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Abstract

We study systems on time scales that are generalizations of classical differential
or difference equations. In this paper we consider linear systems and their small
nonlinear perturbations. In terms of the timescale and eigenvalues of a constant
matrix we formulate conditions, sufficient for stability by linear approximation. We
demonstrate that, like in classical cases, those conditions are close to necessary
ones. For non-constant matrices and/or non-periodic time scales we use techniques
of central upper Lyapunov exponents (a common tool of the theory of linear ODEs)
to study stability of solutions. Also, time scale versions of the famous Chetaev
theorem on conditional instability are proved.

Keywords: time-scale system, linearization, Lyapunov function, stability.

1 Introduction

We study dynamic equations on time scales e.g. on unbounded closed subsets of R. The
time-scale approach was quickly developing during last decades. The first advantage is
that it gives a common language that fits both for flows and diffeomorphisms. On the
other hand, there are many numerical methods that correspond to non-uniform steps.
Especially, this is applicable for modeling non-smooth or strongly non-linear dynamical
systems.

Consider a motion of a particle in two distinct media, e.g. water and air. Evidently,
to model such system, it is not effective to use equidistant nodes. It is better to take more
of them inside time periods, corresponding to motions in water. This is a natural way to
obtain a non-trivial time scale in a real life problem.
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In this sense it seems to be useful to generalize some results on stability theory, well-
known for ODEs for time-scale case. Mainly, we consider a general linear system (au-
tonomous or non-autonomous) and its uniformly small non-linear perturbation. For the
continuous dynamics, there exists a well-developed theory on stability by first approxi-
mation. For autonomous case there are classical stability criteria related to eigenvalues
of a matrix A.

For non-autonomous systems and for uncertain cases there might be two approaches.
The first one is based on the theory of Lyapunov functions. The second one involves
integral inequalities where the most important is Grönwall–Bellman inequality. There is
a very powerful tool that allows to find stability of solution via so-called central Lyapunov
exponents.

Exponential stability of a time-varying dynamic equations on a time scale have been
investigated by many authors. We mention recent papers by Bohner and Martynyuk [1]
(this article is also a good introduction to theory of time-scale systems), Du and Tien [2],
Hoffacker and Tisdell [3] and Martynyuk [4].

They have studied asymptotic properties of time-scale systems via Lyapunov functions
and integral inequalities.

However, the following problems were open by now.

1. For constant matrices A, are there any criteria on stability by first approximation?

2. Is there any analog of Chetaev theorem on instability by first approximation for
time-scale systems?

3. Are there any sufficient conditions on stability by first approximation, close to nec-
essary ones?

In our paper we give positive answers to all these questions. The main idea of our
paper is very simple: methods of classical theory of linear non-autonomous differential
equations are applicable for time-scale systems.

More precisely, we have two principal aims. First, we would like to provide suffi-
cient conditions on stability by first approximation. We demonstrate that the obtained
conditions are close to necessary ones. In our proofs, we use the techniques of central
upper Lyapunov exponents. This approach is novel for time scale analysis. Secondly, we
prove two analogs of Chetaev theorem on instability by first approximation. Specifics of
time scales demands a novel, non-classical approach to proof since, generally speaking,
we cannot use tools of the theory of autonomous systems, any more.

The paper is organized as follows. In Section 2 we give a brief introduction to time-scale
analysis mostly related to the concept of ∆ – derivative. In Section 3, we give a review
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on existing results on stability of difference equations. Section 4 is very short, we study
how properties of solutions linear autonomous systems are related with eigenvalues of the
matrix of coefficients. In Section 5 we introduce one of the main characters of our paper:
central upper exponent. Using this concept and Grönwall–Belmann lemma, we transfer
the criterium of stable hyperbolicity for non-autonomous ODEs to the time-scale case. In
Section 6, similarly to what happens in ODEs theory, we construct Lyapunov functions
for time-scale systems as quadratic forms and thus relate stability by first approximation
with certain estimates on eigenvalues of the matrix of coefficients. The rest of the paper
concerns instability. In Section 7 we provide a time-scale generalization of the classical
Millionschikov’s result on accessibility of the upper center exponent. As a corollary, we
deduce a time scale version of the criterium on instability by first approximation [5].
In Section 8 we give two time-scale version of Chetaev Theorem and a criterium on
instability by first approximation. For reuslts of Section 7 we need some details of the
original Millionschikov’s proof so we reproduce it in appendix. Then Conclusion and
Discussion section is given.

2 Time-scale analysis

Let a time scale T be an unbounded closed subset of R with the inherited metrics. We
use following notions: [a, b]T = {t ∈ T; a ≤ t ≤ b} provided a, b ∈ T, a < b. We set
T+
a = [a,∞)

⋂
T. We introduce now some basic notions connected to the theory of time

scales, which summarize the material from the recent book by Bohner and Peterson [10].
Introduce some other notions. Let Mn,n be the space of n× n complex matrices, | · |

stand for a vector norm in Rn or Cn and the corresponding operator norm. We consider
two spaces of matrix functions: MR that is a space of continuous functions A : R → Mn

and MT that is the space of similarly defined functions P : T → Mn.
Definition 1. Let t ∈ T. We define the forward jump operator σ : T → T by σ(t) :=
inf{s ∈ T; s > t} and backward jump operator ρ(t) := sup{s ∈ T; s < t}.

In this definition, we set inf ∅ = ∞ and sup ∅ = −∞. If σ(t) > t, we say that t is
right-scattered, while if ρ(t) < t, we say that t is left-scattered. Also, if σ(t) = t, then
t is called right- dense, and if t > inf T and ρ(t) = t, then t is called left-dense. The
graininess function µ : T → [0,∞) is defined by µ(t) := σ(t)− t.
Definition 2. The function f : T → R is called ∆ - differentiable at a point t ∈ T if there
exist γ ∈ R such that for any ε > 0 there exists a W–neighborhood of t ∈ T satisfying

|[f(σ(t))− f(s)]− γ[σ(t)− s]| ≤ ε|σ(t)− s|

for all s ∈ W . In this case we write f∆(t) = γ. When T = R, x∆(t) = ẋ(t). When T = Z,
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x(t) is the standard forward difference operator x(n + 1)− x(n).
Definition 3. A function f : T → R is called rd-continuous provided it is continuous
at right-dense points in T and left-sided limits exists (finite) at left-dense points in T.
Denote the class of rd-continuous functions by Crd = Crd(T) = Crd(T,R).
Definition 4. If F∆(t) = f(t), t ∈ T, then F is a ∆ - antiderivative of f and the Cauchy
∆ - integral is given by

∫ s

τ

f(t)∆t = F (s)− F (τ), for all s, τ ∈ T.

