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Some more remarks on Grothendieck-Lidskǐı trace

formulas

Oleg Reinov

Abstract. Theorem: Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u admits a

representation

u =
∑

i

λix
′

i ⊗ xi,

with (λi) ∈ lr, (x
′

i) bounded and (xi) ∈ lwp′(X). If 1/r + 1/2 − 1/p = 1, then the

system (µk) of all eigenvalues of the corresponding operator ũ (written according

to their algebraic multiplicities) is absolutely summable and

trace u =
∑

k

µk.

One of the main aim of these notes is not only to give a proof of the theorem but
also to show that it could be obtained by A. Grothendieck in 1955.

In 1955, A. Grothendieck [4] has shown that if the linear operator T in a Banach
space is 2/3-nuclear then the trace of T is well defined and is equal to the sum of all
eigenvalues {µk(T )} of T. V.B. Lidskǐı [8], in 1959, proved his famous theorem on
the coincidence of the trace of the S1-operator in an (infinite dimensional) Hilbert
space with its spectral trace

∑∞

k=1 µk(T ).

In 1970’s and in early 1980’s, the interest to the trace formulas (and, generally,
to the distribution of eigenvalues of some classes of operators) has been increased
(A. Pietsch, H. König and others). The trace formula was established for such ideals

of operators as L
app
1 , P2 ◦P2, (P2)

app
2,1 L

gel
1 , Lkol

1 , Lweil
1 , Lent

1 (see [12], p. 404). In

the book [10] by A. Pietsch, one can find a generalization of Grothendieck-Lidskǐi
theorem to the case of the quasinormed operator ideal N1,1,2 of the so called (1,1,2)-
nuclear operators (see [10], Th. 27.4.11). In 1996, M. White [15] has obtained a very
general theorem on the spectral trace for a wide classes of quasi-normed operator
ideals. What about concrete Banach spaces, it was shown recently by Oleg Reinov
and Qaiser Latif [14] that the Grothendieck-Lidskǐi formula can be "interpolated"
between L∞–L2 (or, between L1–L2) cases. More precisely, they have shown that for
p ∈ [1,∞] and s ∈ (0, 1] with 1/s = 1+ |1/2−1/p|, and for every s-nuclear operator
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T in every subspace of any Lp(ν)-space the trace of T is well defined and equals the
sum of all eigenvalues of T. The same is true for quotients of Lp(ν)-spaces. Note
that for p = 2 one has s = 1, and for p = ∞ one has s = 2/3.

In this note, we are going to give some more examples of such a kind (see Theorem
below). Let us mention that the proof of the theorem consists of a "reconsideration"
of some Grothendieck’s arguments from [4], Chap. II, of proving by him his famous
trace formula in the case of 2/3-nuclear operators. In the case where X = H is a
Hilbert space and T ∈ S1(H) (nuclear case; so, p = 2 in the theorem below), our
theorem gives the Lidskǐi formula; in the case where X is any Banach space and T
is 2/3-nuclear (so, p = +∞ in the theorem below), we obtain the Grothendieck 2/3-
theorem (with an analogues proof!). If X is any and p = 2 in our theorem, we obtain
the above mentioned N1.1.2-result. We give also (after the proof of the theorem)
some new consequences and make some remarks on Grothendieck’s considerations
in Chapter II of his famous work [4]. Let us note now only that, in particular,
A. Pietsch writes (concerning Lidskǐi’s 1959 formula) in the book [12], p. 404: "a
remark in [GRO1, Chap. II, p. 13] indicates that by 1955, Grothendieck was aware
of this fact". We will give a citation from [4], which shows that A. Grothendieck (in
1955) was aware of a more stronger result than the Lidskǐi theorem (but the result
was given there without any proof). Surely, that work by A. Grothendieck was
unknown to V. Lidskǐi, so, the famous Lidskǐi’s formula is Lidskǐi’s formula forever.

§1. Preliminaries and a theorem

All the terminology and facts (now classical), given here without any explana-
tions, can be found in [1, 2, 4, 7, 10, 11].

Let X, Y be Banach spaces. For the Banach dual of X, we use the notation X∗.
If x ∈ X and x′ ∈ X∗, then we use the notation 〈x′, x〉 for x′(x).

Denote by X∗⊗̂Y the completion of the tensor product X∗⊗ Y (considered as a
linear space of all finite rank operators from X to Y ) with respect to the projective
norm

||w|| := inf{

(
N∑

k=1

||x′
k|| ||yk||

)
: w =

N∑

k=1

x′
k ⊗ yk}

(see, e.g., [4], [1]). For X = Y, the natural linear continuous functional "trace" on
X∗ ⊗X has a unique continuous extension to the space X∗⊗̂X, which we still will
denote by "trace".

