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Abstract. It was shown by M. I. Zelikin (2007) that the spectrum of a nuclear
operator in a Hilbert space is central-symmetric i� the traces of all odd powers
of the operator equal zero. B. Mityagin (2016) generalized Zelikin's criterium
to the case of compact operators (in Banach spaces) some of which powers are
nuclear, considering even a notion of so-called Zd-symmetry of spectra introduced
by him. We study α-nuclear operators generated by the tensor elements of so-
called α-projective tensor products of Banach spaces, introduced in the paper (α
is a quasi-norm). We give exact generalizations of Zelikin's theorem to the cases
of Zd-symmetry of spectra of α-nuclear operators (in particular, for s-nuclear and
for (r, p)-nuclear operators). We show that the results are optimal.

1. Introduction

It is well known that every nuclear (= trace class) operator on a Hilbert space
has the absolutely summable sequence of eigenvalues [21]. Moreover, the famous
Lidski�� theorem [11] says that for such an operator its trace is equal to the sum of
all its eigenvalues (written in according to their algebraic multiplicities).

It is clear that if the spectrum of such an operator is central-symmetric, then its
trace equals zero. Moreover, since every power of a nuclear operator T is nuclear too
and has a central-symmetric spectrum if T has, we see that, for such T, trace T k = 0
for every odd natural number k.

M.I. Zelikin has noticed that for an �nite dimensional spaces the converse is also
true (see [23, Theorem 1]), and then he proved the corresponding theorem for any
nuclear operator in a separable Hilbert space ([23, Theorem 2]). At the same time,
his proof was rather complicated. We are going to present, in particular, a more
simple proof below.

Recall that the spectrum of a compact operator is central-symmetric, if together
with any eigenvalue λ ̸= 0 it has the eigenvalue −λ of the same multiplicity. Thus,
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M.I. Zelikin has proved: The spectrum of a nuclear operator A acting on a separable
Hilbert space is central-symmetric i� trace A2n−1 = 0, ∀n ∈ N.

Let us mention that this theorem can not be extended to the case of general
Banach spaces: it follows from Grothendieck-En�o-Davie results [7, 4, 3] that there
exists a nuclear operator T in the space l1 of absolutely summable sequences such
that T 2 = 0 but trace T = 1 (the operator can be chosen even in such a way, that
it is s-nuclear for every s ∈ (2/3, 1]; see De�nition 1 below and [13, 10.4.5]).

A right generalization of Zelikin's theorem was found by B. Mityagin [12]. He
introduced a notion of so-called Zd-symmetry of the spectra of compact operators
in Banach spaces and gave a criterium for the spectra of an operator (some of which
power is nuclear) to be Zd-symmetric. For d = 2, this gives a generalization of the
criterium of M.I. Zelikin. We will use this notion of the Zd-symmetry to formulate
and to prove an exact generalization of Zelikin's theorem for the case of subspaces of
quotients of Lp-spaces (thus getting, in a simpler way, Zelikin's result putting p = 2
and d = 2). However, we will have to consider so-called s-nuclear operators instead
of nuclear ones in Zelikin's theorem. To formulate our main result, let us recall the
de�nitions of s-nuclearity of operators and of Zd-symmetry of spectra.

Definition 1.1 (A. Grothendieck). An operator T : X → Y is s-nuclear (0 <
s ≤ 1), if

∃ (x′
k) ⊂ X∗, (yk) ⊂ Y :

∞∑
k=1

||x′
k||s ||yk||s < ∞,

T (x) =
∞∑
k=1

x′
k(x)yk, ∀ x ∈ X.

For s = 1, they say that T is nuclear.

Let us note that A. Grothendieck in [7] called such operators "applications de
puissance p.�eme sommable".

Definition 1.2 (B. Mityagin). Let T be an operator in X, all non-zero spectral
values of which are eigenvalues of �nite multiplicity and have no limit point except
possibly zero. For a �xed d = 2, 3, . . . and for the operator T, the spectrum of T is
called Zd-symmetric, if 0 ̸= λ ∈ sp (T ) implies tλ ∈ sp (T ) for every t ∈ d

√
1 and of

the same multiplicity.

Our generalization of the Zelikin's theorem is:

Theorem 1.1. Let Y be a subspace of a quotient (or a quotient of a subspace)
of some Lp(µ)-space, 1 ≤ p ≤ ∞ and 1/r = 1 + |1/2 − 1/p|. If T : Y → Y is
r-nuclear, then trace T is well-de�ned. For a �xed d = 2, 3, . . . , the spectrum of T
is Zd-symmetric i�

trace T kd+j = 0 for all k = 0, 1, 2, . . . and j = 1, 2, . . . , d− 1.