The following result has first been proved in [10].
Theorem A. Let t0 ∈ T and w : T × T → R be continuous at (t0, t), for all t ∈ T with
t > t0. Assume that w∆(t, .) is rd-continuous on [t0, σ(t)]. Suppose that for each ε > 0
there exists a neighborhood U of t, not depending on τ ∈ [t0, σ(t)], such that

|w(σ(t), τ)− w(s, τ)− w∆(t, τ)(σ(t)− s)| ≤ ε|σ(t)− s| ∀s ∈ U,

where w∆ denotes the derivative of w with respect to the first variable. Then

g(t) =

∫ t

t0

w(t, τ)∆τ

implies

g∆(t) =

∫ t

t0

w∆(t, τ)∆τ + w(σ(t), t).

Definition 5. A function p : T → R is called regressive provided that 1+µ(t)p(t) 6= 0 for
all t ∈ T. The set of all regressive and rd-continuous functions is denoted byR = R(T,R).
The set R+ of all positively regressive function is

R+ = {p ∈ R : 1 + µ(t)p(t) > 0 ∀t ∈ T}.

A matrix mapping A : T → Mn(R) is called regressive if for each t ∈ T the n× n matrix
E+µ(t)A is invertible, where E the identity matrix. The matrix function A(t) : T → Mn,n

is called uniformly regressive if the matrix function (E + µ(t)A(t))−1, is bounded.
We use the cylinder transformation to define a generalized exponential function for an

arbitrary time scale T.
Definition 6. If p ∈ R(T,R), then define the generalized exponential function ep(t, s) by

ep(t, s) = exp

(∫ t

s

ξµ(τ)p(τ)

)
∆τ (1)
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where ξhz is the cylinder transformation given by

log(1 + zh)

h

if h 6= 0 and z if h = 0.
Remark. Consider the regressive dynamic initial value problem

x∆(t) = p(t)x(t), x(t0) = x0, t0 ∈ T. (2)

The exponential function x(t) = ep(t, t0)x0 is the unique solution of (2). For what
follows, we need several theorems given below.
Theorem B (Comparison Theorem). Let t0 ∈ T, x, f ∈ Crd and p ∈ R+. Then
x∆(t) ≤ p(t)x(t) + f(t), for all t ∈ T

+
t0
implies

x(t) ≤ x(t0)ep(t, t0) +

∫ t

t0

ep(t, σ(τ))f(τ)∆τ, ∀t ∈ T
+
t0
.

It is clear from the proofs of the last two results by Bohner and Peterson [10] that in
each case, reversing the inequalities in the assumptions yields corresponding lower (instead
of upper) estimates for the solution.
Remark. If p is an rd-continuous function, then

1 +

∫ t

a

p(u)∆u ≤ ep(t, a) ≤ exp

(∫ t

a

p(u)∆u

)
∀t ∈ T

+
a .

Later on we always assume that matrices of considered linear systems are regressive so
that any Cauchy problem for the corresponding linear homogenous system has a unique
forward solution.
Definition 7. Let t0 ∈ T. The unique matrix-valued solution of the initial value problem

X∆(t) = A(t)X(t), X(t0) = En, (3)

where A ∈ CrdR(T,Mn(R)) is called the matrix exponential function and it denoted by
ΦA(t, t0). Accordingly, the matrix function ΦA(t, t0) possesses following two properties:

Φ∆
A(t, t0) = A(t)ΦA(t, t0), ΦA(t0, t0) = En.

This matrix function is referred to as the state transition matrix, and our assumption
in the nature of A(t) turns out that the state transition matrix exists and is unique.
Theorem C. Suppose A,B ∈ Crd(T,Mn(R)) are regressive matrix-valued functions on
T, then
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(i) ΦA(t, r)ΦA(r, s) = ΦA(t, s) for r, s, t ∈ T such that all terms of the expession above
are well-defined;

(ii) ΦA(σ(t), s) = (E + µ(t)A(t))ΦA(t, s);

(iii) If T = R and A is constant, then ΦA(t, s) = exp(A(t− s));

(iv) If T = hZ,with h > 0, t, s ∈ T and A is constant, then Φ(t, s) = (E + hA)
t−s

h .

3 Types of stability

Let us consider a linear system
x∆ = A(t)x (4)

and its nonlinear perturbation

x∆ = A(t)x+ f(t, x). (5)

Definition 8.

a) System (4) is said to be stable if, for every t0 ∈ T and for every ε > 0 there exists a
δ = δ(ε, t0) > 0 such that |x0| = |x(t0)| < δ implies

|x(t, t0, x0)| < ε, (6)

for all t ∈ T+
t0
.

b) System (4) is said to be uniformly stable if it is stable and for every ε > 0 there
exists a δ = δ(ε) > 0 independent on initial point t0, such that inequality (6) is
satisfied.

c) System (4) is said to be uniformly asymptotically stable if it is uniformly stable and
it is uniformly attractive, i.e., there exists a positive constant c, independent of t0,
such that |x0| < c implies x(t, t0, x0) → 0, t → +∞ uniformly w.r.t. t0.

S.K.Choi and al. [6] proved that the stability of (4) is equivalent to the bounded-
ness of all its solutions when A ∈ R(T,Mn(R)). Also, DaCunha [7] proved that the
uniform stability of (3) is equivalent to the uniform boundedness of all its solutions with
respect to the initial state (t0, x0), when A ∈ R(T,Mn(R)). He obtained the following
characterization of uniform stability by means of the operator norm.
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Theorem D (DaCunha, [7]). Linear system (4) is uniformly stable if and only if there
exists a positive constant γ, such that |ΦA(t, t0)| ≤ γ, for all t ∈ T+

t0
. It is uniformly

exponentially stable if and only if there exist a positive constants λ and γ ≥ 1 independent
on initial point t0, such that |ΦA(t, t0)| ≤ γ exp(−λ(t− t0)), holds for all t ∈ T

+
t0
.

4 Uniformly regressive autonomous linear systems

Let T be a time scale. Let ∆ and µ(t) be the corresponding graniness function, A be a
constant n× n matrix.

Denote eigenvalues of the matrix A by λk.
Lemma 1. The following two statements are equivalent.

1.
|λkµ(t) + 1| > 0. (7)

2. System
x∆ = Ax, x ∈ R

n (8)

is uniformly regressive.

