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Abstract

Consider the affine space AN (K) of homogeneous polynomials of degree d
in n 4+ 1 variables with coefficients from an algebraic closure K of a field K of
arbitrary characteristic, so N = (n:d). We prove that the variety of all reducible
polynomials from this affine space can be given by a system of polynomial
equations of degree less than 56d” in N variables. Using this result we formulate
an effective version of the first Bertini theorem for the case of a hypersurface.

Introduction

Let K be an arbitrary field of characteristic char(K) = p with an algebraic
closure K (in what follows for any field £ we denote by E an algebraic closure
of E). Let H be the primitive field of characteristic p, i.e., H = Q if p = 0 or
H =F,=7/pZ if p > 0. We shall assume that H C K.

It is well known that the discriminant Ay of a polynomial f € K[X;] is a
polynomial in the coefficients of f and Ay # 0 if and only if f is square free
in K[X;], i.e., it does not have multiple factors in the ring K[X;] or which
is the same the polynomial f is separable. In the present paper we consider
a polynomial f =37, fir o X X € K[X1,..., X,), no > 2, all
fir,..in € K, of degree degy,  x f=d > 2 and construct an analog Ay of the
discriminant Ay in the following sense. The discriminant Ay of the polynomial
in one variable corresponds to the property “f is separable”. In the similar way
Ay corresponds to the property “f is absolutely irreducible”.

The element Ay € Ky o Where Ky, 4 4 is a purely transcendental extension
of the field K, see Section 3. Here w, v, u are families of transcendental elements
over the field K and the field K, v, is generated over K by all the elements
from these families. Actually Ay € K[w,v,u] where K[w,v,u] is the ring of
polynomials in all the elements from families w, v, u.
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Further, Af corresponds to f canonically: it is a polynomial in all the
coefficients f;, . of f. The degree of this polynomial in f;, .. ;. is bounded
from above by 56d”, see a more precise estimate in Section 3. Finally, the main
property: Ay # 0 if and only if the polynomial f is irreducible in the ring
K[X1,..., X,

Consider the affine space AN(K), N = (":d), (respectively ANt (K), N =
(":’f;l)) of polynomials (respectively homogeneous polynomials) from K[X7,

.., Xp] of degree at most d (respectively of degree d) in n variables with
coefficients from an algebraic closure K of a field K. In this paper we regard
0 as a reducible polynomial. Although 0 belongs to the linear space of the
homogeneous polynomial of degree d by definition deg0 = —1. The set Uy, of
polynomials of degree d from AN (K) is an open in the Zariski topology subset
of this affine space. As a consequence of the construction for the element Ay we

get the following result.

THEOREM 1 (i) Let n > 2 and d > 1 be integers. The set Vg, of all
reducible polynomials from K[X1,...,X,] of degree d is closed in Uy, with
respect to Zariski topology and Vg, can be given as a set of all roots from Uy
of a system of polynomial equations with coefficients from a primitive field H in
N wvariables. The degree of this system is less than 56d".

(11) Similarly the set Waq n of all reducible polynomials from the affine space
AN(K) of homogeneous polynomials of degree d is closed in AN (K) with respect
to Zariski topology and Wa, is a set of all roots of a system of polynomial
equations with coefficients from the primitive field H in Ny variables. The degree
of this system is less than 56d" .

More precise statements for n > 2 and d > 2, see in Lemma 11 Section 3.
Theorem 1 follows from Lemma 11 immediately. The proof of Lemma 11 is
reduced to the case of two variables. This reduction is described in Section 3.

The case of two variables: f € K[X,T]is considered in Section 2. We suggest
here a criterion for absolute irreducibility: R, s # 0, see (15) and Lemma 6.
To get this criterion we describe a formal (or universal) version of the Hensel
lemma, introduce a lattice corresponding to f over the ring of polynomials K [T]
and consider a minimal vector in it. We would like to emphasize that Lemma 5
from Section 2 is one of the most important in the paper.

Estimates for a minimal vector in an arbitrary lattice over K[T'] are obtained
in Section 1. The idea to consider lattices for questions related to irreducibility
of polynomials is originated from [6] but in the present paper we have quite
different accents.

As an application of Theorem 1 we get an efficient version of the first Bertini
theorem for the case of a hypersurface. Let f € K[Xy,...,X,,Y],n > 2, be a
polynomial of degree degy f > 1. Assume that f is absolutely irreducible, i.e.,
irreducible in the ring K[X1,...,X,,Y]. Suppose that its discriminant with
respect to the variable Y

A = Resy (f,%) £ 0, (1)

i.e., the polynomial f is separable with respect to Y. Denote by K the field of
fractions of the ring K[X1,...,X,,Y]/(f).



Let Ly, Lo € K[X1,...,X,] be two linearly independent over K linear forms
in X1,...,Xp. Denote by (L1, L2) C K[X1,...,Xp,Y] the ideal of the last ring
of polynomials generated by L; and Ls. Consider the following conditions.

(a) The polynomial f ¢ (Li, L) and for all py, s € K such that p; # 0 or
2 7 0 the linear form p1 L1 + po Lo does not divide A.

(b) The discriminant A & (L, Lo).

The discriminant A is the the determinant of the Sylvester matrix of the polynomials
f,0f]0Y € K(X1,...,Xn)[Y]. Hence if f € (L1,Ls) then A € (Ly, La).
Therefore, condition (b) implies (a).

THEOREM 2 Let f € K[X1,...,X,,,Y], n > 2, be an irreducible polynomial
such that degy f > 1, degy,  x y f < d for an integer d > 1 and (1) is
satisfied. Then the following assertions hold.

(i) Assume that condition (a) or condition (b) holds for linearly independent
linear forms Li,Ly. Let t* € K and L = Lo — t*Ly. So the ring
K[X1,...,X,]/(L) is isomorphic to the ring of polynomials in n — 1
variables. Then for all t* € K, except at most 56d®, the polynomial
fmod L € K[Xy,...,X,]/(L)[Y] is irreducible in the last ring and A mod
L #0. This means that the intersection of the hypersurface Z(f) and the
hyperplane Z(L) in the affine space A"t (K) is transversal and irreducible

over K.

(ii) Suppose that L is a linear subspace of the space of all linear forms in
X1,..., X, with coefficients from K and the dimension dim £ > 3 (hence
also n > 3). Then there are L1, Ls € L satisfying condition (b) (and
therefore also (a)). More precisely, let L), L5, L5 € L be three linearly
independent linear forms and I C K be a finite set such that the number
of elements #I =1+ degyx,  x A. Then there are ay,az € I such that
L1 =L} —a1Ls, Ly = L, — aa Ly satisfy condition (b).

