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Some remarks on Approximation Properties withApplicationsOleg ReinovAbstract. We study some known approximation properties and introduce andinvestigate several new approximation properties, closely connected with di�erentquasi-normed tensor products. These are the properties like the APs or AP(s,w)for s ∈ (0, 1], which give us the possibility to identify the spaces of s-nuclear and

(s, w)-nuclear operators with the corresponding tensor products (e.g., related toLorentz sequence spaces). Some applications are given (in particular, we presentnot di�cult proofs of the trace-formulas of Grothendieck-Lidskii type for severalideals of nuclear operators).Our main reference is [10]. All the notions , notations and facts, we use withoutany reference, can be found in [1, 2, 4, 8, 10, 12].I. The Grothendieck approximation property for a Banach space X can be de-�ned as follows: X has the AP i� for every sequence (xn)
∞
n=1 ⊂ X tending to zero,for any ε > 0 there exists a �nite rank (continuous) operator R in X such thatfor each n ∈ N one has ||Rxn − xn|| ≤ ε. Consider a natural question: for whichsequences (xn) ∈ c0(X), under some additional assumptions, the identity map idXsurely can be approximated by �nite rank operators, as above, and which of thoseconditions are sharp (or, if one wishes, optimal)?One of the simplest fact (we think, known for more than 30 years) that

(∗) if (xn) ∈ l2(X), X is any, then the answer is positive.Here ia a reason of this: Assuming ||xn|| ↘ 0, take any N ∈ N and consider thelinear span span[xn]
N
1 =: EN as a subspace of X. De�ne, �xing an ε > 0, a �niterank R to be a projection from X onto EN whose norm ≤

√
N.Now if N is such that, for every n ≥ N, we have ||xn|| ≤ ε√
N+1

, then
||Rxn − xn|| = 0 if n ≤ N,and

||Rxn − xn|| ≤ ε.Of course, instead of (∗) we can consider the the statement
(∗∗) if (xn) ∈ l02,∞(X) [Lorentz space with "o" small], X is any, then the answeris positive.AMS Subject Classi�cation 2010: 46B28 Spaces of operators; tensor products; approximationproperties.Key words: 46B28 Approximation of operator; bounded approximation property.1



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 2The idea of the above proof is very simple and can be applied in some moregeneral situations. For instance, every subspace of �nite dimension of an Lp-spaceis n|1/2−1/p|-complemented in that Lp-space. So, if p ∈ [1,∞], α = |1
2
− 1

p
| and X isa subspace of an Lp-space, then

(∗ ∗ ∗) for every sequence (xn) ∈ l0q,∞(X), where 1/q = α, the answer is positive.Remark 1: About sharpness: it will be discussed a little bit later.Remark 2: The statement (∗∗∗) has, as a matter of fact, the following quantita-tive aspect: Given α ∈ [0, 1/2] and a Banach space X with the property that every�nite dimensional subspace F of X is contained in a �nite dimensional subspace
E ⊂ X, which (E) in turn is C (dimF )α-complemented in X, we have

(∗ ∗ ∗)′ for every sequence (xn) ∈ l0q,∞(X), where 1/q = α, for any ε > 0 there isa �nite rank operator R in X so that supn ||Rxn − xn|| ≤ ε.Particular cases:(i) q − 2 and α = 1/2 or q = ∞ and α = 0 (= "X is any Banach space" or "X isisomorphic to a Hilbert space");(ii) (xn) ∈ lq(X), q ∈ [2,∞), or (xn) ∈ c0(X), q = ∞ [Hilbert case].For a while let us introduce the notions of the corresponding approximationproperties for a Banach space X (taking into account that the possibility of ap-proximations on c0-sequences by �nite rank operators gives us the Grothendieck'sapproximation property AP ) : Let 0 < q ≤ ∞ and 1/s = 1/q + 1. We say that Xhas the ÃP s [resp., the ÃP s,∞] if for every (xn) ∈ lq(X) [resp., l0q,∞] (where lq(X)means c0(X) for q = ∞) and for every ε > 0 there exists a �nite rank operator
R ∈ X∗ ⊗ X such that supn ||Rxn − xn|| ≤ ε. Trivially, e.g., ÃP s2 =⇒ ÃP s1 if
s1 ≤ s2. Thus, ÃP 1(= AP ) implies any ÃP s.The statement (∗) (and (∗∗)) says that every Banach space has the above prop-erty ÃP 2/3 (and even the ÃP 2/3,∞). The statement (∗ ∗ ∗) gives the correspondingresult for Lp-subspaces. Moreover, the assertion mentioned in Remark 2, shows that,for instance, any subspace of any quotient (= any quotient of any subspace) of aBanach space of type 2 (resp., of cotype 2) and of cotype p, p ∈ [2,∞) (resp., oftype p′), possesses the ÃP s (even the ÃP s,∞) with 1/s = 1 + |1/2− 1/p|.II. Let us recall that the notion of the AP of Grothendieck can be reformulated interms of the projective tensor products "⊗̂". Namely, a Banach space X has the APi� for every Banach space Y the canonical (natural) mapping Y ∗⊗̂X → L(Y,X) isone-to-one (or, what is the same, the natural mapping X∗⊗̂X → L(X) := L(X,X)is injective). In [3], A. Grothendieck has considered also some other tensor products(linear subspaces of "⊗̂"'s), which we will denote by "⊗̂s" for 0 < s ≤ 1 (so that ⊗̂ =
⊗̂1) : For Banach spaces X and Y, let Y ∗⊗̂sX be a subspace of the projective tensorproduct Y ∗⊗̂X consisting of the tensors z ∈ Y ∗⊗̂X, which admit representations ofthe form(1) z =

∞∑

n=1

λny
′
n ⊗ xn,



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 3where (λn) ∈ ls, (y′n) and (xn) are bounded sequences from Y ∗ and X respectively.With a natural "quasi-norm" (see [10]) the linear subspace Y ∗⊗̂sX of the space
Y ∗⊗̂X can be considered as a "quasi-normed tensor product" (it is then a completemetric space [3]).One of the nice (with a non trivial proof in [3]) theorem of Grothendieck is thefact that the natural map from Y ∗⊗̂2/3X into L(Y,X) is injective for any Banachspaces X, Y. Let us compare this Grothendieck's result with a simple assumptionin Section I, where "s = 2/3" was appeared. Must be clear that it is not a chancecoincidence, and really we haveTheorem 2.1. For s ∈ (0, 1] and for a Banach space X the following areequivalent:

1) X has the ÃP s in the sense of the de�nition in Section I;
2) X has the APs in the sense of the de�nition in [13], i.e. for every Banachspace Y the natural mapping Y ∗⊗̂sX → L(Y,X) is one-to-one.Let us mention also that
(APs) A Banach space X has the APs, 0 < s ≤ 1, i� the canonical map

X∗⊗̂sX → L(X) is one-to-one (or, what is the same, there exists no tensor element
z ∈ X∗⊗̂sX with trace z = 1 and z̃ = 0, where z̃ is the associated (with z) operatorfrom X to X).The analogous theorems and facts are maybe valid for the ÃP s,∞ and the APs,∞from [13] (see a small discussion below).Proof of the assertion (APs). Suppose X has the APs, but there exists a Banachspace Y such that the natural map Y ∗⊗̂sX → L(Y,X) is not one-to-one.Take anelement z ∈ Y ∗⊗̂sX which is not zero, but generates a zero operator z̃ : Y → X.Then we can �nd an operator U ∈ L(X, Y ∗∗) so that trace U ◦ z = 1. If z =∑∞

k=1 λk y
′
k ⊗ xk is a representation of z in Y ∗⊗̂sX ((λk) ∈ ls, (xk) and (y′k) arebounded), then

1 = trace z =
∞∑

k=1

λk〈Uxk, y
′
k〉 =

∞∑

k=1

λk 〈xk, U
∗y′k〉and ∑∞

k=1 λk U
∗y′k(x)xk = 0 for every x ∈ X. Put x′

k := U∗y′k, z0 :=
∑∞

k=1 x
′
k ⊗ xk ∈

X∗⊗̂sX. We have
trace z0 = 1, z̃0 6= 0(by assumption on X). Consider a 1-dimensional operator R = x′⊗x in X with theproperty that trace R ◦ z0 > 0. Then

0 < trace R ◦ z0 =
∞∑

k=1

λk 〈x′
k, x〉〈x′, xk >=

∞∑

k=1

〈U∗y′k, x〉〈x′, xk〉

= 〈
∞∑

k=1

λk 〈Ux, y′k〉xk, x〉 = 〈x′,
∞∑

k=1

λk U
∗y′k(x)xk〉 = 0.Proof of Theorem 2.1. We will use the assertion (APs).
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1) =⇒ 2). Let z ∈ X∗⊗̂sX and trace z = 1. Write z =

∑
λk x

′
k ⊗xk, where thesequences x′

k) and (xk) are bounded and (λk) ∈ ls, λk ≥ 0, (λk) is non-increasing.Then
z =

∞∑

k=1

(λs
k x

′
k)⊗ (λ1−s

k )(recall that 1/s = 1 + 1/q; so 1 − 1/s = 1/q). The sequence (λ1−s
k xk) is in lq(X).By 1), for every ε > 0 there exists a �nite rank operator R ∈ X∗ ⊗ X such that

||R(λ1−s
k xk)− λ1−s

k || ≤ ε for each k ∈ N. It follows that, for this operator R,

| trace (z − R ◦ z)| = |
∞∑

k=1

〈λs
kx

′
k, λ

1−s
k xk −R(λ1−s

k xk)〉| ≤
∞∑

k=1

λs
k||x′

k|| · ε ≤ const · ε.Hence, for small ε > 0 we have that, for an operator R ∈ X∗ ⊗X,

| trace R ◦ z| ≥ 1/2and therefore z generates a non-zero operator z̃.Before consider a proof of the implication 2) =⇒ 1) we will make some addi-tional remarks. We collect the remarks inLemma 2.1. Let s ∈ (0, 1], q ∈ (0,∞], 1/s = 1 + 1/q. For a := (ak) ∈ l1 and
b := (bk) ∈ lq we have(2) (

∞∑

k=1

|akbk|s)1/s ≤
∞∑

k=1

|ak| · (
∞∑

k=1

|bk|q)1/q.Moreover,
||a||l1 = sup

||b||lq=1

(

∞∑

k=1

|akbk|s)1/s(if q = ∞, the evident changes have to be made in (2)).Proof of Lemma 2.1. We may consider the case where q ∈ (0,∞). Putting
p := 1/s (then 1/p′ = 1− s = s/q and sp′ = q), we obtain

∞∑

k=1

|akbk|s ≤ (
∞∑

k=1

|ak|sp)1/p · (
∞∑

k=1

|bk|sp
′

)1/p
′

= (
∞∑

k=1

|ak|)s · (
∞∑

k=1

|bk|q)s/q.For the second part: Let a = (ak) ∈ l1. Take bk := |ak|1/q

||a||1/ql1

. Then ∑∞
k=1 |bk|q =

∑∞
k=1

|ak|
||a||l1

= 1 and
(

∞∑

k=1

|akbk|s)1/s == (
∞∑

k=1

|ak|s/q

||a||s/ql1

|ak|s)1/s = (
∞∑

k=1

|ak|s/q+s

||a||s/ql1

)1/s

= (

∞∑

k=1

|ak|s(1+1/q)

||a||s/ql1

)1/s = (

∞∑

k=1

|ak|
||a||s/ql1

)1/s =
(
∑∞

k=1 |ak|)1/s

||a||1/ql1

= (/

∞∑

k=1

|ak|)1/s−1/q = ||a||l1.Proof of Theorem 2.1 (continuation).
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2) =⇒ 1). Let X has the APs, but does not have the ÃPs, 1/s = 1 + 1/q.Then there is a sequence (xn) ∈ lq(X) (if q = ∞, we consider a sequence from

c0(X) = l0∞(X)) such that there exists an ε > 0 with the property that for any�nite rank operator R ∈ X∗ ⊗X one has supn ||Rxn − xn|| > ε. Consider the space
C0(K;X) for K := {xn}∞n=1 ∪ {0}. Every operator U in X can be considered as acontinuous function on K with values in X by setting fU(k) := U(k) for k ∈ K. Inparticular, for the identity map id in X and for any R ∈ X∗ ⊗X we have

||fid − fR||C0(K;X) ≥ ε.The subset R := {fR : R ∈ X∗ ⊗X}C0(K;X) of C0(K;X) is a closed linear subspacein C0(K;X). So, there exists an X∗-valued measure µ = (x′
k)

