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Abstract. We give criteria for the spectra of some nuclear operators in subspaces
of quotients of Lp-spaces to be central-symmetric, as well as for the spectra of
linear operators in Banach spaces to be Zd-symmetric in the sense of B. Mityagin.
Also, we present a short proof of a generalization of Mityagin’s theorem.

1. Introduction. It was shown by M. I. Zelikin in [16] that the spectrum of
a nuclear operator in a separable Hilbert space is central-symmetric iff the spectral
traces of all odd powers of the operator equal zero. Recall that the spectrum of every
nuclear operator in a Hilbert space consists of non-zero eigenvalues of finite algebraic
multiplicity, which have no limit point except possibly zero, and maybe zero. This
system of all eigenvalues (written according to their multiplicities) is absolutely
summable, and the spectral trace of any nuclear operator is, by definition, the sum
of all its eigenvalues (taken according their multiplicities).

The space of nuclear operators in a Hilbert space may be defined as the space
of all trace-class operators (see [14, с. 77]); in this case we say about the "nuclear
trace" of an operator). Trace-class operators in a Hilbert space can be considered
also as the elements of the completion of the tensor product of the Hilbert space
and its Banach dual with respect to the greatest crossnorm on this tensor product
[14, с. 119]. The well known Lidskǐı theorem [5] says that the nuclear trace of
any nuclear operator in a Hilbert space (or, what is the same, of the corresponding
tensor element) coincides with its spectral trace. Thus, Zelikin’s theorem [16] can
be reformulated in the following way: the spectrum of a nuclear operator in a
separable Hilbert space is central-symmetric iff the nuclear traces of all odd powers
of the corresponding tensor element are zero.

One of the aim of our notes is to give an exact generalization of this result to
the case of tensor elements of so-called s-projective tensor products of subspaces of
quotients of Lp(µ)-spaces. In particular, we get as a consequence Zelikin’s theorem
(taking p = 2).

Another problem which is under consideration in our notes is concentrated
around the so called Zd-symmetry of the spectra of the linear operators. The notion
of Zd-symmetry of the spectra was introduced by B.S. Mityagin in a preprint [6]
and in his paper [7]. He is interested there in a generalization of the result from [16]
in two directions: to extend Zelikin’s theorem to the case of general Banach spaces
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and to change the property of a compact operator to have central-symmetric spec-
trum to the property of the one to have Zd-symmetric spectrum. Roughly speaking,
Zd-symmetry of a spectrum of a compact operator T means that for any non-zero
eigenvalue λ of T the spectrum contains also as eigenvalues of the same algebraic
multiplicities all "d-shifted" numbers tλ for t ∈ d

√
1. B.S. Mityagin has obtained a

very nice result, showing that the spectrum of a compact operator T in an arbitrary
Banach space, some power Tm of which is nuclear, is Zd-symmetric iff for all large
enough integers of type kd + r (0 < r < d) the nuclear traces of T kd+r are zero. We
present some thoughts around this theorem, giving, in particular, a short (but not
so elementary as in [6, 7]) proof for the case where the operator is not necessarily
compact. Let us mention, however, that the proof from [6, 7] can be adapted for
this situation too.

Some words about the content of the paper.
In Section 2, we introduce some notations, definitions and terminology in con-

nection with so called s-projective tensor products, s-nuclear operators and the
approximation properties of order s, s ∈ (0, 1]. We formulate here two auxiliary as-
sertions from the author’s paper [13]; they give us generalized Grothendieck-Lidskǐı
trace formulas which will be useful in the next section.

Section 3 contains an exact generalization of Zelikin’s theorem. In this section we
present a criterium for the spectra of s-nuclear operators in subspaces of quotients
of Lp-spaces to be central-symmetric.

Results of Section 4 show that the criterium of the central symmetry, obtained
in the previous section, is optimal. In particular, we present here (Theorem 2) sharp
examples of s-nuclear operators T in the spaces lp, 1 ≤ p ≤ +∞, p ̸= 2, for which
trace T = 1 and T 2 = 0.