In particular, if trace T ̸= 0, then T 2 ̸= 0.
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Note that if d = 2, we obtain an exact generalization of Zelikin's theorem on the
central symmetry.

Also, we present some sharp (optimal in r, p) generalizations of Zelikin's theorem
to the case of so-called (r, p)-nuclear and dually (r, p)-nuclear operators (see Theorem
4.2).

Theorems 1.1 and 4.2 are optimal with respect to p and r :

Theorem 1.2. Let p ∈ [1,∞], p ̸= 2, 1/r = 1 + |1/2 − 1/p|. There exists a
nuclear operator V in lp (in c0 for p = ∞) such that

1) V is s-nuclear for each s ∈ (r, 1];
2) V is not r-nuclear;
3) trace V = 1 and V 2 = 0.

Note that for p = ∞ or p = 1 we have r = 2/3 and for p = 2 we have r = 1. The
proofs will be given in Sections 4.5, 4.6

Let us note that some of the implications of our results on Z-symmetry of spectra
are the consequences of Mityagin's theorem. But it seems that our proofs are shorter.
Besides, our aim was to obtain the exact generalizations of Zelikin's theorem in an
independent way.

2. Content

In Section 3, we present the general notations concerning Banach spaces, spaces
of operators, tensor products, vector-valued sequence spaces.

In �rst Subsection of Section 4, we give a de�nition of projective tensor quasi-
norms α and introduce the α-projective tensor products of Banach spaces. We show
that these tensor products are continuously imbedded in the projective products of
A. Grothendieck. For complete α-projective tensor products, we de�ne α-nuclear
operators in a natural way (as elements of corresponding factor spaces). Also in
a natural way, we de�ne a notion of the approximation property APα, give a sim-
ple characterization of Banach spaces with this property and present some main
examples.

In second Subsection of Section 4, we consider some properties of the α-projective
tensor products of spectral type l1 (so that all α-nuclear operators have absolutely
summable sequences of their eigenvalues). In particular, we are interested in the
question of when the trace formulas are true. In the end, examples are given.

In third Subsection of Section 4, we introduce so-called α-extension and α-lifting
properties for a projective tensor quasi-norms α. W are interested here in connection
between the APα, trace formulas and the statements of type "trace T = 1 =⇒ T 2 ̸=
0".

In forth Subsection of Section 4, we proof one of the main our theorem on Zd-
symmetry of spectra of α-nuclear operators. We apply the results to some concrete
quasi-normed tensor products, getting a generalization of Zelikin's theorem to the
case of (r, p, q)-nuclear operators in general Banach spaces.

In �fth Subsection of Section 4, a proof of Theorem 1.1 is given.
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Finally, in sixth (last) Subsection of Section 4, we show that the main results of
the previous subsections are sharp. Maybe, it it worthwhile to mention a new result
on the asymptotically Hilbertian spaces (the last theorem in the paper).

3. Notation and preliminaries

Throughout, we denote by X,Y,E, F,W . . . Banach spaces over a �eld K (which
is either R or C); X∗, Y ∗, . . . are Banach dual to X,Y, . . . . By x, y, x′, . . . (maybe
with indices) we denote elements of X,Y, . . . , Y ∗ . . . respectively. πY : Y → Y ∗∗ is
a natural isometric imbedding. By a subspace of a Banach space we mean a closed
linear subspace.

Notations lp, (0 < p ≤ ∞, n = 1, 2, . . . ), c0 are standard; ek (k = 1, 2, . . . ) is
the k-th unit vector in lp or c0 (when we consider the unit vectors as the linear
functionals, we use notation e′k). We use idX for the identity map in X.

It is denoted by F (X,Y ) a vector space of all linear continuous �nite rank map-
pings from X to Y. By X⊗Y we denote the algebraic tensor product of the spaces X
and Y. X⊗Y can be considered as a subspace of the vector space F (X∗, Y ) (namely,
as a vector space of all linear weak∗-to-weak continuous �nite rank operators). We
can identify also the tensor product (in a natural way) with a corresponding subspace
of F (Y ∗, X). If X = W ∗, then W ∗⊗Y is identi�ed with F (W,Y ). If z ∈ X⊗Y, then
z̃ is the corresponding �nite rank operator. If z ∈ X∗⊗X and e.g. z =

∑n
k=1 x

′
k⊗xk,

then trace z :=
∑n

k=1⟨x′
k, xk⟩ does not depend on representation of z in X∗ ⊗ X.

L(X,Y ) is a Banach space of all linear continuous mappings ("operators") from X
to Y equipped with the usual operator norm.

