On regularity properties of solutions to hysteresis-type problems *

D.E. Apushkinskaya and N.N. Uraltseva

December 25, 2013

1 Introduction.

We consider the bounded solutions of the following parabolic free boundary problem:

$$Lu = \mathcal{H}u \text{ in } Q_1 = B_1 \times] - 1, 1].$$
 (1)

Eq. (1) is understood in the weak (distributional) sence. Here $L = \partial_{xx} - \partial_t$ is the heat operator, $B_1 = \{x \in \mathbb{R} : |x| < 1\}$, and \mathcal{H} is a hysteresis-type operator which is defined as follows.

We fix two numbers α and β ($\alpha < \beta$) and consider a **multivalued** function

$$f(s) = \begin{cases} -1, & \text{for } s \in] -\infty, \alpha], \\ 1, & \text{for } s \in [\beta, +\infty[, \\ -1 \text{ or } 1, & \text{for } s \in]\alpha, \beta[. \end{cases}$$

For $u \in C(\overline{Q}_1)$ we suppose that on the bottom of the cylinder Q_1 the initial values $\mathcal{H}u(x, -1) := f(u(x, -1))$ are prescribed.

After that for every point $z = (x,t) \in \overline{Q}_1$ the corresponding value of $\mathcal{H}u(z)$ is uniquely defined in the following manner. Let us denote by E a set of points

$$E := \{ z \in Q_1 : u(z) \leqslant \alpha \} \cup \{ z \in Q_1 : u(z) \ge \beta \} \cup \{ B_1 \times \{ -1 \} \}.$$

In other words, E is a set where f(u(z)) is well-defined.

^{*}This work was supported by the Russian Foundation of Basic Research (RFBR) through the grant number 11-01-00825 and by the St. Petersburg State University grant 6.38.670.2013.

If $z \in E$ then $\mathcal{H}u(z) = f(u(z))$. Otherwise, for $z = (x, t) \in Q_1$ such that $\alpha < u(z) < \beta$ we set

$$\mathcal{H}u(x,t) = \mathcal{H}u(x,\tau(x)). \tag{2}$$

Here

$$\tau(x) = \max_{[0,t]} \{\tau : (x,\tau) \in E\}$$

Roughly speaking, condition (2) means that the hysteresis function $\mathcal{H}u(x,t)$ takes for $u(x,t) \in (\alpha,\beta)$ the same value as at the previous moment (see Figure 1).

Figure 1: The hysteresis operator \mathcal{H}

We suppose also that

$$\sup_{Q_1} |u| \leqslant M \quad \text{with} \quad M \geqslant 1.$$

Since the right-hand side of (1) is bounded, the general parabolic theory (see, e.g. [LSU67]) implies

$$||u_t||_{q,Q_{3/4}} + ||u_{xx}||_{q,Q_{3/4}} \leq N_1(q,M) \quad \forall q < \infty.$$

In particular, u satisfies (1) a.e. in $Q_{3/4}$.

Moreover, functions u and u_x are continuous in $Q_{3/4}$ and $u_x \in C_{x,t}^{\delta,\delta/2}(Q_{3/4})$ for arbitrary $\delta \in (0; 1)$. It is evident that the (n + 1)-dimensional Lebesgue measure of the sets $\{u = \alpha\}$ and $\{u = \beta\}$ equal zero.

In this paper we are interested in local L^{∞} -estimates for the derivatives u_{xx} and u_t of the function u satisfying (1).

2 Notation and Preliminaries.

Throughout this article we use the following notation:

z = (x, t) are points in $\mathbb{R}^2_{x,t}$; $B_r(x^0)$ denotes the open ball in \mathbb{R}^1 with center x^0 and radius r; $Q_r(z^0) = Q_r(x^0, t^0) = B_r(x^0) \times [t^0 - r^2, t^0 + r^2]$; $Q_r^-(z^0) = Q_r(z^0) \cap \{t < t^0\}$; When omitted, x^0 (or $z^0 = (x^0, t^0)$, respectively) is assumed to be the origin.

When omitted, x^0 (or $z^0 = (x^0, t^0)$, respectively) is assumed to be the origin. We emphasize that in this paper the top of the cylinder $Q_r(z^0)$ (as well as the top of $Q_r^-(z^0)$ is included in the set $Q_r(z^0)$ (in the set $Q_r^-(z^0)$).

$$u_t = \frac{\partial u}{\partial t}, \quad u_x = \frac{\partial u}{\partial x}, \quad u_{xx} = \frac{\partial^2 u}{\partial x^2};$$

We define the parabolic distance dist_p between a point z = (x, t) and a set $\mathcal{D} \subset \mathbb{R}^2$ by

$$\operatorname{dist}_{p}(z, \mathcal{D}) := \sup \left\{ r > 0 : Q_{r}^{-}(z) \cap \mathcal{D} = \emptyset \right\}.$$

We use letters M, N, and C (with or without indices) to denote various constants. To indicate that, say, C depends on some parameters, we list them in the parentheses: $C(\ldots)$.

