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Sharp constants in Poincaré, Steklov

and related inequalities (a survey)

Nikolay Kuznetsov† and Alexander Nazarov‡

On the occasion of the 150th anniversary of V.A. Steklov’s
birth

The 150th anniversary of the birth of the outstanding Russian math-
ematician Vladimir Andreevich Steklov falls on 9 January 2014. All over
the world, researchers in all areas of mathematics know this name. In-
deed, widely known mathematical institutes in Moscow and St. Petersburg
are named after Steklov (before the unfortunate recent reform of the Rus-
sian Academy of Sciences, they were among its leading institutions). This
commemorates the fact that he was the founding father of their predeces-
sor— the Physical-Mathematical Institute established in 1921 in Petrograd
(now St. Petersburg). Steklov was the first director of the institute until
his unexpected and untimely death on 30 May 1926. Meanwhile, Steklov’s
scientific contributions (in particular, to analysis, mathematical physics and
mechanics) are less known even in present-day Russia. (The reason might
be that his papers were published mainly in French.) In this paper, we
describe the work of Steklov and his contemporaries on inequalities of math-
ematical physics and some further advances concerning sharp constants in
these inequalities. Steklov’s results in other areas and their development are
presented in the recent papers [52] and [53].
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The work of Poincaré, Steklov and his disciples

In this section, we outline the early work on inequalities with sharp constants.

One-dimensional inequalities of V.A. Steklov,
J.D. Tamarkin and N.M. Krylov

In 1896, Steklov [94] proved that the following inequality

`
∫

0

u2(x) dx ≤
(

`

π

)2
`

∫

0

[u′(x)]2 dx (1)

holds for all functions which are continuously differentiable on [0, `] and have
zero mean there. For this purpose he used the closedness equation for the
Fourier coefficients of u; the corresponding system is {cos (kπx/`)}∞k=0 nor-
malised on [0, `]. (One finds similar considerations in [10, Ch. 5, Sect. 11],
where the so-called Wirtinger inequality is proved.) Steklov’s extensive work
on the closedness equation lasted for 30 years until his death. For this reason
A. Kneser [48] referred to this equation as “Steklov’s favorite formula”. It
should be mentioned that Steklov introduced the term closedness equation

for general orthonormal systems much later (see the brief announcement [98]
and the full-length paper [99] published in 1910 and 1911, respectively).

Inequality (1) was among the earliest inequalities with sharp constant
that appeared in mathematical physics. Steklov applied it to justifying the
Fourier method for initial-boundary value problems for the heat equation
in two dimensions with variable coefficients independent of time. Later,
he also justified the Fourier method for the wave equation under similar
assumptions. The fact that the constant in (1) is sharp was emphasized
by Steklov in [96, pp. 294–296], where he gave an alternative proof of this
inequality. Another result proved in [96, pp. 292–294] says that (1) is true for
continuously differentiable functions vanishing at the interval’s end-points,
and again the constant is sharp. (It is worth mentioning that the latter result
appeared in the widely known book [42, Sect. 7.7] without any reference
concerning its authorship.) A further generalization of inequality (1) was
given by Steklov in [97]. In the monograph [100], the generalized form of (1)
is given along with proofs for both types of assumptions about u.

Mitrinović et al. [65, Ch. II] investigated the history of (1) and related
inequalities. This 48 pages long chapter entitled “An Inequality Ascribed
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to Wirtinger and Related Results” includes more than 200 references. In
particular, the authors cite [96] along with Steklov’s note published under
the same title in Comptes Rendus in 1898. Moreover, it is said that Steklov
proved (1) under both conditions guaranteeing its validity; the generalization
obtained in [97] is also mentioned. However, the first proof of (1) for func-
tions vanishing at the interval’s end-points is ascribed to L. Scheeffer (see
[65, p. 67]). Indeed, his paper [88] was published posthumously as early as
1885 (the author died that year aged 26), but it is inaccurate to think that
(1) is a result of this note concerned with the simplest problem of variational
calculus. Applying the so-called Jacobi transformation to the second varia-
tion, Scheeffer obtained as an intermediate formula an identity from which
inequality (1) immediately follows. Unfortunately, he, unlike Steklov, did not
notice the importance of this inequality and it is not even written explicitly
in [88].

