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Abstract. We consider quasi-normed tensor products lying between Laprest�e
tensor products and spaces of (r, p, q)-nuclear operators. We de�ne and investigate
the corresponding approximation properties for Banach spaces. An intermediate
aim is to answer a question of Sten Kaijser.

...

This is, essentially, a continuation of the author's paper [4] and the �rst part of
the work on the approximation properties connected with the quasi-normed ideals
of so-called (r, p, q)-nuclear operators.

0. Notation, preliminaries

Throughout, we denote by X,Y, . . . , G, F,W . . . Banach spaces over a �eld K
(which is either R or C); X∗, Y ∗, . . . are Banach dual to X,Y, . . . . By x, y, . . . , x′, . . .
(maybe with indices) we denote elements of X,Y, . . . , Y ∗ . . . respectively. πY : Y →
Y ∗∗ is a natural isometric imbedding.

Notations lp, l
n
p (0 < p ≤ ∞, n = 1, 2, . . . ), c0 are standard; ek (k = 1, 2, . . . )

is the k-th unit vector in lp or c0 (when we consider the unit vectors as the linear
functionals, we use notation e′k). We use idX for the identity map in X.

It is denoted by F (X,Y ) a vector space of all linear continuous mappings from
X to Y. By X ⊗ Y we denote the algebraic tensor product of the spaces X and Y.
X ⊗ Y can be considered as a subspace of the vector space F (X∗, Y ) (namely, as a
vector space of all linear weak∗-to-weak continuous �nite rank operators). We can
identify also the tensor product (in a natural way) with a corresponding subspace of
F (Y ∗, X). If X = W ∗, then W ∗⊗Y is identi�ed with F (X,Y ∗∗) (or with F (Y ∗, X∗).
If z ∈ X ⊗ Y, then z̃ is the corresponding �nite rank operator. If z ∈ X∗ ⊗ X
and e.g. z =

∑n
k=1 x

′
k ⊗ xk, then trace z :=

∑n
k=1⟨x′

k, xk⟩ does not depend on
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representation of z in X∗ ⊗ X. L(X,Y ) is a Banach space of all linear continuous
mappings ("operators") from X to Y equipped with the usual operator norm.

If A ∈ L(X,W ), B ∈ L(Y,G) and z ∈ X⊗Y, then a linear map A⊗B : X⊗Y →
W ⊗ G is de�ned by A ⊗ B((x ⊗ y) := Ax ⊗ By (and then extended by linearity).

Since ˜A⊗B(z) = Bz̃A∗ for z ∈ X ⊗ Y, we will use notation B ◦ z ◦ A∗ ∈ W ⊗ G
for A ⊗ B(z). In the case where X is a dual space, say F ∗, and T ∈ L(W,F ) (so,
A = T ∗ : F ∗ → W ∗), one considers a composition Bz̃T ; in this case T ∗ ⊗ B maps
F ∗ ⊗ Y into W ∗ ⊗ Y and we use notation B ◦ z ◦ T for T ∗ ⊗B(z).

If ν is a tensor quasi-norm (see [5, 0.5]), then ν(A⊗B(z)) ≤ ||A|| ||B|| ν(z) and
we can extend the map A⊗B to the completions of the tensor products with respect
to the quasi-norm ν, having the same inequality. The natural map (X ⊗ Y, ν) →
L(X∗, Y ) is continuous and can be extended to the completion X̂ ⊗ν Y ; for a tensor

element z ∈ X̂ ⊗ν Y , we still denote by z̃ the corresponding operator. The natural

mapping X̂ ⊗ν Y → L(X∗, Y ) need not to be injective; if it is injective for a �xed

Y and for all X, then we say that Y has the ν-approximation property.
A projective tensor product X⊗̂Y of Banach spaces X and Y is de�ned as a

completion of X ⊗ Y with respect to the norm || · ||∧ : if z ∈ X ⊗ Y, then

||z||∧ := inf
n∑

k=1

||xk|| ||yk||,

where in�mum is taken over all representation of z as
∑n

k=1 xk ⊗ yk. We can try to
consider X⊗̂Y also as operators X∗ → Y or Y ∗ → X, but this correspondence is,
in general, not one-to-one. Note that X⊗̂Y = Y ⊗̂X in a sence. If z ∈ X⊗̂Y, ε > 0,
then one can represent z as z =

∑∞
k=1 xk ⊗ yk with

∑∞
k=1 ||xk|| ||yk|| < ||z||∧ + ε.