Let us describe how to prove this theorem. Let Ly, Lo, L3, ..., L, be a basis
of the space of all linear forms in X1,...,X,,. Putt = La/L;. Then f & (L1, L2)
if and only if the polynomial f is irreducible in the ring K (t)[L1, L3 ..., Ly, Y].
This follows from Lemma 12 with Y, Ls, ..., Ly, L1, L in place of Xq,..., X, 11
(in the sequel we refer in the Introduction also to Lemma 13, Lemma 14 and
Corollary 3; one should do the similar replacement of variables there).

Further, assume that f is irreducible in the ring K (t)[L1,Ls, ..., La,Y].
Then f is an irreducible element of the ring K (¢)[L1, Ls, ..., Ly, Y] if and only
if the field K(t) is algebraically closed in the field K, see [7], Lemma 4. We give
a simple direct independent proof of this fact in Lemma 13.

In Lemma 14 we prove that if condition (a) or condition (b) is satisfied
then the field K (t) is algebraically closed in KC. In spite of the simplicity of this
assertion probably this result is new.

Finally now assertion (i) follows from Corollary 3 of Lemma 14 immediately.
Let us prove assertion (ii). Performing a nondegenerate linear transformation of
variables X7, ..., X,, one can suppose without loss of generality that L] = X,,_1,
L,y =X,, L = X;. Then A & (L1, Lo) if and only if

A(Xl, . ,Xn_g, Oéle, a2X1) 7é 0



Thus the required oy, g € T exist. Theorem 2 is proved (modulo Lemmas 12—
14 and Corollary 3).

REMARK 1 According to the construction described Sections 1-3 the number
of equations in the polynomial system from Theorem 1 (i) (respectively (ii)) is
bounded from above by d(@+m "

One can obtain a system with a smaller number of equations as follows. Let
us replace in the formulation of Theorem 1 the field H by an infinite extension
H, of H. We assume that H; C K. Then there is a modified system giving Vin
(respectively Wy ,) similar to the one from the statement (i) (respectively (ii)) of
Theorem 1 and consisting of N +1 —dim Vg ,, (respectively N; +1 —dim Wy ,,)
polynomial equations with coefficients from H;. To get the last system it is
sufficient to take linear combinations with coefficients from H; of the initial
equations from Theorem 1 (i) (respectively (ii)) in general position. Still these
linear combinations are given not efficiently. It is difficult to construct them.

On the other hand, using [5] one can construct explicitly the elements A; ¢ €
K, 1< i< Ny =d°"™ satisfying the following properties. Every

Ai,f = Af|w:w;‘,v:v;‘,u:uj

is obtained by the substitution in Ay some special values w}, v}, u] of families
w, v, u such that the elements of w}, v}, u} are from the field H;. The element
Ay # 0 if and only if A;y # 0 for some 1 < ¢ < Na. If the field K is
finitely generated over H (of fixed transcendency degree) and given similarly
to the ground field from the Introduction of [2] then for a polynomial f one can
compute all A; ; within the time polynomial in the size of the polynomial f and
d"™. We shall not prove and use this result in the present paper.

REMARK 2 It would be interesting to improve the upper bound 56d® from
assertion (i) of Theorem 2 (or the similar more precise upper bound from
Corollary 3) for an arbitrary characteristic of the ground field. It is possible
if char(K) = 0. In this case one can replace 56d® by 4d*. It can be deduced
from the Irreducibility Criterion given in the Introduction of [4].

Note also that in zero—characteristic one can not improve the estimate 56d”
from Theorem 1 in the similar way.

The present paper is important. In future we hope to consider from the
algorithmic point of view the effective version of the first Bertini theorem in
general case and in arbitrary characteristic of the ground field. Still there
we are able to obtain only less strong results than the ones from [4] in zero—
characteristic. As an application the main result of [3] will be improved for the
case of a finite ground field.

1 Estimates for a minimal vector in a lattice

Let K be an arbitrary field. Let A = (@ j)1<i<ni, 1<j<n, D€ anl (N1 X ng)-mat-
rix with the elements a; ; from the ring B = K[T'| where T is a transcendental
element over the field K. Let a; = (ai1,...,Gin,) € B™, 1 < i < n1, be the
rows of the matrix A. Denote by M the B-submodule of B™2 generated by all
the rows a; of the matrix A (in other words M is a lattice in B™?).



For an element b € B set |b] = degp b (we assume that deg;-0 = —1). So
la; ;| = degr a; j. Put |A] = maxigi<n,, 1<j<n, |@4, ;] and for an arbitrary vector
Y = (Y1,---,Yny) € B™ set |y| = maxigjgn, [yi]- We shall suppose in what
follows in this section that |A| = D. Let r = rank(A) be the rank of the matrix
A.

The minimal vector of M is an arbitrary nonzero element ¢ € M such that
lg| = min{|y| : 0 #y € M}, i.e., |q| is minimal possible.

LEMMA 1 Let g be an arbitrary minimal vector of the lattice M. Then |q| < D

and one can represent
= Y Nai, (2)
1<i§n1
where \; € B and |[N;| < (2r +1)D for all 1 < i < ny.

PROOF Obviously |¢| < |A] = D. Permuting the columns of the matrix A
we shall suppose without loss of generality that the first » columns of the matrix
A are linearly independent over the field K (7). Let us represent A = (A1, As)
where the matrix 4; has r columns and As has no—r columns. So rank(4;) =r.
There is a matrix As of the size ny x (n; —r) such that rank(A;, As) = n; and
each column of the matrix Az contains only one nonzero entry and this entry
is equal to 1 (if » = n; then As has 0 columns, i.e., it is empty). Hence
(A1, A3) = Ay is a nondegenerate square matrix, its determinant det(A4) # 0
and |det(A44)| < rD.

The ring B is Euclidean. Hence as it is well known there is a matrix @ €
GL,, (B) (the matrix @ is a product of the elementary matrices over the ring
B corresponding to the some elementary transformations of the rows of the
matrix A4) such that QA4 = A’ = (a;’j)lgi,jgnl is an upper triangular ma-
trix (this means that agyj =0 forall 1 < j < i < ni). Moreover, applying
(if it is necessary) elementary transformations of rows to the obtained upper
triangular matrix we shall suppose without loss of generality in the sequel that
lai ;| <a’; ;| for all 1 <i < j < nyg.

