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Abstract. Generalizing A. Grothendieck's (1955) and V.B. Lidski��'s (1959) trace
formulas, we have shown in a recent paper that for p ∈ [1,∞] and s ∈ (0, 1] with
1/s = 1+ |1/2− 1/p| and for every s-nuclear operator T in every subspace of any
Lp(ν)-space the trace of T is well de�ned and equals the sum of all eigenvalues of
T. Now, we obtain the analogues results for subspaces of quotients (equivalently:
for quotients of subspaces) of Lp-spaces.

In the note [13], we have proved that if p ∈ [1,∞] and 1/s = 1+ |1/2−1/p|, then
for any subspace (or quotient) of an Lp-space and for every s-nuclear operator T in
the space the nuclear trace of T is well-de�ned and equals the sum of all eigenvalues
of T. The main fact, we are going to obtain here, is

Theorem. Let Y be a subspace of a quotient (or a quotient of a subspace) of
an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y, Y ) (s-nuclear), where 1/s = 1 + |1/2− 1/p|,
then

1. the (nuclear) trace of T is well de�ned,
2.

∑∞
n=1 |λn(T )| < ∞, where {λn(T )} is the system of all eigenvalues of the

operator T (written in according to their algebraic multiplicities)
and

trace T =
∞∑
n=1

λn(T ).

Let us mention that in the proof we have to repeat some ideas of proofs from [13]
(in particular, of the proof of main lemma there) as well as, simultaneously, to use
the main lemma [13] itself (so, we will get a generalization of the lemma by using a
part of its proof and also its statement).

�1. Preliminaries.

All the terminology and facts we use here can be found in [5�8].

Let X,Y be Banach spaces. For s ∈ (0, 1], denote by X∗⊗̂sY the completion of
the tensor product X∗⊗Y (considered as a linear space of all �nite rank operators)
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with respect to the quasi-norm

||z||s := inf{

(
N∑
k=1

||x′
k||s ||yk||s

)1/s

: z =
N∑
k=1

x′
k ⊗ yk}.

Let Ψp, for p ∈ [1,∞], be the ideal of all operators which can be factored through
a subspace of a quotient of an Lp-space. Put Ns(X,Y ) := image of X∗⊗̂sY in the
space L(X, Y ) of all bounded linear transformations under the canonical factor map
X∗⊗̂sY → Ns(X,Y ) ⊂ L(X, Y ). We consider the (Grothendieck) space Ns(X, Y )
of all s-nuclear operators from X to Y with the natural quasi-norm, induced from
X∗⊗̂sY.

Finally, let Ψp,s be the quasi-normed product Ns ◦Ψp of the corresponding ideals
equipped with the natural quasi-norm νp,s: if A ∈ Ns ◦ Ψp(X, Y ) then A = φ ◦ T
with T = βα ∈ Ψp, φ = δ∆γ ∈ Ns and

A : X
α→ Xp

β→ Z
γ→ c0

∆→ l1
δ→ Y,

where all maps are continuous and linear, Xp is a subspace of a quotient of an
Lp-space, constructed on a measure space, and ∆ is a diagonal operator with the
diagonal from ls. Thus, A = δ∆γβα and A ∈ Ns. Therefore, if X = Y, the spectrum
of A, sp (A), is at most countable with only possible limit point zero. Moreover, A
is a Riesz operator with eigenvalues of �nite algebraic multiplicities and sp (A) ≡
sp (B), where B := αδ∆γβ : Xp → Xp is an s-nuclear operator, acting in a subspace
of a quotient of an Lp-space.

De�nition. Let Y be a Banach space and s ∈ (0, 1]. We say that Y possesses the

property APs ( the approximation property of order s; written down as "Y ∈ APs")
if for any tensor element z ∈ Y ∗⊗̂sY the operator z̃ : Y → Y, associated with z, is
zero i� the tensor element z is zero as an element of the space Y ∗⊗̂Y.

This is equivalent to the fact that if z ∈ Y ∗⊗̂sY then it follows from

trace z ◦R = 0, ∀R ∈ Y ∗ ⊗ Y

that trace U ◦ z = 0 for every U ∈ L(Y, Y ∗∗). There is a simple characterization of
the condition Y ∈ APs in terms of the approximation of the identity idY on some
sequences of the space Y, but we omit it. We need here only some examples which
are crucial for our note. For giving them, we formulate and prove the following
statement, which, we hope, is interesting by itself.