For z ∈ X∗⊗̂X with a "projective representation" z =
∑∞

k=1 x
′
k ⊗ xk, trace of

z, trace z := z =
∑∞

k=1⟨xk, yk⟩, does not depend of representation of z. The Banach
dual (X⊗̂Y )∗ = L(Y,X∗) by ⟨T, z⟩ = trace T ◦ z.

Some more notations: If A is an operator ideal then Areg(X,Y ) := {T ∈
L(X,Y ) : πY T ∈ A(X,Y ∗∗)}, Adual(X,Y ) := {T ∈ L(X,Y ) : T ∗ ∈ A(Y ∗, X∗)}.

Finally,

lp(X) := {(xi) ⊂ X : ||(xi)||p :=
(∑

||xi||p)1/p < ∞},

l∞(X) := {(xi) ⊂ X : ||(xi)||∞ := sup
i

||xi|| < ∞},

lwp (X) := {(xi) ⊂ X : ||(xi)||w,p := sup
||x′||≤1

(∑
|⟨x′, xi⟩|p)1/p < ∞},

lw∞(X) := {(xi) ⊂ X : ||(xi)||w,∞ := sup
i

||xi|| < ∞}.

Note that if p ≤ q, then || · ||q ≤ || · ||p and || · ||w,q ≤ || · ||w,p. If 0 < p ≤ ∞, then p′

is a conjugate exponent: 1/p+ 1/p′ = 1 if p ≥ 1 and p′ = ∞ if p ∈ (0, 1].
Below 0 < r, s ≤ 1, 0 < p, q ≤ ∞ and 1/r + 1/p+ 1/q = 1/β ≥ 1.
Let us note that "Remarks" in the paper can contain sometimes quite important

information comparable to the information presented in Theorems and Propositions.
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1. The tensor products X⊗̂r,p,qY

We use partially notations from [5]. For z ∈ X ⊗ Y we put

µr,p,q(z) := inf{||(αk)||r||(xk)||w,p||(yk)||w,q : z =
n∑

k=1

αkxk ⊗ yk};

X ⊗r,p,q Y is the tensor product, equipped with this quasi-norm µr,p,q. Note that
µ1,∞,∞ is the projective tensor norm of A. Grothendieck [1].

Let us denote by ̂X ⊗r,p,q Y the completion of X ⊗ Y with respect to this quasi-

norm µr,p,q (in [5] � X ⊗̂
r,p,q

Y ). Every tensor element z ∈ ̂X ⊗r,p,q Y admits a rep-

resentation of type z =
∑∞

k=1 αkxk ⊗ yk, where ||(αk)||r||(xk)||w,p||(yk)||w,q < ∞,
and

µr,p,q(z) := inf ||(αk)||r||(xk)||w,p||(yk)||w,q

(in�mum is taken over all such �nite or in�nite representations) [5, Proposition 1.3,

p. 52]. Note that ̂X ⊗1,∞,∞ Y = X⊗̂Y.

Lemma 1.1 Let 1) 0 < r1 ≤ r2 ≤ 1, p1 ≤ p2 and q1 ≤ q2 or 2) 0 < r1 < r2 ≤ 1,
p1 ≥ p2, q1 ≥ q2 and 1/r2 + 1/p2 + 1/q2 ≤ 1/r1 + 1/p1 + 1/q1. If z ∈ X ⊗ Y,
then µr2,p2,q2(z) ≤ µr1,p1,q1(z). In particular, µ1,∞,∞(z) ≤ µr1,p1,q1(z). Consequently,
a natural mappings X ⊗r1,p1,q1 Y → X ⊗r2,p2,q2 Y → X⊗̂Y can be extended to the
(natural) continuos maps

̂X ⊗r1,p1,q1 Y → ̂X ⊗r2,p2,q2 Y → X⊗̂Y.