Since @ € GL,, (B) the determinant det(A’) = adet(A4) for an element
0 # a € K. Hence

max {la’ .|} = a’ | = |det(A4)| < rD. 3
X mm il = 3 )= et 3)
This implies of course |A’| < |det(A4)]. We have Q@ = A;*A’. Put A, =
det(Ay4). Now
81Q] < |A1ATY + [A']| < 1D + Ay,
(if ng = ny = r then one can replace here rD by (ny — 1)D but in the next

section we have ny > ng; so we don’t take into account this minor improvement).
Hence |Q] < rD.

Put QA = A" = (af;)1<i<ni, 1<j<no- Let af,...,ay be the rows of the
matrix A” and A} be the matrix consisting of the first r rows of the matrix A”.
Now according to our construction af,...,a! is the basis of the module M (it

is a free module) over the ring B, a; = 0 for all 7 +1 <4 < ny and ¢} ; = a] ;
forall 1 <i4,5 <.
Therefore there are p; € B, 1 < i < r, such that ¢ = >, ;. paj.
Henceforth
G = > maj;, 1<j<r
1<igr



Notice that det((a; ;)1<ij<r) # 0. Therefore, using Cramer’s rule and (3) we
get
il < lgl + 1; max {laj;[} <D +rD = (r+1)D
IIKT

Let Q1 be the matrix consisting of the first r rows of the matrix Q. Then

Q1A =AY and (p1,...,ur)Q1A =q. Put (A1,..., An,) = (i1, -+, ftr)Q1. Now
(2) holds and for all 1 <4 < nyg

< ; < .
A< ma [l + Q] < (2r + 1)D

The lemma is proved.

Under conditions of Lemma 1 let us represent \; = Zogyg(%ﬂ)p Xy 17,
1 < 7 < ni, and Q5 = Zogyg(%ﬂ)D Qi 5.~ T’y, 1 S 7 S ni, 1 S] < na, where
all the coefficients \; , € K, a; ;. € K (if v > D then a; ;4 = 0 for all ¢, 7).

Let Z;,, 1 <i<nq, 0< v < (2r+1)D, be new variables. Let —1 < po < D
be an integer. Consider the homogeneous linear system with coefficients from
the field K with respect to the variables Z; ,,

Z Z Z@V Qi jp—v = 0, po<p< (27"+ 2)D, 1 <5 < no. (4)

0<r<p 1<i<m

Let C4,—1 be the matrix of system (4) with yo = —1. It has v; = ((2r+2)D+
1)ng rows and vo = ((2r+1)+1)Dny columns. The rows (respectively columns)
of the matrix C4 _1 correspond to different pairs (u, j) (respectively (i, v)), see
(4). We order pairs (u, j) lexicographically: (u1,51) > (2, j2) if and only if ug >
o Or 1 = pg and ji > jo. Similarly we order pairs (i,v). Next, we identify the
linear ordered set of pairs (u, j) (respectively (i,v)) and {1, ..., } (respectively
{1,...,v2}). Now the matrix Cs,_; has the form Ca 1 = (¢i;)1<i<m, 1< i<
where elements c¢; ; are uniquely defined by (4) and these identifications of linear
ordered sets. Let cy,...,c,, be all the rows of the matrix C4 ;.

Let —1 < p < D be an arbitrary integer. Then the matrix C4,, of system
(4) with po = p is identified with a submatrix of C'4 _1. Namely, C4 , consists

of ((2r + 2)D — p)ng rows of matrix C4,_;. These are rows c,,,...,c,, where
vs=14+uv1—((2r+2)D —p)ne = (p+ 1)ng + 1.
Set vp = max{vi,1a}. Let u = {u;;}1<i<i+us, 1<i<r, be a family of

algebraically independent over the field K elements. Denote by K, = K(u)
the extension of the field K by all the elements from the family u. Hence the
transcendency degree of K,, over K is (11 + v2)vy. Put

hij = 2 : WUiiy Ujtvn 51 Cinyjrs V3 STV, 1< J <y,
v3<i1 v, 112
/ . .
hi,j = 2 : Wiyiy Ujtvr gy Cinjrs 1 S TS 11, 1< J < va

1<ii S, IS/iSve

So all h; j, hi ; € Ky. In other words the matrix (h; ;); ; is obtained from Cx 1

in two steps. At first one takes vy generic linear combinations ci,.. ., ¢, of the
rows of the matrix C'4,_; and get the matrix C’ with the rows ¢}, ...,c], . After
that one takes v, generic linear combinations cf, ..., ¢}, of the columns of the

matrix C” and get the matrix C" = (h; ;); ;. In the similar way one obtains the
matrix (h; ;)i; starting from Cyu ,.



Let 0 < v < min{v; —v3 + 1,2} =71 be an integer. Put
Axpy = det((hij)i<ij<y)s = det((h] ;)1<ij<q)-

Set A’y .1 = 0. We have rank(C4,—1) = rank(CA,p) = ~ if and only if
Ay p~ #0and A£4,’Y+1 =0.

LEMMA 2 Under conditions of Lemma 1 let ¢ be a minimal vector of the
lattice M. Then |q| > p if and only if every solution of system (4) with po = p
is a solution of system (4) with uo = —1, i.e., if and only if there is 1 < v < rq
such that Aap #0 and Ay ;= 0.

Assume additionally that rank(Ca 1) = ro. Then |q| > p if and only if

AA,p,’l"[) # 0

PROOF This follows from the previous considerations and Lemma 1. The
lemma is proved.

2 An irreducibility criterion: the case of two
variables

Let K, T, B = K[T] be the same as in the previous section. Let X be a
variable and f € K[X,T] be a polynomial such that the degree 0 < degy f < p
for an integer p > 1. Further, let degy f = degy f(X,0) = m > 2 and the
leading coefficient lcx f € K (the last condition means that degy (f — f(X,0)) <
degy f). Put

As = Resx (f(X,0), f/(X,0)) € K (5)

to be the discriminant of the polynomial f(X,0). We shall assume that Ay # 0,
i.e., the polynomial f(X,0) is has m pairwise distinct roots in the algebraic
closure K. We shall suppose that all these conditions are satisfied throughout
this section.

Set ny = m. Put the ring By = K[T], By = B1[Z] where Z is a variable. We
shall identify the set of polynomials g € K[ X, T] (respectively g € K[ Z, X, T])
of degree deg g < m with BJ" (respectively B5*). Under this identification

9290+91X+--~+9m—1Xm_1H(go,gl,---ygm—l), (6)

here all g; € B; (respectively all g; € Bz). We shall use the notation |...| for
polynomials, elements of B{", By*, matrices and so on, see the previous section.
So at present |g| = degp g for any polynomial g. We shall apply the results of
the previous section for the ring B in place of B.

