Remark on fractional Laplacians

Alexander I. Nazarov*

March 16, 2016

Abstract

We compare norms of u and $|u|$ generated by fractional Lapalcian (restricted or spectral) of order $s \in(1,3 / 2)$, in a bounded domain $\Omega \subset \mathbb{R}^{n}$.

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain. Recall that the spectral fractional Dirichlet Laplacian (or the "Navier" fractional Laplacian) of order $m \in \mathbb{R}_{+}$on Ω is given by the formula

$$
(-\Delta)_{s D}^{m} u=\sum_{j=1}^{\infty} \lambda_{j}^{m}\left(\int_{\Omega} u \varphi_{j}\right) \varphi_{j},
$$

where λ_{j} and $\varphi_{j}, j \geq 1$, are, respectively, the eigenvalues and (orthonormal in $L_{2}(\Omega)$) eigenfunctions of the conventional Dirichlet Laplacian $-\Delta_{D}$ in Ω. Here the series converges in the sence of distributions.

It is well known (see, e.g., classical monograph [3]), that for $0<m<3 / 2$ the domain of the corresponding quadratic form $Q_{m}^{s D}[u]=\left\langle(-\Delta)_{s D}^{m} u, u\right\rangle$ is the space

$$
\widetilde{H}^{m}(\Omega):=\left\{u \in H^{m}\left(\mathbb{R}^{n}\right) \mid u \equiv 0 \text { on } \mathbb{R}^{n} \backslash \bar{\Omega}\right\} .
$$

Next, the restricted fractional Dirichlet Laplacian of order $m \in \mathbb{R}_{+}$is defined via the Fourier transform by

$$
\mathcal{F}\left[(-\Delta)_{r D}^{m} u\right](\xi)=|\xi|^{2 m} \mathcal{F}[u](\xi)=\frac{|\xi|^{2 m}}{(2 \pi)^{n / 2}} \int_{\mathbb{R}^{n}} e^{-i \xi \cdot x} u(x) d x .
$$

The domain of its quadratic form $Q_{m}^{r D}[u]=\left\langle(-\Delta)_{r D}^{m} u, u\right\rangle$ is also the space $\widetilde{H}^{m}(\Omega)$ (for all $m \in \mathbb{R}_{+}$).

[^0]From a general result of [1] it follows that for $0<m<3 / 2$ the nonlinear operator $u \mapsto|u|$ maps $\widetilde{H}^{m}(\Omega)$ into itself. So, we can try to compare $Q_{m}^{s D}[|u|]$ and $Q_{m}^{s D}[u]$ $\left(Q_{m}^{r D}[|u|]\right.$ and $\left.Q_{m}^{r D}[u]\right)$ for $u \in \widetilde{H}^{m}(\Omega)$.

Obviously, for $m=1$ we have

$$
Q_{1}^{s D}[|u|] \equiv Q_{1}^{s D}[u] \equiv Q_{1}^{r D}[|u|] \equiv Q_{1}^{r D}[u] \equiv \int_{\Omega}|\nabla u|^{2}, \quad u \in \widetilde{H}^{1}(\Omega)=H_{0}^{1}(\Omega)
$$

In contrast, the following result was established in [2, Theorem 3]:
Let $0<m<1$. For any $u \in \widetilde{H}^{m}(\Omega)$ such that $u \neq|u|$ (i.e. u changes sign) we have $Q_{m}^{s D}[|u|]<Q_{m}^{s D}[u]$ and $Q_{m}^{r D}[|u|]<Q_{m}^{r D}[u]$.

Here we show that for $1<m<3 / 2$ the reverse inequalities hold.