Finally, Section 5 is devoted to the study of Mityagin’s Zd-symmetry of the
spectra of linear operators. Our aim here is to give a short (but using Fredholm
Theory) proof of Mityagin’s theorem [6-7] for arbitrary linear continuous (Riesz)
operators. Firstly, we consider a Z2 situation (central symmetry) to clarify an idea
which is to be used then in the general case. We finish the paper with a short proof
of the theorem from [6-7] for continuous (not necessarily compact) operators and
with some simple examples of applications.

2. Preliminaries. We denote by X,Y, . . . Banach spaces, L(X,Y ) is a Banach
space of all linear continuous operators from X to Y ; L(X) := L(X,X). For a
Banach dual to a space X we use the notation X∗. If x ∈ X and x′ ∈ X∗, then
⟨x′, x⟩ denotes the value x′(x).

By X∗⊗̂X we denote the projective tensor product of the spaces X∗ and X
[2] (see also [11, 12]). It is a completion of the algebraic tensor product X∗ ⊗ X
(considered as a linear space of all finite rank continuous operators w in X) with
respect to the norm

||w||∧ := inf{

(
N∑
k=1

||x′
k|| ||xk||

)
: w =

N∑
k=1

x′
k ⊗ xk}.
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Every element u of the projective tensor product X∗⊗̂X can be represented in the
form

u =
∑
i

λix
′
i ⊗ xi,

where (λi) ∈ l1 и ||x′
i|| ≤ 1, ||xi|| ≤ 1 [2].

More generally, if 0 < s ≤ 1, then X∗⊗̂sX is a subspace of the projective
tensor product, consisting of the tensor elements u, u ∈ X∗⊗̂X, which admit rep-
resentations of the form u =

∑∞
k=1 x

′
k ⊗ xk, where (x′

k) ⊂ X∗, (xk) ⊂ X and∑∞
k=1 ||x′

k||s ||xk||s < ∞ [2, 11, 12]. Thus, X∗⊗̂X = X∗⊗̂1X.
On the linear space X∗ ⊗X, a linear functional "trace" is defined by a natural

way. It is continuous on the normed space (X∗ ⊗ X, || · ||∧) and has the unique
continuous extension to the space X∗⊗̂X, which we denote by trace .

Every tensor element u, u ∈ X∗⊗̂X, of the form u =
∑∞

k=1 x
′
k ⊗ xk generates

naturally an operator ũ : X → X, ũ(x) :=
∑∞

k=1⟨x′
k, x⟩xk for x ∈ X. This defines

a natural mapping j1 : X∗⊗̂X → L(X). The operators, lying in the image of this
map, are called nuclear [2], [8]. More generally, if 0 < s ≤ 1, u =

∑∞
k=1 x

′
k ⊗ xk and∑∞

k=1 ||x′
k||s ||xk||s < ∞, then the corresponding operator ũ is called s-nuclear [11,

12]. By js we denote a natural map from X∗⊗̂sX to L(X). We say that a space X
has the approximation property of order s, 0 < s ≤ 1 (the APs), if the canonical
mapping js is one-to-one [11, 12]. Note that the AP1 is exactly the approximation
property AP of A. Grothendieck [2], [8]. Classical spaces, such as Lp(µ) and C(K),
have the approximation property. If a space X has the APs, then we can identify
the tensor product X∗⊗̂sX with the space Ns(X) of all s-nuclear operators in в X
(i.e. with the image of this tensor product under the map js). In this case for every
operator T ∈ Ns(X) = X∗⊗̂sX the functional trace T is well defined and called the
nuclear trace of the operator T.