Set fo = f(X,0). Let us represent fo = fo(Z) + (X — Z)go for a polynomial
go € K[Z, X]. Notice that go(Z, Z) = f}(Z) = dfo . Write 6 = f§(Z2).

Let us represent f = >, fi T where all f7 E K[X] (hence if i > |f] then
fi=0). Set f, =06%2f; for all i > 1. Put o = Z.

For all i > 1 let us define recursively polynomials g, ; € K[Z],0<j <m—2,
and z; € K[Z]. Put g, = D 0<i<m— 2§”X' € K[z, X].

Assume that g; and z; are defined for all 0 < j < for some 7 > 1. Then

(X =2)5;—gim=0(Fi+ Y. TuFiu)- ™)

ISw<Ki—1



Now to find all g, ; € K(Z), 0 < j < m —2 and —%; € K(Z) one should
solve using (7) a linear system with coefficients from K(Z) by Cramer’s rule.
The coeflicients matrix of this system is the Sylvester matrix of the polynomials
X — Z and gg. Its determinant is +§. All the free terms of this system are
divisible by d. Hence actually all g, ; € K[Z] and Z; € K[Z]. The recursive step
for the definition of g; and Z; is described.

LEMMA 3 (i) For all i > 1 the degrees
deg, g, < (2t —1)(2m —2), degyZz; < (2t —1)(2m —2).

(ii) Let us extend the field K till the field K (t) where t is a new variable.
Assume that f € K[t,X,T]. Now go € K[t,Z,X]| and using (7) in the similar
way as it was above one can prove that g, € K[t,Z,X]| , zZ; € K[t,Z] for all
i = 1. Assume additionally that deg, f < s for an integer s. Then for all i > 1
the degrees

deg,g; < (3i—1)s, deg,Zz; < (3i —1)s.

PROOF (i) The degrees with respect to Z of all the minors of the Sylvester
matrix of the polynomials gg, X — Z are bounded from above by 2m —3. We have
deg, f; < (2i —2)(m — 1). Now the required assertion follows by the induction
on i using Cramer’s rule.

(ii) The degrees with respect to ¢ of all the minors of the Sylvester ma-
trix of the polynomials gg, X — Z are bounded from above by s. We have
deg, f; < (2i — 1)s. Now the required assertion follows by the induction on i
using Cramer’s rule. The lemma is proved.

Consider the separable K-algebra K’ = K[Z]/(fo(Z)). Put z = Z mod
fo(Z) € K'. Then fo = (X — 2)go(z, X) where go(z,X) € K'[X]. Notice that
5(z) = go(z, 2) is an invertible element of K’ since the polynomial fj is separable.
Let K'[[T]] be the ring of formal power series in T over the algebra K’. One
can apply Hensel’s lifting to the decomposition f(X,0) = (X — 2z)go(z, X) and

get
( Z’Zl )(go z, X) —l—Zngl) (8)
i=>0 121

in the ring K'[[T']][X]. Here zp = z, all z; € K’, the polynomials ¢; € K'[X],
degx g: < m—2, for all i > 1.

LEMMA 4 For alli>1
9)

PROOF Equality (8) implies that for all ¢ > 1 the polynomials g; and the
elements z; satisfy the recursive relation

(X - Z)g g()(Z X Zz fi Z JuwZi—w- (10)

1<w<Ki—1

Now (9) is obtained by the induction on ¢ using (10) and (7). The lemma is
proved.



REMARK 3 Similarly to (8) and (9) one can obtain the decomposition

!~ fol2) = (X —7-Y ok T%‘) <90 DI Ti)

i>1 i>1

in the ring K(Z)[[T]][X]. This is a formal (or universal) version of the Hensel
lemma.

Set D= (2m —1)p+ 1 and

Z Tl
n=0P3X — 52D*3(Z + > ;21'—1) = (11)
1<i<D—1
PEX — (8207074 Y me PO € K[ 2, X, T,
1<i<D—1

Let z € K be a root of the polynomial f(X,0), i.e., f(x,0) = 0. Put

a; =n(x, X, T)X""", a;=nX""1  1<i<m-1, (12)
a; =TPX"—™, @ =TPX"™™, m<i<2m—1.

Hence all a; € By, a; € BJ under identification (6). Put ny = 2m — 1.
Let A (respectively ,2[) be the matrix with the rows aq,...,a,, (respectively
@1,...,dp,). Hence D = |A| = |A|. Let us apply the construction of Section 1
to the matrices A and A (replacing there the ground field K by K[z] and K(Z)
respectively). Now the following objects corresponding to A and A are defined,
see Section 1: the integers v;, 0 < ¢ < 3, r1, the matrices Ca,—1, Ca p, Cﬁ,flv

Cj ,» the determinants An i, Ay ;1 € Ku[z], AK,p,i’Ai&Hl € K,[Z] for all

1 < i < r1. Notice that r = rank(A) = rank(A) = m by (12).

LEMMA 5 Let f be a polynomial satisfying all the conditions formulated at
the beginning of the section and the matrices Cx 1, Cz | correspond to f.
Then the ranks of matrices

rank(C4,—1) =rank(Cz ;) = ((2m+2)D +1)m — D.

Putrog=(2m+2)D+1)m — D (recall that D = (2m —1)p+1).

PROOF We shall prove this assertion for the matrix C'4,—1. The proof for
C; _, is similar and left to the reader. It is sufficient to show that rq is the

maximal number of linearly independent equations of system (4) from Section 1
with pg = —1. By (12) the last system has the form

Zjtm—1,u—DF
2o<v<n 2i<icm—1 Ziwtiju—v =0, D<pu<(2r+2)D,1<j<m,
D7

Zj_1,,0°P~3(z) =0, 0<pu<D,j=m,
Zj—1,u0%P 73 (2)+

> o<v<p Ziwygp—v =0, O<pu<D,2<j<m—1,
>o<v<p Ziwtjgp—v =0, 0<pu<D,j=1

(13)



Let us delete from system (13) D equations

> Ziyariu-r=0, 0<pu<D. (14)

0<v<p

and denote by (*) the new obtained system. Then system (*) has the trapezoidal
form (after a permutation of equations) with the elements Z;;m—1,-p, D <
u<2r+2)D, 1 <j<m Zj+1,H62D_3(x), 0<p<D,2<j<m-—1,on the
slanting side of the trapezoid. Hence all the equations of system (*) are linearly
independent. The number of equation of system (*) is rg. Finally (*) implies
that Z;, =0forall 1 <j<m—1,0< p < D. Hence equations (14) are linear
combinations of the ones from system (*). The lemma is proved.