Let us turn to results obtained by Steklov’s disciples. In his article [104]
published in 1910, J.D. Tamarkin (at that time he was a student whom
Steklov made interested in boundary value problems of mathematical physics;
see [43] and [52]) generalized (1) in the following way. Multiplying two
inequalities of this form and combining both conditions imposed on u, he
proved that for every function u ∈ C2([0, `]), satisfying the conditions

u(0) = u(`) and

`
∫

0

u(x) dx = 0, (2)

the following inequality holds:

`
∫

0

u2(x) dx ≤
(

`

π

)4
`

∫

0

[u′′(x)]2 dx. (3)

It allowed Tamarkin to apply Steklov’s method for studying the transversal
vibrations of a homogeneous elastic rod.

Note that the constant in (3) is not sharp and this drawback was extermi-
nated by N.M. Krylov—another disciple of Steklov. (He graduated from the
St. Petersburg Institute of Mines in 1902 and after studies in Paris and Pisa
in 1908–1910 completed his mathematics education through personal con-
tacts with Steklov and by reading his articles.) In his paper [51] published
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in 1915, Krylov proved that the inequality

`
∫

0

u2(x) dx ≤
(

`

2π

)4
`

∫

0

[u′′(x)]2 dx (4)

holds for any function with the following properties:

• conditions (2) are fulfilled;
• u′ is absolutely continuous and its Fourier expansion converges uni-

formly on [0, `];
• u′′ existing almost everywhere is square integrable.

It is clear that the constant in (4) is sharp which fact was emphasized by
Krylov. His proof of this inequality is based on the completeness equation
for trigonometric functions, but it is applied in more sophisticated way than
in the cases considered by Steklov. Inequality (4) also holds for functions
vanishing at the interval’s end-points (see [54]), but this result was proved
only in 1955.

An inequality ascribed to Wirtinger

What is presented here confirms the Arnold Principle [5]: “If a notion bears
a personal name, then this name is not the name of the discoverer”.

In the same paper [51], Krylov notes that if u satisfies only the first two
of the above listed conditions, then his method gives the following inequality:

`
∫

0

u2(x) dx ≤
(

`

2π

)2
`

∫

0

[u′(x)]2 dx. (5)

Again, the constant is sharp and less than that in (1) which is a consequence
of the first condition (2) added to the second one. Krylov also mentions
that for u ∈ C2([0, `]) (this is more restrictive than the second condition
imposed by Krylov) satisfying conditions (2) inequality (5) was obtained by
E. Almansi [4] in 1905 in connection with his investigation of stability of the
equilibrium of the Plateau figures in capillary theory.

However, in accordance with the Arnold Principle, inequality (5) for func-
tions satisfying (2) is usually referred to asWirtinger’s inequality. No wonder
that in Blaschke’s book [13, p. 105] (5) is ascribed to Wirtinger because the
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latter was Blaschke’s teacher. One finds the same attribution and reference
to Blaschke’s book in [42, Sect. 7.7] and in [10], where Sections 10–13 of
Chapter 5 are devoted to this and related inequalities. The question of pri-
ority of Wirtinger was discussed by Mitrinović and Vasić in 1969 in their
interesting article [66] and again in [65, Ch. II]. One finds only the reference
[4] in [66], but in [65] the results obtained by Steklov, Tamarkin and Krylov
are also presented.

The Poincaré and Steklov inequalities

In the same volume of the Communications of the Kharkov Mathematical

Society in which inequality (1) was published, the Steklov’s paper [93] had
appeared even a little bit earlier. (One has to keep in mind that another
article having the same title as [93], namely [95], was published in 1897.) In
[93], he considered the following analogue of (1):

∫

Ω

u2 dx ≤ C

∫

Ω

|∇u|2 dx. (6)

Here ∇ stands for the gradient operator and the integral on the right-hand
side is called the Dirichlet integral. Assuming that Ω is a bounded three-
dimensional domain whose boundary is piecewise smooth and u is a real
C1-function on Ω̄ with zero mean, Steklov found that the sharp constant
in (6) is λ−1

1 , where λ1 is the smallest positive eigenvalue of the Neumann
Laplacian in Ω:

−∆u = λu in Ω;
∂u

∂n
= 0 on ∂Ω.

Here ∂/∂n stands for differentiation with respect to the exterior unit normal.
Under the same assumptions about u, inequality (6) was first proved by

H. Poincaré [82] in 1890 provided Ω is a smooth, convex domain. He also
estimated C from above for this class of domains. Moreover, he demon-
strated that if a homogeneous, isotropic body occupies a domain for which
(6) is valid, then solutions of the heat equation in this domain tend to the
equilibrium temperature distribution at the exponential rate. In the second
article [83] published by Poincaré on this topic in 1894, he obtained that (6)
is true provided Ω is the union of a finite number of smooth, convex domains.
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Moreover, he improved and extended his estimate of 1890 for smooth, convex
domains; namely, he obtained that

C ≤ 9(diamΩ)2

16
in three and C ≤ 7(diamΩ)2

24
in two dimensions.

