but we even do not use this). This implies (i) and (16).

Finally considering the Sylvester matrix for the resultant of the polynomials
∆
Ã,ρ,r0

and f0(Z) we get

degtRρ,f 6 degZ ∆
Ã,ρ,r0

· degt f0 + degZ f0 · degt∆Ã,ρ,r0
6

r0(2D − 3)(2m− 2)s+mr0(3D − 4)s.

This implies (17).
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The right part of (17) is a monotone increasing function of m and ρ for
m > 2, ρ > 1. Now substituting m = d and ρ = d in (17) we get (18). The
lemma is proved.

COROLLARY 1 Let f be a polynomial satisfying the conditions of Lemma 7
and the ones from assertion (ii) of Lemma 3. Suppose that the polynomial
f ∈ K[t,X, T ] is irreducible in the ring K(t)[X,T ]. Then there are at most

degt(∆fRρ,f ) 6 s(2m− 1) + s
(
14m2ρ− 15mρ− 3m+ 4ρ+ 2

)
× (20)

(
4m3ρ+ 2m2ρ+ 2m2 − 4mρ+ 3m+ ρ− 1

)

values t∗ ∈ K of t such that the polynomial f(t∗, X, T ) is reducible in the ring
K[X,T ] or ∆f |t=t∗ = 0. Note that ∆f |t=t∗ = 0 if and only if degX f0 >
degX f(t

∗, X, 0) or the polynomial f(t∗, X, 0) is not separable.

PROOF Recall that f0 = f(t,X, 0). There are at most degt∆f 6 (2m− 1)s
values t∗ ∈ K of t such that ∆f |t=t∗ = 0. In what follows we shall assume
that degX f0 = degX f(t

∗, X, 0) and f(t∗, X, 0) is separable. The resultant
Rρ,f ∈ K[t] and according to our definitions Rρ,f (t

∗) = Rρ,f(t∗,X,T ). Now (20)
follows from Lemma 6 (ii) and (17). The corollary is proved.

3 An irreducibility criterion: general case

Let K be an arbitrary field and f ∈ K[X1, . . . , Xn], n > 2, be a polynomial
such that degX1,...,Xn

f = d > 2. We shall suppose that these conditions hold
throughout this section

Let v = {vi}26i6n and w = {wi,j}16i6n, 06j6n be two families of transcendental
elements over K such that the field Kw,v,u generated over K by all the elements
from families w, v, u has the maximal possible transcendency degree n − 1 +
n(n+1)+ ν0(ν1 + ν2), see Section 1 (the integers νi, 0 6 i 6 2, will be specified
in the definition of Af below). Write Kv = K(v2, . . . , vn), Kv = K(v2, . . . , vn).
Denote by Kw (respectively Kw,v) the extension of the field K by all the
elements from the family w (respectively families w and v). We shall denote
by K[w] (respectively K[w, v]; K[w, v, u]) the ring of polynomials in all the
transcendental elements from the family w (respectively families w, v; w, v, u)
with coefficients from K. We shall use the similar notation with other constant
fields in place of K and other families of transcendental elements.

Set fv = f(X, v2T, . . . , vnT ) ∈ Kv[X,T ].

LEMMA 8 Assume that the degree degX1
f = degX1

f(X1, 0, . . . , 0) = d and

the polynomial f(X1, 0, . . . , 0) has d pairwise distinct roots in the field K. The
following assertions are equivalent.

(i) The polynomial f is irreducible in the ring K[X1, . . . , Xn].

(ii) The polynomial fv is irreducible in the ring Kv[X,T ].

(iii) The polynomial fv is irreducible in the ring Kv[X,T ] where Kv is the
algebraic closure of the field Kv.

PROOF Obviously (iii) implies (ii). Assume that fv is reducible in the ring
Kv[X,T ] and a polynomial h ∈ Kv[X,T ] divides fv, degX h < degX fv. Then

12



h(X, 0) divides fv(X, 0). Hence multiplying h by a nonzero constant from Kv

we can suppose without loss of generality that h(X, 0) ∈ K[X ]. Now by the
uniqueness of the Hensel’s lifting h ∈ Kv[[T ]][X ]. Therefore h ∈ Kv[[T ]][X ] ∩
Kv[X,T ] = Kv[X,T ] where the last intersection is taken in Kv[[T ]][X ]. Thus,
fv is reducible in the ring Kv[X,T ]. Hence (ii) implies (iii).