∞
k=1 ∈ C∗

0(K;X) =
l1({xn}∞n=1) ∪ {0};X) such that µ|R = 0 and µ(fid) = 1. In other words, wecan �nd a sequence (x′

k) with ∑∞
k=1 ||x′

k|| < ∞ such that ∑∞
k=1〈x′

k, xk〉 = 1 and∑∞
k=1〈x′

k, Rxk〉 = 0 for any R ∈ X∗ ⊗X.De�ne a tensor element z ∈ X∗⊗̂X by z :=
∑∞

k=1 x
′
k ⊗ xk. Since (xk) ∈ lq(X)and (x′

k) ∈ l1(X
∗), we get from Lemma 2.1 that
(

∞∑

k=1

||x′
k||s ||xk||s)1/s ≤

∞∑

k=1

||x′
k|| · (

∞∑

k=1

||xk||q)1/q.Therefore, z ∈ X∗⊗̂sX, trace z =
∑∞

k=1〈x′
k, xk〉 = 1 and trace R ◦ z = 0 for every

R ∈ X∗ ⊗X. This means that X does not have the APs.After Theorem 2.1 is proved, we can make a conclusion: APs = ÃP s for any
s ∈ (0, 1].III. Now we are going to discuss some questions around the properties ÃP s,∞and APs,∞. The ÃP s,∞ was de�ned above. Recall the de�nition of the APs,∞ from,e.g., [13]: We say that a Banach space X has the APs,∞, 0 < s < 1, if for everyBanach space Y the natural mapping Y ∗⊗̂s∞X → L(Y,X) is one-to-one, where
Y ∗⊗̂s∞X = {z ∈ Y ∗⊗̂X : z =

∞∑

k=1

λky
′
k⊗xk, (xk) and (y′k) are bounded, (λk)∈ l0s∞}.Let us consider the connections between the APs,∞ and the ÃP s,∞. For a partialdiscussion of this we need a lemma, which follows from Lemma 2.1 by interpolationin Lorentz spaces.Lemma 3.1. Let s ∈ (0, 1), q ∈ (0,∞), 1/s = 1+1/q, r ∈ (0,∞]. If a = (ak) ∈ l1,

b = (bk) ∈ lqr, then ab := (akbk)
∞
k=1 ∈ lsr. In particular, for a ∈ l1 and b ∈ lq∞ thesequence ab is in ls∞ (thus, evidently, in l0s∞).Proof of Lemma 3.1 consist of the applications of Lemma 2.1 and the generalinterpolation theorem for the multiplication operator ã, induced by a �xed sequence

a = (ak) ∈ l1 : ã maps (bk) to (akbk).



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 6Namely, �x s ∈ (0, 1), q ∈ (0,∞) with 1/s = 1 + 1/q. Take s1, s2 ∈ (0, 1) and
q1, q2 ∈ (0,∞) so that for some θ ∈ (0, 1) we have

1

q
= (1− θ)

1

q1
+

1

q2
, 0 <

1

s2
<

1

s
<

1

s1
< ∞, 0 <

1

q2
<

1

q
<

1

q1
< ∞,and

1

s1
= 1 +

1

q1
,

1

s2
= 1 +

1

q2
.By Lemma 2.1, ã maps lq1q1 into ls1s1 and ã maps lq2q2 into ls2s2. Applying, e.g.,Theorem 5.3.1 from [1] or other results from the pages 113-114 in [1], we get that ãmaps lqr into lsr, 0 < r ≤ ∞ (note that 1/s = 1 + 1/q = 1 + (1 − θ)/q1 + θ/q2 =

(1−θ)+ θ+(1−θ)/q1+ θ/q2 = (1−θ)(1+1/q1)+ θ(1+1/q2) = (1−θ)/s1+ θ/s2).Remark 3.1: As a matter of fact, l1 · lq∞ = ls1 in Lemma 3.1. We need now onlythe above inclusion.Now let t ∈ (0, 1], p ∈ (0,∞], r ∈ (0,∞] and consider a tensor product ⊗̂t;p,r,de�ned in the following way: For a couple of Banach spaces X, Y the tensor product
Y ∗⊗̂t;p,rX consists of those elements z of the projective tensor product Y ∗⊗̂X whichadmit representations of the type

z =

∞∑

k=1

akbk y
′
k ⊗ xk; (y′k) and (xk) are bounded, (ak) ∈ lt, (bk) ∈ lpr(recall that everywhere here we consider l0p∞ in the case r = ∞).Remark 3.2: As was noted in Remark 3.1, l1 · lq∞ = ls1(⊂ l0s∞ ⊂ ls∞), where

0 < s < 1, 1/s = 1 + 1/q, We have also
ls1 = l1 · l0q∞ and l1 · lq∞ = l1 · l0q∞(so, for example, in the de�nition of ⊗̂1;q,∞ one can assume that (ak) ∈ l1 and

(bk) ∈ l0q∞). Indeed, if we use the equality l1 · lq∞ = ls1, take d ∈ ls1 (assuming
d = d∗ = (d∗k)). Then ∑∞

k=1 k
1/s d∗k/k < ∞, i.e. ∑∞

k=1 k
1/q d∗k < ∞. Let ε = (εk) bea scalar sequence such that εk ↘ 0 and ∑∞

k=1 ε
−1
k d∗kk

−1/q < ∞. Put
αk :=

d∗kk
1/q

εk,
βk :=

εk
k1/q

.Then α := (αk) ∈ l1 and β := (βk) ∈ l0q∞. So, d = αβ ∈ l1 · l0q∞. Another way (notto use "ls1"): Let 0 < q < ∞, α ∈ l1, β ∈ lq∞ (assuming, without loss of generality,that β = β∗). Consider a sequence ε := (εk) such that εk ↘ 0 and (αk/εk) ∈ l1.Put α̃ := α/ε = (αk/εk) and b̃eta := εβ = (εkβk). Then α̃ ∈ l1, β̃ ∈ l0q∞ and
αβ = α̃β̃ ∈ l1 · l0q∞.Let us say that X has the APt;p,r, if for every Banach space Y and for t, p, r asabove the canonical mapping Y ∗⊗̂t;p,rX → L(Y,X) is one-to-one.By Lemma 3.1, if s ∈ (0, 1) and 1/s = 1 + 1/q, then ⊗̂1;q,∞ ⊂ ⊗̂s,∞. Therefore,we getCorrolary 3.1. If s ∈ (0, 1) and 1/s = 1 + 1/q, then APs,∞ =⇒ AP1;q,∞.