Proposition 1. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y,
suppose that

(α) there exist constants C > 0 such that for every ε > 0, for every natural n
and for every n-dimensional subspace E of Y there exists a �nite rank operator R
in Y so that ||R|| ≤ Cnα and ||R|E − idE ||L(E,Y ) ≤ ε.

Then Y ∈ APs.
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Proof. Suppose that there is an element z ∈ Y ∗⊗̂sY such that trace z = b > 0,
but z̃ = 0. Consider a representation of z of the kind

z =
∞∑
k=1

µky
′
k ⊗ yk,

where ||y′k||, ||yk|| = 1 and µk ≥ 0,
∑∞

k=1 µ
s
k < ∞. Without loss of generality, we can

(and do) assume that the sequence (µk) is decreasing and that
∑∞

k=1 µk ≤ 1. In this
situation, µs

k = o(1/k), so, there are ck > 0 with ck → 0 and µk ≤ ck/k
1/s.

Fix any natural N, large enough, such that for all m ≥ N

m∑
k=1

µk⟨y′k, yk⟩ ≥ b/2.

For such an m, put E := span{yk}mk=1, and apply the condition (α) to �nd a corre-
sponding operator R ∈ Y ∗ ⊗ Y for n = m and ε = b/4.

By our assumption, trace R ◦ z = 0. From this, we get (for all m ≥ N) :

0 =
m∑
k=1

µk⟨y′k, Ryk⟩+
∞∑

k=m+1

µk⟨y′k, Ryk⟩.

For the �rst sum:
m∑
k=1

µk⟨y′k, Ryk⟩ ≥
m∑
k=1

µk⟨y′k, yk⟩ −
∣∣ m∑
k=1

µk⟨y′k, yk −Ryk⟩
∣∣ ≥ b/2− b/4 = b/4.

For the second sum:∣∣ ∞∑
k=m+1

µk⟨y′k, Ryk⟩
∣∣ ≤ Cmα c̃m

∫ ∞

m

x−1/s dx ≤ dmmαm1−1/s = dm,

where 0 ≤ c̃m → 0, and thus 0 ≤ dm → 0.
Now, from the last three relations, we obtain: 0 ≥ b/4− dm. �

Let us consider some consequences of the proposition.

Corollary 1. Let α ∈ [0, 1/2] and 1/s = 1+ α. For a Banach space Y, suppose
that there exist constants C > 0 such that for every natural n and for every n-
dimensional subspace E of Y there exists a �nite rank operator R in Y so that
||R|| ≤ Cnα and R|E = idE . Then Y ∈ APs.

Corollary 2. Let α ∈ [0, 1/2] and 1/s = 1+ α. For a Banach space Y, suppose
that there exist constants C > 0 such that for every natural n and for every n-
dimensional subspace E of Y there exists a �nite dimensional subspace F of Y,
containing E and Cnα-complemented in Y. Then Y ∈ APs.

Corollary 3. Let α ∈ [0, 1/2] and 1/s = 1 + α. For a Banach space Y, sup-
pose that there exist constants C > 0 such that for every natural n and every
n-dimensional subspace E of Y is Cnα-complemented in Y. Then Y ∈ APs. More-
over, every subspace of the space Y has the APs.
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It can be shown (but we do not need this in the note) that Y ∈ APs i� for every
Banach space X the natural mapping X∗⊗̂sY → L(X, Y ) is one-to-one (for other
related results see, e.g., [11], [12]). Thus, taking this in account, we get:

Corollary 4. In all above four assertions, in the case of Y with mentioned
properties, we have the quasi-Banach equality X∗⊗̂sY = Ns(X, Y ), whichever the
space X was. In particular, Y ∗⊗̂sY = Ns(Y, Y ).

Before giving more concrete applications of Proposition 1, let us mention the
simplest example.

Example 1. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/p− 1/2|. Any subspace
as well as any factor space of any Lp-space have the property APs.

We used this example in [13]. The statement of Example 1 follows from Corollary
4 and the results of D.R. Lewis (see [3], Corollary 4).