Assume that fv is reducible in the ring Kv[X,T ]. Then the polynomial
fv(X, 1) is reducible in the ring Kv[X ]. By the Gauss lemma the polynomial
f(X, v2, . . . , vn) is reducible in the ring K[X, v2, . . . , vn]. Hence (i) implies (ii).

Conversely, if f is reducible in the ring K[X1, . . . , Xn] then fv is reducible
in the ring Kv[X,T ]. Thus, (ii) implies (i). The lemma is proved.

Put the linear polynomials Wi = wi,0 +
∑

16i6n wi,jXj , 1 6 i 6 n. Set

fw = f(W1,W2, . . . ,Wn) ∈ K[w][X1, . . . , Xn],

fw,v = fw(X, v2T, . . . , vnT ) ∈ K[w, v][X,T ].

Notice that degX1
fw = degX1,...,Xn

fw = d, degX fw,v = degT fw,v = degX,T fw,v
= d.

LEMMA 9 The following assertions are equivalent.

(i) The polynomial f does not have multiple factors in K[X1, . . . , Xn].

(ii) The polynomial fw(X1, 0, . . . , 0) does not have multiple factors in Kw[X1].

(iii) The polynomial fw,v(X, 0) does not have multiple factors in Kw,v[X ].

PROOF Assume that (i) is satisfied. Then by the Bézout theorem the generic
line intersects the hypersurface Z(f) (of all the roots of the polynomial f in the
affine space An(K)) in d points. Hence the polynomial f(w0,1+w1,1X1, . . . , wn,1+
wn,1X1) has d pairwise distinct roots in Kw. This implies the equivalence
of (i) and (ii). The equivalence of (ii) and (iii) follows from the equality
fw,v(X, 0) = fw(X, 0, . . . , 0). The lemma is proved.

Put
Af = ∆fw,v

Rd,fw,v
∈ K[w, v, u],

see (5), (15), now ρ = d and the ground field is equal to Kw,v in place of K.

LEMMA 10 Let f ∈ K[X1, . . . , Xn], degX1,...,Xn
f = d > 2, n > 2. Then the

polynomial f is irreducible in the ring K[X1, . . . , Xn] if and only if the element
Af 6= 0.

PROOF Suppose that f ∈ K[X1, . . . , Xn] is irreducible. Then the polynomial
fw,v(X, 0) does not have multiple factors in Kw,v[X ] by Lemma 9. Therefore,
∆fw,v

6= 0. Further, the polynomial f is irreducible in the ring Kw[X1, . . . , Xn].
Hence also fw is irreducible in the last ring. By Lemma 8 with the ground field
Kw in place of K the polynomial fw,v is irreducible in the ring Kw,v[X,T ]. Now
by Lemma 6 (ii) with the ground field Kw,v in place of K we have Rd,fw,v

6= 0.
Thus Af 6= 0.

Conversely, let Af 6= 0. Then ∆fw,v
6= 0 and the polynomial fw,v(X, 0) does

not have multiple factors in Kw,v[X ]. We have Rd,fw,v
6= 0. Hence by Lemma 6

(ii) with the ground field Kw,v in place of K the polynomial fw,v ∈ Kw,v[X,T ]
is irreducible. Further by Lemma 8 with the ground field Kw in place of K the
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polynomial fw ∈ Kw[X1, . . . , Xn] is irreducible. Therefore, the polynomial f is
irreducible in the ring K[X1, . . . , Xn]. The lemma is proved.

