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Some remarks on Approximation Properties with
Applications

Oleg Reinov

ABSTRACT. We study some known approximation properties and introduce and
investigate several new approximation properties, closely connected with different
quasi-normed tensor products. These are the properties like the AP; or AP .,
for s € (0,1], which give us the possibility to identify the spaces of s-nuclear and
(s, w)-nuclear operators with the corresponding tensor products (e.g., related to
Lorentz sequence spaces). Some applications are given (in particular, we present
not difficult proofs of the trace-formulas of Grothendieck-Lidskii type for several
ideals of nuclear operators).

Our main reference is [10]. All the notions , notations and facts, we use without
any reference, can be found in [1, 2, 4, 8, 10, 12|.

I. The Grothendieck approximation property for a Banach space X can be de-
fined as follows: X has the AP iff for every sequence (z,,)%°; C X tending to zero,
for any € > 0 there exists a finite rank (continuous) operator R in X such that
for each n € N one has ||Rz,, — x,|| < e. Consider a natural question: for which
sequences (z,) € ¢o(X), under some additional assumptions, the identity map idy
surely can be approximated by finite rank operators, as above, and which of those
conditions are sharp (or, if one wishes, optimal)?

One of the simplest fact (we think, known for more than 30 years) that

(%) if (z,,) € (X)), X is any, then the answer is positive.

Here ia a reason of this: Assuming ||z,|| \, 0, take any N € N and consider the
linear span span[z,|Y =: Ey as a subspace of X. Define, fixing an ¢ > 0, a finite
rank R to be a projection from X onto Ey whose norm < v/N.

Now if N is such that, for every n > N, we have |[[z,|| < —=—, then

||Rxy, — xp|| =0 if n <N,

and
||Rx, — x,|| < e.

Of course, instead of (%) we can consider the the statement
(#x) if (2,,) € 19 ,(X) [Lorentz space with "o" small|, X is any, then the answer
is positive.

AMS Subject Classification 2010: 46B28 Spaces of operators; tensor products; approximation
properties.
Key words: 46B28 Approximation of operator; bounded approximation property.
1



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 2

The idea of the above proof is very simple and can be applied in some more
general situations. For instance, every subspace of finite dimension of an L,-space
is n!t/2=1/?l_complemented in that L,-space. So, if p € [1,00], o = |1 — %| and X is
a subspace of an L,-space, then

(**x) for every sequence (z,) € I ,(X), where 1/¢q = a, the answer is positive.

Remark 1: About sharpness: it will be discussed a little bit later.

Remark 2: The statement (%) has, as a matter of fact, the following quantita-
tive aspect: Given a € [0,1/2] and a Banach space X with the property that every
finite dimensional subspace F' of X is contained in a finite dimensional subspace
E C X, which (F) in turn is C (dim F')*-complemented in X, we have

(***)" for every sequence (z,) € I ,(X), where 1/q = «, for any € > 0 there is
a finite rank operator R in X so that sup, ||Rz, — z,|| < €.

Particular cases:

(i) g—2and a=1/20or g =00 and @« =0 (= "X is any Banach space" or "X is
isomorphic to a Hilbert space");
(ii) (z,) € [((X),q € [2,00), or (z,,) € co(X),q = oo [Hilbert case].

For a while let us introduce the notions of the corresponding approximation
properties for a Banach space X (taking into account that the possibility of ap-
proximations on cp-sequences by finite rank operators gives us the Grothendieck’s
approximation property AP) : Let 0 < ¢ < oo and 1/s = 1/q+ 1. We say that X
has the AP, [resp., the AP, ] if for every (z,) € lo(X) [resp., Iy ] (where [,(X)
means ¢o(X) for ¢ = oo) and for every € > 0 there exists a finite rank operator
R € X* ® X such that sup, ||Rz, — z,|| < e. Trivially, e.g., AP,, = AP, if
51 < 83. Thus, AP;(= AP) implies any AP;.

The statement (x) (and (*x)) says that every Banach space has the above prop-
erty APy/3 (and even the APy)3.,). The statement (x * %) gives the corresponding
result for L,-subspaces. Moreover, the assertion mentioned in Remark 2, shows that,
for instance, any subspace of any quotient (= any quotient of any subspace) of a
Banach space of type 2 (resp., of cotype 2) and of cotype p, p € [2,00) (resp., of

type p'), possesses the AP (even the AP, ..) with 1/s =1+ [1/2 —1/p|.

I1. Let us recall that the notion of the AP of Grothendieck can be reformulated in
terms of the projective tensor products "®". Namely, a Banach space X has the AP
iff for every Banach space Y the canonical (natural) mapping Y*®X — L(Y, X) is
one-to-one (or, what is the same, the natural mapping X*®X — L(X) := L(X, X)
is injective). In [3], A. Grothendieck has considered also some other tensor products
(linear subspaces of "®"’s), which we will denote by "®," for 0 < s < 1 (so that ® =
@1) : For Banach spaces X and Y, let Y*®,X be a subspace of the projective tensor
product Y*®X consisting of the tensors z € Y*®X, which admit representations of
the form

(1) z = Z /\ny:z X Ty,

n=1
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where (\,) € l5, (v),) and (z,) are bounded sequences from Y* and X respectively.
With a natural "quasi-norm" (see [10]) the linear subspace Y*®,X of the space
Y*®X can be considered as a "quasi-normed tensor product" (it is then a complete
metric space [3]).

