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1. Introduction

We consider the free boundary problem of magnetohydrodynamics in the bounded domain
Ω ⊂ R3. It describes the motion of a finite isolated mass of viscous incompressible electrically
conducting capillary liquid inside the other viscous incompressible liquid under the action
of magnetic field. The interface between the liquids is unknown. Let the bounded variable
domain Ω1t is filled by the liquid of density d1 and viscosity ν1. The domain Ω1t is surrouded
by the bounded variable domain Ω2t = Ω\Ω1t, filled by the liquid of density d2 and viscosity
ν2. The boundary of Ω2t consists of two disjoint components: the free boundary Γt and the
fixed boundary S = ∂Ω. We assume that both Γ0 and S are homeomorphic to a sphere,
dist{Γ0, S} ≥ δ > 0.

The problem consists of determination for t > 0 the variable domains Ωit, i = 1, 2
together with the velocity vector field v(i), the pressure p(i), and the magnetic field H(i).
Equations in Ωit have the form

v(i)
t + (v(i) · ∇)v(i) −∇ · T (v(i), p(i))−∇ · TM(H(i)) = 0,

µiH
(i)
t + α−1i rotrotH(i) − µirot(v(i) ×H(i)) = 0, (1.1)

∇ · v(i) = 0, ∇ ·H(i) = 0, x ∈ Ωit,

where µi, - magnetic permeability, νi - kinematic viscosity, αi - conductivity , di - density.
We assume that νi, αi, di, µi are positive constants. TM(H) = µ(H⊗H− 1

2
I|H|2) - magnetic

stress tensor.

T (v, p) = − 1

di
pI + νS(v)

is the viscous stress tensor,

S(v) = ∇v + (∇v)T =
( ∂vi
∂xj

+
∂vj
∂xi

)
i,j=1,2,3

is the doubled rate-of-strain tensor.
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On the free surface Γt, which is subject to capillary forces, we have the following boundary
conditions (

[T (v, p)] + [TM(H)]
)
n = σnH,

Vn = v · n, [v] = 0,

[ 1
α

(rotH)τ ] = [µ(v ×H)τ ], (1.2)

[µH · n] = 0, [Hτ ] = 0, x ∈ Γt,

where σ - coefficient of the surface tension, H - is the doubled mean curvature of Γt, Vn

is the velocity of evolution of the surface Γt in the direction of the normal n to Γt, which
is exterior with respect to the domain Ω1t. By (rotH)τ we mean the tangential part of the
rotor. By [f ] we denote the jump on Γt: [f ] = f (1) − f (2). Condition on the jump of the
tangential part of rotH follows from the fact that on the interface tangential part of electric
field is continuous and Maxwell equations.

We assume that the fixed boundary S is a perfectly conducting bounded closed surface.
Boundary conditions on S have the form

H · n = 0, (rotH)τ = 0, v = 0, x ∈ S. (1.3)

Finally, we add the initial conditions

v(x, 0) = v0(x), H(x, 0) = H0(x), x ∈ Ω10 ∪ Ω20. (1.4)

Free boundary problem governing the motion of a finite isolated mass of electrically conduct-
ing capillary liquid in vacuum has been studied in [1-3]. In particular, local in time solv-

ability is proved in [1]. The solution is obtained in Sobolev-Slobodetskii spaces W
2+l,1+l/2
2 ,

1/2 < l < 1. We obtain the similar result for the problem (1.1)− (1.4).

2. Coordinate transform

In order to reduce the problem (1.1)-(1.4) to a problem set in a domain with a fixed boundary,
we use a modification of Hanzawa coordinate transform.

We assume that the initial position of the free boundary Γ0 can be regarded as a small
normal perturbation of the given smooth closed surface G

Γ0 = {x = y + N(y)ρ0(y), y ∈ G},

where N(y) is the external normal to the surface G, ρ0 ∈ W 2+l
2 (G) is a given function, and

|ρ0| ≤ δ
4
. Moreover, we are looking for the free boundary in the similar form

Γt = {x = y + N(y)ρ(y, t), y ∈ G},

where the function ρ(y, t) is unknown.
We denote by F1 the domain bounded by G, F2 = Ω \ F1. We construct the mapping

which transforms Ω = F1 ∪ G ∪ F2 to Ω = Ω1t ∪ Γt ∪ Ω2t. To this end, we extend N and ρ
into Ω. By N∗ we mean a smooth non-vanishing vector field in Ω which coincides with N
on G. By ρ∗(y, t) we denote an extension of unknown function ρ(y, t) from G into Ω with
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preservation of the class, which vanishes in a δ0
4

neighborhood of the surface S and satisfies

the condition ∂ρ∗(y,t)
∂N

∣∣∣
G

= 0. We introduce this mapping by the relation

x = y + N∗(y)ρ∗(y, t) = eρ(y). (2.1)