Proof. Case 1): If z =
∑n

k=1 αkxk ⊗ yk, then ||(αk)||r2||(xk)||w,p2||(yk)||w,q2 ≤
||(αk)||r1||(xk)||w,p1||(yk)||w,q1 .

Case 2: The proof is standard (cf. [6, 18.1.5, p. 246-247]). Take r such that
1/r1 = 1/r+1/p+1/q, where 1/p := 1/p2−1/p1 and 1/q := 1/q2−1/q1. Then r ≤ r2
and r1/r + r1/p+ r1/q = 1. If z =

∑n
k=1 αkxk ⊗ yk, then z =

∑n
k=1 α

r1/r
k (α

r1/p
k xk)⊗

(α
r1/q
k yk) and

||(αr1/r
k )||r2 ≤ ||(αr1/r

k )||r = ||(αk)||r1/rr1
.

Since p2 ≤ p1 and 1− p2/p1 = p2/p ≤ 1, we can apply Golder inequality to get

||(αr1/p
k xk)||w,p2 ≤

( n∑
k=1

|αk|
p
p2

· r1p2
p
) 1

p2
· p2
p ||(xk)||w,p1 =

||(αr1/p
k )||p ||(xk)||w,p1 = ||(αk)||r1/pw,r1

||(xk)||w,p1 .

By the same reason,

||(αr1/q
k yk)||w,q2 ≤ ||(αr1/q

k )||q ||(yk)||w,q1 = ||(αk)||r1/qw,r1
||(yk)||w,q1 .

Hence,

||(αr1/r
k )||r2 ||(α

r1/p
k xk)||w,p2 ||(α

r1/q
k yk)||w,q2 ≤

||(αk)||r1/rr1
||(αk)||r1/pw,r1

||(xk)||w,p1 ||(αk)||r1/qw,r1
||(yk)||w,q1 =
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||(αk)||r1 ||(xk)||w,p1 ||(yk)||w,q1 .

It follows that µr2,p2,q2(z) ≤ µr1,p1,q1(z).

Let us recall the following useful fact (see Section 0). If A ∈ L(X,W ), B ∈
L(Y,G) and z ∈ ̂X ⊗r,p,q Y , then B ◦ z ◦ A∗ ∈ ̂W ⊗r,p,q G and µr,p,q(B ◦ z ◦ A∗) ≤
||B|| ||A||µr,p,q(z). Particular cases: X = W and A = idX or Y = G and B = idY .

The topological dual to ( ̂X ⊗r,p,q Y , µr,p,q) is the space Π∞,p,q(X,Y ∗) of absolutely
(∞, p, q)-summing operators from X to Y ∗ [5, Theorem 1.3, p. 57] (recall that 0 < r ≤ 1) :

If τ ∈ ( ̂X ⊗r,p,q Y )∗ and x ⊗ y ∈ X ⊗ Y, then the corresponding operator T is de�ned by
⟨τ, x ⊗ y⟩ = ⟨Tx, y⟩ [5, pp. 56-57]. Recall that, by de�nition, an operator T : X → F
is absolutely (∞, p, q)-summing if for any �nite sequences (xk) and (f ′

k) (from X and F ∗

respectively) one has

sup
k

|⟨Txk, f ′
k⟩| ≤ C ||(xk)||w,p||(f ′

k)||w,q.

With a norm π∞,p,q(T ) := inf C, the space Π∞,p,q(X,F ) is a Banach space and in duality
above (for F = Y ∗) π∞,p,q(T ) = ||τ || (on the right is the norm of the functional τ in

( ̂X ⊗r,p,q Y )∗).
Futhermore, taking a sequence in X×F ∗, consisting of one nonzero element (x, f ′), we

obtain: If T ∈ Π∞,p,q(X,F ), then |⟨Tx, f ′⟩| ≤ π∞,p,q(T ) ||x|| ||f ′||; thus, ||T || ≤ π∞,p,q(T ).
On the other hand, if T ∈ L(X,F ), then for any �nite sequences (xk) and (f ′

k) we have:

sup
k

|⟨Txk, f ′
k⟩| ≤ ||T || sup

k
||xk|| sup

i
||f ′

i || ≤ ||T || ||(xk)||w,p ||(f ′
k)||w,q.