1 Restricted operators

Lemma 1. Let $u, v \in \mathcal{C}_{0}^{\infty}$ be nonnegative functions, and $\operatorname{supp}(u) \cap \operatorname{supp}(v)=\emptyset$. Then for $m>0, m \notin \mathbb{N}$ we have

$$
\begin{array}{llll}
\left\langle(-\Delta)_{r D}^{m} u, v\right\rangle<0, & \text { if } & \lfloor m\rfloor & \text { is } \\
\left\langle(-\Delta)_{r D}^{m} u, v\right\rangle>0, & \text { if } & \lfloor m\rfloor & \text { is } \\
\text { odd. }
\end{array}
$$

Proof. We write

$$
\begin{aligned}
& \left\langle(-\Delta)_{r D}^{m} u, v\right\rangle=\left\langle(-\Delta)_{r D}^{m-\lfloor m\rfloor} u,\left(-\Delta_{D}\right)^{\lfloor m\rfloor} v\right\rangle \\
& =C_{n, m} \cdot \int_{\Omega} V \cdot P \cdot \int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2(m-\lfloor m\rfloor)}} d y\left(-\Delta_{D}\right)^{\lfloor m\rfloor} v(x) d x
\end{aligned}
$$

Here V.P. stands for the principal value of the integral while $C_{n, m}=2^{2 m+\frac{n}{2}} \frac{\Gamma\left(m+\frac{n}{2}\right)}{\Gamma(-m)}$.
Since the supports of u and v are separated, we have

$$
\left\langle(-\Delta)_{r D}^{m} u, v\right\rangle=-C_{n, m} \cdot \int_{\Omega} \int_{\Omega} \frac{u(y)\left(-\Delta_{D}\right)^{\lfloor m\rfloor} v(x)}{|x-y|^{n+2(m-\lfloor m\rfloor)}} d y d x .
$$

We integrate by parts and use the relation $-\Delta_{D}|x|^{-(n+a)}=-(n+a)(a+2)|x|^{-(n+a+2)}$, and the statement follows.

Theorem 1. Let $m>0, m \notin \mathbb{N}$. Suppose that u is such that $u_{+}, u_{-} \in \widetilde{H}^{m}(\Omega)$, $u_{ \pm} \neq 0$. Then

$$
\begin{array}{llll}
Q_{m}^{r D}[|u|]<Q_{m}^{r D}[u], & \text { if } & \lfloor m\rfloor & \text { is } \\
Q_{m}^{r D}[|u|]>Q_{m}^{r D}[u], & \text { if } & \lfloor m\rfloor & \text { is } \\
\text { odd. }
\end{array}
$$

Proof. For $u_{+}, u_{-} \in \mathcal{C}_{0}^{\infty}$ with separated supports, the statement follows from Lemma and relations $u=u_{+}-u_{-},|u|=u_{+}+u_{-}$. In general case we proceed by approximation.

Corollary. Let $1<m<3 / 2$. Then $Q_{m}^{r D}[|u|]>Q_{m}^{r D}[u]$ for all $u \in \widetilde{H}^{m}(\Omega)$ such that $u \neq|u|$.

Proof. This statement follows from [1] and Theorem 1.

2 Spectral operators

Lemma 2. Let $m<0$ or $m \in(1,3 / 2)$. Then $Q_{m}^{s D}\left[\left|\varphi_{k}\right|\right]>Q_{m}^{s D}\left[\varphi_{k}\right]$ for any $k \geq 2$.
Proof. Denote by $a_{j}=\int_{\Omega}\left|\varphi_{k}\right| \varphi_{j}$ the Fourier coefficients of the function $\left|\varphi_{k}\right|$. Then for arbitrary $m<3 / 2$

$$
Q_{m}^{s D}\left[\left|\varphi_{k}\right|\right]=\sum_{j=1}^{\infty} \lambda_{j}^{m}\left|a_{j}\right|^{2} ; \quad Q_{m}^{s D}\left[\varphi_{k}\right]=\lambda_{k}^{m}
$$

It is well known that φ_{k} changes sign. Hence $a_{j} \neq 0$ for some $j \neq k$, and therefore

$$
\frac{d^{2}}{d m^{2}}\left(\frac{Q_{m}^{s D}\left[\left|\varphi_{k}\right|\right]}{Q_{m}^{s D}\left[\varphi_{k}\right]}\right)=\sum_{j=0}^{\infty}\left(\frac{\lambda_{j}}{\lambda_{k}}\right)^{m}\left|a_{j}\right|^{2} \ln ^{2}\left(\frac{\lambda_{j}}{\lambda_{k}}\right)>0
$$

Thus, the quotient in the left-hand side is strictly convex in m. Since $Q_{0}^{s D}\left[\left|\varphi_{k}\right|\right]=$ $Q_{0}^{s D}\left[\varphi_{k}\right]$ and $Q_{1}^{s D}\left[\left|\varphi_{k}\right|\right]=Q_{1}^{s D}\left[\varphi_{k}\right]$, the statement follows.