When ρ is sufficiently small (which is certainly the case for small t), transform (2.1) estab-
lishes one-to-one correspondence between Fi and Ωit, i = 1, 2. We denote by L(y, ρ∗) the

Jacobi matrix of the transformation (2.1), L = detL, L̂ = LL−1 is the cofactor matrix. The
normal n to the free boundary corresponds to

n(eρ(y)) =
L̂N(y)

|L̂N(y)|
. (2.2)

Let
v(eρ, t) = u(y, t), p(eρ, t) = q(y, t).

To simplify the calculations, we introduce the new unknown function

h = L̂H(eρ, t).

As it is demonstrated in [1], h is a solenoidal vector field and satisfies the homogeneous
condition [µh ·N] = 0, y ∈ G. Transformation (2.1) converts the problem (1.1) − (1.4) to
a nonlinear problem in the fixed domain Ω = F1 ∪ SR0 ∪ F2, for the unknown functions
u(y, t), q(y, t), h(y, t). We separate linear and nonlinear parts in this problem and write the
boundary condition (1.2)1 for the tangential and normal parts separately, then it can be
written in the following form:

u
(i)
t − νi∇2u(i) +

1

di
∇q(i) = l

(i)
1 (u(i), q(i),h(i), ρ), y ∈ Fi

∇ · u(i) = l
(i)
2 (u(i), ρ), y ∈ Fi,

[νΠ0S(u)N] = l
(i)
3 (u, ρ), y ∈ G,

− [
1

d
q] + [νN · S(u)N(y)] + σBρ = l4(u,h, ρ), y ∈ G,

ρt − u ·N = l5(u, ρ), [u] = 0, y ∈ G,
µih

(i)
t + α−1i rotroth(i) = l

(i)
6 (h(i),u(i), ρ), y ∈ Fi,

∇ · h(i) = 0, y ∈ Fi,

[µh ·N] = 0, [hτ ] = l7(h, ρ), [
1

α
(roth)τ ] = l8(h,u, ρ) y ∈ G,

h(2) · n = 0, (roth(2))τ = 0, u(2) = 0 y ∈ S,
u(i)(y, 0) = u

(i)
0 (y), h(i)(y, 0) = h

(i)
0 (y), y ∈ Fi, ρ(y, 0) = ρ0(y), y ∈ G.

(2.3)

Here Π0u = u−N(u·N) is the tangential part of the vector field u, −Bρ is the first variation
of H with respect to ρ and has the form Bρ = −∆Gρ+bρ, where ∆G is the Laplace-Beltrami
operator on G. The nonlinear terms l

(i)
1 − l7 are similar to the nonlinear terms calculated in

[1]. The nonlinear term l8 has the form

l8 = [ 1
α

(roth)τ ] = [ 1
α

(roth− (roth ·N)N)]

= [ 1
α

(
roth− 1

L
LrotLT 1

L
Lh
)
]

+[ 1
α

(
( 1
L
LrotLT 1

L
L · n(eρ)n)(eρ)− (roth ·N)N

)
]

+[µ (L−1u× h− ((L−1u× h) · n(eρ)n(eρ)))],
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where n(eρ) is given in (2.2).

3. Main result

Theorem 1. Let u0i ∈ W 1+l
2 (Fi), H0i ∈ W 1+l

2 (Fi), i = 1, 2, ρ0 ∈ W 2+l
2 (G) with a certain

l ∈ (1/2, 1) and the following compatibility conditions

∇ · u(i)
0 = l

(i)
2 (u

(i)
0 , ρ0), y ∈ Fi,

[νΠ0S(u0)N] = l3(u0, ρ0), y ∈ G,
∇ · h(i)

0 = 0, y ∈ Fi, (3.1)

[µh0 ·N] = 0, [(h0)τ ] = l7(h0, ρ0), [ 1
α

(roth0)τ ] = l8(h0,u0, ρ0), [u0] = 0 y ∈ G,
h
(2)
0 · n = 0, (roth

(2)
0 )τ = 0, u

(2)
0 = 0 y ∈ S

are hold. We assume that the smallness conditions

‖ρ0‖W 2+l
2 (G) ≤ ε ‖U0 − u0‖W l+1/2

2 (G)≤ε, (3.2)

where U0 ∈ W l+3/2
2 (G) is a given vector field, be satisfied. Then problem (2.3) has a unique

solution on a certain small time interval (0, T ) with the following regularity properties

ρ ∈ W 5/2+l,0
2 (GT ) ∩W l/2

2 ((0, T ),W
5/2
2 (G)), ρt ∈ W 3/2+l,3/4+l/2

2 (GT ),

u(i) ∈ W 2+l,1+l/2
2 (Fi × (0, T )), h(i) ∈ W 2+l,1+l/2

2 (Fi × (0, T )),

q ∈ W 1/2+l,0
2 (GT ) ∩W l/2

2 ((0, T );W
1/2
2 (G)), ∇q ∈ W l,l/2

2 (Fi × (0, T )).