One of the nice (with a non trivial proof in [3]) theorem of Grothendieck is the
fact that the natural map from Y*(§>2/3X into L(Y, X) is injective for any Banach
spaces X, Y. Let us compare this Grothendieck’s result with a simple assumption
in Section I, where "s = 2/3" was appeared. Must be clear that it is not a chance
coincidence, and really we have

Theorem 2.1. For s € (0,1] and for a Banach space X the following are
equivalent:

1) X has the AP, in the sense of the definition in Section L

2) X has the AP in the sense of the definition in [13], i.e. for every Banach
space Y the natural mapping Y*®,X — L(Y, X) is one-to-one.

Let us mention also that

(AP;) A Banach space X has the AP,, 0 < s < 1, iff the canonical map
X*®,X — L(X) is one-to-one (or, what is the same, there exists no tensor element
2z € X*®,X with trace z = 1 and Z = 0, where 7 is the associated (with z) operator
from X to X).

The analogous theorems and facts are maybe valid for the Zﬁsm and the AP,
from [13] (see a small discussion below).

Proof of the assertion (AP;). Suppose X has the AP;, but there exists a Banach
space Y such that the natural map Y*®,X — L(Y, X) is not one-to-one.Take an
element z € Y*®,X which is not zero, but generates a zero operator z : ¥ — X.
Then we can find an operator U € L(X,Y™) so that trace U oz = 1. If z =
S AV, ® Ty is a representation of z in Y*®,X ((A\) € I, (1) and (y}) are
bounded), then

1 = trace z = Z)\Mka,y@ = Z)"" (g, Uryp,)

k=1
and > "7 A\ Utyp(x)x, = 0 for every x € X. Put o), := U*y,, 20 1= Y po, T @y €
X*®@,X. We have

trace zo =1, zg # 0

(by assumption on X). Consider a 1-dimensional operator R = 2’ ® z in X with the
property that trace Ro zy > 0. Then

O<traceRoz():Z)\k<x§€,x ', xy >= ZU*yk, (o, )

Zx\k Uz, y)xr, ) = Z)‘kU?Jk xr) = 0.

k=1

Proof of Theorem 2.1. We will use the assertion (AP;).
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1) = 2). Let z € X*®,X and trace z = 1. Write z = >_ A\ 2, ® 2, where the
sequences x}) and (zy) are bounded and (A\g) € l5, \x > 0, (A) is non-increasing.
Then

z =

ANgk

Ak 2h) ® (A7)

(recall that 1/s =1+ 1/g; so 1 — 1/8 = 1/q). The sequence (A, *zy) is in [,(X).
By 1), for every ¢ > 0 there exists a finite rank operator R € X* ®@ X such that
[|R(A\,®21) — A\, °|| < e for each k € N. It follows that, for this operator R,

a\v

|trace (z — Ro z)| = ]Z Nz, Ay Sy — RN Pa))| < Z)\z\\xw e < const - €.
k=1 k=1
Hence, for small € > 0 we have that, for an operator R € X* ® X,
| trace Roz| > 1/2

and therefore z generates a non-zero operator z.

Before consider a proof of the implication 2) = 1) we will make some addi-
tional remarks. We collect the remarks in

Lemma 2.1. Let s € (0,1], ¢ € (0,00], 1/s = 14 1/q. For a := (ax) € l; and
b:= (by) € l, we have

(2) O lanbi)* <Y el - (Y bl ).
k=1 k=1 k=1

Moreover,

lall;, = sup Z |arbi[*)"/*
lblli =1 <=
(if ¢ = oo, the evident changes have to be made in (2)).

Proof of Lemma 2.1. We may consider the case where ¢ € (0,00). Putting
p:=1/s (then 1/p’ =1 — s =s/q and sp’ = q), we obtain

Z\&kbk Z!akfsp )P Z!bk KORE Z\@k! (O bkl
k=1

For the second part: Let a = (a) € [;. Take by := :rk\‘\i: Then > 7, |bk]? =
S i = 1 and
e s/q S/q+s
1/8 o ‘ak‘ 1/s _ |ak|
(Z ’akb ’ - Z s/q Z s/q
st = el [lall;;
Jag [+ /q ] e 0 lax))Y o
S /Z\@ DY = llall-
= el v el [lall;;

Proof of Theorem 2.1 (continuation).
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2) = 1). Let X has the AP, but does not have the AP, 1/s = 1+ 1/q.
Then there is a sequence (x,) € [,(X) (if ¢ = oo, we consider a sequence from
co(X) = 1% (X)) such that there exists an ¢ > 0 with the property that for any
finite rank operator R € X* ® X one has sup,, || Rz, — x,|| > €. Consider the space
Co(K; X) for K := {z,}22, U{0}. Every operator U in X can be considered as a
continuous function on K with values in X by setting fy (k) := U(k) for k € K. In
particular, for the identity map id in X and for any R € X* ® X we have

Hfid - fRHCo(K;X) Z E.