Let f1 and f2 be two polynomials in the variable Z. Denote by Resz(f1, f2)
the resultant with respect to Z of the polynomials f; and fs. This resultant is
defined usually as the determinant of the Sylvester matrix for nonzero polynomials
f1, f2 (in the case deg, f1 = deg, fo = 0 one obtains the empty Sylvester ma-
trix, its determinant is 1 in the natural way). If f; = 0 or fo = 0 then by
definition Resz(f1, f2) = 0.

Put

R,;=Resz(A;  f(Z,0) € K,. (15)

AV,PWO

Thus R, ; depends on p and the coefficients of the polynomial f € K[X,T].
Denote by M the lattice in B" generated by the rows of the matrix A. The
minimal vector of the lattice M is defined as in Section 1 (now with the ring B
in place of B).

LEMMA 6 Let f € K[X,T] be a polynomial satisfying all the conditions
formulated at the beginning of the Section. Then the following assertions hold
true.

(i) Let q be an arbitrary minimal vector of M. Then |q| > p if and only if the
polynomial f is irreducible in the ring K[ X, T).

(ii) The element R, ¢ # 0 if and only if the polynomial f is irreducible in the
ring K[ X, T].

PROOF (i) Suppose that f is reducible in K[X,T]. Then there is a divisor
g € K[ X, T)] of f such that the degree 1 < degy g < m and X —z divides g(X, 0).
The definition of the lattice M and the uniqueness of the the decomposition into
the irreducibles in the ring K[z]((T))[X] (here K((T)) is the field of fractions
of the ring K[[T]]) imply that ¢ € M (under identification (6)). We have
dl <ol < If1 < .

Conversely, suppose that |g| < p. Consider the resultant

R =TResx(q,f) € K[z][T]

of the polynomials ¢ and f with respect to X. As it is well known there are
polynomials p1,ps € K[z][X,T] such that R = pi1q + p2f. Since ¢ € M the
linear polynomial n(z, X, T') mod TP divides ¢ mod T in the ring By /(TP)[X].
By (8), (9) and (11) also n(z, X,T) mod TP divides f mod TP in the ring
B1/(TP)[X]. Therefore, n(z, X, T) mod TP divides R mod T in the last ring.
But degy R < 0. Consequently R mod T” = 0 and hence |R| > D or R = 0.

10



On the other hand, the conditions |f| < p, |q| < p imply that |z| < p for each
element z of the Sylvester matrix of the resultant R. The size of this matrix is
bounded from above by 2m — 1. Therefore, |[R| < (2m — 1)p = D — 1. Thus
R = 0. This means that GCD (f,q) # 1 in the ring K[z][X,T]. Hence f is a
reducible polynomial in K[ X,T] and (i) is proved.

(i) Recall that Ay , ., € Ky[z], A € K,[Z] and according to our
definitions A Apiro
and Lemma 5 we have Ay ,,, # 0 if and only if |¢| > p for a minimal vector
q of M. Hence by (i) Aapr, = Ag o (z) # 0 if and only if the polynomial f
is irreducible in the ring K[ X, T]. But z is an arbitrary root of the polynomial
fo(Z). Hence f is irreducible in the ring K[ X, T if and only if the polynomials
Az, and fo(Z) are relatively prime in the ring K,[Z], i.e., if and only if their
resultant R, y # 0. Assertion (ii) and all the lemma are proved.

LEMMA 7 Let f € K[X,T] be a polynomial satisfying all the conditions

formulated at the beginning of the Section. Then the following assertions hold.
(i) The degree

A‘,p,’ro
() = Aa,pr- By Lemma 2 (with the ring B; in place of B)

deg, A
(4m3p +2m2p+2m? —dmp+3m+p — 1) .

Tpro < 2(m—1)(4mp —2p — 1) x

(i1) Under conditions of assertion (ii) of Lemma 3 the degrees

deg, Az, <s(6mp—3p—1)x (16)
(4m3p +2m2p+2m? —dmp+3m+p — 1) ,
deg, R, 5 < s (14m®p — 15mp — 3m + 4p + 2) x (17)

(4m3p+2m2p+2m2—4mp—|—3m—|—p—1).
Hence if 2<degx f=m=d,1<degp f <p=d,deg, f <s=d then

deg, Ry 5 < d(14d® — 15d* + d + 2) (4d* + 2d° — 2d* + 4d — 1) . (18)

PROOF We shall suppose without loss of generality that the conditions of
assertion (ii) of Lemma 3 hold. From Lemma 3 and (11) we get

degyn < (2D —3)(2m —2), degyn < (3D —4)s (19)

Let Cz , = (Ci;)i,; be the matrix corresponding to A. According to (12) and
(19) we have also deg, ¢; ; < (2D —3)(2m —2), deg, ¢; ; < (3D —4)s for all 4, j.
Hence degz Az < 70(2D —3)(2m — 2), deg; Az | < 1o(3D — 4)s (one can
check direcly that rg is no more than the number of the rows ((2r +2)D — p)m
of the matrix Cz | but we even do not use this). This implies (i) and (16).

Finally considering the Sylvester matrix for the resultant of the polynomials

A and fo(Z) we get

I‘IPWO

deg, Ry y < degz Ay . -deg, fo+degy fo-deg, Az <
r0(2D — 3)(2m — 2)s + mro(3D — 4)s.

This implies (17).
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The right part of (17) is a monotone increasing function of m and p for
m > 2, p > 1. Now substituting m = d and p = d in (17) we get (18). The
lemma is proved.

COROLLARY 1 Let f be a polynomial satisfying the conditions of Lemma 7
and the ones from assertion (ii) of Lemma 3. Suppose that the polynomial

f € K[t,X,T) is irreducible in the ring K (t)[X,T]. Then there are at most

deg,(AfR, ;) < s(2m — 1)+ s (14m®p — 15mp — 3m + 4p + 2) x (20)
(4m3p +2m2p+2m? —dmp+3m+p — 1)

values t* € K of t such that the polynomial f(t*, X, T) is reducible in the ring

K[X,T] or Af|t=¢+ = 0. Note that Af|i=¢~ = 0 if and only if degx fo >
degy f(t*, X,0) or the polynomial f(t*, X,0) is not separable.