Theorem 2. Let $1<m<3 / 2$. Then $Q_{m}^{s D}[|u|]>Q_{m}^{s D}[u]$ for all $u \in \widetilde{H}^{m}(\Omega)$ such that $u \neq|u|$.

Proof. First, let $u=b_{1} \varphi_{1}+b_{i} \varphi_{i}+b_{k} \varphi_{k}$. Denote by a_{j} the Fourier coefficients of the function $|u|$. Then

$$
Q_{m}^{s D}[|u|]=\sum_{j=1}^{\infty} \lambda_{j}^{m}\left|a_{j}\right|^{2} ; \quad Q_{m}^{s D}[u]=\lambda_{1}^{m}\left|b_{1}\right|^{2}+\lambda_{i}^{m}\left|b_{i}\right|^{2}+\lambda_{k}^{m}\left|b_{k}\right|^{2}
$$

Note that $a_{1}>\left|b_{1}\right|$ since $u \neq|u|$. Suppose that $\left|b_{i}\right|>\left|a_{i}\right|$ and $\left|b_{k}\right|>\left|a_{k}\right|$ (other possibilities only simplify the proof). Then we can choose $c_{j}^{\prime}, c_{j}^{\prime \prime} \geq 0$ such that

$$
\begin{gathered}
c_{1}^{\prime}+c_{1}^{\prime \prime}=\left|a_{1}\right|^{2}-\left|b_{1}\right|^{2} ; \quad c_{i}^{\prime}=c_{i}^{\prime \prime}=c_{k}^{\prime}=c_{k}^{\prime \prime}=0 ; \quad c_{j}^{\prime}+c_{j}^{\prime \prime}=\left|a_{j}\right|^{2}, \quad j \neq 1, i, k ; \\
\sum_{j=1}^{\infty} c_{j}^{\prime}=\left|b_{i}\right|^{2}-\left|a_{i}\right|^{2} ; \quad \sum_{j=1}^{\infty} c_{j}^{\prime \prime}=\left|b_{k}\right|^{2}-\left|a_{k}\right|^{2} ; \\
\sum_{j=1}^{\infty} \lambda_{j} c_{j}^{\prime}=\lambda_{i}\left(\left|b_{i}\right|^{2}-\left|a_{i}\right|^{2}\right) ; \quad \sum_{j=1}^{\infty} c_{j}^{\prime \prime}=\lambda_{k}\left(\left|b_{k}\right|^{2}-\left|a_{k}\right|^{2}\right) .
\end{gathered}
$$

By the same argument as in previous Lemma, we have for $1<m<3 / 2$

$$
\sum_{j=1}^{\infty} \lambda_{j}^{m} c_{j}^{\prime}>\lambda_{i}^{m}\left(\left|b_{i}\right|^{2}-\left|a_{i}\right|^{2}\right) ; \quad \sum_{j=1}^{\infty} \lambda_{j}^{m} c_{j}^{\prime \prime}>\lambda_{k}^{m}\left(\left|b_{k}\right|^{2}-\left|a_{k}\right|^{2}\right)
$$

and thus $Q_{m}^{s D}[|u|]>Q_{m}^{s D}[u]$.
For arbitrary finite linear combination of eigenfunctions the arguments are the same. In general case we proceed by approximation.

References

Tr [3] H. Triebel, Interpolation theory, function spaces, differential operators, Deutscher Verlag Wissensch., Berlin, 1978.

[^0]: *St.Petersburg Department of Steklov Institute, Fontanka 27, St.Petersburg, 191023, Russia, and St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia. E-mail: al.il.nazarov@gmail.com. Supported by RFBR grant 14-01-00534.