Therefore, Π∞,p,q(X,F ) = L(X,F ).

I do not know whether the dual space Π∞,p,q(X,Y ∗) separates points of ̂X ⊗r,p,q Y . If

so, then the natural map ̂X ⊗r,p,q Y → X⊗̂Y is one-to-one. As a matter of fact, it follows

from the above considerations, that the space Π∞,p,q(X,Y ∗) separates points of ̂X ⊗r,p,q Y

i� the natural map jr,p,q : ̂X ⊗r,p,q Y → X⊗̂Y is one-to-one.

De�nition 1.1. We de�ne a tensor product X⊗̂r,p,qY as a linear subspace of the

projective tensor product X⊗̂Y, consisting of all tensor elements z, which admit represen-
tations of type

z =

∞∑
k=1

αkxk ⊗ yk, (αk) ∈ lr, (xk) ∈ lw,p, (yk) ∈ lw,q

and equipped with the quasi-norm ||z||∧;r,p,q := inf ||(αk)||r ||(xk)||w,p ||(yk)||w,q, where the
in�mum is taken over all representations of z in the above form.

Note that this tensor product is β-normed (see [5, 6]).

Remark 1.1. We can de�ne X⊗̂r,p,qY also as a quotient of the space ̂X ⊗r,p,q Y by
the kernel of the map jr,p,q (i.e. by the annihilator L(X,Y ∗)⊥ of L(X,Y ∗) in the space

̂X ⊗r,p,q Y ). Therefore:

(i) The tensor product X⊗̂r,p,qY is complete, i.e. a quasi-Banach space. This, with

the injectivity of the natural map X⊗̂r,p,qY → X⊗̂Y answers a corresponding question of

Sten Kaijser ("Why the last map is one-to-one for the "completion" X⊗̂r,p,qY ?").
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(ii) If the dual of ̂X ⊗r,p,q Y separates points of this space, then we can write ̂X ⊗r,p,q Y =

X⊗̂r,p,qY. In this case "�nite nuclear" quasi-norm µr,p,q coincides with the tensor quasi-
norm ||z||∧;r,p,q (compare with [6, 18.1.10.]).

(iii) The dual space to X⊗̂r,p,qY is still Π∞,p,q(X,Y ∗) of absolutely (∞, p, q)-summing
operators from X to Y ∗ with its natural quasi-norm.

It follows from Lemma 1.1 (or, if one wishes, can be proved by the same method)

Proposition 1.1 Let 1) 0 < r1 ≤ r2 ≤ 1, p1 ≤ p2 and q1 ≤ q2 or 2) 0 < r1 <
r2 ≤ 1, p1 ≥ p2, q1 ≥ q2 and 1/r2 + 1/p2 + 1/q2 ≤ 1/r1 + 1/p1 + 1/q1. If z ∈ X ⊗ Y,
then ||z||∧;r2,p2,q2 ≤ ||z||∧;r1,p1,q1 . In particular, ||z||∧;1,∞,∞ ≤ ||z||∧;r1,p1,q1 . Consequently, a
natural mappings X⊗̂r1,p1,q1Y → X⊗̂r2,p2,q2Y → X⊗̂Y are continuos injections of quasi-
norms 1.

Proposition 1.2. If X or Y has the bounded approximation property, then µr,p,q =

|| · ||∧;r,p,q on X ⊗ Y. Hence, in this case the dual of ̂X ⊗r,p,q Y separates points, jr,p,q is

injective and ̂X ⊗r,p,q Y = X⊗̂r,p,qY (and equals to the corresponding space of (r, p, q)-
nuclear operators; see below Corollary 2.1).