PROOF Recall that fo = f(¢,X,0). There are at most deg, Ay < (2m — 1)s
values t* € K of t such that A¢li=¢» = 0. In what follows we shall assume
that degx fo = degx f(t*,X,0) and f(t*, X,0) is separable. The resultant
R, s € K[t] and according to our definitions R, ;(t*) = R, s+ x,1).- Now (20)
follows from Lemma 6 (ii) and (17). The corollary is proved.

3 An irreducibility criterion: general case

Let K be an arbitrary field and f € K[X3,...,X,], n > 2, be a polynomial
such that degy,  x f = d > 2. We shall suppose that these conditions hold
throughout this section
Let v = {v; }a<icn and w = {w; j }1<ign, 0<i<n be two families of transcendental

elements over K such that the field Ky, . ., generated over K by all the elements
from families w,v,u has the maximal possible transcendency degree n — 1 +
n(n+1) +vo(v1 +1v2), see Section 1 (the integers v;, 0 < i < 2, will be specified
in the definition of A; below). Write K, = K(v2,...,vn), K, =K(va,...,0p).
Denote by K, (respectively K, ,) the extension of the field K by all the
elements from the family w (respectively families w and v). We shall denote
by Kw] (respectively K[w,v]; K[w,v,u]) the ring of polynomials in all the
transcendental elements from the family w (respectively families w,v; w,v,u)
with coefficients from K. We shall use the similar notation with other constant

fields in place of K and other families of transcendental elements.
Set fo = f(X,v2T,...,v,T) € K,[ X, T).

LEMMA 8 Assume that the degree degy, f = degy, f(X1,0,...,0) =d and

the polynomial f(X1,0,...,0) has d pairwise distinct roots in the field K. The
following assertions are equivalent.

(i) The polynomial f is irreducible in the ring K[X1, ..., X,].
(ii) The polynomial f, is irreducible in the ring K,[X,T).
(iii) The polynomial f, is irreducible in the ring K,[X,T] where K, is the
algebraic closure of the field K, .

PROOF Obviously (iii) implies (ii). Assume that f, is reducible in the ring
K,[X,T)] and a polynomial h € K,[X,T] divides f,, degx h < degx f,. Then
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h(X,0) divides f,(X,0). Hence multiplying h by a nonzero constant from K,
we can suppose without loss of generality that h(X,0) € K[X]. Now by the
uniqueness of the Hensel’s lifting h € K,[[T]][X]. Therefore h € K,[[T]][X]N
K,[X,T] = K,[ X, T] where the last intersection is taken in K,[[T]][X]. Thus,
fo is reducible in the ring K,[ X, T]. Hence (ii) implies (iii).

Assume that f, is reducible in the ring K,[X,T]. Then the polynomial
fo(X, 1) is reducible in the ring K,[X]. By the Gauss lemma the polynomial
f(X,va,...,v,) is reducible in the ring K[X,vs,...,v,]. Hence (i) implies (ii).

Conversely, if f is reducible in the ring K[X1,..., X,] then £, is reducible
in the ring K,[ X, T]. Thus, (ii) implies (i). The lemma is proved.

Put the linear polynomials W; = w; o + E1gi<n w; ; X, 1 <i<n Set

fw=fWi,Wa,...,W,) € K[w][X1,...,X,],
fw,v = fw(X,'UQT,.. .,'UnT) S K[U},U][X,T]

Notice that degx, fu = degxl,...,xn fw=4d,degx fuw,o =degy fuv = degX7T fww
=d.

LEMMA 9 The following assertions are equivalent.
(i) The polynomial f does not have multiple factors in K[X1,..., X,].
(i) The polynomial f,(X1,0,...,0) does not have multiple factors in K, [X1].

(i11) The polynomial fu, (X,0) does not have multiple factors in K, ,[X].

PROOF Assume that (i) is satisfied. Then by the Bézout theorem the generic

line intersects the hypersurface Z(f) (of all the roots of the polynomial f in the

affine space A" (K)) in d points. Hence the polynomial f(wo,1+w11X1, ..., W1+
wp,1X1) has d pairwise distinct roots in K,. This implies the equivalence

of (i) and (ii). The equivalence of (ii) and (iii) follows from the equality

fuw0(X,0) = fu,(X,0,...,0). The lemma is proved.

Put
Af = Af’w,’uRd:fw,v 6 K[w7v7u]7

see (5), (15), now p = d and the ground field is equal to K, , in place of K.

LEMMA 10 Let f € K[X1,...,X,], degy, . x, f=d>2,n2>2. Then the
polynomial f is irreducible in the ring K[X1, ..., X,] if and only if the element
Ay #0.

PROOF Suppose that f € K[Xy,..., X,,] is irreducible. Then the polynomial
fuw,0(X,0) does not have multiple factors in K, ,[X] by Lemma 9. Therefore,
Ay, , # 0. Further, the polynomial f is irreducible in the ring K, [X1, ..., Xy].
Hence also f,, is irreducible in the last ring. By Lemma 8 with the ground field
K, in place of K the polynomial f, , is irreducible in the ring K, ,[X,T]. Now
by Lemma 6 (ii) with the ground field K., , in place of K we have Rq s, , # 0.
Thus Ay # 0.

Conversely, let Ay # 0. Then Ay, , # 0 and the polynomial f, ,(X,0) does
not have multiple factors in K, ,[X]. We have Ry, fw.o 7 0. Hence by Lemma 6
(ii) with the ground field K, , in place of K the polynomial f,, , € WW[X7 T
is irreducible. Further by Lemma 8 with the ground field K, in place of K the
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polynomial f,, € K_w[X (1. - - , Xn] is irreducible. Therefore, the polynomial f is
irreducible in the ring K[X7, ..., X,]. The lemma is proved.

Put I, = {(i1,...,in) €Z" : i1+ ... +14, < d; ij > 0Vj} to be the set of
multiindices, and Jg,n, = Ign \ Id—1.n, d = 2, n > 2. Notice that the number of
elements #14, = (”:d) =N, #Jgn = (":i;l) = N;. Now let @ (respectively
U) be a generic polynomial (respectively generic homogeneous polynomial) of
degree d in n variables for a given characteristic p of the ground field. This

means that

= > e XX U= > g XX

(41,90 )Eld n (1509in)EJd,n

where the family of coefficients ¢ = {@i, i, }i,....in)e1,,, (respectively ¢ =

{1/)1‘1,...,%}(il,...,in)eJd,n) consists of (":d) (respectively (”:f;l)) algebraically

independent over the field H elements (recall that H is the primitive subfield
of K).

We shall identify the set of all polynomial (respectively the linear space of
all homogeneous polynomials) of degree d from K[Xj,...,X,] with an open
in the Zariski topology subset Uy, C AN(K) (respectively with the affine
space AN (K)) where AV (K) has the coordinate functions from the family ¢
(respectively ANt (K) has the coordinate functions from the family ).