Here diamΩ is the diameter of Ω, that is, its maximal chord.
In his article [95] published in 1897, Steklov proved the following new

results about (6). First, this inequality is valid provided u is a real C1-
function on Ω̄ vanishing on ∂Ω; again Ω is supposed to be a bounded three-
dimensional domain whose boundary is piecewise smooth. Second, under
these assumptions the sharp constant in (6) is equal to λ−1

1 , but in this case
λ1 is the smallest eigenvalue of

−∆u = λu in Ω, u = 0 on ∂Ω; (7)

that is, of the Dirichlet Laplacian in Ω.

Further development

The problem of finding and estimating sharp constants in functional inequali-
ties attracted much attention from those who work in theory of functions and
mathematical physics (see, for example, the classical monographs [42] and
[84]). More than thirty years ago, the role of sharp constants was emphasized
in the book [64] by S.G. Mikhlin. Let us quote the review [80]:

[This book] is devoted to appraising the (best) constants—exact
results or explicit (numerical) estimates— in various inequalities
arising in “analysis” (=PDE). [. . . ] This is a most original work,
a bold attack in a direction where still very little is known.

Our aim is to outline main achievements in this area. Since integral inequal-
ities (as well as integration by parts) are at the heart of theory of differential
equations arising in mathematical physics, one might expect that the interest
to sharp constants in these inequalities will only intensify in the future.

Scope of this section and preliminary material

We restrict ourselves to the direct generalizations of (1) and (6), that is, to
inequalities of the following form:

‖u‖Lq(Ω) ≤ C ‖∇u‖Lp(Ω). (8)
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Here Ω is a domain in R
n, n ≥ 1, whereas p, q ≥ 1 satisfy the following

restrictions:

q ≤ p∗ =
np

n− p
, if 1 ≤ p < n;

q < ∞, if p = n > 1;

q ≤ ∞, if p > n or n = 1.

It is assumed that u belongs to L1,p(Ω), that is, u ∈ Lp
loc(Ω), its Sobolev

derivatives of the first order belong to Lp(Ω), and ‖∇u‖Lp(Ω) is the norm of
|∇u| in Lp(Ω).

Weighted inequalities— the Hardy inequality and its generalizations such
as the Hardy–Sobolev inequality, the Maz’ya inequality, the Caffarelly–Kohn–
Nirenberg inequality—are beyond our scope. We also do not consider in-
equalities involving derivatives of higher order which received much attention
during the past few years.

If u vanishes on ∂Ω (this is understood as follows: u can be approximated
in the norm ‖∇u‖Lp(Ω) by smooth functions having compact support in Ω),
then (8) is true with some positive constant C for any domain of finite vol-
ume1 and for an arbitrary domain in the critical case p < n, q = p∗. For
these functions, inequality (8) often appears under various names for different
values of p and q. In particular, it is referred to as:

• the Steklov inequality when p = q = 2;
• the Friedrichs inequality when p = q;
• the Sobolev inequality when p < n, q = p∗.

Note that a slightly different inequality was obtained by K.-O. Friedrichs [39]
under the assumption that Ω ⊂ R

2. Namely, his inequality is as follows:

∫

Ω

u2 dx ≤ C





∫

Ω

|∇u|2 dx+

∫

∂Ω

u2 dS



 , (9)

where dS denotes the element of length of ∂Ω. Generally speaking, (9) holds
for all bounded domains in R

n (dS denotes the element of area when n > 2),
for which the divergence theorem is true (see [63, p. 24]). Furthermore, the

1This condition is not sharp; in the recent papers [44] and [45], the necessary and
sufficient condition is given for the validity of (8) with p = q.
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Sobolev inequality was proved by S. L. Sobolev himself only for p > 1 and E.
Gagliardo proved it for p = 1 (see [90] and [40], respectively).