Proof. It is enough to show that the map jr,p,q is injective. Since ̂X ⊗r,p,q Y =
̂Y ⊗r,q,p X, it is enough to consider the case, where Y ∈ C-MAP, C ∈ [1,∞). Let

z ∈ X ⊗ Y and let z̃ : X∗ → Y be an operator, associated with z (note that this is
one-to-one correspondence). There exists a �nite rank operator R : Y → Y such that

||R|| ≤ C + 1 and Rz̃ (:= ( ˜idX ⊗R)(z)) = z̃ (see [6, 10.2.5, p. 131]). Fix δ > 0 and
choose a representation for z, z =

∑∞
k=1 αk xk ⊗ yk, with ||(αk)||r ||(xk)||w,p ||(yk)||w,q ≤

||z||∧;r,p,q (1 + δ). Let E := R(Y ) ⊂ Y, M := dimE and ε = ε(M) ∈ (0, δ] (to be cho-
sen later). Then z̃ =

∑∞
k=1 αk ⟨xk, ·⟩φk, where φk = Ryk ∈ E. Let N be such that

||(αk)
∞
N ||r ||(xk)∞N ||w,p ||φ∞

N ||w,q ≤ ε ||z||β∧;r,p,q.
Now, since E is �nite dimensional, idE admit a representation in ̂E∗ ⊗r,p,q E which

give us an estimation from above for µr,p,q(idE) by a constant C = C(M) depending

only on M. Indeed, take an isomorphism A : E → lM2 with ||A|| = 1, ||A−1|| ≤
√
M

(see e.g. [7, Corollary 3.9]). Since idlM2
=

∑M
k=1 e

′
k ⊗ ek, µr,p,q(idlM2

) ≤ M1/β. Therefore,

idE = A−1 idlM2
A =

∑M
k=1A

∗e′k⊗A−1ek and µr,p,q(idE) ≤ M1/β+1/2. So, for any v ∈ X⊗E,

considering idE ◦v (= idE ṽ) we obtain an inequality µr,p,q(idE ◦v) ≤ M1/β+1/2 ||ṽ||. Since
||ṽ|| ≤ ||v||∧;r,p,q we get

µr,p,q(idE ◦v) ≤ C(M) ||v||∧;r,p,q.
Hence, for our z we get

µβ
r,p,q(z) ≤ µβ

r,p,q

( N∑
k=1

αk xk ⊗ φk

)
+ µβ

r,p,q

( ∞∑
k=N+1

αk xk ⊗ φk

)
≤

||R||β µβ
r,p,q

( N∑
k=1

αk xk ⊗ yk
)
+ C(M)β ||

∞∑
k=N+1

αk xk ⊗ φk||β∧;r,p,q ≤

||R||β (||(αk)||r ||(xk)||w,p ||(yk)||w,q)
β + C(M)β (||(αk)

∞
N ||r ||(xk)∞N ||w,p ||φ∞

N ||w,q)
β ≤

(1 + δ)β ||R||β ||z||β∧;r,p,q + εβC(M)β ||z||β∧;r,p,q.

Taking ε < δ to have εβC(M)β < δ, we obtain µβ
r,p,q(z) ≤ [(1+δ)β (C+1)β+δ] ||z||β∧;r,p,q.
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This inequality means, in particular, that the quasi-norms µr,p,q and || · ||∧;r,p,q are

equivalent on the space X⊗Y, thus giving the same completions. Since the space X⊗̂r,p,qY

is complete (Remark (i) above), we obtain that the natural quotient map ̂X ⊗r,p,q Y →
X⊗̂r,p,qY is injective (recall that the last space is a subspace of the projective product

X⊗̂Y ).

Remark 1.2. For an "operator" situation, see Corollary 2.1 below and (for 1 ≤ p, q,≤
∞) [6, pp. 249-251].

Approximation properties

We begin with the main de�nition.
De�nition 2.1. A Banach space X has the approximation property APr,p,q if for

every Banach space Y the canonical mapping Y ⊗̂r,p,qX → L(Y ∗, X) is one to one.

Proposition 2.1. The following conditions are equivalent:
1) X has the APr,p,q.

2) For every Banach space W the natural map W ∗⊗̂r,p,qX → L(W,X) is one-to-one.