Recall that H[p] and H )] are the rings of polynomials with coefficients from
H in all the variables from the families ¢ and 1) respectively. The polynomials
® e H[p|[X1,...,Xn], ¥ € H[Y][X1,...,Xn]. The elements Ag € H[p, w,v,u],
Ay € H[¢,w,v,u]. One can uniquely represent

Ay = Z Ag pp, Av = Z Ay s

neMq neMy

where all Ag, € H[y] (respectivelyAy , € H[¢]) are nonzero, p runs over a set
Mg (respectively My) of pairwise distinct monomials with the coefficient 1 in
the elements from the families w, v, u.

Put I = I, (respectively I = Jg ). Now let

F= D N X X

(il,...,in)el

be an arbitrary polynomial (respectively homogeneous polynomial) of degree
d with all coefficients X;, .. ;, € K. Denote by A = { A\ i, }(r,..in)elan
(respectively N = { i, i, }ir,....in)eJu.,) the family of coefficients of this polynomial.
Then according to the given definitions (we leave to check the details to the
reader) for the case I = Iy,

Ap = Aslo=x = Avlo,, =Ny iy Vi1 in)€Lans (21)

,,,,, in

i.e., Ay is obtained by the substitution in Ag the coefficients A, .. ;, in place
of the transcendental elements ;, . ;. for all multiindices (i1,...,i,) € Ign.
Similarly for the case of a nonzero homogeneous polynomial f when I = Jg,,

Ap = Agly=x = Ay

Vig,ooin=Niq,..in V(1,0 yin)EJan " (22)
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We have also Ay Giyrin =09 (i1, omrin)€dan = O

For an arbitrary polynomial z € H [y, w, v, u], (respectively z € H[¢, w, v, u])
denote by deg,, z (respectively deg,, z) the degree of z with respect to all the
elements from the family ¢ (respectively ).

LEMMA 11 (i) Let n > 2 and d > 2 be integers. Then the set Vg, of
all reducible polynomials from K[Xi,..., X, of degree d is identified with the
intersection Uy nNZ({Aw p}pems ) where Z({As \tpems ) is the set of all common
zeroes in AN (K) of the polynomials from the family {As .} ey -

Similarly the set Wy, of all reducible polynomials from the affine space
AM(K) of homogeneous polynomials of degree d is identified with the closed
with respect to Zariski topology subset Z({Aw ;. }uemy) C AM(K).

(ii) The degrees deg, Ag, deg,, Ay; deg, Ap , p € Ms; degy Ay, p €
My, are bounded from above by

56d" — 32d°® — 54d° + 96d* — 72d® 4+ 15d* + 9d — 3 < 56d". (23)

PROOF (i) This follows immediately from the given definitions, Lemma 10
and (21), (22).

(ii) Tt is sufficient to prove the assertions related to degw Ag and degw Ayg.
Let us prove it for deg, Ag. Let ¢ be a new variable. We shall suppose without
loss of generality that the ground field K D H][t,¢]. Consider the polynomial
d=tbecH [t,]. Then the definitions imply immediately deg, Az = deg, As
and deg, Az = deg,(Az R,z ) (at present in the definition of R,z  the

ground field is equal to Ky, ,.(t) in place of K, see (15)). We can apply

Corollary 1 to the polynomial ®,,, over the ground field K, ,.(f). Denote
by ¢(s,m, p) the right part of (20). Now s = 1, m = p = d. Hence

degt(A;I;ww Rd,iﬁw,u) < c(1,d,d).

This implies (23) for deg,, Ag. The proof of the estimate for deg,, Ay is similar.
The lemma is proved.

COROLLARY 2 Let f € K[t, X1,...,Xn], n =2, be a polynomial irreducible

in the ring K(t)[X1,..., X,] with deg, f < d, degx,  x, [ =d for an integer
d > 2. Then there are at most

deg, Ay < 56d° — 32d" — 54d°® + 96d° — 72d* + 15d° + 9d* — 3d < 56d°

values t* € K of t such that the polynomial f(t*,X1,...,X,) is reducible in the
ring K[X1,...,X,] or Afli= = 0. Notice also that Ag|i=~ = 0 if and only if
degy f(t*, X1,...,X,) <degx, f or Apu= x,,...x,) = 0.

PROOF Wehave Ay € Ky [t]andif Ap(t*) # 0then Ap(t*) = Aps x,,... x0)-
By (21) the degree deg, Ay < ddeg, Ap. Now the required assertion follows
from Lemma 10 and (23) immediately. The corollary is proved.

4 Effective version of the first Bertini theorem:
the case of a hypersurface over a field of arbitrary
characteristic

The aim of this section is to prepare everything for the proof of Theorem 2,
see the Introduction. Let K be an arbitrary field and f € K[Xy,..., X,11],
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n > 2, be a polynomial irreducible in the ring K[X1, ..., X,,;1] and such that
degy, f >0, degx, . x,., f=dand the discriminant of f with respect to X;

of

A = Resxl (f, 8—)(1) # 0. (24)

We shall assume that all these conditions are satisfied throughout this section.

Put t = X,41/Xn. Then f = f(X1,...,Xn, Xnt) € K[t,X1,...,X,].
Denote by (X, Xn+1) C K[X1,..., Xn41] the ideal generated by X,,, X 41.

LEMMA 12 The polynomial f is irreducible in the ring K(t)[X1,..., X,] if
and Only fo € (Xna XnJrl)'

PROOF This follows from the Gauss lemma (we leave the details to the
reader). The lemma is proved.

The assertion of the following lemma follows from Lemma 4 [7]. Still at
present it is useful to give a simple direct independent proof of this fact for the
completeness (in the similar way one can prove Lemma 4 [7] in full generality).

LEMMA 13 Let f be a polynomial satisfying all the conditions formulated at
the beginning of the section. Suppose that the polynomial f is irreducible in the
ring K(t)[X1, ..., X,]. Then the following conditions are equivalent.

(i) The polynomial f is reducible in the ring K(t)[X1,..., Xn].

(ii) The field K(t) is not algebraically closed in the field of fractions K of the
ring K[X1,..., Xn11]/(f), i-e., there is an element 6 € K algebraic over
K(t) and such that 0 & K(t).

More than that, if (i) and (i) are satisfied then the element 0 is separable over
the field K (t).