Put Id,n = {(i1, . . . , in) ∈ Zn : i1 + . . .+ in 6 d; ij > 0 ∀j} to be the set of
multiindices, and Jd,n = Id,n \ Id−1,n, d > 2, n > 2. Notice that the number of

elements #Id,n =
(
n+d
n

)
= N , #Jd,n =

(
n+d−1
n−1

)
= N1. Now let Φ (respectively

Ψ) be a generic polynomial (respectively generic homogeneous polynomial) of
degree d in n variables for a given characteristic p of the ground field. This
means that

Φ =
∑

(i1,...,in)∈Id,n

ϕi1,...,inX
i1
1 · . . . ·X in

n , Ψ =
∑

(i1,...,in)∈Jd,n

ψi1,...,inX
i1
1 · . . . ·X in

n ,

where the family of coefficients ϕ = {ϕi1,...,in}(i1,...,in)∈Id,n (respectively ψ =

{ψi1,...,in}(i1,...,in)∈Jd,n
) consists of

(
n+d
n

)
(respectively

(
n+d−1
n−1

)
) algebraically

independent over the field H elements (recall that H is the primitive subfield
of K).

We shall identify the set of all polynomial (respectively the linear space of
all homogeneous polynomials) of degree d from K[X1, . . . , Xn] with an open
in the Zariski topology subset Ud,n ⊂ AN (K) (respectively with the affine
space AN1(K)) where AN (K) has the coordinate functions from the family ϕ
(respectively AN1(K) has the coordinate functions from the family ψ).

Recall that H [ϕ] and H [ψ] are the rings of polynomials with coefficients from
H in all the variables from the families ϕ and ψ respectively. The polynomials
Φ ∈ H [ϕ][X1, . . . , Xn], Ψ ∈ H [ψ][X1, . . . , Xn]. The elements AΦ ∈ H [ϕ,w, v, u],
AΨ ∈ H [ψ,w, v, u]. One can uniquely represent

AΦ =
∑

µ∈MΦ

AΦ,µ µ, AΨ =
∑

µ∈MΨ

AΨ,µ µ,

where all AΦ,µ ∈ H [ϕ] (respectivelyAΨ,µ ∈ H [ψ]) are nonzero, µ runs over a set
MΦ (respectively MΨ) of pairwise distinct monomials with the coefficient 1 in
the elements from the families w, v, u.

Put I = Id,n (respectively I = Jd,n). Now let

f =
∑

(i1,...,in)∈I

λi1,...,inX
i1
1 · . . . ·X in

n

be an arbitrary polynomial (respectively homogeneous polynomial) of degree
d with all coefficients λi1,...,in ∈ K. Denote by λ = {λi1,...,in}(i1,...,in)∈Id,n
(respectively λ′ = {λi1,...,in}(i1,...,in)∈Jd,n

) the family of coefficients of this polynomial.
Then according to the given definitions (we leave to check the details to the
reader) for the case I = Id,n

Af = AΦ|ϕ=λ = AΦ|ϕi1,...,in=λi1,...,in ∀(i1,...,in)∈Id,n , (21)

i.e., Af is obtained by the substitution in AΦ the coefficients λi1,...,in in place
of the transcendental elements ϕi1,...,in for all multiindices (i1, . . . , in) ∈ Id,n.
Similarly for the case of a nonzero homogeneous polynomial f when I = Jd,n

Af = AΨ|ψ=λ′ = AΨ|ψi1,...,in=λi1,...,in ∀(i1,...,in)∈Jd,n
. (22)
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We have also AΨ|ψi1,...,in=0∀(i1,...,in)∈Jd,n
= 0.

For an arbitrary polynomial z ∈ H [ϕ,w, v, u], (respectively z ∈ H [ψ,w, v, u])
denote by degϕ z (respectively degψ z) the degree of z with respect to all the
elements from the family ϕ (respectively ψ).

LEMMA 11 (i) Let n > 2 and d > 2 be integers. Then the set Vd,n of
all reducible polynomials from K[X1, . . . , Xn] of degree d is identified with the
intersection Ud,n∩Z({AΦ,µ}µ∈MΦ) where Z({AΦ,µ}µ∈MΦ) is the set of all common
zeroes in AN (K) of the polynomials from the family {AΦ,µ}µ∈MΦ .

Similarly the set Wd,n of all reducible polynomials from the affine space
AN1(K) of homogeneous polynomials of degree d is identified with the closed
with respect to Zariski topology subset Z({AΨ,µ}µ∈MΨ) ⊂ AN1(K).

