On \mathbb{Z}_d -symmetry of spectra of linear operators in Banach spaces

Oleg Reinov

Saint Petersburg State University

M. I. Zelikin's Remark

All the main results below have their beginning in the following remark of M.I. Zelikin (Moscow State Uniersity):

Remark

The spectrum of a linear operator $A : \mathbb{R}^k \to \mathbb{R}^k$ is central-symmetric iff the trace of any odd power of A equals zero:

trace
$$A^{2n-1} = 0$$
, $n \in \mathbb{N}$.

Zelikin's Theorem

To formulate the theorem, we need a definition:

- The spectrum of A is central-symmetric, if together with any eigenvalue $\lambda \neq 0$ it has the eigenvalue $-\lambda$ of the same multiplicity.
 - It was proved in a paper by M. I. Zelikin
 - M. I. Zelikin, A criterion for the symmetry of a spectrum", Dokl. Akad. Nauk 418 (2008), no. 6, 737-740
- **Theorem.** The spectrum of a nuclear operator A acting on a separable Hilbert space is central-symmetric iff $trace A^{2n-1} = 0, n \in \mathbf{N}$.

Mityagin's \mathbb{Z}_{d} -symmetry

Definition

Let T be an operator in X, all non-zero spectral values of which are eigenvalues of finite multiplicity and have no limit point except possibly zero. For a fixed $d=2,3,\ldots$ and for the operator T, the spectrum of T is called \mathbb{Z}_d -symmetric, if $0 \neq \lambda \in \operatorname{sp}(T)$ implies $t\lambda \in \operatorname{sp}(T)$ for every $t \in \sqrt[d]{1}$ and of the same nultiplicity.

If d = 2, then one has the central symmetry.

Mityagin's Theorem

Theorem

Let X be a Banach space and $T: X \to X$ is a compact operator. Suppose that some power of T is nuclear. The spectrum of T is \mathbb{Z}_d -symmetric iff there is an integer $K \geq 0$ such that for every I > Kd the value trace T^I is well defined and

trace
$$T^{kd+r} = 0$$

for all
$$k = K, K + 1, K + 2, ...$$
 and $r = 1, 2, ..., d - 1$.

In the proof, the Riesz theory of compact operators is used.

B. S. Mityagin, A criterion for the \mathbb{Z}_d -symmetry of the spectrum of a compact operator, J. Operator Theory, **76**:1 (2016), 57–65.

Our Generalization of Mityagin's Theorem

Theorem

Let X be a Banach space and $T: X \to X$ is a linear continuous operator. Suppose that some power of T is nuclear. The spectrum of T is \mathbb{Z}_d -symmetric iff there is an integer $K \geq 0$ such that for every I > Kd the value trace T^I is well defined and

trace
$$T^{kd+r} = 0$$

for all
$$k = K, K + 1, K + 2, ...$$
 and $r = 1, 2, ..., d - 1$.

Oleg Reinov, *Some remarks on spectra of nuclear operators*, SPb. Math. Society Preprint 2016-09, 1-9

In the proof we use the Fredholm theory of A. Grothendieck:

Simplest Examples

Remark

Let Π_p be the ideal of absolutely p-summing operators. Then for some n one has $\Pi_p^n \subset N$. In particular, $\Pi_2^2(C[0,1]) \subset N(C[0,1])$, but not every absolutely 2-summing operator in C[0,1] is compact.

The p-summing operators in such spaces provide instances of operators to which the last theorem may be applied even though Mityagin's Theorem is not always applicable.

General notation

X, Y Banach spaces.

L(X, Y) — linear continuous operators.