Particularly, solutions of Eq. (8) are unique and have finite Lyapunov exponents.
To prove this lemma, it suffices to reduce system (8) to the normal form and thus

reduce it to a set of linear first order equations.
Later on, we always assume that inequality (7) is true unless the opposite statement

is specified.

5 Stability. Grönwall-Bellmann approach.

Unlike cases diffeomorphisms and flows, it seems that autonomous systems do not play
that important role in general timscale dynamics. The reason is trivial, generally speaking,
time scale is not invariant with respect to shifts.

The principal aim of this section is to establish a criterium on stability of a solution
of a time scale system by first approximation. We use a tool, well-known in the theory of
linear systems that is central upper exponents.

Consider systems (4) and (5) where

|f(t, x)| ≤ ε|x| (9)
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Let Φ(t, s) be the fundamental matrix of (4). We say that u(t) : T → R is upper
function for system (4) if there exists a C > 0 such that for all t ≥ s, t, s ∈ T

|Φ(t, s)| ≤ Ceu(s, t)

(see (1) for definition of generalized exponent). Let U be the set of all upper functions of
(4). We call the value

χ(A) = inf
u∈U

lim sup
t→∞

1

t

∫ t

s

u(τ)∆τ.

Observe that this central exponent is not less than the greatest Lyapunov exponent
for solutions of system (4). On the other hand, it is not greater than

lim sup
1

t

∫ t

0

|A(s)|∆s.

Remark. Center exponents may be greater than senior Lyapunov exponents. This can
be illustrated by the following example given by Perron [8] for linear systems of ordinary
differential equations. Take α ∈ (0.5, 0.5 + exp(−π)/4) and consider the system

ẋ = −αy;
ẏ = (sin log t+ cos log t− 2α)y

(10)

and the perturbed one

ẋ = −αy;
ẏ = (sin log t + cos log t− 2α)y + µ exp(−αt)x

(11)

where µ is a small parameter. Both considered systems are integrable. Lyapunov expo-
nents for solutions of Eq. (10) equal to −α and 1− 2α, so, they are negative. The senior
exponent of Eq. (11) equals to 1− 2α+exp(−π)/2 > 0. In fact, this is the central upper
Lyapunov exponent for system (10).
Theorem 1. If χ(A) < 0, there exists ε > 0 such that for any f satisfying (9), the zero
solution of Eq. (5) is asymptotically stable.

This statement is very close to Lemma 3.1 of [1].
To prove it we use the time-scale version of Grönwall-Bellmann lemma for time-scale

systems first given in [10]. Denote T
+
t0
= {t ∈ T : t ≥ t0}.

Lemma (Grönwall-Bellmann Inequality). Let t0 ∈ T, x, g ∈ Crd and p ∈ R+, p ≥ 0.
Then

x(t) ≤ g(t) +

t∫

t0

x(s)p(s)∆s for all t ∈ T
+
t0
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implies

x(t) ≤ g(t) +

∫ t

t0

ep(t, σ(s))g(s)p(s)∆s for all t ∈ T
+
t0
.

Proof of Theorem 1. Any solution x(t) of Eq. (5) satisfies the non-homogenous linear
system

x∆ = A(t)x+ f(t, x(t).

So,

x(t) = x(t0)Φ(t) +

∫ t

t0

Φ(t, s)f(s, x(s))∆s

and we can write down the inequality

|x(t)| ≤ |Φ(t)||x(t0)|+

∫ t

t0

|Φ(t, s)|ε|x(s)|∆s (12)

that is true for t ∈ T
+
t0
. Fix an upper function u with the upper mean value χ ∈ (χ(A), 0).

It follows from (12) that

|x(t)| ≤ |x(t0)|eu(t0, t) + Cε

∫ t

t0

eu(t, s)|x(s)|∆s.

Let
v(t) = |x(t)|eu(t, t0).

Then

v(t) ≤ v(t0) + Cε

∫ t

t0

v(s)∆s

and, consequently, due to Grönwall – Bellmann Lemma

v(t) ≤ v(t0)eCε(t, t0).

This finishes the proof �.
Now we proceed to the case of the constant matrix A and, respectively, to system (8).

Let λk be eigenvalues of the matrix A (k = 1, . . . , n). Define

νk = lim sup
t→∞

Re
1

t

∫ t

t0

ξµ(t)λk∆t

(see (1) for definition of the transformation ξµ).
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It is evident that system (8) is exponentially asymptotically stable if all νk < 0.
Reducing system (8) to the normal form, we can easily see that

χ(A) ≥ max νk. (13)

There is at least one important case, when inequality (13) becomes equality.
Definition 9. We call the time scale T periodic if there exists t0 > 0 such that T = T+t0.

Similarly to Floquet theory, we can reduce an autonomous system on a periodic time-
scale to a discrete system on the time scale Z. Namely, there exist a κ ∈ [0, t0) such that
the time scale T0 = t0Z+ κ is such that

1. T0 ⊂ T;

2. There exists a constant matrix B and a time scale system

x∆ = Bx (14)

on the time scale T0 such that the reduction of the fundamental matrix Φ(t, 0) of
system (8) is a fundamental matrix of system (14).

Then central upper exponents of systems (8) and (14) coincide and χ(A) = max νk.
For some non-periodic time scales center upper exponents of constant matrices may

still be calculated explicitly. We use a concept, similar to one, well-known in Combina-
torics.
Definition 11. The time scale T is syndetic if supt∈T µ(t) < +∞.

Using technique of normal forms, we can write down a precise formula for center upper
exponents of linear autonomous systems on syndetic time scales. Given a syndetic time
scale T, for any t ∈ R we introduce [t]T = sup{s ∈ T, s ≤ t} (observe that this is not
ρ(t)). Then, similarly to see [9, Page. 116, Eq. (8.7)] , we can prove that

χ(A) = lim
T→∞

lim sup
k→∞

1

kT

k−1∑

i=0

∫ [(i+1)T ]T

[iT ]T

max
j

Re ξµ(t)λj ∆t.

For non-syndetic time scales we only can say that

χ(A) ≤ lim sup
t→∞

1

t

∫ t

t0

maxRe ξµ(t)λk∆t.
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6 Stability by first approximation

First of all, we recall, the ”time-scale” version of Lyapunov theorem on asymptotic sta-
bility by first approximation, proved in [11].
Definition 11. Let r > 0. We say that V (t, x) : T×B(0, r) is a strict Lyapunov function
for a time scale system

x∆ = F (t, x), t ∈ T, x ∈ R
n, F (t, 0) ≡ 0. (15)

if the following conditions are fulfilled.