The subset R := {fr: Re X*® X}CO(K;X) of Cy(K; X) is a closed linear subspace

in Co(K;X). So, there exists an X*-valued measure u = (z,)72, € Ci(K;X) =
Lh({rp}o2:) U {0}; X) such that pu[zg = 0 and p(fiq) = 1. In other words, we
can find a sequence (z}) with Y~ |[2}]| < oo such that Y .- (z},x;) = 1 and
> ore (@), Rxy) =0 for any R € X*® X.

Define a tensor element z € X*®X by z := > o0, 2} ® z. Since (7)) € [,(X)
and (x}) € [1(X™), we get from Lemma 2.1 that

o o0 o
QO Mail P Hlell)s < 3l - (3 ]
k=1 k=1 k=1

Therefore, z € X*®,X, trace z = Y ro, (v}, 21) = 1 and trace Ro z = 0 for every
R € X* ® X. This means that X does not have the AP,.

After Theorem 2.1 is proved, we can make a conclusion: AP, = 2\155 for any
s € (0,1].

III. Now we are going to discuss some questions around the properties Zﬁs,oo
and AP; . The ;1\]38,00 was defined above. Recall the definition of the AP, o, from,
e.g., [13]: We say that a Banach space X has the AP ., 0 < s < 1, if for every
Banach space Y the natural mapping Y*®,,.X — L(Y, X) is one-to-one, where

YV @4 X = {2 €Y*®RX: 2= Z My @z, (z1) and (y,) are bounded, (\,)€ %}
k=1

Let us consider the connections between the AP, ., and the ZVP&OO. For a partial
discussion of this we need a lemma, which follows from Lemma 2.1 by interpolation
in Lorentz spaces.

Lemma 3.1. Let s € (0,1),q € (0,00),1/s = 1+1/q,r € (0,00]. If a = (ax) € 4,
b= (bx) € ly, then ab := (aybr)72, € ls. In particular, for a € [; and b € [, the
sequence ab is in s (thus, evidently, in 12_).

Proof of Lemma 3.1 consist of the applications of Lemma 2.1 and the general
interpolation theorem for the multiplication operator a, induced by a fixed sequence
a = (ag) € l; : @ maps (bg) to (axby).
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Namely, fix s € (0,1),q € (0,00) with 1/s = 1 + 1/q. Take s;, s, € (0,1) and
q1,q2 € (0,00) so that for some 0 € (0,1) we have

1 1 1 1 1 1 1 1 1
-—=1-0)—+—, 0<—<-<—<o00, 0<—< - < — < o0,
q q1 q2 S2 S S1 q2 q q1
and
1 1 1 1
—=14+— —=1+—.
S1 g1 S2 q2

By Lemma 2.1, @ maps lg,,, into lys, and @ maps [, into [,,,. Applying, e.g.,
Theorem 5.3.1 from [1] or other results from the pages 113-114 in [1], we get that @
maps Iy into [y, 0 < r < oo (note that 1/s =1+ 1/¢g=1+(1—-60)/q1 +0/q =
(1-0)+0+(1-0)/q1+0/q2=1—0)14+1/q1) +0(1+1/q2) = (1 —0)/s1+6/s5).

Remark 3.1: As a matter of fact, [; - l4oo = 51 in Lemma 3.1. We need now only
the above inclusion.

Now let t € (0,1], p € (0,00], 7 € (0,00] and consider a tensor product @y,
defined in the following way: For a couple of Banach spaces X, Y the tensor product
Y*®.,,»X consists of those elements z of the projective tensor product Y*®X which
admit representations of the type

z= Zakbk Y, @ xg; (yi,) and (zx) are bounded, (ay) € l;, (b) € lpr
k=1
(recall that everywhere here we consider lgoo in the case r = 00).
Remark 3.2: As was noted in Remark 3.1, Iy - l,00 = l51(C 1% C lsoo), Where
0<s<1,1/s =1+ 1/q, We have also

lsl = ll . lgoo and ll . lqoo = ll . lt(I)OO

(so, for example, in the definition of ®1§q700 one can assume that (ax) € [; and
(br) € lo)- Indeed, if we use the equality [y - lyoo = ls1, take d € [, (assuming
d=d* = (d})). Then Y 22 kYsd;/k < oo, i.e. Y oo kY9d} < 0o. Let £ = (gx) be
a scalar sequence such that e, N\, 0 and > oo &, 'dik™/9 < co. Put
. dzkl/q o 5_k:
p— gk’ k- - kl/q'
Then o := (ay) € Iy and 3 := (B;) € l9.- So, d = af € I - I,. Another way (not
to use "l"): Let 0 < ¢ < 00, a € I3, B € lyoo (assuming, without loss of generality,
that § = *). Consider a sequence ¢ := (g;) such that g \, 0 and (ax/ex) € [;.
Put @ := a/e = (ar/ex) and beta = €f = (exfr). Then a € I, B € Iy, and
af=apel; 1.

Let us say that X has the AP, ,, if for every Banach space Y and for ¢,p,r as
above the canonical mapping Y*@t;WX — L(Y, X) is one-to-one.