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 7Evidently, also APs,∞ =⇒ APs (for s ∈ (0, 1)).Theorem 3.2. Let s ∈ (0, 1), q ∈ (0,∞) and 1/s = 1+1/q. If X has the AP1;q,∞,then X has the ÃP s,∞. In particular, APs,∞ =⇒ ÃP s,∞.Proof. It is enough to repeat word for word the proof of the implication 2) =⇒ 1)of Theorem 2.1 ("continuation"), just changing "lq(X)" by "l0q,∞" (no necessity toapply Lemma 2.1 or Lemma 3.1).Remark 3.3. In this moment (when I am writing the text) I do not know whetherthe implication "ÃP s,∞ =⇒ APs,∞" is true, for Banach spaces. Of course, noquestions about the cases where 0 < s ≤ 2/3 (but the reason is only that everyBanach space has the ÃP 2/3,∞ and the AP2/3,∞).Let 0 < r < 1 and 0 < w ≤ ∞. or r = 1 and 0 < w ≤ 1. For Banach spaces
X, Y denote by Y ∗⊗̂(r,w)X the subset of Y ∗⊗̂X consisting of tensors z such that

z =

∞∑

k=1

λk y
′
k ⊗ xk, where (y′k) and (xk) are bounded and (λk) ∈ lrw.As was noted in Remark 3.1, if s ∈ (0, 1), q ∈ (0,∞), 1/s = 1 + 1/q, then

l1 · lq∞ = ls1 (in the sense of the product in Lemma 3.1). In general case, where
0 < q1, q2, t1, t2 ≤ ∞, one has(3) lq1t1 · lq2t2 provided that: 1

q1
+

1

q2
=

1

s
and 1

t1
+

1

t2
=

1

t
.We can introduce a new de�nition of approximation properties, which are connectedwith Lorentz sequence spaces, namely: Let 0 < r < 1 and 0 < w ≤ ∞. or r = 1and 0 < w ≤ 1. A Banach space X has the AP(r,w), if for every Banach space Y thenatural map Y ∗⊗̂(r,w)X → L(Y,X) is one-to-one.It follows (from Remark 3.1 or from (3)) that AP1;q,∞ = AP(s,1) (for s ∈ (0, 1)and 1/s = 1 + 1/q) and, more generally, APt;p,r = AP(s,u) for 1/t + 1/p = 1/s and

1/t+ 1/r = 1/u (t ∈ (0, 1]).Therefore, we have (for s ∈ (0, 1))
APs,∞ =⇒ AP(s,1) =⇒ ÃP s,∞.Moreover, taking into account the equality ⊗̂1;q,∞ = ⊗̂(s,1) and applying the argu-ments from the proof of the implication "ÃP s =⇒ APs" of Theorem 2.1, we easilygetTheorem 3.3. AP(s,1) = ÃP s,∞.Proof. As was mentioned above, AP(s,1) =⇒ ÃP s,∞. Let X has the ÃP s,∞,i.e. for every sequence (xn) ∈ l0q,∞ (where 1/s = 1 + 1/q) and every ε > 0 thereexists a �nite rank operator R ∈ X∗ ⊗ X such that supn ||Rxn − xn|| < ε. Since

AP(s,1) = AP1;q,∞, it is enough to show that if Y is a Banach space, z ∈ Y ∗⊗̂1;q,∞Xand z 6= 0, then the corresponding operator z̃ : Y → X is not zero too.Let z =
∑∞

k=1 akbk y
′
k ⊗ xk be a representation of z with (xk), (y

′
k) bounded,

(ak) ∈ l1, (bk) ∈ l0q∞ and bk ↘ 0. Then (x̃k := bkxk) ∈ l0q∞ and, for an ε > 0 smallenough (to be he chosen), we can �nd an operator R ∈ X∗ ⊗ X with the property



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 8that supn ||Rx̃n − x̃n|| ≤ ε. Since z 6= 0, we can �nd an operator V ∈ L(Y ∗, X∗)such that ∑∞
k=1 ak 〈V y′k, x̃k〉 = 1. Now, when V is chosen, we have

1 =

∞∑

k=1

ak 〈V y′k, x̃k − Rx̃k〉+
∞∑

k=1

ak 〈V y′k, Rx̃k〉

≤ ε ||(ak)||l1 ||V || · const+ |
∞∑

k=1

akbk 〈R∗V y′k, xk〉|,and, if ε is small enogh, we get for the �nite rank operator R∗V : Y ∗ → X∗ that
| trace zt ◦ (R∗V )| = | trace (R∗V ) ◦ zt| = |

∞∑

k=1

akbk 〈R∗V y′k, xk〉| > 0.The last sum is the nuclear trace of the tensor element ∑∞
k=1 akbk R

∗V y′k ⊗ xk,which is a composition R ◦ z0 of the �nite rank operator R and the tensor element∑∞
k=1 akbk V y′k ⊗ xk, that belongs to the tensor product X∗⊗̂1;q,∞X. It follows thatboth z0 and z generate the non-zero operators z̃0 and z̃.Remark 3.4. Because of the equality ⊗̂1;q,∞ = ⊗̂(s,1), it follows from the proofof Theorem 3.3 that X has the AP(s,1) i� the canonical mapping X∗⊗̂(s,1)X →