1. For all t, x we have V (t, x) ≥ w+(x) where w+(x) : B(0, r) → R is a positive definite
function.

2.
∂V

∂t
(t, x) +

∂V

∂x
(t, x)F (t, x) < −w−(x)

for all t ∈ D.

3. V (σ(t), x + µ(t)F (t, x)) < −µ(t)w(x) for all t ∈ S, x ∈ Ωt

⋂
B(0, r). Here w−(x) :

B(0, r) → R is a positive definite function.

Lyapunov Theorem [10].If there is a strict Lyapunov function for system (15), then
the zero solution of the considered system is asymptotically stable.
Theorem 2.If the matrix A is stable hyperbolic then there exists ε > 0 such that for for
any a > 0 and any f : T × B(0, a), satisfying condition (9) the solution x = 0 of the
system

x∆ = Ax+ f(t, x) (16)

is asymptotically stable.
First of all, we prove the following lemma.

Lemma 2.If the matrix A is stable hyperbolic, system (16) has a Lyapunov function that
is a quadratic form V (x) = xTBx where B is a positively defined matrix.
Proof. Making a non-degenerate transformation x = Sy, we can reduce system (8) to
the form

y∆ = Jy (17)

where J = diag(J1, . . . , Jk) where for any i = 1, . . . , k either

Jm =




λ 0 0 . . . 0
δ λ 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 δ λ


 = λE + δI
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for a real eigenvalue λ or

Jm =




Λ 0 0 . . . 0
δE2 Λ 0 . . . 0
. . . . . . . . . . . . . . .
0 . . . 0 δE2 Λ




where

Λ =

(
α β
−β α

)
, E2 =

(
1 0
0 1

)

for a pair of eigenvalues α± iβ. A parameter δ > 0 may be selected arbitrarily small.
Observe first of all that it suffices to prove existence of the desired quadratic form for

Eq. (16) and, consequently, for every system

z∆ = Jmz. (18)

We select V (z) = z2 for Eq. (18). Direct calculations demonstrate that

(z2)∆ = 2(z, z∆) = 2λz2 + 2δzT Iz ≤ λz2 < 0

for small δ and z 6= 0 provided λ is real. Similarly, we can demonstrate that

(z2)∆ ≤ αz2

for a block, corresponding to a pair of eigenvalues with a negative real part α. This proves
the lemma. �

Now the statement of Theorem 2 follows from Lyapunov Theorem.

7 Instability via Millionschikov’s rotations

Now we prove a statement that is in a certain sense converse to Theorem 1.
Theorem 3. Let the matrix A(t), corresponding to system (4) be bounded, uniformly
regressive and

χ(A) > 0. (19)

Let the time scale T be such that

lim inf
T∋t→∞

χ(A)t− µ(t) sups |A(s)|

σ(t)
> 0. (20)
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Then for any ε > 0 there exists a matrix Bε(t) such that

sup |Bε(t)| ≤ ε

such that the system
x∆ = (A(t) +Bε(t))x (21)

is unstable. For syndetic time scales the similar statement is true if χ(A) = 0.
Remark. Evidently, (19) implies (20) for syndetic time scales.
Corollary. In conditions of Theorem 3 there exists a continuous map f : T+

0 ×B(0, 1) →
Rm such that

1. f(t, 0) = 0 for any t ≥ 0;

2.
∂f

∂x
(t, 0) = 0 for any t ≥ 0;

3. the Jacobi matrix
∂f

∂x
(t, x)

is uniformly continuous at [0,∞)×B(0, 1) (particularly, it is bounded);

4. the solution x(t) = 0 of the corresponding system (5) is unstable.

Proving Theorem 3, we essentually base on the proof of the main result of [12], orig-
inally proved for ordinary differential equations. We have to reproduce it literally (see
Appendix). We observe that the similar statement is true for linear systems over Cn. The
matrix A(t) can also be taken imaginary.
Proof of Theorem 3. First of all, observe that a linear uniformly regressive system on
a time scale can be embedded to a linear system of ordinary differential equations with a
bounded matrix.

Let t /∈ T. We define
t− = sup(T

⋂
(−∞, t]) =: [t]T.

Given a time scale system (4), we introduce a system of ordinary differential equations

ẋ = Ã(t)x (22)

The matrix Ã(t) that can be imaginary is defined by formulae: Ã(t) = A(t) if t ∈ T;

Ã(t) =
1

µ(t−)
Log (E + µ(t−)A(t−)) if t /∈ T.
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Logarithm of a matrix is never unique. Sometimes it cannot be selected real. For a
given value t− we take a same branch for t ∈ (t−, σ(t−)) so that Ã was continuous and
bounded provided A is.

Any solution of Eq. (22), restricted to the time scale T, is a solution of time scale
system (4). Moreover, if the solution is unbounded, it is also unbounded on the time scale

T (matrix Ã(t) is constant on every connected component of R \ T).
Given a bounded continuous and uniformly regressive matrix A(t), a small value σ > 0,

a matrix norm | · | and a time scale T, we introduce the set

Ξ = {P = A+B ∈ MR : sup |B(t)| ≤ σ}.

Given an extension Ã can select a continuous nonlinear operator

L : MT → MR

so that if B ∈ Ξ, B̃ = LB, the reduction of the Cauchy matrix Φ(t, s) of the system of
ordinary differential equations

ẋ = (Ã(t) + B̃(t))x (23)

to T× T is the Cauchy matrix of the system

x∆ = (A(t) +B(t))x. (24)

Additionally, we assume that the matrix Ã(t) + B̃(t) must be constant out of T.

Given a matrix B̃(t)) we may construct a fundamental matrix of Eq. (23). Reducing
this fundamental matrix to T, we obtain a fundamental matrix of (24) that reconstructs

a matrix B(t). In this case we set B = L̃B̃. This operator L̃ is continuous and left inverse
to L.
Remark. For non-syndetic time scales operator L is still continuous. Operator L̃ is not
continuous. More precisely, there might exist a small matrix B̃ such that L̃B̃ is continuous
and unbounded with respect to t.

We start with the case when χ(A) > 0.

Let P̃ = Ã + B̃ be an ε – small perturbation of the matrix A that makes the senior
exponent of system (24) positive. Consequently, the system itself becomes unstable.

So, any fundamental matrix of this system is unbounded with the Lyapunov exponent
close to χ(A). Due to (20), the reduction of the fundamental matrix to the time scale
does also have a positive Lyapunov exponent.