It is clear that if a Banach space has the approximation property, then it has
all the properties APs, s ∈ (0, 1]. Every Banach space has the property AP2/3 (A.
Grothendiek [2], see also [10]). Since each Banach space is a subspace of an L∞(µ)-
space, the following fact (to be used below) is a generalization of the mentioned
result of A. Grothendieck:

Lemma 1 [13, Corollary 10]. Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/p−1/2|.
If a Banach space Y is isomorphic to a subspace of a quotient (or to a quotient of a
subspace) of some Lp(µ)-space, then it has the APs.

Thus, for such spaces we have an equality Y ∗⊗̂sY = Ns(Y ) and the nuclear trace
of any operator T ∈ Ns(Y ) is well defined.

We will need also the following auxiliary assertion (the first part of which is a
consequence of the previous lemma).

Lemma 2 [13, Theorem 1]. Let Y is a subspace of a quotient (or to a quotient
of a subspace) of some Lp(µ)-space, 1 ≤ p ≤ ∞. If T ∈ Ns(Y ), where 1/s =
1 + |1/2 − 1/p|, then

1. the nuclear trace of the operator T is well defined,
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2.
∑∞

n=1 |λn(T )| < ∞, where {λn(T )} is a system of all eigenvalues of the
operator T (written according their algebraic multiplicities) and

trace T =
∞∑
n=1

λn(T ).

Following [16], we say that a spectrum of a compact operator in a Banach space
is central-symmetric, if for every its eigenvalue λ the number −λ is also its eigenvalue
and of the same algebraic multiplicity. We shall use the same terminology in the case
of operators all non-zero spectral values of which are eigenvalues of finite multiplicity
and have no limit point except possibly zero; the corresponding eigenvalue sequence
for such an operator T will be denoted by sp (T ); thus it is an unordered sequence
of all eigenvalues of T taken according their multiplicities.

3. On central symmetry. Let us note firstly that the theorem of Zelikin (in
the form as it was formulated in [16]) can not be extended to the case of general
Banach spaces, even if the spaces have the Grothendieck approximation property.

Example 1. Let U be a nuclear operator in the space l1, constructed in [8,
Proposition 10.4.8]. This operator has the property that trace U = 1 and U2 = 0.
Evidently, the spectrum of this operator is {0}. Let us note that the operator is not
only nuclear, but also belongs to the space Ns(l1) for all s ∈ (2/3, 1]. It is not possible
to present such an example in the case of 2/3-nuclear operators (see Corollary 3
below). Note also that, however, the traces of all operators Um,m = 2, 3, . . . , (in
particular, U2n−1) are equal to zero.

Remark 1. For every nuclear operator T : X → X and for any natural number
n > 1, the nuclear trace trace T n is well defined (see [2, Chap II, §1, n◦4, Corollaire
2, p. 16]) and equal the sum of all its eigenvalues (according their multiplicity) [2,
Chap II, §1, n◦4, Corollaire 1, p. 15]. Therefore, if the spectrum of a nuclear operator
T : X → X is central-symmetric, then for each odd m = 3, 5, 7, . . . the nuclear trace
of the operator Tm is equal to zero. This follows from the fact that the eigenvalue
sequences of T and Tm can be arranged in such a way that {λn(T )m} = {λn(Tm)}
(see, e.g., [9, 3.2.24, p. 147]).

Let us formulate and prove the central result of this section.
Theorem 1.L̇et Y be a subspace of a quotient (or a quotient of a subspace)

of an Lp-space, 1 ≤ p ≤ ∞, and u ∈ Y ∗⊗̂sY, where 1/s = 1 + |1/2 − 1/p|, The
spectrum of the operator ũ is central-symmetric iff trace u2n−1 = 0, n = 1, 2, . . . .