Inequality (8) for u with zero mean value over Ω is equivalent to the
following

‖u−〈u〉‖Lq(Ω) ≤ C‖∇u‖Lp(Ω), 〈u〉 =
∫

Ω
u(x) dx

measn Ω
for all u ∈ L1,p(Ω). (10)

Here the n-dimensional measure of Ω stands in the denominator. Moreover,
some requirements must be imposed on Ω for the validity of (10). Indeed,
as early as 1933 O. Nikodým [77] (see also [63, p. 7]) constructed a bounded
two-dimensional domain Ω and a function with the finite Dirichlet integral
over Ω such that inequality (10) is not true for p = q = 2. Another example
of a domain with this property is given in [25, Ch. 7, Sect. 8.2] (see also [63,
Sect. 6.10.3]). On the other hand, if p = q, then (10) (it is called the Poincaré
inequality in this case) is valid for all domains such that their boundaries
are locally graphs of continuous functions in Cartesian coordinates (see, for
example, the classical book [25] by R. Courant and D. Hilbert for the proof
which can be easily extended from p = 2 to any p).

Furthermore, if p < n and q = p∗, then (10) (it is called the Poincaré–

Sobolev inequality in this case) holds for any bounded n-dimensional Lipschitz
domain. Moreover, the inequality is true provided Ω belongs to the class of
so-called John’s domains as was proved by B. Bojarski [15]. We recall that
this class was introduced by F. John [46] and domains belonging to it are
more general than the Lipschitz ones. Finally, if q 6= p∗, then (10) holds if and
only if L1,p(Ω) is continuously embedded into Lq(Ω). This was established
by J. Deny and J.-L. Lions [29] for p = q, whereas the general case was
considered in [73].

Thus, the major point to be clarified about inequality (10) is smoothness
of ∂Ω. To a great extent, this was made by V.G. Maz’ya in his comprehen-
sive monograph Sobolev Spaces in which he presented his own results and
surveyed those of other authors. (Originally this book was published in Rus-
sian in 1985 by the Leningrad State University. Recently, the 2nd revised
and augmented English edition [63] appeared; its bibliography exceeds 800
entries. Moreover, several sections deal with the question of exact constants
in some inequalities.) Proofs of basic facts concerning inequality (10) can be
also found in the recent textbook [72]; its English translation is currently in
preparation.
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Almost everything known about sharp constants in various versions of
inequality (8) mainly comes under one of the following four conditions:

• p = q = 2 (the quadratic case);
• Ω = (0, `) (the one-dimensional case);
• p < n, q = p∗ (the critical case);
• p = q = 1 (the “geometric” case).

The quadratic case

It was mentioned above that the sharp constant in (8) is λ
−1/2
1 in the quadratic

case. Here λ1 = λD
1

(

λN
1

)

is the smallest positive eigenvalue of the Dirichlet
(Neumann, respectively) Laplacian for the Steklov (Poincaré, respectively)
inequality. Explicit values of these eigenvalues are known only for several
particular domains. Among them, one finds the following (see [84]):

• Rectangle a× b: λD
1 =

(

π
a

)2
+
(

π
b

)2
, λN

1 =
[

π
max{a,b}

]2

;

• 45◦ right triangle: λD
1 = 5

(

π
a

)2
, λN

1 =
(

π
a

)2
, where a is the leg length;

• 30◦ right triangle: λD
1 = 112

9

(

π
a

)2
, λN

1 = 16
3

(

π
a

)2
, where a is the hy-

potenuse length;

• Equilateral triangle: λD
1 = 16

3

(

π
a

)2
, λN

1 = 16
9

(

π
a

)2
, where a is the side

length;

• Disk of the radius a: λD
1 =

(

j0,1
a

)2

, λN
1 =

(

j1,1
a

)2

.

Here j0,1 (j1,1) is the first positive zero of the Bessel function J0 (J1, respec-
tively). The Dirichlet and Neumann eigenvalues for sectors and annuli can
also be expressed in terms of Bessel functions.

Furthermore, there are simple formulae for the fundamental eigenvalues in
domains that are Cartesian products of two domains of different dimensions.
Let Ω1 ⊂ R

m and Ω2 ⊂ R
n be bounded domains. If the fundamental Dirichlet

and Neumann eigenvalues in Ωj (j = 1, 2) are λ
(j),D
1 and λ

(j),N
1 , respectively,

then
λD
1 = λ

(1),D
1 + λ

(2),D
1 and λN

1 = min{λ(1),N
1 , λ

(2),N
1 }

are the corresponding eigenvalues in Ω = Ω1 × Ω2.
It is worth mentioning that the Dirichlet eigenvalues have the following
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integral representation (see [85]):

λD
k =

1

4

∫

∂Ω

(

∂uk

∂n

)2
∂|x|2
∂n

dS, k = 1, 2, . . . , (11)

where uk is the kth eigenfunction normalized in L2(Ω). Formula (11) with
k = 1 allows us to express the sharp constant in the Steklov inequality in
terms of the normalized fundamental eigenfunction of the Dirichlet Laplacian.