3) The natural map X∗⊗̂r,p,qX → L(X) := L(X,X) is one-to-one.
Proof. Implications 1) =⇒ 2) =⇒ 3) are evident.
3) =⇒ 1). Suppose that the canonical map X∗⊗̂r,p,qX → L(X) is one-to-one, but

there exists a Banach space Y such that the natural map Y ⊗̂r,p,qX → L(Y ∗, X) is not

injective. Let z ∈ Y ⊗̂r,p,qX be such that z ̸= 0 and the associated operator z̃ is a zero
operator. Then we can �nd an operator V from L(Y,X∗) (the dual space to the projective
tensor product Y ⊗̂X) so that trace V ◦ zt = 1, where, as usual, zt is the transposed tensor
element, zt ∈ X⊗̂Y. Since V ◦zt ∈ X⊗̂X∗ and trace V ◦zt = 1, the tensor element (V ◦zt)t
(which, evidently, belongs to X∗⊗̂r,p,qX) is not zero. Contradiction.

Remark 2.1. One can introduce also (in a similar way) some new notions of the ap-
proximation properties by using the Laprest�e tensor products. We do not consider these
properties here because we do not know how to work with the tensor products if their
Banach duals do not separate points.

The following assertion is an analogue of [4, Prop. 6.2]. Its proof is contained in the
corresponding proof of Proposition 6.2 from [4]. But since a situation now is a little bit
di�erent from the one there (quasi-norms are here not "selfadjoint"), we present a proof
here.

Proposition 2.2. If X∗ has the APr,p,q, then X has the APr,q,p.
Proof. We will use Proposition 1. As it is known [1], the projective tensor product

X∗⊗̂X is a Banach subspace of the tensor productX∗⊗̂X∗∗. The tensor productX∗⊗̂r,q,pX

is a linear subspace of X∗⊗̂X, as well as X∗⊗̂r,q,pX
∗∗ is a linear subspace of X∗⊗̂X∗∗.

Therefore, the natural map X∗⊗̂r,q,pX → X∗⊗̂r,q,pX
∗∗ is one-to-one. Now if X∗ has the

APr.p.q, then the canonical map X∗∗⊗̂r,p,qX
∗ → L(X∗, X∗) is one-to-one. Since we can

identify the tensor product X∗∗⊗̂r,p,qX
∗ with the tensor product X∗⊗̂r,q,pX

∗∗, it follows

that the natural map X∗⊗̂r,q,pX → L(X,X) is one-to-one. Thus, if X∗ has the APr,p,q,
then X has the APr,q,p.

Remark 2.2. The inverse statement is not true. Some examples are given in [4, Remark
6.1].
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Remark 2.3. (i) From the proof it follows that: For any X and Y the natural map

X⊗̂r,q,pY → X⊗̂r,q,pY
∗∗ is one-to-one.

(ii) On the other hand: For any X and Y the natural map ̂X ⊗r,q,p Y → ̂X ⊗r,q,p Y ∗∗ is
an isometric embedding. To prove this, it is enough to apply Principle of Local Re�exivity
(see e.g. [6, E.3.1]) as it was done in [6, 18.1.12] for the case 1 ≤ p, q ≤ ∞.

Recall that a linear map T : X → Y is called (r, p, q)-nuclear if it has a representa-
tion T =

∑∞
k=1 αk ⟨x′k, ·⟩yk, where (αk) ∈ lr, (x

′
k) ∈ lw,p(X

∗) and (yk) ∈ lw,q(Y ). Every
such a map is continuous. The space Nr,p,q(X,Y ) of all (r, p, q)-nuclear operators from

X to Y can be considered as a quotient of the tensor product X∗⊗̂r,p,qY (as well as a

quotient of ̂X∗ ⊗r,p,q Y ) by the kernel of the natural map X∗⊗̂r,p,qY → L(X,Y ). We equip
this space with the induced quasi-norm (β-norm) denoted by νr,p,q. If the corresponding

quotient map has a trivial kernel, then we write Nr,p,q(X,Y ) = X∗⊗̂r,p,qY (respectively,

Nr,p,q(X,Y ) = ̂X∗ ⊗r,p,q Y ). Thus, X has the APr,p,q i� for every Banach space Y the

equality Nr,p,q(Y,X) = Y ∗⊗̂r,p,qX holds.
Remark 2.4. 1) If t ∈ (0,+∞], then Nt,p,q(X,Y ) (the space of (t, p, q)-nuclear opera-

tors) can be de�ned by the analogues way: an operator T : X → Y is (t, p, q)-nuclear, if
it can be written in the form T =

∑∞
k=1 αk ⟨x′k, ·⟩yk, where (αk) ∈ lt, (x

′
k) ∈ lw,p(X

∗) and
(yk) ∈ lw,q. The quasi-norm || · ||Nt,p,q is de�ned for T as inf ||(αk)||t||(x′k)||w,p||(yk)||w,q,
where in�mum is taken over all appropriate representations of T. If 1/t + 1/p + 1/q = 1,
then it is a norm.