(ii) The degrees degϕAΦ, degψ AΨ; degϕAΦ,µ, µ ∈ MΦ; degψ AΨ,µ, µ ∈
MΨ, are bounded from above by

56d7 − 32d6 − 54d5 + 96d4 − 72d3 + 15d2 + 9d− 3 < 56d7. (23)

PROOF (i) This follows immediately from the given definitions, Lemma 10
and (21), (22).

(ii) It is sufficient to prove the assertions related to degϕAΦ and degψ AΨ.
Let us prove it for degϕAΦ. Let t be a new variable. We shall suppose without
loss of generality that the ground field K ⊃ H [t, ϕ]. Consider the polynomial

Φ̃ = tΦ ∈ H [t, ϕ]. Then the definitions imply immediately degtAΦ̃ = degϕAΦ

and degtAΦ̃ = degt(∆Φ̃w,v
R
d,Φ̃w,v

) (at present in the definition of R
d,Φ̃w,v

the

ground field is equal to Kw,v,u(t) in place of K, see (15)). We can apply

Corollary 1 to the polynomial Φ̃w,v over the ground field Kw,v,u(t). Denote
by c(s,m, ρ) the right part of (20). Now s = 1, m = ρ = d. Hence

degt(∆Φ̃w,v
R
d,Φ̃w,v

) 6 c(1, d, d).

This implies (23) for degϕAΦ. The proof of the estimate for degψ AΨ is similar.
The lemma is proved.

COROLLARY 2 Let f ∈ K[t,X1, . . . , Xn], n > 2, be a polynomial irreducible
in the ring K(t)[X1, . . . , Xn] with degt f 6 d, degX1,...,Xn

f = d for an integer
d > 2. Then there are at most

degt Af 6 56d8 − 32d7 − 54d6 + 96d5 − 72d4 + 15d3 + 9d2 − 3d < 56d8

values t∗ ∈ K of t such that the polynomial f(t∗, X1, . . . , Xn) is reducible in the
ring K[X1, . . . , Xn] or ∆f |t=t∗ = 0. Notice also that ∆f |t=t∗ = 0 if and only if
degX1

f(t∗, X1, . . . , Xn) < degX1
f or ∆f(t∗,X1,...,Xn) = 0.

PROOF We haveAf ∈ Kw,v,u[ t ] and if Af (t
∗) 6= 0 then Af (t

∗) = Af(t∗,X1,...,Xn).
By (21) the degree degtAf 6 d degϕAΦ. Now the required assertion follows
from Lemma 10 and (23) immediately. The corollary is proved.

4 Effective version of the first Bertini theorem:

the case of a hypersurface over a field of arbitrary

characteristic

The aim of this section is to prepare everything for the proof of Theorem 2,
see the Introduction. Let K be an arbitrary field and f ∈ K[X1, . . . , Xn+1],
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n > 2, be a polynomial irreducible in the ring K[X1, . . . , Xn+1] and such that
degX1

f > 0, degX1,...,Xn+1
f = d and the discriminant of f with respect to X1

∆ = ResX1

(
f,

∂f

∂X1

)
6= 0. (24)

We shall assume that all these conditions are satisfied throughout this section.
Put t = Xn+1/Xn. Then f = f(X1, . . . , Xn, Xnt) ∈ K[t,X1, . . . , Xn].

Denote by (Xn, Xn+1) ⊂ K[X1, . . . , Xn+1] the ideal generated by Xn, Xn+1.

LEMMA 12 The polynomial f is irreducible in the ring K(t)[X1, . . . , Xn] if
and only if f 6∈ (Xn, Xn+1).

PROOF This follows from the Gauss lemma (we leave the details to the
reader). The lemma is proved.

The assertion of the following lemma follows from Lemma 4 [7]. Still at
present it is useful to give a simple direct independent proof of this fact for the
completeness (in the similar way one can prove Lemma 4 [7] in full generality).

LEMMA 13 Let f be a polynomial satisfying all the conditions formulated at
the beginning of the section. Suppose that the polynomial f is irreducible in the
ring K(t)[X1, . . . , Xn]. Then the following conditions are equivalent.