In order to estimate λD
1 one can use its monotonicity with respect to

domain variation and the Steiner symmetrization (see [84]). In particular,
among all quadrilaterals of the same area the least value of λD

1 is delivered by
the square, whereas the equilateral triangle has the least value of λD

1 among
all triangles of the same area (see [37]). Finally, a ball in R

n has the least
value of λD

1 among all figures of the same area/volume. In 1877, the two-
dimensional version of the last assertion was conjectured by Lord Rayleigh
(see [101, pp. 339–340]). It was proved independently by G. Faber [33] and
E. Krahn [49], [50]. It must be emphasized that all estimates involving
symmetrization for their derivation are true for arbitrary p and q. Thus,
under the condition that u vanishes on ∂Ω the sharp constant in (8) has
the largest value for a ball in R

n (comparing other domains of the same
area/volume). Unfortunately, bounds for sharp constants are implicit unless
p = q = 2.

Less is known about estimates of the first positive Neumann eigenvalue.
The classical result of G. Szegő [102] (n = 2) and H. F. Weinberger [107]
(higher dimensions) says that a ball in R

n has the largest value of λN
1 among

all domains of the same area/volume (see also [6]). Analogous result for
triangles was obtained recently in [56].

A global lower bound for λN
1 was obtained for convex domains by L. E.

Payne and H. F. Weinberger [79] (n = 2) and by M. Bebendorf [9] (n ≥ 3);

namely, λN
1 >

(

π
diamΩ

)2
unless n = 1 when Ω is an interval. A generalization

of this result for arbitrary p = q > 1 was established recently in [35] (see also
[32] and [105]).

There are also inequalities between the Dirichlet and Neumann eigenval-
ues (see, for example, the recent paper [36], where background is also briefly
described). Furthermore, it is shown in [91] that if (10) holds in Ω1 ⊂ R

m

and Ω2 ⊂ R
n with an arbitrary p = q and the sharp constants C1 and C2,

respectively, then the sharp constant in the same inequality in Ω1 × Ω2 is
less than or equal to

√
2 (C1 + C2). We also mention the recent survey [81]
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where, in particular, the results on the upper estimates for sharp constants
in the Poincaré inequality in quadratic case on surfaces without boundary
are collected.

The one-dimensional case

Without loss of generality we assume that Ω = (0, 1) and begin with the case
when u vanishes at the end-points for which the sharp constant in (8) is as
follows:

C = C1(p, q) =
F (q−1 + p′−1)

2F (q−1)F (p′−1)
, (12)

where F(s) = Γ(s+1)
ss

and p′ = p
p−1

is the Hölder conjugate exponent to p.

This constant was obtained by E. Schmidt [89] as early as 1940 (the case
p = q was considered even earlier by V. I. Levin [58]; see also [42, Sect.
7.6]). This classical result still remains unnoticed by some researchers. It
was rediscovered in 2002 (see [11]), whereas its particular case considered in
[16] was recently referred to as “the best one in the literature” (see [3]).

The function U delivering the extremal value (12) is symmetric with re-
spect to x − 1

2
, can be expressed in quadratures and is usually referred to

as the Lindqvist cosp,q function (see [59]). Besides, it is well known in the
stability theory as the Lyapunov cosine being introduced (for p = 2, q = 2m,
m ∈ N) by A.M. Lyapunov in 1893 (see [60]).

The one-dimensional Poincaré-type inequality has even more complicated
story. It took several years after the pioneering paper [27]2 to establish the
following result (see [19], [68] and also the recent paper [41] for a more general
problem and a historical survey).

Let n = 1 and Ω = (0, 1). If q ≤ 3p, then the sharp constant in (10) is equal
to C1(p, q) defined by (12), whereas the corresponding extremal function V is

as follows:

V (x) =







U
(

x+ 1
2

)

when x ≤ 1
2
,

−U
(

x− 1
2

)

when x ≥ 1
2
,

where U is Schmidt’s function. In particular, V is antisymmetric with respect

to x− 1
2
. The constant in (10) is greater than C1(p, q) and V has no symmetry

provided q > 3p.