It follows from the proof of Millionschikov’s theorem (see Appendix) that for every t0
such that µ(t0) 6= 0 there exist at most two subsegments of [t0, σ(t0)) where B̃(t) 6= 0.
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Moreover, length of all such segments is uniformly bounded and does not depend on
parameters of the time scale. The reason is very simple: for any t0 the reduction of Ã(t) is
a constant matrix, so all initial conditions xi,corresponding to solutions of maximal growth
(see Appendix, Eq. (43)), coincide. Following the lines of the proof of Millionschikov’s
Theorem we see that for any splitting of [t0, σ(t0)) to segments of length T , only the
first and the last of corresponding rotations (and, consequently, perturbations) may be
non-zero.

This means that there exists a C > 0 such that sup |B̃(t)| < ε implies sup |B(t)| < Cε
for small values of ε. To finish the proof it suffices to take ε ≤ χ(A)/(2C + 1).

Now we study the case when χ(A) = 0. First of all, observe that the transformation
y = exp(εt)x transferes a system

ẋ = P (t)x

to ẏ = (P (t) + εE)y.
So, if a family of perturbations Bn(t) makes senior exponents systems

ẋ = (Ã(t) +Bn(t))x

tending to zero, there exists a sequence εn → 0 such that senior exponent of the system

ẋ = (Ã(t) +Bn(t) + εnE)x

is positive. If the time scale T is syndetic, the corresponding perturbations of the time
scale system do also tend to zero that finishes the proof. �
Proof of Corollary. Let B̃n(t) is the perturbation that exists due to Theorem 3 and
such that

1) Bn(t) ≤ 2−n;

2) systems
x∆ = (A(t) +Bn(t))x (25)

are all unstable.

Fix an unbounded solution x1(t) of system (25) (n = 1) such that |x1(0)| = 1. Select
T1 so that |x1(T1)| = 2, |x1(t)| < 2 while 0 ≤ t < T1. Then we construct an unbounded
solution x2(t) of system (25) (n = 2) such that |x2(t)| < |x1(t)|/2 for 0 ≤ t ≤ T1. Given
x2(t) we select the first time instant T2 such that |x2(T2)| = 2. Then we construct x3(t)
and T3 and so on.

Evidently, Tn+1 > Tn for any n and xn(0) → 0.
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Now we are ready to construct a map f : [0,∞) × B(0, 1) → RN , that satisfies
conditions of the theorem. Set ǫn(t) = |xn(t)|/4 for t < Tn. Evidently, all ǫn(t) are
continuous; ǫn(t) > 0 for all n t < Tn and

|xn(t)− xk(t)| > |ǫn(t)|+ |ǫk(t)|,

if t < min(Tk, Tn). This follows from inequalities

|xn(t)| < |xn−1(t)|/2 < · · · < |xk(t)|/2
n−k,

that are true if n > k.
Consider a function φ : [0,∞) → [0,∞) with following properties:

1) φ ∈ C∞([0,∞));

2) φ(t) = 1 for t ≤ 1/10; φ(t) = 0 if t ≥ 1;

3) −2 < φ′(t) < 0 if 1/10 < t < 1.

For any pair (t, x) ∈ [0,∞)× B(0, 1) we set

Ψn(t, x) =

{
φ(|x− xn(t)|

2/ǫ2n(t))Bn(t), if |x− xn(t)| ≤ ǫn(t), t < Tn;
0 otherwise.

All Ψn vanish in left neighborhoods of Tn for all x ∈ B(0, 1). Since 0 ≤ φ(τ) ≤ 1 for
all τ and |Bn(t)| < 1/2n, we obtain Ψn(t, x) < 1/2n for all t and x. Define

F (t, x) =

{
Ψn(t, x), if exists n: Ψn(t, x) 6= 0;
0, if such n does not exist.

(26)

For any fixed t and x there exists at most one such number n.
It follows from (26) that

F (t, x) =

∞∑

n=1

Ψn(t, x). (27)

Since |Ψn(t, x)| < 1/2n, (27) implies that F is uniformly continuous w.r.t. x. Since
εn(t) = |xn(t)|/4, we have F (t, 0) = 0. Introduce f(t, x) = F (t, x)x. Let us prove that
f ∈ C1

x.
Since for any xn(t) ⇒ 0 on compact subsets of [0,+∞), for any ε > 0 the reduction of

sum (27) to [0, T ]×Rm \B(0, ε) may contain a finite number of non-zero terms only. All
these terms are C1 smooth with respect to x. Consequently, for any (t, x) such that x 6= 0
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the Jacobi matrix ∂f/∂x(t, x) is correctly defined and locally continuous. Moreover, for
any i = 1 . . .m:

∂f

∂xi

(t, x) = Fi(t, x) +
∂F

∂xi

(t, x) · x, (28)

where x = col(x1, . . . , xn), and Fi is the i-th column of the matrix F.
Let

Θni(t, x) =
∂Ψn

∂xi

(t, x) = 2
(xi − xni(t))φ

′(|x− xn(t)|
2/ε2n(t))Bn(t)

ε2n(t)
.

Here xni(t) is the i-th component of the vector xn(t). We have demonstrated that the first
term of the right hand side of (28) is uniformly continuous with respect to x and equals
0 if x = 0. We prove that the similar is true for the second term if we set it equal to zero
if x = 0.

Indeed,

∂F

∂xi

(t, x) · x =






Θni(t, x) · x,
if there exists n such that |x− xn(t)| ≤ εn(t), t < Tn;
0, if such n does not exist.

(29)

Each solution xn(t) is bounded away from zero while t ≤ Tn. So, for any N ∈ N there
exists a δ > 0 such that if given (t, x) : |x| < δ there exists n, that corresponds to this
pair in the sense of (26) and (29), it cannot be less than N. So,

|x| < |xn(t)|+ |x− xn(t)| ≤ |xn(t)|+ εn(t) = 5εn(t).

This implies that

|Θni(t, x) · x| = 2
|xi − xni(t)| |φ

′(|x− xn(t)|
2/ε2n(t))| |Bn(t)| |x|

ε2n(t)
≤

≤ 4
|xi − xni(t)|

εn(t)
·

|x|

εn(t)
· |Bn(t)| ≤ 4

|Bn(t)|5εn(t)

εn(t)
≤ 20/2n.