2) In notation, we follow J.-T. Laprest�e [5], only changing a triple (p, r, s) there to
(r, p, q) here (see also [6] ; nota bene: A. Pietsch [6, 18.1] uses di�erent notations for this
class of operators and considers the cases where 1 ≤ p, q ≤ ∞.)

It follows from Proposition 1.1:

Proposition 2.3 Let 1) 0 < r1 ≤ r2 ≤ 1, p1 ≤ p2 and q1 ≤ q2 or 2) 0 < r1 < r2 ≤ 1,
p1 ≥ p2, q1 ≥ q2 and 1/r2+1/p2+1/q2 ≤ 1/r1+1/p1+1/q1. If X has the APr2,p2,q2 , then
X has the APr1,p2,q3 . In particular, the AP of A. Grothendieck implies any APr,p,q.

Corollary 2.1. (i) If X has the bounded approximation property, then for all r, p, q

and Y the equalities Nr,p,q(Y,X) = Y ∗⊗̂r,p,qX = ̂Y ∗ ⊗r,p,q X hold (with the same quasi-
norms). (ii) If Y ∗ has the bounded approximation property, then for all r, p, q and X the

equalities Nr,p,q(Y,X) = Y ∗⊗̂r,p,qX = ̂Y ∗ ⊗r,p,q X hold (with the same quasi-norms).
Proof. Apply Propositions 1.2 and 2.3.

Lemma 2.1. The tensor product ̂· ⊗r,p,2 · is injective, i.e. if i : Y → W is an isometric

imbedding and z ∈ ̂X ⊗r,p,2 Y , then µr,p,2(z) = µr,p,2(i ◦ z).
Proof. It is clear that µr,p,2(z) ≥ µr,p,2(i◦z). Let ε > 0 and

∑N
k=1 αkxk⊗φk be a �nite

representation of i◦z in X⊗W such that ||(αk)||r||(xk)||w,p||(φk)||w,q ≤ (1+ε)µr,p,2(i◦z).
De�ne an operator S ∈ L(lN2 ,W ) and a tensor element z0 ∈ ̂X ⊗r,p,2 lN2 by S =

∑
e′k ⊗φk

and z0 =
∑

αkxk⊗ ek. Let E := z̃0(X∗) ⊂ lN2 and P : lN2 → lN2 be an orthogonal projector

from ln2 onto E. Then S ◦ z0 = i ◦ z, S̃P ◦ z0 = ĩ ◦ z and SP (lN2 ) ⊂ i(Y ). It follows that
z = (i−1|i(Y )SP ) ◦ z0 =

∑
αkxk ⊗ i−1|i(Y )SPek (as the elements of X ⊗ Y ) and

µr,p,2(z) ≤ ||S|| ||(αk)||r||(xk)||w,p = ||(αk)||r||(xk)||w,p||(φk)||w,q ≤ (1 + ε)µr,p,2(i ◦ z).
Therefore, the natural map idX ⊗i : X ⊗ Y → X ⊗ W is an isometric imbedding and it

extends to the isometry idX ⊗i : ̂X ⊗r,p,2 Y → ̂X ⊗r,p,2 W.
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Remark 2.5.. It follows from Lemma 2.1 and from de�nitions of ⊗̂r,p,2 (and Nr,p,2)

that ⊗̂r,p,2 (and Nr,p,2) are injective (consider the quotient maps ⊗̂r,p,2 → ⊗̂r,p,2 → Nr,p,2).

