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Abstract

We compare norms of u and |u| generated by fractional Lapalcian (restricted or

spectral) of order s ∈ (1, 3/2), in a bounded domain Ω ⊂ Rn.

Let Ω ⊂ Rn be a bounded Lipschitz domain. Recall that the spectral fractional

Dirichlet Laplacian (or the “Navier” fractional Laplacian) of order m ∈ R+ on Ω is

given by the formula

(−∆)msDu =
∞∑
j=1

λmj

(∫
Ω

uϕj

)
ϕj ,

where λj and ϕj, j ≥ 1, are, respectively, the eigenvalues and (orthonormal in L2(Ω))

eigenfunctions of the conventional Dirichlet Laplacian −∆D in Ω. Here the series con-

verges in the sence of distributions.

It is well known (see, e.g., classical monograph [3]), that for 0 < m < 3/2 the

domain of the corresponding quadratic form QsD
m [u] = 〈(−∆)msD u, u〉 is the space

H̃m(Ω) := {u ∈ Hm(Rn) | u ≡ 0 on Rn \ Ω}.

Next, the restricted fractional Dirichlet Laplacian of order m ∈ R+ is defined via

the Fourier transform by

F [(−∆)mrD u](ξ) = |ξ|2mF [u](ξ) =
|ξ|2m

(2π)n/2

∫
Rn

e−i ξ·xu(x) dx .

The domain of its quadratic form QrD
m [u] = 〈(−∆)mrD u, u〉 is also the space H̃m(Ω) (for

all m ∈ R+).
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From a general result of [1] it follows that for 0 < m < 3/2 the nonlinear operator

u 7→ |u| maps H̃m(Ω) into itself. So, we can try to compare QsD
m [|u|] and QsD

m [u]

(QrD
m [|u|] and QrD

m [u]) for u ∈ H̃m(Ω).

Obviously, for m = 1 we have

QsD
1 [|u|] ≡ QsD

1 [u] ≡ QrD
1 [|u|] ≡ QrD

1 [u] ≡
∫
Ω

|∇u|2 , u ∈ H̃1(Ω) = H1
0 (Ω).

In contrast, the following result was established in [2, Theorem 3]:

Let 0 < m < 1. For any u ∈ H̃m(Ω) such that u 6= |u| (i.e. u changes sign) we have

QsD
m [|u|] < QsD

m [u] and QrD
m [|u|] < QrD

m [u].

Here we show that for 1 < m < 3/2 the reverse inequalities hold.

1 Restricted operators

Lemma 1. Let u, v ∈ C∞0 be nonnegative functions, and supp(u) ∩ supp(v) = ∅. Then

for m > 0, m /∈ N we have

〈(−∆)mrD u, v〉 < 0, if bmc is even;

〈(−∆)mrD u, v〉 > 0, if bmc is odd.

Proof. We write

〈(−∆)mrD u, v〉 = 〈(−∆)
m−bmc
rD u, (−∆D)bmc v〉

= Cn,m ·
∫
Ω

V.P.

∫
Rn

u(x)− u(y)

|x− y|n+2(m−bmc) dy (−∆D)bmc v(x) dx,

Here V.P. stands for the principal value of the integral while Cn,m = 22m+n
2

Γ(m+n
2

)

Γ(−m)
.

Since the supports of u and v are separated, we have

〈(−∆)mrD u, v〉 = −Cn,m ·
∫
Ω

∫
Ω

u(y) (−∆D)bmc v(x)

|x− y|n+2(m−bmc) dydx.

We integrate by parts and use the relation −∆D|x|−(n+a) = −(n+ a)(a+ 2)|x|−(n+a+2),

and the statement follows. �
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Theorem 1. Let m > 0, m /∈ N. Suppose that u is such that u+, u− ∈ H̃m(Ω),

u± 6= 0. Then

QrD
m [|u|] < QrD

m [u], if bmc is even;

QrD
m [|u|] > QrD

m [u], if bmc is odd.

Proof. For u+, u− ∈ C∞0 with separated supports, the statement follows from Lemma

and relations u = u+−u−, |u| = u+ +u−. In general case we proceed by approximation.

�

Corollary. Let 1 < m < 3/2. Then QrD
m [|u|] > QrD

m [u] for all u ∈ H̃m(Ω) such that

u 6= |u|.

Proof. This statement follows from [1] and Theorem 1. �

2 Spectral operators

Lemma 2. Let m < 0 or m ∈ (1, 3/2). Then QsD
m [|ϕk|] > QsD

m [ϕk] for any k ≥ 2.

Proof. Denote by aj =
∫
Ω

|ϕk|ϕj the Fourier coefficients of the function |ϕk|. Then for

arbitrary m < 3/2

QsD
m [|ϕk|] =

∞∑
j=1

λmj |aj|2; QsD
m [ϕk] = λmk .

It is well known that ϕk changes sign. Hence aj 6= 0 for some j 6= k, and therefore

d2

dm2

(
QsD
m [|ϕk|]
QsD
m [ϕk]

)
=
∞∑
j=0

(
λj
λk

)m
|aj|2 ln2

(
λj
λk

)
> 0,

Thus, the quotient in the left-hand side is strictly convex in m. Since QsD
0 [|ϕk|] =

QsD
0 [ϕk] and QsD

1 [|ϕk|] = QsD
1 [ϕk], the statement follows. �

Theorem 2. Let 1 < m < 3/2. Then QsD
m [|u|] > QsD

m [u] for all u ∈ H̃m(Ω) such

that u 6= |u|.

Proof. First, let u = b1ϕ1 + biϕi + bkϕk. Denote by aj the Fourier coefficients of the

function |u|. Then

QsD
m [|u|] =

∞∑
j=1

λmj |aj|2; QsD
m [u] = λm1 |b1|2 + λmi |bi|2 + λmk |bk|2.
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Note that a1 > |b1| since u 6= |u|. Suppose that |bi| > |ai| and |bk| > |ak| (other

possibilities only simplify the proof). Then we can choose c′j, c
′′
j ≥ 0 such that

c′1 + c′′1 = |a1|2 − |b1|2; c′i = c′′i = c′k = c′′k = 0; c′j + c′′j = |aj|2, j 6= 1, i, k;

∞∑
j=1

c′j = |bi|2 − |ai|2;
∞∑
j=1

c′′j = |bk|2 − |ak|2;

∞∑
j=1

λjc
′
j = λi(|bi|2 − |ai|2);

∞∑
j=1

c′′j = λk(|bk|2 − |ak|2).

By the same argument as in previous Lemma, we have for 1 < m < 3/2

∞∑
j=1

λmj c
′
j > λmi (|bi|2 − |ai|2);

∞∑
j=1

λmj c
′′
j > λmk (|bk|2 − |ak|2),

and thus QsD
m [|u|] > QsD

m [u].

For arbitrary finite linear combination of eigenfunctions the arguments are the same.

In general case we proceed by approximation. �
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