Scheme of the proof. It is clear that problem (2.3) can be decomposed in two parts:
the hydrodynamical part with linear terms depending on u, q, and ρ and the magnetic part
with linear terms depending on h. Linearized hydrodynamical problem is as follows

u
(i)
t − ν(i)∇2u(i) +

1

d(i)
∇p(i) = f (i), ∇ · u(i) = ∇ · F(i), y ∈ Fi,

[νΠ0S(u)]N = Π0A,

− [
1

d
p] + [νN · S(u)N] + σBρ = A ·N,

ρt − u ·N = g(y, t), [u] = 0, y ∈ G,
u(2) = 0, y ∈ S,
u(i)(y, 0) = u

(i)
0 (y), y ∈ Fi, ρ(x, 0) = ρ0(y), y ∈ G.

(3.3)

Problem (3.3) similar to the linearized problem in two phase free boundary problem describes
the motion of two liquids without action of magnetic field. This linear problem has been
studied in [6], [4]. In particular unique solvability in Sobolev-Slobodetskii spaces is obtained.
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The part with linear terms depending on h is as follows

µiH
(i)
t +

1

αi
rotrotH(i) = f (i), ∇ ·H(i) = 0, y ∈ Fi,

[µH ·N]
∣∣
G

= 0, [Hτ ]
∣∣
G

= a,

[
1

α
(rotH)τ ]

∣∣∣
G

= g,

H(2) · n = 0, (rotH(2))τ = 0, y ∈ S,
H(i)(y, 0) = H

(i)
0 (y), y ∈ Fi.

(3.4)

Problem (3.4) can be reduced to the similar problem with g = 0,, a = 0 in the same way as
in [1], where the solution to the auxilliary problem

roth(y) = j(y), ∇ · h(y) = 0, y ∈ Fi,
[µh · n]

∣∣
G

= 0, [hτ ]
∣∣
G

= a,

h ·N(y) = 0, y ∈ S
(3.5)

has been constructed.
Theorem 2.[5] Let in (3.4) a = 0, g = 0, f (i) ∈ W l,l/2

2 (Q
(i)
T ), H

(i)
0 ∈ W l+1

2 (Fi), l ∈ [0, 1)
and the following compatibility conditions be satisfied

∇ · f (i) = 0, ∇ ·H(i)
0 = 0, y ∈ Fi,

[µH0 ·N]
∣∣∣
G

= 0, [H0τ ]
∣∣∣
G

= 0, [ 1
α
rotτH0]

∣∣∣
G

= 0, [f ·N]
∣∣∣
G

= 0

H0 · n
∣∣∣
S

= 0, (rotH
(2)
0 )τ

∣∣∣
S

= 0, f (2) · n
∣∣∣
S

= 0.

(Condition ∇ · f (i) = 0 holds in a week sense. Compatibility conditions on the tangential
part of rotor at the boundary and for f on the boundary are set only when l ≥ 1/2.)

Then problem (3.4) has a unique solution H(i) ∈ W
l+2,l/2+1
2 (Q

(i)
T ), Q

(i)
T = Fi × (0, T ),

i = 1, 2. For this solution the following estimate

2∑
i=1

‖ H(i) ‖
W

l+2,l/2+1
2 (Q

(i)
T )
≤ c

2∑
i=1

(
‖ f (i) ‖

W
l,l/2
2 (Q

(i)
T )

+ ‖ H(i)
0 ‖W l+1

2 (Fi)

)
(3.6)

holds.
Solvability of the nonlinear problem is proved by the successive approximations method,

based on solvability results for linear problems (3.3), (3.4) and estimates of nonlinear terms.
Assumption (3.2)1 is stronger as the corresponding assumption in [1] (‖ρ0‖W 3/2+l

2 (G)
≤ ε). It

gives us the opportunity to obtain for the magnetic field the same regularity properties as
for the velocity vector field. Detailed proof will be given in subsequent publications.
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