On the other hand, the injectivity of ⊗̂r,p,2 (and Nr,p,2) can be proved in the same way
as above by consideration the in�nite representations of z, z̃ (instead of �nite ones) in the
given proof. Also, we see from the proof that if

∑∞
k=1 αkxk ⊗φk is a representation of i ◦ z

in ̂X ⊗r,p,2 W (see [5, Proposition 1.3, p. 52], then the corresponding representation for z

in ̂X ⊗r,p,2 Y can be taken of the type
∑∞

k=1 αkxk ⊗ yk with ||(yk)||w,2 ≤ ||(φk)||w,2. The

same is true for ⊗̂r,p,2 and Nr,p,2.

The �rst part of the following fact is partially known (cf. [6, 18.1.15-18.1.16] for
1 ≤ p, q ≤ ∞).

Proposition 2.4. For any Banach spaces X,Y the equalities

Nr,p,2(Y,X) = Y ∗⊗̂r,p,2X = ̂Y ∗ ⊗r,p,2 X and Nr,2,q(Y,X) = Y ∗⊗̂r,2,qX = ̂Y ∗ ⊗r,2,q X

hold (with the same quasi-norms). In particular, every Banach space has the APr,p,2 and
the APr,2,p.

Proof. As is known, the operator ideal Nr,p,2 is injective, (see [6, 18.1.8] for the case
1 ≤ p, q ≤ ∞); apply (factorization) Theorem 2.5 [5] in other cases). I.e., if X ⊂ G,
T ∈ L(Y,X) and T ∈ Nr,p,2(Y,G), then T ∈ Nr,p,2(Y,X) (with the same quasi-norm).

Also, the tensor product ̂· ⊗r,p,2 · is injective too (Lemma 2.1)Now, let z ∈ ̂Y ∗ ⊗r,p,2 X and
i : X → L∞ be an isometric embedding of X into an L∞-space. Since L∞ has the MAP,

νr,p,2(ĩ ◦ z) = µr,p,2(i◦z) (see Corollary 2.1). Hence, µr,p,2(z) = µr,p,2(i◦z) = νr,p,2(ĩ ◦ z) =
νr,p,2(iz̃) ≤ νr,p,2(z̃) ≤ µr,p,2(z).

To get the last two equalities it is enough to apply the surjectivity of the operator
ideal Nr,2,q and Corollary 2.1 (second part), by using the same idea as above, or just to

apply Lemma 2.1 and Remark 2.5 (second part): Take z ∈ ̂Y ∗ ⊗r,2,q X and a quotient map

Q : L1 → Y. Considering (z ◦Q)t as an element of ̂X ⊗r,q,2 L∞, we get:

νr,q,2(Q̃∗ ◦ zt) = µr,q,2(Q
∗ ◦ zt) = µr,q,2(z

t) = µr,2,q(z).

But νr,q,2(Q̃∗ ◦ zt) ≤ νr,2,q(z̃ ◦Q) ≤ νr,2,q(z); thus, µr,2,q(z) ≤ νr,2,q(z).

,
Remark 2.6. The fact that every X has the AP1,2,∞ is essentially contained in [6,

27.4.10, Proposition]. It is strange, but it seems that a corresponding fact for AP1,∞,2

appears here for the �rst time. Note that this fact follows also from the preceding by
virtue of Proposition 2.2: if every X has the AP1,2,∞, then X∗ possesses this property, and
by Proposition 2.2 X has the AP1,∞,2.

Many of the above approximation properties were considered earlier, e.g. in the papers
[2, 3, 4] etc:

(i) For p = q = ∞, we get the APr from [3, 4].
(ii) For p = ∞, we get the AP[r,q] from [2, 4].

(iii) For q = ∞, we get the AP [r,p] from [2, 4].

Following notations from [4] (see also [2]), we denote
Nr,∞,∞ by Nr,
Nr,∞,q by N[r,q],

Nr,p,∞ by N [r,p],
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⊗̂r,∞,∞ by ⊗̂r,

⊗̂r,∞,q by ⊗̂[r,q],

⊗̂r,p,∞, by ⊗̂[r,p]
.

The corresponding notations are used also for the APr,p,q (see above (i)�(iii)).
Almost all the information about Banach spaces without (or with) the properties APr,

AP[r,q] and AP [r,p] which is known to us by now, can be found in [2, 3, 4]. Other results
in this direction are the subject of the forthcoming paper of the author.
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