(i) The polynomial f is reducible in the ring K(t)[X1, . . . , Xn].

(ii) The field K(t) is not algebraically closed in the field of fractions K of the
ring K[X1, . . . , Xn+1]/(f), i.e., there is an element θ ∈ K algebraic over
K(t) and such that θ 6∈ K(t).

More than that, if (i) and (ii) are satisfied then the element θ is separable over
the field K(t).

PROOF Suppose that (i) is satisfied. Let f1 ∈ K(t)[X1, . . . , Xn] be a factor
of f irreducible in the last ring such that some coefficient of f1 is equal to
1. Now for all x2, . . . , xn ∈ K(t) if ∆(x2, . . . , xn, txn) 6= 0 then the polynomial
f(X1, x2, . . . , xn, txn) ∈ K(t)[X1] is separable, f1(X1, x2, . . . , xn) divides f(X1, x2, . . . , xn, txn)
and, therefore, the coefficients of the polynomial f1(X1, x2, . . . , xn) are separable
over the fieldK(t). From here using the interpolation by the elements x2, . . . , xn
we get that the coefficients of the polynomial f1 from K(t) are separable over
K(t).

This implies that there is a finite Galois extension E ⊃ K(t) with the Galois
group Gal(E/K(t)) = G such that each absolutely irreducible factor of the
polynomial f is equal to λσ(f1) where 0 6= λ ∈ K(t) and σ ∈ G. Hence
the decomposition of f into the absolute irreducible factors has the form f =
λ0f1 · . . . · fν , ν > 1, where f1, . . . , fν ∈ E[X1, . . . , Xn] are all pairwise distinct
conjugated to the polynomial f1 over the field K(t) and 0 6= λ0 ∈ K(t).

Now E ⊗K(t) K is a separable E-algebra and E ⊗K(t) K '
∏

16i6ν Ki where

Ki is a field of fractions of the ring E[X1, . . . , Xn]/(fi). Hence E ⊗K(t) K ⊃∏
16i6ν E = E′ and E′ is a finite dimensional E-algebra which is invariant with

respect to the action of the Galois group G.
On the other hand, let us show (again it is known of course) that every

E-vector subspace V ⊂ E ⊗K(t) K which is invariant with respect to the action
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of the Galois group G has the form V = E ⊗K(t) V
G where V G ⊂ K is a K(t)-

vector space of the invariant with respect to the action of G elements of V .
Indeed, suppose contrary. Let ei, i ∈ I1 ∪ I2, be a K(t)-basis of K such that ei,

i ∈ I2 is a K(t)-basis of V G. Since V \ (E ⊗K(t) V
G) = Ṽ 6= ∅ there is a vector

q =
∑

16j6µ

qjeij ∈ Ṽ (25)

such that all i1, . . . , iµ ∈ I1, all 0 6= qj ∈ E and the integer µ is minimal possible.
We have µ > 2 and there is 1 < α 6 µ such that qα/q1 6∈ K(t) since otherwise
we get a contradiction: q−1

1 q ∈ V G is a nontrivial linear combination of the
elements ei, i ∈ I1, with coefficients from K(t).

Therefore, there is σ ∈ G such that σ(qα/q1) 6= qα/q1. Put q̃ = q−1
1 q −

σ(q−1
1 q). Then 0 6= q̃ ∈ Ṽ and q̃ has representation (25) with µ′ in place of µ

such that µ′ < µ. This is a contradiction. Henceforth V = E ⊗K(t) V
G

Thus E1 = (E′)G ⊂ K is a field and the degree of the extension [E1 : K(t)] =
ν > 1. One can choose θ ∈ E1 \K(t). Hence condition (ii) is fulfilled.

Conversely, suppose that condition (ii) holds true. LetX1 mod f ∈ K[X1, . . . ,
Xn+1]/(f) ⊂ K. Let E1 ⊃ K(t) be an algebraic extension of the field K(t) such
that E1 ⊂ K and E1 6= K(t). Hence K(t)(X2, . . . , Xn) 6= E1(X2, . . . , Xn) ⊂ K
and the extention E1 ⊃ K(t) is separable. Therefore the degree of the minimal
polynomial of the element X1 mod f ∈ K over the field E1(X2, . . . , Xn) is
less than degX1

f . Henceforth using the Gauss lemma we get that there is
a polynomial f1 ∈ E1[X1, . . . , Xn] such that degX1

f1 < degX1
f and f1 divides

f in the ring E1[X1, . . . , Xn]. Thus condition (i) is fulfilled. The lemma is
proved.