Proof. If the spectrum of ũ is central-symmetric, then, by Lemma 2, trace u =
trace ũ =

∑∞
n=1 λn(T ) = 0; also, by Remark 1, trace um =

∑∞
n=1 λn(Tm) = 0 for

m = 3, 5, . . . .
To prove the inverse, we need some information from Fredholm Theory. Let u be

an element of the projective tensor product X∗⊗̂X, where X is an arbitrary Banach
space. Recall that the Fredholm determinant det (1 − zu) of u (see [2, Chap II, §1,
n◦4, p. 13] or [3], [8], [9]) is an entire function

det (1 − zu) = 1 − z trace u + · · · + (−1)nznαn(u) + . . . ,
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all zeros of which are exactly (according to their multiplicities) the inverses of
nonzero eigenvalues of the operator ũ, associated with the tensor element u. By
[2, Chap II, §1, n◦4, Corollaire 2, pp. 17-18], this entire function is of the form

det (1 − zu) = e−z trace u

∞∏
i=1

(1 − zzi) e
zzi ,

where {zi = λi(ũ)} is a system of all eigenvalues of the operator ũ (written according
their algebraic multiplicities). Also, there exists a δ > 0 such that for all z, |z| ≤ δ,
we have

(1) det (1 − zu) = exp (−
∞∑
n=1

1

n
zn trace un)

(see [3, p. 350]; cf. [1, Theorem I.3.3, p. 10]).
Now, let u ∈ Y ∗⊗̂sY be as in the formulation of our theorem and suppose that

trace u2n−1 = 0, n = 1, 2, . . . . By (??), we get: for a neighborhood U = U(0) of zero
in C, det (1−zu) = det (1+zu) for z ∈ U. Therefore, the entire function det (1−zu)
is even. By definition of det (1−zu), the sequence of zeros of this function is exactly
the eigenvalue sequence of ũ. Hence, the spectrum of ũ is central-symmetric.

Since under the conditions of Theorem 1 the space Y has the APs, the tensor
product Y ∗⊗̂sY can be identified naturally with the space of all s-nuclear operators
in Y. Hence, the statement of Theorem 1 may be reformulated in the following way:

Corollary 1. Let s ∈ [2/3, 1], p ∈ [2,∞], 1/s = 1 + |1/2 − 1/p|, Y be a subspace
of a quotient (or a quotient of a subspace) of an Lp-space, T be an s-nuclear operator
in Y. The spectrum of T is central-symmetric iff trace T 2n−1 = 0, n ∈ N.

Corollary 2 [16]. The spectrum of a nuclear operator T, acting on a Hilbert
space, is central-symmetric iff trace T 2n−1 = 0, n ∈ N.

For a proof, it is enough to apply Theorem 1 for the case p = 2.

Corollary 3. The spectrum of a 2/3-nuclear operator T, acting on an arbitrary
Banach space, is central-symmetric iff trace T 2n−1 = 0, n ∈ N.

For a proof, it is enough to apply Theorem 1 for the case p = ∞, taking into
account the fact that every Banach space is isometric to a subspace of an L∞(µ)-
space.

In connection with Corollary 3, let us pay attention again to the nuclear operator
from Example 1.

4. Sharpness of results of Section 3. Now we will show that the statement
of Theorem 1 is sharp and that the exponent s is optimal if p is fixed (if of course
p ̸= 2, i.e. s ̸= 1).

Consider the case 2 < p ≤ ∞. In this case 1/s = 1 + |1/2− 1/p| = 3/2− 1/p. In
a paper of the author [12, Example 2] the following result was obtained (see a proof
in [12]):
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(⋆) Let r ∈ [2/3, 1), p ∈ (2,∞], 1/r = 3/2− 1/p. There exist a subspace Yp of the
space lp (c0 if p = ∞) and a tensor element wp ∈ Y ∗

p ⊗̂1Yp such that wp ∈ Y ∗
p ⊗̂sYp

for every s > r, trace wp = 1, w̃p = 0 and the space Yp (as well as Y ∗
p ) has the APr

(but evidently does not have the APs if 1 ≥ s > r). Moreover, this element admits a
nuclear representation of the form

wp =
∞∑
k=1

µk x
′
k ⊗ xk, where ||x′

k|| = ||xk|| = 1,
∞∑
k=1

|µk|s < ∞ ∀ s > r.