By Lemma 3.1, if s € (0,1) and 1/s = 1 + 1/, then &,y 00 C ®s00. Therefore,
we get

Corrolary 3.1. If s € (0,1) and 1/s =1+ 1/q, then AP, .. = APy, .

(67773
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Evidently, also AP; ., = AP (for s € (0,1)).
Theorem 3.2. Let s € (0,1),q € (0,00) and 1/s = 14+1/q. If X has the AP,,; ,
then X has the AP, .. In particular, AP, .. = AP .

Proof. It is enough to repeat word for word the proof of the implication 2) = 1)
of Theorem 2.1 ("continuation"), just changing "l,(X)" by "I " (no necessity to
apply Lemma 2.1 or Lemma 3.1).

Remark 3.3. In this moment (when I am writing the text) I do not know whether

the implication "2\158,00 — AP, " is true, for Banach spaces. Of course, no
questions about the cases where 0 < s < 2/3 (but the reason is only that every

Banach space has the 2152/3,00 and the APy/3).

Let 0 <r<land 0 <w < oo0.orr=1and 0 < w < 1. For Banach spaces
X,Y denote by Y*®(, )X the subset of Y*®X consisting of tensors z such that

z= Z Ak Y @ xg, where (y;.) and () are bounded and (Ag) € .
k=1
As was noted in Remark 3.1, if s € (0,1),q € (0,00),1/s = 1+ 1/q, then
li - lgoo = ls1 (in the sense of the product in Lemma 3.1). In general case, where
0 < q1, 2, t1,t2 < 00, one has

1 1 1 1. 1 1
3 lgvt 1 ided that: — + — = — and — + — = .
( ) wh asts PROVICE * q1 * q2 S an t1 + to t

We can introduce a new definition of approximation properties, which are connected
with Lorentz sequence spaces, namely: Let 0 <r < land 0 < w < oo.orr =1
and 0 < w < 1. A Banach space X has the AP, ,,, if for every Banach space Y the
natural map Y*®.,)X — L(Y, X) is one-to-one.

It follows (from Remark 3.1 or from (3)) that APy, = AP, (for s € (0,1)
and 1/s =1+ 1/q) and, more generally, AP,,, = AP, for 1/t +1/p =1/s and
1/t+1/r=1/u (t € (0,1]).

Therefore, we have (for s € (0,1))

AP&OO - AP(SJ) — Z—P&O@.

Moreover, taking into account the equality @hq,oo = 6/5(571) and applying the argu-
ments from the proof of the implication "APy, —> AP," of Theorem 2.1, we easily
get

Theorem 3.3. AP ;) = 2155700.

Proof. As was mentioned above, AP, — Zﬁsm. Let X has the Zﬁsm,
i.e. for every sequence (z,) € I) . (where 1/s = 1+ 1/q) and every € > 0 there
exists a finite rank operator R € X* ® X such that sup, ||Rz, — x,|| < e. Since
AP 1) = APy, it is enough to show that if Y is a Banach space, z € Y*@l;qyooX
and z # 0, then the corresponding operator z : Y — X is not zero too.

Let z = Y 1o, apbp yj, @ x; be a representation of z with (z), (y;) bounded,
(ar) € 1y, (bx) € 19, and by N\, 0. Then (Z} := byay) € I, and, for an ¢ > 0 small
enough (to be he chosen), we can find an operator R € X* ® X with the property
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that sup,, || RT, — Z,|| < €. Since z # 0, we can find an operator V € L(Y*, X*)
such that Y2 ay (Vy,,Zx) = 1. Now, when V is chosen, we have

1= ap (Vyp, T — RE) + Y ar (Vyp, Riy)

k=1 k=1

< e l(ar)llu (V] - const + | Y axbi (R*Vyj, 2,
k=1
and, if € is small enogh, we get for the finite rank operator R*V : Y* — X* that

| trace z' o (R*V)| = | trace (R*V) o 2| = | Zakbk (R"Vyp, x)| > 0.

k=1

The last sum is the nuclear trace of the tensor element ) .°, arby R*Vy) ® xy,
which is a composition R o zy of the finite rank operator R and the tensor element
Y ore agbe Vyp, @ xy, that belongs to the tensor product X*@l;qyooX. It follows that
both zy and z generate the non-zero operators zy and z.

Remark 3.4. Because of the equality ®1;q,oo = @)(571), it follows from the proof
of Theorem 3.3 that X has the APy, iff the canonical mapping X*@)(SJ)X —
L(X) is one-to-one (just like in the case of the classical Grothendieck approximation
property).

Remark 3.5. Of course, it follows from Theorem 3.3 that every Banach space has
the APy/31), but it is trivial because of the implication

AP(Oz/g,oo) = AP35 = AP/3,) for any w < oo

(and, again, since every X has the AP,/3..!).