2In [63, Sect. 1.1.19], the first result for p = q is attributed to A. Stanoyevitch.
However, the proof in his PhD thesis (1990) turned out to be incorrect.
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Note that a particular case q ≤ 2p considered in [27] was also rediscovered
in 2004 (see [12]).

The critical case

First we note that the sharp constant in the Sobolev inequality is invariant
with respect to dilations of the domain Ω. Since it is obviously monotone
with respect to inclusion of domains, in fact, it is independent of Ω.

In 1960, V.G. Maz’ya [61] and H. Federer and W.H. Fleming [34] found
the sharp constant in the Sobolev inequality with p = 1. Its value is as
follows:

ω
− 1

n

n−1 · n
1−n

n , where ωn−1 =
2π

n

2

Γ
(

n
2

) ,

the latter is equal to the (n − 1)-dimensional measure of the unit sphere in
R

n.
It was G. Rosen [87], who made the next step in 1971. Namely, he proved

that the exact constant in the Sobolev inequality for n = 3, p = 2 (and q = 6)

is 2
2
33−

1
2π

2
3 ≈ 0.4273.

Four years later, T. Aubin [7] and G. Talenti [103] independently consid-
ered the case of arbitrary n ≥ 2 and 1 < p < n. It is worth emphasizing
that the Bliss inequality [14] and symmetrization—the key ingredients of the
proof—were known for a long time before that. The corresponding sharp
constant is equal to

C2(n, p) = ω
− 1

n

n−1 n
− 1

p

( p− 1

n− p

)
1
p′

[

B

(n

p
,
n

p′
+ 1

)

]− 1
n

, (13)

where B stands for the Euler beta function. This constant is not attained

unless Ω = R
n. In the paper [24] published ten years ago, the constant

C2(n, p) was obtained by virtue of the mass transportation approach (the
generalized Monge–Kantorovich problem).

The situation is again more complicated for the Sobolev–Poincaré in-
equality. It is known that for any John domain the sharp constant is greater
than or equal to 2

1
n · C2(n, p), where C2(n, p) is defined by (13). Moreover,

if Ω is a C2-domain and C in (10) is strictly greater than 2
1
n · C2(n, p), then

the sharp constant is attained for this Ω. In particular, for any bounded
C2-domain there exists β > 0 such that the sharp constant in the Sobolev–
Poincaré inequality is attained when 1 < p < n+1

2
+ β (see [28] for the proof;
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the case p = 2 was considered earlier in [2] and [106]). In the survey arti-
cle [69], the question when the sharp constant is attainable is discussed for
various critical inequalities.

The “geometric” case

In some sense, the case p = 1 is simpler than those considered above. Indeed,
by linearity one rearranges the gradient along level lines and then uses the
coarea formula. On the other hand, since L1(Ω) is not reflexive, the sharp
constant usually is not attained in L1,1(Ω), and one has to solve the corre-
sponding extremal problem in the space BV (Ω) of functions with bounded
variation.

Results outlined in this section originate from J. Cheeger’s insight dat-
ing back to his pioneering paper [20]. Twenty years later, A. Cianchi [21]
obtained the following expression for the sharp constant in the Poincaré in-
equality for p = q = 1:

C = sup
F⊂Ω

2

measn−1 F

measnE ·measn(Ω \ Ē)

measn Ω
.

Here F ranges over all surfaces dividing Ω into two connected subsets E and
Ω\Ē; measn−1F is the (n−1)-dimensional measure of F (generally speaking,
its Hausdorff measure).

For functions vanishing on ∂Ω the sharp constant in (8) with p = q = 1
was found by L. Lefton and D. Wei [57] (see also [47]):

C = sup
E⊂Ω

measn E

measn−1 ∂E
.

Here E ranges over all subsets of Ω such that ∂E ∩ ∂Ω = ∅.
Let C(p) denote the sharp constant in the Friedrichs inequality, that is, in

inequality (8) with p = q valid for u vanishing on ∂Ω. The following estimate
C(p) ≤ p ·C(1) was also proved in [57]; the case p = 2 was considered earlier
by J. Cheeger [20].

Concerning estimates of the constant in the Poincaré inequality, we men-
tion the sharp inequality C(1) ≤ diamΩ

2
obtained by G. Acosta and R.