(30)

It follows from (27) that:

∂F

∂xi

(t, x) · x =
∞∑

n=1

Θni(t, x) · x. (31)

All terms of (31) are uniformly continuous, which follows from (30). Moreover, series
(31) can be estimated by

∑
∞

n=1 20/2
n. So, due to Weierstrass theorem, the second term

of (28) is continuous. Then the constructed mapping f satisfies conditions 1. — 4. It
follows from (26) that A(t)xn(t) + f(t, xn(t)) = An(t)xn(t) for all n and t ∈ [0, Tn]. Then
all xn(t) are solutions of (5). This demonstrates that the zero solution of (5) is unstable.
�
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8 Instability via Chetaev theorem

Now we prove an analogue of famous Chetaev theorem on instability by first approxima-
tion for time-scale systems.

Consider a time-scale system (15). Recall that it has the zero solution. Represent
T = S

⋃
D where S is the set of right-scattering points and D is the set of right-dense

points. Evidently, this is a disjoint union.
Let B(0, r) be the r – ball in Rn, centered at zero.

Definition 12. We say that a continuous function V (t, x) : T×Rn is a Chetaev function
for Eq. (15) if there exists a family of domains Ωt ⊂ Rn such that the folowing conditions
are satisfied.

1. 0 ∈ ∂Ωt for all t ∈ T (here the symbol ∂ denotes boundary);

2. V (t, x) > 0 for all t ∈ T, x ∈ Ωt

⋂
B(0, r);

3. V (t, x) = 0 for all t ∈ T, x ∈ ∂Ωt

⋂
B(0, r);

4. for any ε > 0 there a is δ > 0 such that the inequality V (t, x) > δ implies |x| > ε
(this can be called uniform continuity in a neighborhood of zero);

5. there exists a function w(x) such that w(0) = 0, w(x) > 0 for all x 6= 0 and

∂V

∂t
(t, x) +

∂V

∂x
(t, x)F (t, x) ≥ w(x)

for all t ∈ D, x ∈ Ωt

⋂
B(0, r);

V (σ(t), x+ µ(t)F (t, x))− V (t, x) ≥ µ(t)w(x)

for all t ∈ S, x ∈ Ωt

⋂
B(0, r).

Here we recall that σ(t) = t+ µ(t).
Theorem 4. If there is a Chetaev function for system (15), then the trivial solution of
this system is unstable.
Proof. Suppose that the zero solution is stable despite the existence of the Chetaev
function. Fix a t0 ∈ T. Consider the domain A = (T × B(0, r))

⋂
Ωt0 . Fix x0 ∈

A sufficiently close to the origin. Define Ax0
= {(t, x) : x ∈ Ωt

⋂
B(0, r), V (t, x) ≥

V (t0, x0)}. This set is non-empty, moreover, due to stability of zero solution, we can
select x0 so that (t, x(t, t0, x0)) ∈ Ax0

for all t. Here x(t, t0, x0) is the solution of (4)
corresponding to initial conditions x(t0) = x0.
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Indeed, this solution (provided |x0| is small) cannot leave the ball B(0, r) due to sta-
bility of zero solution. Observe that the function V (t, x(t, t0, x0)) increases as t increases.
So, starting with positive values of this function, the solution cannot leave the domain
Ax0

via the part of the boundary, given by the condition V (t, x) = V (t0, x0) while t ∈ D.
Neither, the solution cannot intersect the boundary ∂Ωt, t ∈ D.

Due to similar reasons, it is impossible that V (t, x(t, t0, x0)) < V (t0, x0) (that also
includes the case V (t, x(t, t0, x0))) ≤ 0 for a t ∈ S).

On the other hand

V (t, x(t, t0, x0))− V (s, x(s, t0, x0)) ≥ γ(t− s)

where t > s, t, s ∈ T while (t, x(t, t0, x0)) ∈ Ax0
. Here

γ = min{w(x) : (t0, x) ∈ Ax0
}.

This gives a contradiction since the the function V (t, x(t, t0, x0)) must be bounded. �
Now we consider another type of Chetaev functions.

Definition 13. We say that a continuous function V (t, x) : T × Rn is a second type
Chetaev function for Eq. (15) if there exists a family of domains Ωt ⊂ Rn and a function
γ : T → R such that

1. items 1–4 of Definition 12 are satisfied;

2. lim sup
T→∞

1

T

T∫
0

ξµ(t)γ(t)∆t > 0;

3.
∂V

∂t
(t, x) +

∂V

∂x
(t, x)F (t, x) ≥ γ(t)V (t, x) (32)

for all t ∈ D, x ∈ Ωt

⋂
B(0, r);

V (σ(t), x+ µ(t)F (t, x))− V (t, x) ≥ µ(t)γ(t)V (t, x) (33)

for all t ∈ S, x ∈ Ωt

⋂
B(0, r).

Theorem 5. If there is a second type Chetaev function for system (15), then the trivial
solution of this system is unstable.
Proof. Similarly to proof of Theorem 4 and due to Grönwall – Bellmann lemma, we
demonstrate that (32) and (33) imply that

V (t, x(t, t0, x0)) ≥ eγ(t, t0)V (t0, x0)
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while (t, x(t, t0, x0)) ∈ Ωt. This means that the left hand side of this inequality cannot be
bounded. �

Now we are ready to prove an analogue of the classical theorem on instability by first
approximation. Let a > 0. Consider the class Fa of functions f : T+

0 × B(0, a) → Rm

satisfying conditions

1. f(t, 0) = 0 for any t ≥ 0;

2.
∂f

∂x
(t, 0) = 0 for any t ≥ 0;

3. the Jacobi matrix
∂f

∂x
(t, x) is uniformly continuous at [0,∞)× B(0, 1).

Theorem 6. Let T be a syndetic time scale. If one of values νk corresponding to a
constant matrix A is positive, then there exists ε > 0 such that for for any a > 0 and any
f : T×B(0, a), f ∈ Fa the solution x = 0 of system (16) is unstable.
Proof. Fix a δ > 0 First of all, applying an invertible linear transformation x = Sδy, we
may reduce the time scale system (16) to the form

y∆ = Jδy + g(t, y) (34)

where g(t, y) = S−1
δ f(t, Sδy) ∈ Fa, Jδ is the real normal form of the matrix A defined by

(17). This transformation does not hurt stability or instability of the trivial solution.
Without loss of generality we assume that ν1 ≥ ν2 ≥ . . . νn. For Eq. (34), we select

m ∈ {1, . . . , n} so that νm > 0, νm+1 ≤ 0 or set m = n if νm > 0. Let

V =
m∑

i=1

y2i −
n∑

i=m+1

y2i .

Let Ω = Ωt be one of connected components (cones) that correspond to the inequality
V > 0. Direct calculations demonstrate that for small value of δ the function V is a second
type Chetaev function for Eq. (34) in a vicinity of zero. Here we may take γ = Re λm−δ.
�

Appendix. Proof of Millionschikov’s theorem.