Our question in Remark 3.3 can be reformulated now as:
(*) Is it true that the AP ;) implies the AP, .7

IV. Let us consider an application of the previous considerations. Now we know,
in particular, that every Banach space has the AP/3:). On the other hand, the
corresponding operator ideal N(y/3 1) (related to the Lorentz space la/3 1) has the
eigenvalue type [; (see, e.g., |4, p. 243]). Since the continuous trace is unique on
@(2/371) and @(2/371) = Niz/3,), it follows from White’s results [17] that for each
Banach space X and for every operator 7' € N(3/31)(X, X) the (nuclear) trace of T
is well defined and equals the sum of all eigenvalues of T :

trace T' = Z pi(T) (eigenvalues) VX, VT € Nz1)(X)
k=1

(on the right is the so-called "spectral sum" of T'). More precisely, the last statement
follows from Theorem 4.1 below.

Let us explain in more details how we apply a White’s result. For this we for-
mulate and prove a theorem which is almost immediate consequence of the White’s
theorem.
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Theorem 4.1. Let A be a quasi-Banach operator ideal, X be a Banach space,
for which the set of all finite rank operators is dense in the space A(X). Suppose that
the natural functional trace is bounded on the subspace of all finite rank operators
of A(X) (and, therefore, can be extended to a continuous functional "trace," on
the whole space A(X)). If the quasi-Banach operator ideal A is of eigenvalue type
l1, then the spectral trace (= "spectral sum") is continuous on the space A(X) and
for any operator 7' € A(X) we have

tracea(T') = Z pn(T).
n=1
where (1,(7))52, is the sequence of all eigenvalues of 7', counting by multiplicities.

Proof of Theorem 4.1. Let T € A(X). By the assumption, the sequence
{pn(T)}o2, of all eigenvalues of T, counting by multiplicities, is in /;.

Since the quasi-normed ideal A is of spectral (= eigenvalue) type [;, we can apply
the main result from the paper [17| of M.C. White, which asserts:

(*.*) If J is a quasi-Banach operator ideal with eigenvalue type ly, then the
spectral sum 1s a trace on that ideal J.

Recall (see [12], 6.5.1.1, or Definition 2.1 in [17]) that a trace on an operator
ideal J is a class of complex-valued functions, all of which one writes as 7, one for
each component J(FE, E), where E is a Banach space, so that

(i) 7(e' @ e) = (¢/,e) for all ¢/ € E* e € E;

(ii) 7(AU) = 7(U A) for all Banach spaces F' and operators U € J(E, F)andA €
L(F, E);

(iii) 7(S+U) =7(S) + 7(U) for all S,U € J(E, E);

(iv) 7(AU) = A7(U) forall \ € Cand U € J(E, E).

Our operator 7" belongs to the space A(X,X) = A(X) and A is of eigenvalue
type l;. Thus, the assertion (*.*) implies that the spectral sum A, defined by \(U) :=
Yoo A(U) for U € A(E, E), is a trace on A.

By principle of uniform boundedness (see [11], 3.4.6 (page 152), or [9]), there
exists a constant C' > 0 with the property that

A < AU} < Ca(U)

for all Banach spaces E and operators U € A(E, E).

Now, remembering that all operators in A(X) can be approximated by finite
rank operators and taking in account the conditions (iii)—(iv) for 7 = A, we obtain
that the A-trace, i.e. traces T, of our operator T' coincides with A(7") (recall that
the continuous trace is uniquely defined in such a situation, that is on the space
A(X); cf. [12], 6.5.1.2).

Since @1;2700 = @(2/371), (see Theorem 3.3), we can reformulate the result, which
we formulated in the very beginning of this section, as
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Corrolary 4.1. For each Banach space X and for every operator 7' € Ny.2 (X, X)
the (nuclear) trace of T is well defined and equals the sum of all eigenvalues of T :

trace T = Z,uk(T) (eigenvalues) VX, VT € Np2.00)(X).
k=1

Remark 4.1: Recall that A. Grothendieck [3] has obtained the assertion of the
last fact for the case of 2/3-nuclear operators, i.e. for the ideal N5 = Na/3 2/3)
(note that l2/3 C l2/3 1).

V. The discussion on Section I shows that, for p € [1, c0], any subspace of any
quotient (= any quotient of any subspace) of an L,-space possesses the AP, (even
the ZVP&OO) with 1/s = 14 |1/2 — 1/p|. We apply now these facts together with
the White theorem for proving some more theorems concerning the distributions of
eigenvalues of the nuclear operators. Below we will use Theorem 2.1 and, therefore,
the fact that any subspace of any quotient of an L,-space possesses the AP, (where
p, s as above). Thus, for such Banach spaces X, we can identify the tensor product
X*®,X with its canonical image in the space L(X) = L(X, X), that is with the
space N,(X) of all s-nuclear operators in X, equipped with the quasi-norm induced
from X*®,X.

We are going to give below the relatively simple proofs of some recent results
from the papers [15] and [16]. Let us begin.