Put N(X, Y ) := image of X∗⊗̂Y in the space L(X, Y ) of all bounded linear
transformations under the canonical factor map X∗⊗̂Y → N(X, Y ) ⊂ L(X, Y ). We
consider the (Grothendieck) space N(X, Y ) of all nuclear operators from X to Y
with the natural norm, induced from X∗⊗̂Y. For a tensor element u ∈ X∗⊗̂Y, we
denote by ũ the corresponding nuclear operator from X to Y.



SOME MORE REMARKS ON GROTHENDIECK-LIDSKǏI TRACE FORMULAS 3

For q ∈ (0,+∞], we denote by lwq (X) the space of all weakly q-summable se-
quences (xi) ⊂ X (see, e.g., [9], [10]) with a quasi-norm

εq((xi)) := sup{

(
∑

i

|〈x′, xi〉|
q

)1/q

: x′ ∈ X∗, ||x′|| ≤ 1}

(in the case where q = ∞, we suppose (xi) to be just bounded and tending to zero,
i.e., ε∞((xi)) = supi ||xi||).

We are going to prove
Theorem. Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u admits a representation

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, (x
′
i) bounded and (xi) ∈ lwp′(X). If 1/r + 1/2 − 1/p = 1, then the

system (µk) of all eigenvalues of the operator ũ (written according to their algebraic
multiplicities) is absolutely summable and

trace u =
∑

k

µk.

We obtained this result rather casually, just analyzing the arguments, given by
A. Grothendieck [4, Ch. II] for getting his trace formula for 2/3-nuclear operators,
and noting that Hadamard’s inequality for determinants may be improved in some
Lp situations (this idea appeared after considerations again of arguments from [14]
and the facts that the Hilbert spaces are the best Banach spaces, but the Banach
spaces of type Lp for p ∈ (1,∞) are, maybe, worse than an H but better that any
X (or, the same, in a sence, than L∞)).

In the proof of Theorem, we shall use, in particular, the "related operators
theorem" [10, p. 375], namely, in the following situation. If u is as in Theorem then
it is easy to see that it admits a factorization

u = AB : X → lp → X,

where B is s-nuclear (is generated by "un noyau de Fredholm de puissance s.ème
sommable dans X∗⊗̂lp" in terms of [4]), A maps the unit vector basis of lp to the
sequence (xi) (which is weakly p′-summable). Therefore, the set of all eigenvalues
of u is the same as the set of all (with their algebraic multiplicities) eigenvalues of
the operator BA, which maps lp into lp (so, results of [6] and [14] may be applied).

§2. Proofs

Let u be an element of the projective tensor product X∗⊗̂X. It can be represented
in the form

u =
∑

i

λix
′
i ⊗ xi,

where (λi) ∈ l1 and ||x′
i|| ≤ 1, ||xi|| ≤ 1 (see [4], [1]). Recall that the Fredholm

determinant det(1− zu) of u (see [4], [5], [10], [11]) is an entire function

det(1− zu) = 1− z trace u+ · · ·+ (−1)nznαn(u) + . . . ,
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all zeros of which are exactly (according to their multiplicities) the inverses of
nonzero eigenvalues (µk) of the operator ũ, associated with the tensor element u.
If u has a form u =

∑
i λix

′
i ⊗ xi as above, the coefficients αn(u) in the previous

formula are defined explicitly by

αn =
∑

i1<···<in

λi1 . . . λin det(〈x′
iα, xiβ〉)1≤α,β≤n

(see [4, Chap. II, p.13, (5bis)], [5]).
Suppose now, that u has a representation

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, λi ≥ 0, r ∈ (0, 1], ||x′
i|| ≤ 1, (xi) ∈ lwp′(X), εp′((xi)) ≤ 1 (here

1 ≤ p ≤ 2). We have:

f(z) := det(1 + zu) =

∞∑

n=0

αn(u) z
n,

where αn(u) are as above; therefore, taking in account that for every α = 1, . . . , n
(

n∑

β=1

|〈x′
iα, xiβ〉|

p′

)1/p′

≤ 1

and thus (
n∑

β=1

|〈x′
iα, xiβ〉|

2

)1/2

≤ n1/p−1/2,

by Hadamard’s inequality for determinants (see, e.g., [16], 8.7.4 Problems and Ex-
ercises, Ex. 9c), or [2, p. 1018]), we get

|αn(u)| ≤ nn(1/p−1/2) αn(λ),

where

αn(λ) =
∑

i1<···<in

λi1 . . . λin.