For $T: X \to Y$,

$$||T|| = \sup\{||T(x)||: x \in X, ||x|| \le 1\}.$$

$$X^* = L(X, \mathbb{C}).$$

For 0 ,

$$I^{p} = \{(a_{k}): a_{k} \in \mathbb{C}, \sum_{k=1}^{\infty} |a_{k}|^{p} \leq \infty\},$$

$$||(a_k)||_{I^p} = \{\sum_{k=1}^{\infty} |a_k|^p\}^{1/p}.$$

$$I^{\infty} = \{(a_k): ||(a_k)||_{I^{\infty}} = \sup_{k} |a_k| < \infty\};$$

$$c_0 = \{(a_k) \subset I^\infty; a_k \to 0\}.$$

Preliminaries

$$\mathcal{F}(X,Y) = \{ T \in L(X,Y) : \operatorname{rank} T < \infty \}$$

$$T \in \mathcal{F}(X,Y) \implies T(x) = \sum_{k=1}^{n} x'_k(x) y_k,$$

where $x_k' \in X^*$, $y_k \in Y$. If $T \in \mathcal{F}(X,X)$, then $T(x) = \sum_{k=1}^n x_k'(x)x_k \ (x_k' \in X^*, \, x_k \in X)$ and

trace
$$T:=\sum_{k=1}^n x_k'(x_k)$$
.

"Trace" does not depend on a representation of T and

trace
$$T = \sum eigenvalues(T)$$

(written according their multuplicities).

Nuclear representations

Also, a finite rank $T \in L(X, X)$. Consider a *nuclear* representation

$$Tx = \sum_{k=1}^{\infty} x'_k(x)x_k, \ \sum_{k=1}^{\infty} ||x'_k|| \, ||x_k|| < \infty$$

and

$$\alpha := \sum_{k=1}^{\infty} x'_k(x_k).$$

- Question: $\alpha = \text{trace } T$?
- Generally, NO.
- Enflo P., A counterexample to the approximation property in Banach spaces, Acta Math., Volume 130, 1973, 309–317

Nuclear operators

Definition

 $T: X \rightarrow Y$ is nuclear, if

$$\exists \ (x_k') \subset X^*, (y_k) \subset Y: \ \sum_{k=1}^{\infty} ||x_k'|| \, ||y_k|| < \infty,$$

$$T(x) = \sum_{k=1}^{\infty} x'_k(x) y_k, \ \forall \ x \in X.$$

Remark: If T is nuclear, then $T: X \to c_0 \stackrel{\Delta}{\to} l_1 \to Y$. $\Delta \in l^1$.

s-Nuclear operators

Generally:

Definition

$$T: X \rightarrow Y$$
 is s-nuclear $(0 < s \le 1)$, if

$$\exists \ (x'_k) \subset X^*, (y_k) \subset Y: \ \sum_{k=1}^{\infty} ||x'_k||^s \, ||y_k||^s < \infty,$$

$$T(x) = \sum_{k=1}^{\infty} x'_k(x) y_k, \ \forall \ x \in X.$$

Remark: If T is s-nuclear, then $T: X \to c_0 \stackrel{\Delta}{\to} l_1 \to X, \ \Delta \in l^s$.

Nuclear operators: Trace and AP

Definition

Let $T \in L(X,X)$ be nuclear with

$$T(x) = \sum_{k=1}^{\infty} x'_k(x) x_k, \ \forall \ x \in X.$$

If $\sum_{k=1}^{\infty} x'_k(x_k)$ does not depend on a representation, then it is the (nuclear) trace of T. Notation: trace T.

Definition

If every nuclear $T: X \to X$ has a trace, then X has the AP.

Grothendieck's AP

Grothendieck's Definition:

Definition

X has the AP if id_X is in the closure of $\mathcal{F}(X,X)$ in the topology of compact convergence:

$$\forall \ \varepsilon > 0, \ \forall \ \mathrm{compact} \ K \subset X \ \exists \ R \in \mathcal{F}(X,X) : \ \sup_{x \in K} ||Rx - x|| < \varepsilon.$$

- A. Grothendieck: *Produits tensoriels topologiques et éspaces nucléaires*, Mem. Amer. Math. Soc., **16**(1955).
- Enflo P., A counterexample to the approximation property in Banach spaces, Acta Math., Volume 130, 1973, 309–317

AP : Examples

Examples

- $AP: C(K), L_p(\mu), A, L_{\infty}/H^{\infty}$ etc;
- $\forall p \in [1,\infty] \setminus \{2\} \exists X \subset I_p : X \notin AP$;
- $L(H) \notin AP$, H^{∞} not known;

A characterization of AP

A. Grothendieck:

Theorem

The following are equivalent:

- 1) Every Banach space has the approximation property.
- 2) If a nuclear operator $U:c_0\to c_0$ is such that trace U=1, then $U^2\neq 0.$

By Enflo:

Theorem

There exists a nuclear operator $U: c_0 \rightarrow c_0$ such that trace U=1 and $U^2=0$.