L(X) is one-to-one (just like in the case of the classical Grothendieck approximationproperty).Remark 3.5. Of course, it follows from Theorem 3.3 that every Banach space hasthe AP(2/3,1), but it is trivial because of the implication
AP 0

(2/3,∞) ≡ AP2/3,∞ =⇒ AP(2/3,w) for any w < ∞(and, again, since every X has the AP2/3,∞!).Our question in Remark 3.3 can be reformulated now as:
(∗) Is it true that the AP(s,1) implies the APs,∞?IV. Let us consider an application of the previous considerations. Now we know,in particular, that every Banach space has the AP(2/3,1). On the other hand, thecorresponding operator ideal N(2/3,1) (related to the Lorentz space l2/3 1) has theeigenvalue type l1 (see, e.g., [4, p. 243]). Since the continuous trace is unique on

⊗̂(2/3,1) and ⊗̂(2/3,1) = N(2/3,1), it follows from White's results [17] that for eachBanach space X and for every operator T ∈ N(2/3,1)(X,X) the (nuclear) trace of Tis well de�ned and equals the sum of all eigenvalues of T :

trace T =
∞∑

k=1

µk(T ) (eigenvalues)∀X, ∀T ∈ N(2/3,1)(X)(on the right is the so-called "spectral sum" of T ). More precisely, the last statementfollows from Theorem 4.1 below.Let us explain in more details how we apply a White's result. For this we for-mulate and prove a theorem which is almost immediate consequence of the White'stheorem.



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 9Theorem 4.1. Let A be a quasi-Banach operator ideal, X be a Banach space,for which the set of all �nite rank operators is dense in the space A(X). Suppose thatthe natural functional trace is bounded on the subspace of all �nite rank operatorsof A(X) (and, therefore, can be extended to a continuous functional "traceA" onthe whole space A(X)). If the quasi-Banach operator ideal A is of eigenvalue type
l1, then the spectral trace (= "spectral sum") is continuous on the space A(X) andfor any operator T ∈ A(X) we have

traceA(T ) =

∞∑

n=1

µn(T ).where (µn(T ))
∞
n=1 is the sequence of all eigenvalues of T, counting by multiplicities.Proof of Theorem 4.1. Let T ∈ A(X). By the assumption, the sequence

{µn(T )}∞n=1 of all eigenvalues of T, counting by multiplicities, is in l1.Since the quasi-normed ideal A is of spectral (= eigenvalue) type l1, we can applythe main result from the paper [17] of M.C. White, which asserts:
(∗∗

∗) If J is a quasi-Banach operator ideal with eigenvalue type l1, then thespectral sum is a trace on that ideal J .Recall (see [12], 6.5.1.1, or De�nition 2.1 in [17]) that a trace on an operatorideal J is a class of complex-valued functions, all of which one writes as τ, one foreach component J(E,E), where E is a Banach space, so that(i) τ(e′ ⊗ e) = 〈e′, e〉 for all e′ ∈ E∗, e ∈ E;(ii) τ(AU) = τ(UA) for all Banach spaces F and operators U ∈ J(E, F )andA ∈
L(F,E);(iii) τ(S + U) = τ(S) + τ(U) for all S, U ∈ J(E,E);(iv) τ(λU) = λτ(U) for all λ ∈ C and U ∈ J(E,E).Our operator T belongs to the space A(X,X) = A(X) and A is of eigenvaluetype l1. Thus, the assertion (∗∗

∗) implies that the spectral sum λ, de�ned by λ(U) :=∑∞
n=1 λn(U) for U ∈ A(E,E), is a trace on A.By principle of uniform boundedness (see [11], 3.4.6 (page 152), or [9]), thereexists a constant C > 0 with the property that

|λ(U)| ≤ ||{λn(U)}||l1 ≤ C a(U)for all Banach spaces E and operators U ∈ A(E,E).Now, remembering that all operators in A(X) can be approximated by �niterank operators and taking in account the conditions (iii)�(iv) for τ = λ, we obtainthat the A-trace, i.e. traceA T, of our operator T coincides with λ(T ) (recall thatthe continuous trace is uniquely de�ned in such a situation, that is on the space
A(X); cf. [12], 6.5.1.2).Since ⊗̂1;2,∞ = ⊗̂(2/3,1), (see Theorem 3.3), we can reformulate the result, whichwe formulated in the very beginning of this section, as



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 10Corrolary 4.1. For each Banach spaceX and for every operator T ∈ N1;2,∞(X,X)the (nuclear) trace of T is well de�ned and equals the sum of all eigenvalues of T :

trace T =
∞∑

k=1

µk(T ) (eigenvalues)∀X, ∀T ∈ N(1;2,∞)(X).Remark 4.1: Recall that A. Grothendieck [3] has obtained the assertion of thelast fact for the case of 2/3-nuclear operators, i.e. for the ideal N2/3 = N(2/3, 2/3)(note that l2/3 ⊂ l2/3 1).V. The discussion on Section I shows that, for p ∈ [1,∞], any subspace of anyquotient (= any quotient of any subspace) of an Lp-space possesses the ÃP s (eventhe ÃP s,∞) with 1/s = 1 + |1/2 − 1/p|. We apply now these facts together withthe White theorem for proving some more theorems concerning the distributions ofeigenvalues of the nuclear operators. Below we will use Theorem 2.1 and, therefore,the fact that any subspace of any quotient of an Lp-space possesses the AP s (where
p, s as above). Thus, for such Banach spaces X, we can identify the tensor product
X∗⊗̂sX with its canonical image in the space L(X) = L(X,X), that is with thespace Ns(X) of all s-nuclear operators in X, equipped with the quasi-norm inducedfrom X∗⊗̂sX.We are going to give below the relatively simple proofs of some recent resultsfrom the papers [15] and [16]. Let us begin.Theorem 5.1. LetX be a subspace of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(X,X),where 1/s = 1 + |1/2− 1/p|, then1. the (nuclear) trace of T is well de�ned,2. ∑∞

n=1 |µn(T )| < ∞, where {µn(T )} is the system of all eigenvalues of theoperator T (written in according to their algebraic multiplicities)and
trace T =