Evidently, we have for a tensor element u := wp from the assertion (⋆) : trace u =
1 and the spectrum of the operator ũ equals {0}.

The case where 2 < p ≤ ∞ can be considered analogously (with an application
of the assertion (⋆) to a "transposed" tensor element wt

p ∈ Yp⊗̂1Y
∗
p .)

As was noted above (Example 1), there exists a nuclear operator U in l1 such
that U2 = 0 and trace U = 1. The following theorem is an essential generalization
of this result and gives us the sharpness of the statement of Corollary 1 (even in the
case where Y = lp).

Theorem 2. Let p ∈ [1,∞], p ̸= 2, 1/r = 1 + |1/2−1/p|. There exists a nuclear
operator V in lp (in c0 if p = ∞) such that

1) V ∈ Ns(lp) for each s ∈ (r, 1];
2) V /∈ Nr(lp);
3) trace V = 1 and V 2 = 0.

Proof. Suppose that p > 2. Consider the tensor element w := wp from the
assertion (⋆) and its representation w =

∑∞
k=1 µk x

′
k ⊗ xk, where ||x′

k|| = ||xk|| = 1
и
∑∞

k=1 |µk|s < ∞ for each s, s > r. Let l : Y := Yp → lp be the identity inclusion.
Let y′k be an extension of the functional x′

k (k = 1, 2, . . . ) from the subspace Y
to the whole space lp with the same norm and set v :=

∑∞
k=1 µk y

′
k ⊗ l(xk). Then

v ∈ lp′⊗̂slp (1/p + 1/p′ = 1) for each s ∈ (r, 1], trace v =
∑

µk ⟨y′k, l(xk)⟩ = 1 and
ṽ(lp) ⊂ l(Y ) ⊂ lp. On the other hand, we have a diagram:

Y
l→ lp

ṽ0→ Y
l→ lp

ṽ0→ Y
ṽ0→ lp,

where ṽ0 is an operator generated by ṽ, ṽ = lṽ0 and ṽ0l = w̃ = 0. Put V := ṽ.
Clearly, trace V = 1 and the spectrum sp V 2 = {0}. Let us note that V /∈ Nr(lp)
(by Lemma 2). If p ∈ [1, 2), then it is enough to consider the adjoint operator.

It follows from Theorem 2 that the assertion of Corollary 1 is optimal already
in the case of the space Y = lp (which is, by the way, has the Grothendieck’s
approximation property).

5. Generalizations: around Mityagin’s theorem. Recall that if T ∈ L(X)
and, for some m ∈ N, Tm is a Riesz operator (see, e.g., [4, p. 943] for a definition),
then T is a Riesz operator too (see, e.g., [9, 3.2.24, p. 147]). In particular, if Tm

is compact, then all non-zero spectral values λ(T ) ∈ sp (T ) are eigenvalues of finite
(algebraic) multiplicity and have no limit point except possibly zero. Also, in this
case the eigenvalue sequences of T and Tm can be arranged in such a way that
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{λn(T )m} = {λn(Tm)} (see [9, 3.2.24, p. 147]). Recall that in this case we denote
by sp (T ) (resp., by sp (Tm) the sequence {λn(T )m} (resp., {λn(Tm)}).

We are going to present a short proof of the theorem of B. Mityagin from [6, 7].
To clarify our idea of the proof, let us consider firstly the simplest case where d = 2.

Theorem 3. Let X be a Banach space and T ∈ L(X). Suppose that some power
of T is nuclear. The spectrum of T is central-symmetric iff there is an integer K ≥ 0
such that for every l > K the value trace T l is well defined and trace T 2l+1 = 0 for
all l > K.