PROOF Suppose that (i) is satisfied. Let f; € K(¢)[X1,...,X,] be a factor

of f irreducible in the last ring such that some coefficient of f; is equal to

1. Now for all o, ..., 2, € K(t) if A(za,...,Tn,tx,) # 0 then the polynomial

F(X1, 22, . .., 2n, te,) € K(t)[X1] is separable, f1(X1,xa,...,x,) divides f(X1,x2,...,Tn, tzy,)
and, therefore, the coefficients of the polynomial f1(X7, s, ..., z,) are separable

over the field K (t). From here using the interpolation by the elements xs, . . ., z,

we get that the coefficients of the polynomial f; from K(¢) are separable over

K(t).

This implies that there is a finite Galois extension E D K (t) with the Galois
group Gal(E/K(t)) = G such that each absolutely irreducible factor of the
polynomial f is equal to Ao(f1) where 0 # XA € K(t) and 0 € G. Hence
the decomposition of f into the absolute irreducible factors has the form f =
Xofi... fu, v >1, where f1,..., f, € E[X1,...,X,] are all pairwise distinct
conjugated to the polynomial f; over the field K(t) and 0 # \g € K (t).

Now E O (1) KC is a separable F-algebra and E (1) K~ H1<i<1/ IC; where
K; is a field of fractions of the ring E[X1,..., Xn]/(fi). Hence E @z, K D
[licic, £ = E" and E' is a finite dimensional E-algebra which is invariant with
respect to the action of the Galois group G.

On the other hand, let us show (again it is known of course) that every
FE-vector subspace V C F S0 KC which is invariant with respect to the action
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of the Galois group G has the form V = E @, VY where V¢ C K is a K(t)-
vector space of the invariant with respect to the action of G elements of V.
Indeed, suppose contrary. Let e;, i € Iy U I, be a K(t)-basis of K such that e;,
i € I is a K(t)-basis of VE. Since V' \ (E ®R (1) V) =V = () there is a vector

q= Z gjei; € v (25)

1<j<p

such that all 41,...,4, € I, all 0 # ¢; € E and the integer p is minimal possible.
We have p > 2 and there is 1 < o <  such that q,/q1 ¢ K(t) since otherwise
we get a contradiction: ¢; g € VS is a nontrivial linear combination of the
elements e;, i € Iy, with coefficients from K (t).

Therefore, there is ¢ € G such that 0(¢a/q1) # Go/q1- Put ¢ = q;'q —
o(q;'q). Then 0 # g € V and § has representation (25) with g/ in place of p
such that g/ < p. This is a contradiction. Henceforth V = F SR Ve

Thus E; = (E')¢ C K is a field and the degree of the extension [E; : K(t)] =
v > 1. One can choose 6 € F; \ K(t). Hence condition (ii) is fulfilled.

Conversely, suppose that condition (ii) holds true. Let X; mod f € K[X,...,
Xn11]/(f) CK. Let E; D K(t) be an algebraic extension of the field K (t) such
that 1 C K and E4 7é F(t) Hence F(t)(XQ, .. ,Xn) 7é El(XQ, e ,Xn) cK
and the extention F; D K (t) is separable. Therefore the degree of the minimal
polynomial of the element X7 mod f € K over the field F1(Xo,...,X,) is
less than degy, f. Henceforth using the Gauss lemma we get that there is
a polynomial fi € E1[X1,..., X,] such that degy, fi1 < degy, f and f; divides
f in the ring F1[X1,...,X,]. Thus condition (i) is fulfilled. The lemma is
proved.

LEMMA 14 Suppose that the polynomial f is irreducible in the ring K (t)[X1,
ooy Xn] but fis reducible in the ring K (t)[X1, ..., Xy]. Then there are elements
11, o € K such that (u1, pe) # (0,0) and p1 Xp+peXnt1 divides the discriminant
A.

PROOF By Lemma 2 there is a finite separable algebraic extension of fields
Ey D K(t) such that the degree [E; : K(t)] > 1 and F; is contained in the
field K. The extention of the fields F; D K(t) corresponds to the morphism
C — P(K) of the smooth projective curves defined over the field K. The degree
of this morphism is v > 1. The Hurwitz formula for the genus of the curve C'
implies that there is a discrete valuation v : K (t) — ZU{+o0} of the field K (t)
over K (or which is the same v is zero on K \ {0}) and a discrete valuation v;
which is an extension of v to the field F; such that v; is ramified over v, i.e.,
there is an element & € By with v1(§) = 1/e for an integer e > 1. The valuation
v is defined by a uniformizing element

— Nan + N?XnJrl

26
MSXn + ,U4Xn+1 ( )

such that w1, po, pus, pa € K, pipg — pape # 0 and v(r) = 1.

The elements Xo, ..., X1, u3 X, + paXn+1 are algebraically independent
over the field E;. Hence, see [1], there is a discrete valuation v of the field
Ei1(Xa, ..., Xpo1, 43X n + paXny1) = E such that va|p, = v1 and v2(X;) =0,
1<i<n—1,v(usXn+psXns1) = 0. Hence (26) implies vg (p1 X+ 12 Xnt1) =
1. Notice that Fy D K(Xo,..., X,11).
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The extension of fields K D K (X, ..., X,4+1) is finite separable since A # 0.
Therefore the extension X D FEs is also finite separable. Hence there is a discrete
valuation vs of the field & such that vs|g, = vo. Denote by vy the restriction of vs
to the field K (X2, ..., Xn11). By the described construction v4(z) > 0 for every
S K[XQ, . ,XnJrl], U4(N1Xn+M2Xn+1) =1 and U4(K(X2, C.. ,XnJrl)\{O}) =
Z, see [1]. The valuation v3 is ramified over v4 since since v3(€) = v1(§) = 1/e.
This implies that p; X, + poX,+1 divides the discriminant A. The lemma is
proved.

COROLLARY 3 Let f € F[Xl, ooy Xnt1], n = 2, be an irreducible polynomial
such that degx, f > 1, degx, x, ., f < d for an integer d > 1 and (24)
is satisfied. Suppose that f is irreducible in the ring K[X1, ..., Xny1], the
polynomial [ does not belong to the ideal (X, Xn+1) and for all py,pe € K
such that 1 # 0 or pa # 0 the linear form pi X, + poXn41 does not divide A.
Then for all t* € K, except at most

56d° — 32d" — 54d° + 96d° — 72d* + 15d° + 9d* — 3d < 56d°

the polynomial f(X1,...,Xn,t*X,) € K[X1,...,X,] is irreducible in the last
ring.

PROOF This follows immediately from Lemmas 12—14 and Corollary 2 from
Section 3. The corollary is proved.
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