Durán [1] for convex domains. This L1-analogue of the Payne–Weinberger–
Bebendorf estimate is widely used in studies of finite element approximations.
A survey of related results for the “geometric” case can be found, for example,
in [78] and in [92].
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The “twisted” Steklov–Poincaré inequality

Let us consider inequality (8) for functions u satisfying both Steklov and
Poincaré conditions, that is, vanishing on ∂Ω and having zero mean value,
respectively. We will refer to the corresponding inequality as the “twisted”
Steklov–Poincaré.

In the one-dimensional case, this estimate arises (mainly for p = 2) in var-
ious applications. We mention just two of them: estimating the fundamental
eigenvalue in the Lagrange problem about the shape of strongest column (see,
for example, [30]); the characterization problem in nonparametric statistics
(see, for example, [76, Sect. 6.2]). It is noted in [68] that the sharp constant
in the twisted inequality is the one-half of the sharp constant in the usual
Poincaré inequality (10) (cf. (1) and (5) as well).

In the quadratic case considered by L. Barbosa and P. Bérard ([8]), it

was shown that the sharp constant is equal to λ
−1/2
1 , where λ1 = λT

1 is the
smallest positive eigenvalue of the following “twisted” Dirichlet problem:

−∆u = λu− 〈∆u〉 in Ω; u = 0 on ∂Ω.

In [8], it was proved that this problem has the following property along with
some others. Its spectrum interlaces with that of problem (7). In particular,
this implies that

λD
1 ≤ λT

1 ≤ λD
2 . (14)

In their paper [38], P. Freitas and A. Henrot showed that if Ω is a pair of
equal disjoint balls, then λT

1 has the least value comparing with those for
open sets of the same area/volume. Note that both inequalities (14) are
equalities for this Ω. In the recent paper [26], Henrot and his coauthors tried
to obtain a similar result for a more general range of values of p and q, but,
unfortunately, there is a gap in their proof as is shown in [71].

The case p = 1 was considered recently in [17]. As in the quadratic case,
a pair of disjoint balls yields the largest sharp constant among all open sets
of given area/volume. However, their radii depend on q; namely, if q is close
to 1, then the optimal set consists of two equal balls, whereas two different
balls give the optimal set for q close to 1∗ = n

n−1
.
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The “boundary” Poincaré inequality

Let Ω be a bounded Lipschitz domain in R
n, n ≥ 2, and let G be an open

part of ∂Ω possibly coinciding with ∂Ω. Then the “boundary analogue” of
inequality (10) is as follows:

‖u− 〈u〉G‖Lq(G) ≤ C‖∇u‖Lp(Ω), 〈u〉G =

∫

G
u(x) dS

measn−1 G
. (15)

This inequality holds for u ∈ L1,p(Ω) provided

q ≤ p∗∗ =
(n− 1)p

n− p
, if 1 ≤ p < n;

q < ∞, if p = n;

q ≤ ∞, if p > n.

In the quadratic case (that is, p = q = 2), the sharp constant in (15) is

again equal to λ
−1/2
1 , but now λ1 = λS

1 is the smallest positive eigenvalue of
the following mixed (unless G = ∂Ω) Steklov problem:

∆u = 0 in Ω,
∂u

∂n
= λu on G,

∂u

∂n
= 0 on ∂Ω \G.

We recall that n is the exterior unit normal existing almost everywhere on
∂Ω. For n = 2 (n = 3) and particular choices of Ω and G the eigenvalues of
the above problem give sloshing frequencies of the free oscillations of a liquid
in a channel (container, respectively); see, for example, [55, Ch. IX].

In [74], λS
1 is found for several simple domains with different sets chosen

as G. For example, let Ω be a 45◦ right triangle with leg equal to a, then:

• if G is the hypotenuse, then λS
1 =

√
2
a
;

• if G is a leg, then λS
1 =

z
(1)
1 tanh z

(1)
1

a
≈ 2.3236

a
, where z

(1)
1 is the smallest

positive zero of tan z + tanh z = 0;

• if two legs form G, then λS
1 =

2z
(2)
1 tanh z

(2)
1

a
≈ 1.3765

a
, where z

(2)
1 is the

smallest positive zero of tan z · tanh z = 1.

In [74] (see also [86]), some applications of sharp constants in (10) and (15)
are considered. These applications concern quantitative analysis of solutions
and a posteriori error estimation for partial differential equations.

When G = ∂Ω, the estimate analogous to that obtained by Szegő–
Weinberger was found by R. Weinstock [108] (n = 2) and by F. Brock [18]
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(higher dimensions). Namely, a ball in R
n has the largest value of λS

1 among
all domains of the same area/volume.