Proof. Suppose that T ∈ L(X) and there is an M ∈ N so that TM ∈ N(X).
Fix an odd N0, N0 > M, with the property that TN0 ∈ N2/3(X) (it is possible
since a product of three nuclear operators is 2/3-nuclear) and trace TN0+2k = 0 for
all k = 0, 1, 2, . . . . By Corollary 3, the spectra of all TN0+2k are central-symmetric
(since, e.g., trace TN0 = trace (TN0)3 = trace (TN0)5 = · · · = 0 by assumption).
Assume that the spectrum of T is not central-symmetric. Then there exists an
eigenvalue λ0 ∈ sp (T ) such that −λ0 /∈ sp (T ).

Now, λN0
0 ∈ sp (TN0), so −λN0

0 ∈ sp (TN0). Hence, there exist µN0 ∈ sp (T ) and
θN0 so that |θN0 | = 1, µN0

N0
= −λN0

0 and µN0 = θN0λ0, θN0 ̸= −1. Analogously,
λN0+2
0 ∈ sp (TN0+2), so −λN0+2

0 ∈ sp (TN0+2). Hence, there exist µN0+2 ∈ sp (T ) and
θN0+2 so that |θN0+2| = 1, µN0+2

N0+2 = −λN0+2
0 and µN0+2 = θN0+2λ0, θN0+2 ̸= −1 etc.

By induction we get the sequences {µN0+2k}∞k=0 and {θN0+2k}∞k=0 with the properties
that µN0+2k ∈ sp (T ), |θN0+2k| = 1, µN0+2k

N0+2k = −λN0+2k
0 and µN0+2k = θN0+2kλ0,

θN0+2k ̸= −1. Since µN0+2k ∈ sp (T ) and |µN0+2k| = |λ0| > 0, the sequence {µN0+2k}
is finite as a set, i.e., we have that µN0+2K = µN0+2K+2 = . . . for some K > 1. It
follows that θN0+2K = θN0+2K+2 = . . . . But θN0+2k

N0+2k = −1 for all k. Thus θlN0+2K = −1
for every odd l ≥ N0 + 2K. Therefore, θN0+2K = −1. Contradiction

Now we are going to consider a general case of a notion of Zd-symmetry of a
spectra, introduced and investigated by B. Mityagin in [6, 7]. Let T be an operator
in X, all non-zero spectral values of which are eigenvalues of finite multiplicity
and have no limit point except possibly zero. Recall that we denote by sp (T ) the
corresponding unordered eigenvalue sequence for T (possibly, including zero). For a
fixed d = 2, 3, . . . and for the operator T, the spectrum of T is called Zd-symmetric,
if λ ∈ sp (T ) implies tλ ∈ sp (T ) for every t ∈ d

√
1.

Let r ∈ (0,∞], D := {z ∈ C : |z| < r}, f : D → C. and d ∈ N \ {1}. We say
that f is d-even if f(tz) = f(z) for every t ∈ d

√
1.

Lemma 3. Let Φ(X) be a linear subspace of X∗⊗̂X of spectral type l1, i.e., for
every v ∈ Φ(X) a series

∑
λ∈sp (ṽ) |λ| is convergent. Let d ∈ N, d > 1. If u ∈ Φ(X),

then the Fredholm determinant det (1 − zu) is d-even iff the eigenvalue sequence of
ũ is Zd-symmetric iff trace ukd+r = 0 for all k = 0, 1, 2, . . . and r = 1, 2, . . . , d− 1.

Proof. If the function det (1 − zu) is d-even, then the eigenvalue sequence of ũ
is Zd-symmetric, since this sequence coincides with the the sequence of all zeros of
det (1 − zu) (according their multiplicities).
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If the eigenvalue sequence of ũ is Zd-symmetric, then trace u =
∑

λ∈sp (ũ) λ = 0

(since Φ(X) is of spectral type l1 and
∑

t∈ d√1 t = 0). Also, by the same reason
trace ukd+r = 0 for all k = 0, 1, 2, . . . and r = 1, 2, . . . , d−1, since the spectrum of ũl

is absolutely summable for every l ≥ 2 and we may assume that {λm(ũl)} = {λm(ũ)l}
(for every fixed l) [9, 3.2.24, p. 147].