∞∑

n=1

µn(T ).Proof. Let X be a subspace of an Lp-space Lp(µ) and T ∈ Ns(X,X) with ans-nuclear representation
T =

∞∑

k=1

λkx
′
k ⊗ xk,where ||x′

k||, ||xk|| = 1 and λk ≥ 0,
∑∞

k=1 λ
s
k < ∞. By Hahn-Banach, we can �nd thefunctionals x̃′

k ∈ L∗
p(/mu) (k = 1, 2, . . . ) with the same norms as the correspondingfunctionals x′

k and so that x̃′
k|X = x′

k for every k. Denote by T̃ the operator
T̃ : Lp(µ) → X, T̃ :=

∞∑

k=1

λkx̃
′
k ⊗ xk,and by j : X → Lp(mu) the natural injection. Since the space X has the property

APs, we have Ns(Lp(µ), X) = L∗
p(µ)⊗̂sX and, therefore, the nuclear traces of the



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 11operators jT̃ and T̃ j are well de�ned. We have a diagram
X

j→ Lp(µ)
T̃→ X

j→ Lp(µ),in which T̃ j = T ∈ Ns(X). Hence, the complete systems of eigenvalues of theoperators T = T̃ j and jT̃ ∈ Ns(Lp(µ)) coincide . Applying Theorem 2.b.13 from[5] (see also [15]), we obtain that the sequence (µk(jT̃ )) is summable. Therefore, wehave µk(T ) ∈ l1 and we can apply Theorem 4.1. But we apply the theorem �rstlyfor the simplest case (later on we will continue the proof of our theorem 5.1).The �rst assertion of the next theorem is due to A. Grothendieck [3], the secondone was proved by H,. K�onig in [6]. Surprisingly, but we could not �nd anywherethe main statement of the theorem about coincidence of the nuclear and spectraltraces, neither in the monographs, nor in the mathematical journals. So we have noreference for this statement and have to formulate and to prove the next theoremhere. Let us remark that, in any case, this theorem was proved (as a partial case ofthe proved there our Theorem 5.1) in [15].Theorem 5.1'. Let L be an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(L, L), where
1/s = 1 + |1/2− 1/p|, then1. the (nuclear) trace of T is well de�ned,2. ∑∞

n=1 |µn(T )| < ∞, where {µn(T )} is the system of all eigenvalues of theoperator T (written in according to their algebraic multiplicities)and
trace T =

∞∑

n=1

µn(T ).Proof. As was said above, the assertions 1 and 2 are well known. To prove thelast equality, consider the Banach operator ideal Lp of all operators which can befactored through Lp-spaces. Then the product Lp ◦ Ns is a quasi-Banach operatorideal of spectral (=eigenvalue) type l1 (e.g., by the assertion 2, proved earlier by H.K�onig [6]). Now it is enough to apply Theorem 4.1 to �nish the proof.Proof of Theorem 5.1 (continuation). As was said, the complete systems ofeigenvalues of the operators T = T̃ j and jT̃ ∈ Ns(Lp(µ)) coincide. By Theorem5.1',
trace jT̃ =

∞∑

k=1

λk 〈x̃′
k, jxk〉 =

∞∑

n=1

µn(jT̃ ),the last sum is equal to
∞∑

n=1

µn(T )and the sum in the middle is
∞∑

k=1

λk 〈x̃′
k, jxk〉 =

∞∑

k=1

λk 〈x′
k, xk〉 = trace T.



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 12The (nuclear) trace of the operator T is well de�ned, because the space X has the
APs. Therefore,

trace T =
∞∑

n=1

µn(T ),and we are done.If Y is a quotient of an Lp-space, then, for a compact operator U ∈ L(E,E),the adjoint U∗ is also a compact operator and these two operators have the sameeigenvalues µ 6= 0 with the same multiplicities (see, e.g., [11], Theorem 3.2.26, or[2], Exercise VII.5.35). Also, any quotient of an Lp-space has the APs (where p, sare as above). So, it follows immediately from the just proved Theorem 5.1Corrolary 5.1. Let Y be a quotient of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y, Y ),where 1/s = 1 + |1/2− 1/p|, then1. the (nuclear) trace of T is well de�ned,2. ∑∞
n=1 |µn(T )| < ∞, where {µn(T )} is the system of all eigenvalues of theoperator T (written in according to their algebraic multiplicities)and

trace T =

∞∑

n=1

µn(T ).We used above some facts from the section I. After Theorem 5.1 and its con-sequence are proved, we are ready to present a simple prove of the correspondingresult on the subspaces of quotients of the Lp-spaces (recall that, again, all suchspaces have the APs with s and p satisfying the same conditions).Theorem 5.2. Let W be a quotient of a subspace (= a subspace of a quotient)of an Lp-space, 1 ≤ p ≤ ∞. If T ∈ Ns(W,W ), where 1/s = 1 + |1/2− 1/p|, then1. the (nuclear) trace of T is well de�ned,2. ∑∞
n=1 |µn(T )| < ∞, where {µn(T )} is the system of all eigenvalues of theoperator T (written in according to their algebraic multiplicities)and

trace T =
∞∑

n=1

µn(T ).Proof. Let Lp(µ) be an Lp-space. Take Banach subspaces X0 ⊂ X ⊂ Lp(µ) andconsider the quotient X/X0. If T ∈ Ns(X/X0, X/X0) (=(X/X0)
∗⊗̂sX/X0), then Tadmits a factorization of the type

X/X0
A→ c0

D→ l1
B→ X/X0,where A,B are continuous and D is a diagonal operator with a diagonal from ls.Denoting by ϕ : X → X/X0 the factor map from X onto X/X0 and taking alifting Φ : l1 → X for B with B = ϕΦ, we obtain that the maps ϕΦDA : X/X0 →

X/X0 and ΦDAϕ : X → X have the same eigenvalues µ 6= 0 with the samemultiplicities:
X

ϕ→ X/X0
A→ c0

D→ l1
Φ→ X

ϕ→ X/X0,



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 13The spaces X and X/X0 have the APs. Therefore, we have (cf. the proof of Theorem5.1)
trace ϕΦDA = trace ΦDAϕ.Since X is a subspace of Lp(µ), we have, by Theorem 5.1,
trace ΦDAϕ =