Theorem (Millionschikov). Let the matrix A(t), corresponding to system

ẋ = A(t)x (35)
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be bounded, and continuous. Let the central upper Lyapunov exponent of system (35) be
equal to Ω. Then for any ε > 0 there exists a matrix Bε(t) such that

sup |Bε(t)| ≤ ε (36)

and the seniour exponent of the system

ẋ = (A(t) +Bε(t))x (37)

is greater than Ω− ε.
Proof. We start with the main idea of the proof. Consider the Cauchy matrix Φ(t, s)
and a value T > 0 so that the value

lim sup
k→∞

1

kT

k−1∑

i=0

ln |Φ((i+ 1)T, iT )| (38)

is close to χ(A) = Ω (see [9]). Let xi (i = 0, 1, 2, . . . ) be the unit vector such that

|Φ((i+ 1)T, iT )xi| = |Φ((i+ 1)T, iT )|.

Let xi(t) = Φ(t, iT )xi.
It is x0(t) that has the quickest growth among solutions of (35). Without loss of

generality, we may say that on [T, 2T ], the solution x1(t) increases faster than x0(t).
We perturb system (35) in the following way. First of all, we rotate the solution x0(t)

in the plain 〈x0(t), x1(t)〉 by angle ε. This can be done on a time segment of length ≪ T .
Then, for greater values of t, we set perturbation equal to zero. Since x1(t) increases
faster than x0(t), the angle between solutions y0(t) and x1(t) becomes ≤ ε. This happens
on a time period of length ≪ T . Then we perturb system (35) so that y0(t) becomes
parallel to x1(t). Then we set perturbation equal to zero up to t = 2T.

Similarly, we consider segment [2T, 3T ] and later ones. Finally, we obtain a solution
y0(t) of the perturbed system that has Lyapunov exponent, close to Ω.

Now we proceed to the detailed proof. Fix a ε > 0.
1) Given a triangle ABC, due to Sine Theorem

BC

AC
=

sin∢A

sin∢B
≥ sin∢A. (39)

Fix a T0 so that
exp(εT0/2) · sin

2 ε ≥ 1. (40)
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Let triangles △ABC △A1B1C1 be such that

B1C1

A1C1
:
BC

AC
≥ exp(εT0/2); ∢A = ε. (41)

Then (39), (40) and (41) imply that

sin∢B1 ≤
A1C1

B1C1
≤ exp(−εT0/2) ·

1

sin ε
≤ sin ε.

Since A1C1/B1C1 ≤ 1 we have ∢B1 ≤ ∢A1, and, consequently, ∢B1 ≤ π/2). Therefore,
∢B1 ≤ ε.
2) Fix a fundamental matrix Φ(t) of system (35) and set Φ(t, s) = Φ(t)Φ−1(s). Fix a
T > 0 so that 4(2a+ ε)T0/T < ε/4 (here a = sup |A(t)|),

T/T0 = s − is an integer,

lim sup
k→∞

1

kT

k−1∑

i=0

ln |Φ((i+ 1)T, iT )| > Ω−
ε

4
. (42)

3) Take a unit vector xi (i = 0, 1, 2, . . . ) such that

|Φ((i+ 1)T, iT )xi| = |Φ((i+ 1)T, iT )|. (43)

Let
xi(t) = Φ(t, iT )xi (44)

be solutions of Eq. (35).
Set Bε(t) = 0 for 0 ≤ t ≤ T. Suppose that

|x1(2T )|

|x1(T )|
:
|x0(2T )|

|x0(T )|
≥ exp

(
εT

2

)
.

If this is wrong, we set Bε(t) = 0 for T < t ≤ 2T.
Divide the segment [T, 2T ] to s segments of length T0: Q1, Q2, . . . , Qs. Let Qj0 be the

first of segments Qi = [ai, bi] (i = 2, 3, . . . , s− 1), where

|x1(bi)|

|x1(T )|
:
|x0(2T )|

|x0(T )|
≥ exp(εT0/2). (45)

If such segments do not Bε(t) = 0 for T < t ≤ 2T.) Let τ1 < τ2 < τ3 be ends of segments
Qj0−1 and Qj0.
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Define the perturbation Bε(t) for T < t ≤ 2T in the following way.
A. If T < t ≤ 2T, t /∈ Qj0−1 ∪Qj0 = [τ1, τ3] we set Bε(t) = 0.
B. If t ∈ Qj0−1 = [τ1, τ2] we set

Bε(t) = U−1
ε (t)A(t)Uε(t)− U−1

ε (t)U̇ε(t)− A(t), (46)

where Uε(t) is an orthogonal matrix such that:

i)
Uε(τ1) = E, (47)

ii)
|U̇ε(t)| ≤ ε/T0, (48)

Observe that since x0(t) is a solution of Eq. (35)), the function

y0(t) =

{
U−1
ε (t)x0(t) if t ∈ [τ1, τ2],

x0(t) if t < τ1

is a solution of system (37) where matrix Bε(t) satisfies (36).

C. There exist α1 ≥ 0, α2 > 0 such that

y0(τ2) = U−1
ε (τ2)x0(τ2) = α1x0(τ2) + α2x1(τ2) (49)

and
∢(x0(τ2), y0(τ2)) = ε. (50)

If ∢(x0(τ2), y0(τ2)) < ε, we set Bε(t) = 0 for t ∈ [τ1, τ2]. It follows from (47) and (48) that

|Bε(t)| ≤ (2a+ 1)ε.

The matrix Uε(t) can be constructed as follows. Let En−2 be the orthogonal completion
to the plain E2 = 〈x0(τ2), x0(τ2)〉, we set Uε(t)|En−2 = id and define Uε(t)|E2 as a rotation
by angle −ε(t− τ1)/T0, in the direction from x0(τ2) to x0(τ2) in the plain E2.
D. Due to statements of item 1) and inequalities (40), (45), (49) and (50),

∢(z0(τ3), x1(τ3)) ≤ ε,

where t ∈ [τ2, τ3] and
z0(t) = α1x0(t) + α2x1(t),

α1 and α2 be defined by formula (49).
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For t ∈ [τ2, τ3] we take Bε(t), that satisfies (46) — (48)), replacing τ1 with τ2 in (47).
Instead of inequalities (49)) and (50) we demand that the vector U−1

ε (τ3)(α1x0(τ3) +
α2x1(τ3)) was parallel to x1(τ3).
4) We construct the perturbation Bε(t) on segment [2T, 3T ] basing on solution x1(t)
similarly to what we have done on the segment [T, 2T ] basing on solution x0(t) and so on
. . .