Since the function g(z) =
∏

i(1 + λiz) is of order ≤ r (see, e.g., [7], p. 30, Th. 3
(Borel)) and since its coefficients are exactly αn, we obtain for these coefficients the
estimates, for each t > r,

αn(λ) ≤ Mtn
−n/t

(see the same book [7], p. 6). Hence,

|αn(u)| ≤ Mtn
−n(1/t−1/p+1/2) = Mtn

−n/ω,

where 1/ω = 1/t + 1/2 − 1/p. By a classical result of Hadamard (see, e.g., [7],
pp. 5-6), the function f(z) is of order ≤ ω and, therefore, of order ≤ ν, where
1/ν = 1/r + 1/2− 1/p (since t > r was arbitrary).
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Now, suppose that ν = 1 (that is, 1/r + 1/2− 1/p = 1). By Hadamard (see [7],
p. 26, Th. 1),

det(1− zu) = e−az
∏

i

(1− zµi)e
zµi

(recall that (µk) is a sequence of all eigenvalues of ũ, counted according to their
algebraic multiplicities). On the other hand, as was said above,

det(1− zu) = 1− z trace u+ · · ·+ (−1)nznαn(u) + . . . ,

and we get (considering the expansion of the entire function e−az
∏

i(1 − zµi)e
zµi)

that a = trace u. Therefore,

det(1− zu) = e−z trace u
∏

i

(1− zµi)e
zµi.

Now we apply Theorem 2.6 of [6] or results from [14] to get that (µk) ∈ l1, from
which it follows (see, e.g., [7], p. 25-26) that

det(1− zu) = e−αz
∏

i

(1− zµi), where α = trace u−
∑

k

µk

and

the function det(1− zu) is of minimal type

(by the same Hadamard’s theorem; see also [7], pp. 25-26 or the second part of the
proof of Borel theorem in [7], p. 30). Whence, α = 0, i.e. trace u =

∑
k µk.

§3. Corollaries and remarks.

Corollary 1. Let r, p, u be as in Theorem. The operator ũ : X → X is equal to
zero iff the tensor element u is zero.

The same proof as the one of Theorem, with evident changes, gives us

Corollary 2. Let r ∈ (0, 1], 1 ≤ p ≤ 2, u ∈ X∗⊗̂X and u admits a representa-
tion

u =
∑

i

λix
′
i ⊗ xi,

with (λi) ∈ lr, (xi) bounded and (x′
i) ∈ lwp′(X

∗). If 1/r + 1/2 − 1/p = 1, then the
system (µk) of all eigenvalues of the operator ũ (written according to their algebraic
multiplicities) is absolutely summable and

trace u =
∑

k

µk.

Corollary 3. Let r, p, u be as in the previous corollary. The operator ũ : X → X
is equal to zero iff the tensor element u is zero.

Remark. For the case where r = 2/3 and p = ∞, we get 2/3-theorems of A.
Grothendieck ([4]; for a simple proof of the 2/3-theorems, see [13]). For the case
r = 1 and p = 2, we get the N1,1,2-results of [10, p. 381]. Also, Corollaries 1 and 3
are valid if we consider the operators ũ from X to Y, for any Banach X, Y.
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As was said above, in our proof we just used the ideas of A. Grothendieck from
[4]. Let us mention that our Theorem could be proved by A. Grothendieck in 1955, as
well as the Lidskǐi’s result. Namely, in [4, Ch. II, Remark 4, p. 21], A. Grothendieck
writes:

"Soit 0 < p ≤ 1. Pour tout u..., soit û la suite non ordonnee des valeurs propres
de u ... ... ce qui permet facilement, ..., de se ramener à un résultat plus fin sur

les espaces de Hilbert: Si H est un espace de Hilbert, l’application u → û de H ′
(p)

⊗H
dans (l’espace) Σ(p) (des suites non ordonnées d’ordre ≤ p) est continue."

Here
(p)

⊗ denotes the tensor product which corresponds to the space of the p-
nuclear operators. In the case where p = 1, we have the class S1 of Schatten
and von Neumann. Thus, it seems that the S1-trace-formula indeed was known to
A. Grothendieck in 1955, but he (we can only guess, why) did not pay any more
attention to the Hilbert case.

Concluding the paper (on March 28, 2012), I would like to bring my deep ac-
knowledgments to Alexander Grothendieck for his ideas from [4] (which are all in
these notes) on the day of his Birth.
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[13] O.I. Reinov: A simple proof of two theorems of A. Grothendieck, Vestn. Leningr. Univ., 7

(1983), 115-116.
[14] Oleg Reinov and Qaisar Latif: Grothendieck-Lidskǐı theorem for subspaces and factor spaces
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