Bad nuclear operators in l^1

Can be obtain from Davie's

Davie A.M., The approximation problem for Banach spaces, Bull. London Math. Soc., Vol 5, 1973, 261–266

$\mathsf{Theorem}$

There exists a nuclear operator T in I^1 :

- (i) T is s-nuclear for every $s \in (2/3, 1]$.
- (ii) trace T = 1.
- (iii) $T^2 = 0$.

A proof can be found in

A. Pietsch, Operator ideals, North-Holland, 1978.

On the other hand:

A. Grothendieck:

$\mathsf{Theorem}$

If T is 2/3-nuclear (in any X), then trace T is well-defined. Moreover, if trace $T \neq 0$, then $T^2 \neq 0$.

V. B. Lidskii:

$\mathsf{Theorem}$

If $T: I^2 \to I^2$ is 1-nuclear, then trace T is well-defined. Moreover, if trace $T \neq 0$, then $T^2 \neq 0$.

Can be found in

V.B. Lidskii, Nonselfadjoint operators having a trace, Dokl. Akad. Nauk SSSR, 125(1959), 485–487.

or in A. Pitsch's book.

Our aim

Thus, the cases of nuclear operatots in c_0 , I^1 and I^2 were considered above, and these are all the cases (in the scale of I^p -spaces) that have been known to us so far.

We are going to consider the cases where $1 and to get an optimal results (also in case of <math>c_0$).

Main result: Our Generalization of Zelikin's Theorem

Our main theorems:

Theorem

Let Y is a subspace of a quotient (or a quotient of a subspace) of some $L_p(\mu)$ -space, $1 \le p \le \infty$ and 1/r = 1 + |1/2 - 1/p|. If $T: Y \to Y$ is r-nuclear, then trace T is well-defined. For a fixed $d=2,3,\ldots$, the spectrum of T is \mathbb{Z}_d -symmetric iff

trace
$$T^{kd+j} = 0$$
 for all $k = 0, 1, 2, ...$ and $j = 1, 2, ..., d-1$.

In particular, if trace $T \neq 0$, then $T^2 \neq 0$.

Main result: Sharpness

Theorem is optimal with respect to p and r:

Theorem

Let $p \in [1, \infty]$, $p \neq 2$, 1/r = 1 + |1/2 - 1/p|. There exists a nuclear operator V in I^p (in c_0 for $p = \infty$) such that

- 1) V is s-nuclear for each $s \in (r, 1]$;
- 2) V is not r-nuclear;
- 3) trace V = 1 and $V^2 = 0$.

Note that for $p = \infty$ we have r = 2/3 and for p = 2 we have r = 1.

Our auxiliary theorem

 $L_c(X, Y)$ — L(X, Y) with topology of compact convergence. Main ingredient for getting V above:

Theorem

Let $r \in [2/3,1)$, $p \in (2,\infty]$, 1/r = 3/2 - 1/p. There exist a subspace Y_p of the space I_p (c_0 if $p = \infty$), a linear continuous functional Ψ on $L_c(Y_p, Y_p)$ and systems $(y_k) \subset Y^*$, $(y_k) \subset Y$ such that

$$\sum_{k=1}^{\infty} ||y_k'||^s ||y_k||^s < \infty \,\forall \, s > r,$$

$$\Psi(U) = \sum_{k=1}^{\infty} y'_k(Uy_k) \ \forall \ U \in L(Y_p, Y_p),$$

$$\Psi(R) = 0 \,\,\forall\,\, R \in \mathcal{F}(Y_p, Y_p).$$

Moreover, such situation is impossible for s = r.

Thank you for your attention!