Now, let trace ukd+r = 0 for all k = 0, 1, 2, . . . and r = 1, 2, . . . , d − 1. By
(??), det (1 − zu) = exp (−

∑∞
m=1

1
md

zmd trace umd) in a neighborhood U of zero.
Therefore, this function is d-even in the neighborhood U. By the uniqueness theorem
det (1 − zu) is d-even in C.

Corollary 4. For any Banach space X and for every u ∈ X∗⊗̂2/3X the conclusion
of Lemma 3 holds.

Corollary 5. Let Y be a subspace of a quotient of an Lp-space, 1 ≤ p ≤ ∞. For
any u ∈ Y ∗⊗̂sY, where 1/s = 1 + |1/2 − 1/p|, the conclusion of Lemma 3 holds.

Now we are ready to present a short proof of the theorem of B. Mityagin [6, 7].
Note that the theorem in [6, 7] is formulated and proved for compact operators, but
the proof from [6, 7] can be easily adapted for the general case of linear operators.

Theorem 4. Let X be a Banach space and T ∈ L(X). Suppose that some power
of T is nuclear. The spectrum of T is Zd-symmetric iff there is an integer K ≥ 0
such that for every l > Kd the value trace T l is well defined and trace T kd+r = 0
for all k = K,K + 1, K + 2, . . . and r = 1, 2, . . . , d− 1.

Proof. Fix N0 ∈ N such that TN0 is 2/3-nuclear (it is possible by a composi-
tion theorem from [2, Chap II, §1, n◦3, Theorem 3, p. 10]). Note that, by A.
Grothendieck, the trace of T l is well defined for all l ≥ N0.

Suppose that the spectrum of T is Zd-symmetric. Take an integer l := kd + r ≥
N0 with 0 < r < d. Since the spectrum of T l is absolutely summable, trace T l =∑

λ∈sp (T l) λ and we may assume that {λm(T l)} = {λm(T )l}, we get that trace T kd+r =
0.

In proving inverse, we may (and do) assume that Kd > N0. Consider an infinite
increasing sequence {pm} of prime numbers with p1 > (K + 1)d. Assuming that
trace T kd+r = 0 if k = K,K + 1, K + 2, . . . and r = 1, 2, . . . , d− 1, for a fixed pm we
get from Lemma 3 (more precisely, from Corollary 4) that the function det (1−zT pm)
is d-even. Suppose that the spectrum of T is not Zd-symmetric. Then there exist an
eigenvalue λ0 ∈ sp (T ) and a root θ ∈ d

√
1 so that θλ0 /∈ sp (T ). On the other hand,

again by Lemma 3, the spectrum of T pm is Zd-symmetric. Since λpm
0 ∈ sp (T pm),

there exists µm ∈ sp (T ) such that µpm
m = θpmλpm

0 ∈ sp (T pm); hence, µm = θmλ0

for some θm with |θm| = 1. But |λ0| > 0. Therefore, the set {µm} is finite and it
follows that there is an integer M > 1 such that θM = θM+1 = θM+2 = . . . . Hence,
θpm = θpmM for all m ≥ M. Thus, θM = θ. Contradiction.

Let us give some examples in which we can apply Theorem 4, but the main result
of [6, 7] does not work.

Example 2. Let Πp be the ideal of absolutely p-summing operators (p ∈ [1,∞);
see [8] for a definition and related facts). Then for some n one has Πn

p ⊂ N. In
particular, Π2

2(C[0, 1]) ⊂ N(C[0, 1]), but not every absolutely 2-summing operator
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in C[0, 1] is compact. Another interesting example: Π3
3 is of spectral type l1 [15].

We do not know (maybe, it is not known to everybody), whether the finite rank
operators are dense in this ideal. However, Theorem 4 may be applied. Moreover,
it can be seen that, for example, the spectrum of an operator T from Π3

3 is central
symmetric iff the spectral traces of the operators T 2k−1 are zero for all k > 0.
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Soc., 16, 1955.
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