It should be emphasized that in the critical case (that is, p < n, q = p∗∗)
the sharp constant in (15) is related to that in the following trace Sobolev

inequality for the half-space R
n
+ = {x ∈ R

n : xn > 0}:

‖u(·, 0)‖Lp∗∗ (Rn−1) ≤ C3(n, p) ‖∇u‖Lp(Rn

+), u ∈ L1,p(Rn
+). (16)

In particular, C3(n, p) = 1 for p = 1 which follows from [62, Sect. 1.3].
J. F. Escobar [31] conjectured that if p > 1 in (16), then the extremal

function is equal to |x − x∗|−(n−p)/(p−1), where x∗ /∈ R
n
+ is arbitrary, but

he proved this assertion only for p = 2. Afterwards, the general case was
established in the remarkable paper [67] based on the mass transportation
approach (see also [70]). This result implies that

C3(n, p) =

(

p− 1

n− p

)
1
p′
[ωn−2

2
B

(n− 1

2
,

n− 1

2(p− 1)

)]− 1
(n−1)p′

.

As for the Sobolev–Poincaré inequality, the following is true in the critical
case. The sharp constant in (15) is greater than or equal to C3(n, p) for
Lipschitz domains. Moreover, if Ω is a C2-domain and C > C3(n, p), then
the sharp constant is attained for this Ω. In particular, for any bounded
C2-domain in R

n, n ≥ 3, there exists δ > 0 such that the sharp constant is
attained for 1 < p < n+1

2
+ δ (see [75] for the proof).

Finally, we mention two recent papers dealing with the “geometric” case
p = q = 1. In the first of them [22], A. Cianchi obtained the following formula
for the sharp constant in (15):

C =
2

measn−1 ∂Ω
sup
E⊂Ω

measn−1 (∂E ∩ ∂Ω) ·measn−1(∂Ω \ ∂E)

measn−1 ∂E ∩ Ω
,

where E ranges over all subdomains of Ω with Lipschitz boundary. He also
found the sharp constant for balls. It turns out that for n ≥ 3 the optimal
choice of E is a half-ball and C = (n−1)ωn−1

2ωn−2
, whereas C = 2 and the supremum

is not attained for n = 2.
In the second paper [23], it is proved that the least sharp constant for

Lipschitz domains is attained for balls. (Note that the “geometric” case here
is, at the same time, the critical one, and so the sharp constant depends on
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the shape of Ω, but not on its size.) Moreover, for n ≥ 3 balls are the only
optimal domains, whereas if n = 2, then some nearly circular stadium-shaped
domains yield the same value of the sharp constant.

Acknowledgement. The authors are grateful to Professor Sergey Poborchi
for many useful discussions on the subject of the paper.
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classi di funzioni in più variabili, Rend. Sem. Mat. Univ. Padova, 27 (1957), 284–
305.

[41] I. V. Gerasimov, A. I. Nazarov, Best constant in a three-parameter Poincaré
inequality, Probl. Mat. Anal., 61 (2011), 69–86. (In Russian, English transl. J.
Math. Sci., 179 (2011), 80–99.)

19



[42] G.H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge Univ.
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weighted Sobolev–Poincaré inequalities with distributional weights, Adv. Math.,
232 (2013), 513–542.

[46] F. John, Rotation and strain, Communs Pure Appl. Math., 14 (1961), 391–413.

[47] B. Kawohl, V. Fridman, Isoperimetric estimates for the first eigenvalue of the
p-Laplace operator and the Cheeger constant, Comment. Math. Univ. Carolin., 44
(2003), 659–667.

[48] A. Kneser, Wladimir Stekloff zum Gedächtnis, Jahresber. Deutsch. Math. Verein.,
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St. Petersburg Univ. Press, 2012, 128 pp. (In Russian.)

[73] A. I. Nazarov, S.V. Poborchi, On validity conditions for the Poincaré inequal-
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[89] E. Schmidt, Über die Ungleichung, welche die Integrale über eine Potenz einer
Funktion und über eine andere Potenz ihrer Ableitung verbindet, Math. Ann., 117
(1940), 301–326.

[90] S. L. Sobolev, On a theorem of functional analysis, Mat. Sbornik, N.S., 4 (1938),
471–497. (In Russian, English transl. Transl. Amer. Math. Soc., Ser. 2, 34 (1963),
39–68.)

[91] A. Stanoyevitch, Products of Poincaré domains, Proc. Amer. Math. Soc., 117
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