Theorem 5.1. Let X be a subspace of an L,-space, 1 <p < oo.If T € Ny(X, X),
where 1/s =1+ |1/2—1/p|, then

1. the (nuclear) trace of T is well defined,

2. > 0 |pn(T)| < oo, where {p,(T)} is the system of all eigenvalues of the
operator 7' (written in according to their algebraic multiplicities)

and

trace T' = Z tn(T).
n=1

Proof. Let X be a subspace of an L,-space L,(u) and T" € Ny(X, X) with an
s-nuclear representation

k=1
where ||2}|], ||zx|]| = 1 and A\, > 0, Y72 Aj < oo. By Hahn-Banach, we can find the
functionals 7}, € Ly(/mu) (k=1,2,...) with the same norms as the corresponding

functionals z}, and so that 7| x = z}, for every k. Denote by T the operator

T:Ly(p)— X, T:= Z/\k% ® Ty,

k=1
and by j : X — L,(mu) the natural injection. Since the space X has the property
AP;, we have Ny(L,(p), X) = L;(M)@SX and, therefore, the nuclear traces of the
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operators ij and T 5 are well defined. We have a diagram
X D Ly(p) 5 X D Ly(p),

in which fj = T € Ny(X). Hence, the complete systems of eigenvalues of the

operators T' = T'j and jT € N,(L,(p)) coincide . Applying Theorem 2.b.13 from
[5] (see also [15]), we obtain that the sequence (uy(57)) is summable. Therefore, we
have p(T) € l; and we can apply Theorem 4.1. But we apply the theorem firstly
for the simplest case (later on we will continue the proof of our theorem 5.1).

The first assertion of the next theorem is due to A. Grothendieck [3], the second
one was proved by H,. Konig in |6]. Surprisingly, but we could not find anywhere
the main statement of the theorem about coincidence of the nuclear and spectral
traces, neither in the monographs, nor in the mathematical journals. So we have no
reference for this statement and have to formulate and to prove the next theorem
here. Let us remark that, in any case, this theorem was proved (as a partial case of
the proved there our Theorem 5.1) in [15].

Theorem 5.1°. Let L be an L,-space, 1 < p < oo. If T" € Ny(L, L), where
1/s=14|1/2—1/p|, then

1. the (nuclear) trace of T" is well defined,

2. > 7 |pn(T)| < oo, where {u,(T)} is the system of all eigenvalues of the
operator T' (written in according to their algebraic multiplicities)

and

trace T = Z pn(T).
n=1

Proof. As was said above, the assertions 1 and 2 are well known. To prove the
last equality, consider the Banach operator ideal £, of all operators which can be
factored through L,-spaces. Then the product £, o N; is a quasi-Banach operator
ideal of spectral (=eigenvalue) type [; (e.g., by the assertion 2, proved earlier by H.
Konig [6]). Now it is enough to apply Theorem 4.1 to finish the proof.

Proof of Theorem 5.1 (continuation). As was said, the complete systems of

eigenvalues of the operators 7" = T'j and jT € N4(L,(n)) coincide. By Theorem
5.1,

trace jT = Z e (T, Jog) = Zun(jf),
k=1 n=1
the last sum is equal to

Z Hn (T)

and the sum in the middle is

o0

Z e (T, jag) = Z i (@), x) = trace T.
k=1 k=1
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The (nuclear) trace of the operator T' is well defined, because the space X has the
AP,. Therefore,

trace T' = Z wn(T),
n=1

and we are done.

If Y is a quotient of an L,-space, then, for a compact operator U € L(E, E),
the adjoint U* is also a compact operator and these two operators have the same
eigenvalues p # 0 with the same multiplicities (see, e.g., [11], Theorem 3.2.26, or
2], Exercise VIL.5.35). Also, any quotient of an L,-space has the AP, (where p, s
are as above). So, it follows immediately from the just proved Theorem 5.1

Corrolary 5.1. Let Y be a quotient of an L,-space, 1 < p < oco.If T € N,(Y,Y),
where 1/s =1+ |1/2—1/p|, then

1. the (nuclear) trace of T is well defined,

2. > 07 |pn(T)| < oo, where {u,(T)} is the system of all eigenvalues of the
operator 7' (written in according to their algebraic multiplicities)

and

trace T' = Z tn(T).
n=1

We used above some facts from the section [. After Theorem 5.1 and its con-
sequence are proved, we are ready to present a simple prove of the corresponding
result on the subspaces of quotients of the L,-spaces (recall that, again, all such
spaces have the AP with s and p satisfying the same conditions).

Theorem 5.2. Let W be a quotient of a subspace (= a subspace of a quotient)
of an L,-space, 1 < p < oo.If T'e Ny (W, W), where 1/s =1+ |1/2—1/p|, then

1. the (nuclear) trace of T" is well defined,

2. > 07 |pn(T)| < oo, where {u,(T)} is the system of all eigenvalues of the
operator 7' (written in according to their algebraic multiplicities)

and

trace T' = Z pn(T).
n=1

Proof. Let L,(1) be an Ly-space. Take Banach subspaces Xy C X C L,(x) and
consider the quotient X/Xo. If T € N,(X/Xo, X/Xo) (=(X/X)*®,X/X,), then T
admits a factorization of the type

X/Xo 5 o 21y B X/X,,

where A, B are continuous and D is a diagonal operator with a diagonal from ;.