As s matter of fact, one can get from the work [3] more general facts on com-
plementability concerning Lp-situation. However, we prefer to consider abstract
situations and to deal with spaces of nontrivial types and cotypes (partially, for
using the results to be obtained in other considerations).

We will apply mainly the results that can be found, e.g., in [1], [6], [8] and
[9]. For the de�nitions of the notions of type and cotype, see any of this references
(Rademacher type p = Gauss type p and Rademacher cotype q = Gauss cotype q;
so, we can apply results from G. Pisier's lecture [9], assuming that we are working
with Rademacher notions).

Let us collect the facts we need.

Proposition 2. Let X be a Banach space and 1 < p ≤ 2, 2 ≤ q < ∞.
1). If X is of type p (cotype p) then every subspace is of type p (cotype p);
2). [1, Proposition 11.11] If X is of type p then any quotient of X is of type p;
3). [1, Proposition 11.10] If X is of type p then X∗ is of cotype p′;
4). If X∗ is of type p then X is of cotype p′;
5). If X is of type p then any subspace of any quotient (and any quotient of any

subspace) of X is of type p;
6). [1, Corollary 11.9] A Banach space has the same type or cotype as its bidual;
7). [1, Corollary 11.7] Each Lr-space (1 ≤ r < ∞) has type min{r, 2} and cotype

max{r, 2};
8). [9, see Theorem 4.1 and its Corollaries] There is a constant Dp,q > 0 such

that every �nite dimensional subspace E of X is Dp.q (dimE)1/p−1/q-complemented
in X.

Recall also the well known general fact: in any Banach space every n-dimensional
subspace is n1/2-complemented.

We need in this note only the following immediate consequence of Proposition 2
and Corollary 3:

Corollary 5. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1 + |1/p− 1/2|. If a Banach
space Y is isomorphic to a subspace of a quotient (or to a quotient of a subspace)
of an Lp-space then it has the property APs.

In particular, we get again (cf. [10] and see [2]):
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Corollary 6 [2]. Every Banach space has the property AS2/3.

�1. Main lemma.

We are going to formulate to prove now the main lemma in this paper. It is
interesting to note that in the proof we will use a part of the proof of Lemma from
[13] as well as the statement of that Lemma itself. Let us recall the formulation of
Lemma of [13].

Lemma 0. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/2− 1/p|. Then the system
of all eigenvalues (with their algebraic multiplicities) of any operator T ∈ Ns(Y, Y ),
acting in any subspace Y of any Lp-space, belongs to the space l1. The same is true
for the factor spaces of Lp-spaces.

The next assertion contains this lemma 0 as a particular case.

Lemma 1. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/2− 1/p|. Then the system
of all eigenvalues (with their algebraic multiplicities) of any operator T ∈ Ns(Y, Y ),
acting in any subspace Y of any quotient of any Lp-space (equivalently: in any
quotient Y of any subspace of any Lp-space), belongs to the space l1.

Proof of Lemma 1. Let p ∈ [1,∞]. Let Y be a subspace of a quotientW (= Lp/V
for some V ⊂ Lp) of an Lp-space and T ∈ Ns(Y, Y ) with an s-nuclear representation

T =
∞∑
k=1

µky
′
k ⊗ yk,

where ||y′k||, ||yk|| = 1 and µk ≥ 0,
∑∞

k=1 µ
s
k < ∞. The operator T can be factored

in the following way:

T : Y
A−→ l∞

∆1−s−→ lr
j
↪→ c0

∆s−→ l1
B−→ Y,

where A and B are linear bounded, j is the natural injection, ∆s ∼ (µs
k)k and

∆1−s ∼ (µ1−s
k ) are the natural diagonal operators from c0 into l1 and from l∞ into

lr, respectively. Here, r is de�ned via the conditions 1/s = 1 + |1/p − 1/2| and∑
k µ

s
k < ∞ : we have to have

∑
k µ

(1−s)r
k < ∞, for which (1 − s)r = s is good.

Therefore, put 1/r = 1/s− 1, or 1/r = |1/p− 1/2|.
Let Φ : Lp → W be a factor map, so that Y ⊂ W. Denote by Y0, Y0 ⊂ Lp, the

preimage of Y under the map Φ, Yo := Φ−1(Y ). Consider the operator Φ|Y0 : Y0 → Y
(it is a factor map) and the following diagram:

Y0

Φ|Y0−→ Y
A−→ l∞

∆1−s−→ lr
j
↪→ c0

∆s−→ l1
B−→ Y.