Function y0(t) is a solution of the constructed system (37) with the Lyapunov expo-
nent, greater than Ω − ε. Indeed, due to (42), (43) and (44) it suffices to prove that for
any i = 0, 1, 2, . . .

|y0((i+ 1)T )|

|y0(iT )|
≥

|xi((i+ 1)T )|

|xi(iT )|
exp

(
−
3εT

4

)
.

It follows from construction of y0(t) that for any fixed i the number of k such that
inequality

|y0(iT + (k + 1)T0)|

|y0(iT + kT0)|
≥

|xi(iT + (k + 1)T0)|

|xi(iT + kT0)|
exp

(
−
εT0

2

)
(51)

is not fulfilled, does not exceed 4. If (51) is not satisfied, we use the inequality

|y0(iT + (k + 1)T0)|

|y0(iT + kT0)|
≥

|xi(iT + (k + 1)T0)|

|xi(iT + kT0)|
exp(−(2a+ ε)T0).

Multiplying all inequalities (50) and (51) corresponding to k = 1, 2, . . . , s− 1, we obtain

|y0((i+ 1)T )|

|y0(iT )|
>

|xi((i+ 1)T )|

|xi(iT )|
exp

((
−
ε

2
+

4(2a+ ε)T0

T

)
T

)
≥

|xi((i+ 1)T )|

|xi(iT )|
exp

(
−
3εT

4

)
.

This finishes the proof �.
Corollary. The perturbation Bε(t) may be taken continuous.
Proof. It follows from the proof that Bε(t) is piecewise continuous e.g. has finitely many
discontinuity points on bounded subsets of R. So, for any δ > 0, we may construct a
continuous matrix Cε(t), such that |Cε(t)| < ε and the Lebesgue measure of the set

M = {t : Bε(t) 6= Cε(t)}

is not greater than δ.
Consider the system

ẋ = (A(t) + Cε(t))x. (52)
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Let Ψ(t) and Ξ(t) be fundamental matrices of (37) and (52) respectively, so that Φ(0) =
Ξ(0) = E. Then

Ξ(t) = Ψ(t) + Ψ(t)

t∫

0

Ψ−1(τ)(Bε(τ)− Cε(τ))Ξ(τ) dτ,

and, respectively,

|Ξ(t)| ≤ |Ψ(t)|+ |Ψ(t)|

t∫

0

|Ψ−1(τ)||Bε(τ)− Cε(τ)||Ξ(τ)| dτ. (53)

Denote u(t) = |Ξ(t)|/|Ψ(t)|, v(t) = |Ψ−1(τ)||Ψ(τ)||Bε(τ)−Cε(τ)|. Dividing both parts
of (53) by |Ψ(t)|, we obtain

u(t) ≤ 1 +

t∫

0

u(τ)v(τ) dτ,

which implies by Grönwall - Bellmann lemma

|Ξ(t)|

|Ψ(t)|
= u(t) ≤ exp




t∫

0

v(τ) dτ


 .

This implies that the greatest Lyapunov exponents of systems (37) and (52) coincide. �

Conclusion and Discussion

Dealing with non-periodic time scales, one can hardly apply methods suitable for au-
tonomous systems of ordinary differential equations. The main reason is that, generally
speaking, due to structure of time scales the set of solutions of a dynamic system cannot
be invariant with respect to shifts.

However, methods of non-autonomous stability theory can still be applied. One should
look at central exponents to obtain a criterium of stability that seems to be generally more
effective than constructing a Lyapunov function.

The problem of instability needs a similar approach. The standard method of Chetaev
functions needs to be modified to be applicable for the case of a generic time scale.
However, the principal idea of the approach still works.

Let us briefly repeat main results of our paper.

25



1. We have proved the stability criterium for time scale system, based on the so-
called center Lyyapunov exponent. If this exponent is negative, the linear system is
stable as well as the trivial solution of any small perturbation. If it is positive, the
system is unstable and, moreover, the zero solution cannot be stabilized by a small
perturbation.

2. We give estimates on eigenvalues of a constant matrix that are sufficient for stability
by first approximation. For this we prove two versions of generalization of the
classical Chetaev theorem. Of course, both of them are already known for ordinary
differential equations. However, we have to modify techniques of proofs to deal with
arbitrary time scales.

Observe that the structure of the time scale was important for qualitative estimates
only. Actually, we studied some properties of integral operators on Banach spaces, just
varying measures.

This gives many opportunities for farther research.
Many results, well-known in the theory of differential equations and local diffeomor-

phisms e.g. Perron theorem on existence of stable and unstable manifolds may also be
proved for systems on time scales. We think, this is the most obvious development of our
results.

There is a lot of work that can be done in the field of linear time scale systems.
For example, in this paper we did not say anything about regular systems, irregularity
coefficients, exponentially small perturbations of linear systems, stability of all Lyapunov
exponents, famous Oseledets’ results on regularity of almost all linear approximation of
a conservative system etc. The modern theory of linear differential equations is too large
to be covered in one paper.

Another possible way would be considering another class of time scale dynamical
systems, namely those that correspond to the ∇ -derivative, defined as follows.
Definition 14. The function f : T → R is called ∇ - differentiable at a point t ∈ T

if there exist γ ∈ R such that for any ε > 0 there exists a W–neighborhood of t ∈ T

satisfying
|[f(t)− f(ρ(s))]− γ[t− ρ(s)]| ≤ ε|t− ρ(s)|

for all s. Let us recall that ρ(t) = sup{s ∈ T : s > t}. In this case we write f∆(t) = γ.
When T = R, x∆(t) = ẋ(t). When T = Z, x(t) is the standard forward difference operator
x(n)− x(n− 1).

Despite some technical differences (Cauchy problems for time scale systems with ∇ –
derivtives may be non-unique in forward direction) it seems that results of this paper can
be spread to that class of time scale systems.
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[8] Perron O. Über Stabilität und asymptotisches Verhalten der Integrale von Differen-
tialgleichungssystemen. Math. Zeitschrift. 1928. Bd. 29. S. 129160. (In German)

[9] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V. Teoriya pokazatelei Lya-
punova i ee prilozheniya k voprosam ustoichivosti (Theory of Lyapunov exponents
and its application to problems of stability), Moscow: Nauka, 1966, 576 p. (in Rus-
sian)

[10] M. Bohner, A. Peterson. Dynamic equations on time scales. Birkhäuser Boston Inc.,
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