∞∑

n=1

µn(ΦDAϕ).Therefore,
trace T = trace BDA = trace ϕΦDA =

∞∑

n=1

µn(ΦDAϕ)

=
∞∑

n=1

µn(ϕΦDA) =
∞∑

n=1

µn(BDA) = trace T.VI. As is well known, in the classical case of the Grothendieck approximationproperty AP if X∗ has the AP, then the space X also has this property. We willshow now that the same is true for all approximation properties which are underconsideration in this paper.Denote by ⊗̂α any of the tensor product ⊗̂s, ⊗̂s,∞, ⊗̂t;p,r, ⊗̂(r,w) with the param-eters (see above), for which all those tensor products are the linear subspaces of theprojective tensor product ⊗̂. Also, let us say that a Bansch space X has the APα,if it is possesses the corresponding approximation property (i.e., APs, APs,∞ etc.).We need the following auxiliary result which may be of its own interest (comparewith Remark 3.4).Proposition 6.1 A Banach spaceX has the APα i� the canonical mapX∗⊗̂αX →
L(X) is one-to-one.Proof. Suppose that the canonical map X∗⊗̂αX → L(X) is one-to-one, but thereexista a Banach space Y such that the natural map Y ∗⊗̂αX → L(X) is not injective.Let z ∈ Y ∗⊗̂αX → L(X) be such that z 6= 0 and the assosoated operator z̃ is a0-operator. Then we can �nd an operator V from L(Y ∗, X∗) (the dual space tothe projective tensor product Y ∗⊗̂X) so that trace V ◦ zt = 1, where, as usual,
zt is the transposed tensor element, z ∗ t ∈ X⊗̂Y ∗. Since V ◦ zt ∈ X⊗̂X∗ and
trace V ◦ zt = 1, the tensor element (V ◦ zt)t (which, evidently, belongs to X∗⊗̂αX)is not zero. On the other hand, the operator induced by this element must be a0-operator. Contradiction.Proposition 6.2.With the above understanding, if the dual space X∗ has the APα,then X has the APα too.Proof. We use Proposition 6.1. As is known [5], the projective tensor product Y ∗⊗̂Yis a Banach subspace of the tensor product Y ∗⊗̂Y ∗∗. The tensor product Y ∗⊗̂αYis a linear subspace of Y ∗⊗̂Y, as well as Y ∗⊗̂αY

∗∗ is a linear subspace of Y ∗⊗̂Y ∗∗.Therefore, the natural map Y ∗⊗̂αY → Y ∗⊗̂αY
∗∗ is one-to-one. Now if Y ∗ has the

APα, then the canonical map Y ∗∗⊗̂αY
∗ → L(Y ∗, Y ∗) is one-to-one. Since we can



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 14identify the tensor product Y ∗∗⊗̂αY
∗ with the tensor product Y ∗⊗̂αY

∗∗ (because ofthe "symmetries" in the de�nitions of the corresponding tensor products), it followsthat the natural map Y ∗⊗̂αY → L(Y, Y ) is one-to-one. Thus, if Y ∗ has the APα,then Y has the APα too.Remark 2: The inverse statement is not true. For example, if s ∈ (2/3, 1], then thereexists a Banach space, possessing the Grothendieck approximation property, whosedual does not have the APs (it is well known for the case where s = 1). Moreover,if s ∈ (2/3, 1], then we can �nd a Banach space W such that W has a Schauderbasis and W ∗ does not have the APs. Indeed, let E be a separable re�exive Banachspace without the APs (see [7] or [8]). Let Z be a separable space such that Z∗∗has a basis and there exists a linear homomorphism ϕ from Z∗∗ onto E∗ so that thesubspace ϕ∗(E) is complemented in Z∗∗∗ and, moreover, Z∗∗∗ ∼= ϕ∗(E)⊕Z∗ (see [7,Proof of Corollary 1]). Put W := Z∗∗. This (second dual) space W has a Schauderbasis and its dual W ∗ does not have the APs.VII. Let us consider some more notions of the approximation properties as-sosoated with some other tensor products. For Banach spaces X and Y and r ∈
(0, 1], p ∈ [1, 2], de�ne a quasi-norm || · ||N[r,p]

on the tensor product X∗ ⊗ Y by
‖u‖N[r,p]

:= inf

{
‖(x′

i)
n
i=1‖`r(X∗) · ‖(yi)ni=1‖`wp′(Y ) : u =

n∑

i=1

x′
i ⊗ yi

}Here we denote, as usual, by lr(X
∗) and lwq (Y ) the spaces of r-absolutely summableand weakly q-summable sequences, respectively.Denote by ÷åðåç X∗⊗̂[r,p]Y the completion of the space (X∗ ⊗ Y, ‖ · ‖N[r,p]

)
. Wehave a natural continuous injection

j[r,p] : X
∗⊗̂[r,p]Y → X∗⊗̂Ywith ||j[r,p]|| ≤ 1.Every element u ∈ X∗⊗̂[r,p]Y has a representation of the type u =

∑∞
i=1 x

′
i ⊗ yi,where (x′

i)
∞
i=1 ∈ `r(X

∗) and (yi)
∞
i=1 ∈ `wp′(Y ). Consider the natural mappings

X∗⊗̂[r,p]Y
j̃[r,p]→ X∗⊗̂Y j̃ → L(X, Y ).The image of the tensor product X∗⊗̂[r,p]Y under the composition j̃[r,p] := j̃ ◦ j̃[r,p] isdenoted by N[r,p](X, Y ). This is a quasi-Banach space of the (r, p)-nuclear operators(the quasi-norm is induced from the tensor produce X∗⊗̂[r,p]Y ). It is not di�cult tosee that every operator T ∈ N[r,p](X, Y ) admit a factorization of the kind

X
A→ c0

Dr→ l1
i→ lp

B→ Y,where A,B are compact, i is the injection, Dr is a diagonal operator with a di-agonal from lr. Also, every operator which can be factored in such a way is in
T ∈ N[r,p](X, Y ).