Denoting by ¢ : X — X/Xj the factor map from X onto X/X, and taking a
lifting @ : [; — X for B with B = p®, we obtain that the maps p®DA : X/ Xy —
X/Xy and ®DAp : X — X have the same eigenvalues p # 0 with the same
multiplicities:

XBX/Xg D o213 X5 X/X,,
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The spaces X and X /X, have the AP;. Therefore, we have (cf. the proof of Theorem
5.1)
trace p®DA = trace ®D Ayp.

Since X is a subspace of L,(x), we have, by Theorem 5.1,

trace PDAp = Z tn(PDAp).

n=1

Therefore,

trace T' = trace BDA = trace p®PDA = Z tn (DD Ap)

n=1

— Z pin(@PDA) = Z pn(BDA) = trace T.
n=1

n=1

VI. As is well known, in the classical case of the Grothendieck approximation
property AP if X* has the AP, then the space X also has this property. We will
show now that the same is true for all approximation properties which are under
consideration in this paper.

Denote by Ru any of the tensor product @S, @)S,oo, @t;pm, @)(T,w) with the param-
eters (see above), for which all those tensor products are the linear subspaces of the
projective tensor product &®. Also, let us say that a Bansch space X has the AP,,
if it is possesses the corresponding approximation property (i.e., AP;, AP; o etc.).

We need the following auxiliary result which may be of its own interest (compare
with Remark 3.4).

Proposition 6.1 A Banach space X has the AP, iff the canonical map X*®,X —
L(X) is one-to-one.

Proof. Suppose that the canonical map X*®,X — L(X) is one-to-one, but there
exista a Banach space Y such that the natural map Y*®,X — L(X) is not injective.
Let 2 € Y*®,X — L(X) be such that z # 0 and the assosoated operator Z is a
O-operator. Then we can find an operator V from L(Y™*, X*) (the dual space to
the projective tensor product Y*®X) so that trace V o 2t = 1, where, as usual,
2 is the transposed tensor element, z x ¢ € X®Y*. Since V o 2! € X®X* and
trace V o 2! = 1, the tensor element (V o 2%)* (which, evidently, belongs to X*®qX)
is not zero. On the other hand, the operator induced by this element must be a
0-operator. Contradiction.

Proposition 6.2. With the above understanding, if the dual space X* has the AP,,
then X has the AP, too.

Proof. We use Proposition 6.1. As is known [5], the projective tensor product Y*®Y
is a Banach subspace of the tensor product Y*®Y**. The tensor product Y*®,Y
is a linear subspace of Y*®Y, as well as Y*®,Y** is a linear subspace of Y*QY™**.
Therefore, the natural map Y*®,Y — Y*®,Y** is one-to-one. Now if Y* has the
AP,, then the canonical map Y*®,Y* — L(Y* Y*) is one-to-one. Since we can
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identify the tensor product Y**®,Y™* with the tensor product Y*®,Y** (because of
the "symmetries" in the definitions of the corresponding tensor products), it follows
that the natural map Y*®,Y — L(Y,Y) is one-to-one. Thus, if Y* has the AP,,
then Y has the AP, too.

Remark 2: The inverse statement is not true. For example, if s € (2/3, 1], then there
exists a Banach space, possessing the Grothendieck approximation property, whose
dual does not have the AP; (it is well known for the case where s = 1). Moreover,
if s € (2/3,1], then we can find a Banach space W such that W has a Schauder
basis and W* does not have the AP;. Indeed, let E be a separable reflexive Banach
space without the AP (see [7] or [8]). Let Z be a separable space such that Z**
has a basis and there exists a linear homomorphism ¢ from Z** onto E* so that the
subspace ¢*(F) is complemented in Z*** and, moreover, Z*** = ¢o*(E) @ Z* (see |7,
Proof of Corollary 1]). Put W := Z**. This (second dual) space W has a Schauder
basis and its dual W* does not have the AP;.

VII. Let us consider some more notions of the approximation properties as-
sosoated with some other tensor products. For Banach spaces X and Y and r €
(0,1],p € [1,2], define a quasi-norm || - ||, , on the tensor product X* ® Y by

|wl|n,,, = inf {||($§)?1||zr(x*) Mwaicillen oy = u= ZQTQ ® yz}
=1

Here we denote, as usual, by [.(X™*) and [;’(Y") the spaces of r-absolutely summable
and weakly g-summable sequences, respectively.

Denote by 1epes X*®j,,)Y the completion of the space <X* Y, |- HN[T,p]) . We

have a natural continuous injection
Jral X By — X°®Y

with ||l < 1 A
Every element u € X*®, Y has a representation of the type u = .2, 2 @ y;,
where (27)72; € £,(X*) and (y;)72, € £;;(Y). Consider the natural mappings

X*BppY " X*RY] — L(X,Y).