LEMMA 14 Suppose that the polynomial f is irreducible in the ring K(t)[X1,
. . . , Xn] but f is reducible in the ring K(t)[X1, . . . , Xn]. Then there are elements
µ1, µ2 ∈ K such that (µ1, µ2) 6= (0, 0) and µ1Xn+µ2Xn+1 divides the discriminant
∆.

PROOF By Lemma 2 there is a finite separable algebraic extension of fields
E1 ⊃ K(t) such that the degree [E1 : K(t)] > 1 and E1 is contained in the
field K. The extention of the fields E1 ⊃ K(t) corresponds to the morphism
C → P1(K) of the smooth projective curves defined over the fieldK. The degree
of this morphism is ν > 1. The Hurwitz formula for the genus of the curve C
implies that there is a discrete valuation v : K(t) → Z∪{+∞} of the field K(t)
over K (or which is the same v is zero on K \ {0}) and a discrete valuation v1
which is an extension of v to the field E1 such that v1 is ramified over v, i.e.,
there is an element ξ ∈ E1 with v1(ξ) = 1/e for an integer e > 1. The valuation
v is defined by a uniformizing element

π =
µ1Xn + µ2Xn+1

µ3Xn + µ4Xn+1
(26)

such that µ1, µ2, µ3, µ4 ∈ K, µ1µ4 − µ3µ2 6= 0 and v(π) = 1.
The elements X2, . . . , Xn−1, µ3Xn + µ4Xn+1 are algebraically independent

over the field E1. Hence, see [1], there is a discrete valuation v2 of the field
E1(X2, . . . , Xn−1, µ3Xn + µ4Xn+1) = E2 such that v2|E1 = v1 and v2(Xi) = 0,
1 6 i 6 n−1, v2(µ3Xn+µ4Xn+1) = 0. Hence (26) implies v2(µ1Xn+µ2Xn+1) =
1. Notice that E2 ⊃ K(X2, . . . , Xn+1).
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The extension of fields K ⊃ K(X2, . . . , Xn+1) is finite separable since ∆ 6= 0.
Therefore the extension K ⊃ E2 is also finite separable. Hence there is a discrete
valuation v3 of the fieldK such that v3|E2 = v2. Denote by v4 the restriction of v3
to the field K(X2, . . . , Xn+1). By the described construction v4(z) > 0 for every
z ∈ K[X2, . . . , Xn+1], v4(µ1Xn+µ2Xn+1) = 1 and v4(K(X2, . . . , Xn+1)\{0}) =
Z, see [1]. The valuation v3 is ramified over v4 since since v3(ξ) = v1(ξ) = 1/e.
This implies that µ1Xn + µ2Xn+1 divides the discriminant ∆. The lemma is
proved.

COROLLARY 3 Let f ∈ K[X1, . . . , Xn+1], n > 2, be an irreducible polynomial
such that degX1

f > 1, degX1,...,Xn+1
f 6 d for an integer d > 1 and (24)

is satisfied. Suppose that f is irreducible in the ring K[X1, . . . , Xn+1], the
polynomial f does not belong to the ideal (Xn, Xn+1) and for all µ1, µ2 ∈ K
such that µ1 6= 0 or µ2 6= 0 the linear form µ1Xn + µ2Xn+1 does not divide ∆.
Then for all t∗ ∈ K, except at most

56d8 − 32d7 − 54d6 + 96d5 − 72d4 + 15d3 + 9d2 − 3d < 56d8

the polynomial f(X1, . . . , Xn, t
∗Xn) ∈ K[X1, . . . , Xn] is irreducible in the last

ring.

PROOF This follows immediately from Lemmas 12—14 and Corollary 2 from
Section 3. The corollary is proved.
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