We denote by

$$\Omega_{\pm}(u) := \{ z \in Q_1, \text{ where } \mathcal{H}u(z) = \pm 1 \},\$$

$$\Gamma(u) := \partial \Omega_+ \cap \partial \Omega_- \text{ is the free boundary.}$$

The latter means that $\Gamma(u)$ is the set where the function $\mathcal{H}u(z)$ has a jump.

We also introduce special notation for the different parts of $\Gamma(u)$

$$\Gamma_{\alpha}(u) := \Gamma(u) \cap \{u = \alpha\}, \Gamma_{\beta}(u) := \Gamma(u) \cap \{u = \beta\}.$$

Observe that the sets $\{u = \alpha\}$ and $\{u = \beta\}$ not alsways are the parts of the free boundary $\Gamma(u)$ (see Figure 2). Moreover, by definition,

$$\{u \leq \alpha\} \subset \Omega_{-} \quad \text{and} \quad \{u \geq \beta\} \subset \Omega_{+}.$$

It is also easy to see that the sets $\{u = \alpha\}$ and $\{u = \beta\}$ are separated from each other. In other words, there exists a positive constant d_0 completely determined by M such that

dist
$$\{\{u = \alpha\}; \{u = \beta\}\} \ge d_0 > 0.$$

The latter guarantees that Γ_{α} and Γ_{β} are the isolated components of $\Gamma(u)$.

Consider a part of $\partial\Omega_{-}$ satisfying $\partial\Omega_{-} \cap \Gamma_{\beta} = \emptyset$. We see that this part of $\partial\Omega_{-}$ may contain several components of Γ_{α} connected by open segments parallel to *t*-axis. Similar statement is true for a part of $\partial\Omega_{+}$ satisfying $\partial\Omega_{+} \cap \Gamma_{\alpha} = \emptyset$. We will denote by Γ_{v} the set of all points *z* lying in such open vertical segments (see Figure 2).

Figure 2: Structure of the free boundary

We will also distinguish the following parts of Γ :

$$\Gamma^{0}_{\alpha}(u) = \Gamma_{\alpha}(u) \cap \{u_{x} = 0\}, \qquad \Gamma^{*}_{\alpha}(u) = \Gamma(u) \setminus \Gamma^{0}_{\alpha}(u).$$

The sets Γ^0_β and Γ^*_β are defined analogously.

Remark 2.1. It is obvious that $u \in C^{\infty}$ in the interior of the sets Ω_{\pm} .

3 Main Result

Lemma 3.1. Let u be a bounded solution of Eq. (1) and let $z^* \in (\Gamma^*_{\alpha} \cup \Gamma^*_{\beta}) \cap Q_{1/2}$. Then u_t is a continuous function in a some neighborhood of z^* and u_{xt} is locally a L^2 -function.

Lemma 3.2. Let u be a bounded solution of Eq. (1). Then there exists a positive constant N = N(M) such that

$$|u_t(z)| \leq N$$
 for all $z \in (\Gamma^*_{\alpha} \cup \Gamma^*_{\beta}) \cap Q_{1/2}.$

Lemma 3.3. Let u be a bounded solution of Eq. (1). The following statements hold true.

(i) Let $z^0 \in \Gamma^0_{\alpha} \cap Q_{1/2}$ and $z^0 \notin \Gamma_v$. Then there exists a positive constant N_{α} completely defined by $\rho_0 := dist_p \{z^0, \Gamma_v\}$ and M such that

$$\sup_{Q_r^-(z^0)} |u - \alpha| \leqslant N_\alpha r^2 \qquad \forall r \leqslant \rho_0.$$

(ii) Let $z^0 \in \Gamma^0_\beta \cap Q_{1/2}$ and $z^0 \notin \Gamma_v$. Then there exists a positive constant N_β completely defined by $\rho_0 := dist_p \{z^0, \Gamma_v\}$ and M such that

$$\sup_{Q_r^-(z^0)} |u - \beta| \leqslant N_\beta r^2 \qquad \forall r \leqslant \rho_0.$$

Theorem 1. Let u be a bounded solution of Eq. (1), let z be a point in $Q_{1/2} \setminus \Gamma(u)$, and let $\rho_0 := dist_p \{z, \Gamma_v\}$. Then there exists a positive constant C completely defined by the values of ρ_0 and M such that

$$|u_{xx}(z)| + |u_t(z)| \leqslant C.$$

References

[LSU67] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural'ceva. Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1967.