SOME REMARKS ON APPROXIMATION PROPERTIES WITH APPLICATIONS 15By the analogous way, we de�ne the tensor product X∗⊗̂[r,p]
Y and the quasi-normed operator ideals N [r,p](X, Y ). Namely, X∗⊗̂[r,p]

Y is a linear subapace of theprojective tensor product X∗⊗̂Y, consisting of tensor elements z which admit arepresentation
u =

∞∑

i=1

x′
i ⊗ yi,where (x′

i)
∞
i=1 ∈ `wp′(X

∗) and (xi)
∞
i=1 ∈ `r(Y ). Its canonical image in L(X, Y ) isthe quasi-normed space N [r,p](X, Y ). It is not di�cult to see that every operator

T ∈ N [r,p](X, Y ) admit a factorization of the kind
X

A→ lp′
Dr→ c0

i→ l1
B→ Y,where A,B are compact, i is the injection, Dr is a diagonal operator with a di-agonal from lr. Also, every operator which can be factored in such a way is in

T ∈ N [r,p](X, Y ).It is clear that T ∗ ∈ N[r,p](Y
∗, X∗) implies T ∈ N [r,p](X, Y ) and T ∗ ∈ N [r,p](Y ∗, X∗)implies T ∈ N[r,p](X, Y ).Now we can de�ne the notions of the corresponding approximation properties bythe usual way. We say that he space X has the AP[r,p] (respectively, the AP [r,p]) iffor every Banach space Y the natural mapping Y ∗⊗̂[r,p]X → L(Y,X) (respectively,

Y ∗⊗̂[r,p]
X → L(Y,X)) is one-to-one. It can be seen that a Banach space X has the

AP[r,p] (or AP [r,p]) i� the canonical map X∗⊗̂[r,p]X → L(X) (or X∗⊗̂[r,p]
X → L(X))is one-to-one (the proof is essentially the same as the proof of Theorem 6.1). Also,if X∗ has the AP[r,p] (or AP [r,p]) then X has the AP [r,p] (or AP[r,p]) (the proof is theas in Theorem 6.2).Theorem 7.1. Let 1/r − 1/p = 1/2. Every Banach space has the properties

AP[r,p] and AP [r,p].Proof. Suppose that X /∈ AP[r,p] where 1/r− 1/p = 1/2. Let z ∈ X∗⊗̂[r,p]X be an element such that trace z = 1, z̃ = 0. Since z =
∑

x′
k ⊗ xk, where (x′

k) ∈ lr(X
∗)and (xk) is weakly p′-summable, the operator z̃ can be factored as

z̃ : X
A→ l∞

∆→ l1
j→ lp

V→ X,where all the operators are continuous, , j is an injection, ∆ is a diagonal operatorwith a diagonal from lr. Since z̃ = 0, we have V |j∆A(X) = 0. Consider S := j∆AV :
lp → lp. Evidently, S2 = 0 è trace S = trace z = 1. Since S ∈ Nr(lp, lp), its nucleartrace equals the sum of all its eigenvalues (see Theorem 5.1' above). This contradictsthe fact that S2 = 0.We are ready to apply the above results to the investigation of eigenvalues prob-lems for N[r,p]- and N [r,p]-operators. The �rst theorem below was proved in [16] byusing Fredholm Theory. The same proof can be applied for the second theorem.Theorem 7.2. Let 1/r − 1/p = 1/2. For every Banach space X and everyoperator T ∈ Nr,p(X), trace (T ) is well de�ned and if (µi)

∞
i=1 is a system of all
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∞
i=1 ∈ l1 and

trace (T ) =
∞∑

i=1

µi.Theorem 7.3. Let 1/r − 1/p = 1/2. For every Banach space X and everyoperator T ∈ N r,p(X), trace (T ) is well de�ned and if (µi)
∞
i=1 is a system of alleigenvalues of T, then (µi)

∞
i=1 ∈ l1 and

trace (T ) =

∞∑

i=1

µi.Both theorems can be proved by the analogues methods and the proofs are almostthe same as the proof of Theorem 5.2 (by using Theorem 7.1). So we omit it here.VIII. The next examples are taken from [16], where one can �nd the correspond-ing proofs. They show that all the above positive results concerning approximationproperties and trace-formulas are sharp.Example 8.1. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r − 1/p = 1/2. There exist Banachspaces E and V, z0 ∈ E∗⊗̂V, S ∈ L(V,E) so that for every p0 ∈ [1, p)1) z0 ∈ E∗⊗̂r,1V ;2) V has a basis;3) V is the space of type p0 and of cotype 2;4) S ◦ z0 ∈ E∗⊗̂r,p0E;5) trace S ◦ z0 = 1;6) the corresponding operator S̃ ◦ z0 is a 0-operator and, therefore, has nononzero eigenvalues.Example 8.2. Let r ∈ (2/3, 1), p ∈ (1, 2], 1/r − 1/p = 1/2. There exist Banachspaces E and V, z0 ∈ E∗⊗̂V, S ∈ L(V,E) so that for every ε > 01) z0 ∈ E∗⊗̂r+ε,1V ;2) V has a basis;3) S ◦ z0 ∈ E∗⊗̂r+ε,pE;4) trace S ◦ z0 = 1;5) the corresponding operator S̃ ◦ z0 is a 0-operator and therefore, has no nonzeroeigenvalues.Example 8.3. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r − 1/p = 1/2. There exist twoseparable Banach spaces X and Z so that(i) Z∗∗ has a basis;(ii) ∃V ∈ X∗⊗̂Z∗∗ : V =
∑∞

k=1 x
′
k ⊗ z′′k ; (x

′
k) weakly p′0-summable for each

p0 ∈ [1, p); (z′′k) ∈ lr(Z
∗∗);(iii) V (X) ⊂ Z; the operator V is not nuclear as a map from X into Z.Moreover, there exista an operator U : Z∗∗ → Z such that

(α) πZU ∈ N r,p0(Z∗∗, Z∗∗) = Z∗∗∗⊗̂r,p0
Z∗∗, ∀ p) ∈ [1, p);

(β) U is not nuclear as a map from Z∗∗ into Z;
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(γ) trace πZU = 1;
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