Since Φ|Y0 is a factor map, we can �nd a lifting Q : l1 → Y with B = Φ|Y0Q : l1 →
Y0 → Y. Now, we get that the operator T can be factored as follows:

T : Y
A−→ l∞

∆1−s−→ lr
j
↪→ c0

∆s−→ l1
Q−→ Y0

Φ|Y0−→ Y.

Let U0 := Q∆sj∆1−sA : Y → Y0. Then U0 ∈ Ns(Y, Y0), U := U0Φ|Y0 ∈ Ns(Y0, Y0)
and T = Φ|Y0U ∈ Ns(Y, Y ). By the principle of related operators(see [8], 6.4.3.2), U
and T have the same eigenvalues with the same algebraic multiplicities. But U acts
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in a subspace Y0 of an Lp-space, so main Lemma of [13] can be applied. Therefore,
by Lemma 0, Lemma 1 is proved.

Corollary 7. If s ∈ (0, 1], p ∈ [1,∞] with 1/s = 1 + |1/2 − 1/p| then the
quasi-normed ideal Ψp,s is of (spectral) type l1.

�1. Proof of Theorem

We prefer to give here a complete proof although we could just refer to the proof
of the corresponding theorem in [13] with giving some remarks.

Let Y be a subspace of a quotient of an Lp-space and T ∈ Ns(Y, Y ). By Corollary
5, we may (and do) identify the space Ns(Y, Y ) with the corresponding tensor prod-
uct Y ∗⊗̂sY, which, in turn, is a subspace of the projective tensor product Y ∗⊗̂Y.
Thus, the nuclear trace of T is well de�ned, and we have to show that this trace of
T is just the spectral trace (= spectral sum)

∑∞
n=1 λn(T ).

By Lemma, the sequence {λn(T )}∞n=1 of all eigenvalues of T, counting by mul-
tiplicities, is in l1. Since the quasi-normed ideal Ψp,s is of spectral (= eigenvalue)
type l1 (see Corollary 7), we can apply the main result from the paper [14] of M.C.
White, which asserts:

(∗∗) If J is a quasi-Banach operator ideal with eigenvalue type l1, then the spec-

tral sum is a trace on that ideal J .
For the sake of completeness and to simplify the understanding, we (as in the

paper [13]) give here some information about "trace" on an operator ideal. Namely,
recall (see [8], 6.5.1.1, or De�nition 2.1 in [14]) that a trace on an operator ideal
J is a class of complex-valued functions, all of which one writes as τ, one for each
component J(E,E), where E is a Banach space, so that

(i) τ(e′ ⊗ e) = ⟨e′, e⟩ for all e′ ∈ E∗, e ∈ E;
(ii) τ(AU) = τ(UA) for all Banach spaces F and operators U ∈ J(E,F ) and

A ∈ L(F,E);
(iii) τ(S + U) = τ(S) + τ(U) for all S, U ∈ J(E,E);
(iv) τ(λU) = λτ(U) for all λ ∈ C and U ∈ J(E,E).
Our operator T, evidently, belongs to the space Ψp,s(Y, Y ) and, as was said, Ψp,s

is of eigenvalue type l1. Thus, the assertion (∗∗) implies that the spectral sum λ,
de�ned by λ(U) :=

∑∞
n=1 λn(U) for U ∈ Ψp,s(E,E), is a trace on Ψp,s.

By principle of uniform boundedness (see [7], 3.4.6 (page 152), or [5]), there
exists a constant C > 0 with the property that

|λ(U)| ≤ ||{λn(U)}||l1 ≤ C νp,s(U)

for all Banach spaces E and operators U ∈ Ψp,s(E,E).
Now, remembering that all operators in Ψp,s can be approximated by �nite rank

operators and taking in account the conditions (iii)�(iv) for τ = λ, we obtain that
the nuclear trace of our operator T coincides with λ(T ) (recall that the continuous
trace is uniquely de�ned in such a situation; see [8], 6.5.1.2).
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