The image of the tensor product X*@)[W]Y under the composition }[W} = }o}[m}] is
denoted by Np,,)(X,Y). This is a quasi-Banach space of the (7, p)-nuclear operators
(the quasi-norm is induced from the tensor produce X*®j.,Y). It is not difficult to
see that every operator T' € N ,j(X,Y’) admit a factorization of the kind

X025, 8y,

where A, B are compact, ¢ is the injection, D, is a diagonal operator with a di-
agonal from [,.. Also, every operator which can be factored in such a way is in
T e N[T7p}(X, Y)
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By the analogous way, we define the tensor product X *®[T’p]Y and the quasi-

normed operator ideals NI"?/(X,Y). Namely, X *@)[r’p]Y is a linear subapace of the
projective tensor product X*®Y, consisting of tensor elements z which admit a

representation
o0
/
u = E z; @ Yi,
i=1

where (z7)22, € £;(X*) and (z;)i2, € (. (Y). Its canonical image in L(X,Y) is
the quasi-normed space N™PI(XY). It is not difficult to see that every operator
T € N"(XY) admit a factorization of the kind

XA, %0508y,

where A, B are compact, ¢ is the injection, D, is a diagonal operator with a di-
agonal from [,. Also, every operator which can be factored in such a way is in
T € N'Pl(X)Y).

It is clear that T* € Ny, ,)(Y*, X*) implies T € NI"P/(X,Y) and T* € NI'PI(Y*, X*)
implies 7" € N, (X, Y).

Now we can define the notions of the corresponding approximation properties by
the usual way. We say that he space X has the AP, (respectively, the AP?) if

for every Banach space Y the natural mapping Y*(@[T,p}X — L(Y, X) (respectively,

~

v x - L(Y, X)) is one-to-one. It can be seen that a Banach space X has the

AP, (or API"P)) iff the canonical map X*®;,X — L(X) (or X*& "X — L(X))
is one-to-one (the proof is essentially the same as the proof of Theorem 6.1). Also,
if X* has the AP, (or AP"P) then X has the AP"? (or AP, ;) (the proof is the
as in Theorem 6.2).

Theorem 7.1. Let 1/r — 1/p = 1/2. Every Banach space has the properties
AP[rﬂp] and AP[T’p}.

Proof. Suppose that X ¢ AP, where 1/r —1/p =1/2. Let z € X*@{TMX be a
n element such that trace z = 1,2 = 0. Since z = >z} ® xy, where (z},) € [.(X*)
and (zy) is weakly p’-summable, the operator Z can be factored as

X380 50,5 X,
where all the operators are continuous, , j is an injection, A is a diagonal operator
with a diagonal from [,. Since Z = 0, we have V|;jaax) = 0. Consider S := jAAV :
l, — l,. Evidently, S? = 0 u trace S = trace z = 1. Since S € N,(I,,1,), its nuclear

trace equals the sum of all its eigenvalues (see Theorem 5.1” above). This contradicts
the fact that S% = 0.

We are ready to apply the above results to the investigation of eigenvalues prob-
lems for Nj,. - and N "Pl_operators. The first theorem below was proved in [16] by
using Fredholm Theory. The same proof can be applied for the second theorem.

Theorem 7.2. Let 1/r — 1/p = 1/2. For every Banach space X and every
operator T € N, ,(X), trace (T) is well defined and if (4;)3°, is a system of all
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eigenvalues of T, then (p;)2; € I; and
trace (T') = Z 1
i=1

Theorem 7.3. Let 1/r — 1/p = 1/2. For every Banach space X and every
operator T' € N"P(X), trace (T) is well defined and if (1;)°, is a system of all
eigenvalues of T', then (u;)°, € [; and

trace (T') = Z 1

=1

Both theorems can be proved by the analogues methods and the proofs are almost
the same as the proof of Theorem 5.2 (by using Theorem 7.1). So we omit it here.

VIII. The next examples are taken from [16], where one can find the correspond-
ing proofs. They show that all the above positive results concerning approximation
properties and trace-formulas are sharp.

Example 8.1. Let r € (2/3,1],p € (1,2],1/r — 1/p = 1/2. There exist Banach
spaces I and V, 2y € E*®V, S € L(V, E) so that for every py € [1,p)

1) 20 € E*®,,V;

2) V has a basis;
3) V is the space of type py and of cotype 2;
4) Soz € E*®,p F;
5) trace Sozy = 1;

6) the corresponding operator S/c?;o is a O-operator and, therefore, has no
nonzero eigenvalues.

Example 8.2. Let r € (2/3,1),p € (1,2],1/r — 1/p = 1/2. There exist Banach
spaces E and V, zy € E*®V, S € L(V, E) so that for every ¢ > 0

1) Z0 € E*®r+e,1v;

2) V has a basis;

3) Soz € E*®pyc,F;

4) trace S ozy = 1;

5) the corresponding operator S o zq is a 0-operator and therefore, has no nonzero
eigenvalues.

Example 8.3. Let r € (2/3,1], p € (1,2],1/r — 1/p = 1/2. There exist two
separable Banach spaces X and Z so that

(i) Z* has a basis;

(i) IV € X*@Z* : V = 372, 7, ® 25 (v,) weakly p)-summable for each
po € [1,p); () € L(Z™);

(iii) V(X) C Z; the operator V' is not nuclear as a map from X into Z.

Moreover, there exista an operator U : Z** — Z such that

(a) moU € N'w0 (7%, 7) = 2@ 7% W, € [L,p);

(8) U is not nuclear as a map from Z** into Z;
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() trace mzU = 1;
(0) mzU : Z** — Z** has no nonzero eigenvalues.
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