If A ∈ L(X,W ) and B ∈ L(Y,G), then a linear map A⊗ B : X ⊗ Y → W ⊗G
is de�ned by A ⊗ B(x ⊗ y) := Ax ⊗ By (and then extended by linearity). Since
˜A⊗B(z) = Bz̃A∗ for z ∈ X ⊗ Y, we will use notation B ◦ z ◦ A∗ ∈ W ⊗ G for

A ⊗ B(z). In the case where X is a dual space, say F ∗, and T ∈ L(W,F ) (so,
A = T ∗ : F ∗ → W ∗), one considers a composition Bz̃T ; in this case T ∗ ⊗ B maps
F ∗ ⊗ Y into W ∗ ⊗ Y and we use notation B ◦ z ◦ T for T ∗ ⊗B(z).

A projective tensor product X⊗̂Y of Banach spaces X and Y is de�ned as a
completion of X ⊗ Y with respect to the norm || · ||∧ : if z ∈ X ⊗ Y, then ||z||∧ :=
inf

∑n
k=1 ||xk|| ||yk||, where in�mum is taken over all representation of z as

∑n
k=1 xk⊗

yk. We can try to consider X⊗̂Y also as operators X∗ → Y or Y ∗ → X, but this
correspondence is, in general, not one-to-one. However, the natural map (X ⊗ Y, || ·
||∧) → L(X∗, Y ) is continuous and can be extended to the completion X⊗̂Y ; for
a tensor element z ∈ X⊗̂Y, we still denote by z̃ the corresponding operator. Note
that X⊗̂Y = Y ⊗̂X in a sense. If z ∈ X⊗̂Y, ε > 0, then one can represent z
as z =

∑∞
k=1 xk ⊗ yk with

∑∞
k=1 ||xk|| ||yk|| < ||z||∧ + ε. For z ∈ X∗⊗̂X with a

"projective representation" z =
∑∞

k=1 x
′
k ⊗ xk, trace z :=

∑∞
k=1⟨xk, yk⟩ does not

depend of representation of z. The Banach dual (X⊗̂Y )∗ equals L(Y,X∗) (with
duality ⟨T, z⟩ = trace T ◦ z.)

One more notation: If A is an operator ideal [13] then we often use the notation
A(X) for the space A(X,X).
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Finally,

lp(X) := {(xi) ⊂ X : ||(xi)||p :=
(∑

||xi||p)1/p < ∞},

l∞(X) := {(xi) ⊂ X : ||(xi)||∞ := sup
i

||xi|| < ∞},

lwp (X) := {(xi) ⊂ X : ||(xi)||w,p := sup
||x′||≤1

(∑
|⟨x′, xi⟩|p)1/p < ∞},

lw∞(X) := {(xi) ⊂ X : ||(xi)||w,∞ := sup
i

||xi|| < ∞}.

Note that if p ≤ q, then || · ||q ≤ || · ||p and || · ||w,q ≤ || · ||w,p. If 0 < p ≤ ∞, then p′

is a conjugate exponent: 1/p+ 1/p′ = 1 if p ≥ 1 and p′ = ∞ if p ∈ (0, 1].

4. Quasi-normed tensor products and approximation properties

4.1. Projective quasi-norms and approximation properties. Let α be a

function on a vector space E, α : E → R̂. We say that α is a quasi-norm on E if 1)
α(E) ⊂ [0,+∞] and α(x) = 0 implies x = 0; 2) there exists a constant C > 0 such
that α(x+ y) ≤ C [α(x) + α(y)] for x, y ∈ E; 3) α(ax) = |a|α(x) for a ∈ K, x ∈ E.

Definition 4.1. (i) Given a pair (E,α), where α is a quasi-norm on a vector
space E, a quasi-normed space associated with the pair (E,α) is the quasi-normed
vector space

Eα := {x ∈ E : α(x) < ∞}.
(ii) The quasi-normed space Eα is complete (= a quasi-Banach space), if every
Cauchy sequence in Eα α-converges to an element of Eα.

Note that Eα is a quasi-normed vector space in the sense of [9, p. 159] and we
may generate the corresponding topology (see [9, p. 159-160], [1, p. 445]).

Remark 4.1. 1) It may be Eα = E.
2) It is well known [1, p. 445] that if Eα is a quasi-normed space, then there are

a number β ∈ (0, 1] and a β-norm || · || on Eα which is equivalent to the quasi-norm
α. Recall that a β-norm on a vector space F is a quasi-norm || · || : F → R such that
for all x, y ∈ F one has the following β-triangle inequality: ||x+y||β ≤ ||x||β+ ||y||β.

Now, let α be a quasi-norm on a projective tensor product X⊗̂Y such that
α(x⊗ y) = ||x|| ||y|| for x ∈ X, y ∈ Y. The associated quasi-normed tensor product
(which will be denoted by X⊗̂αY and called "α-projective tensor product") is the
α-closure of X ⊗ Y in (X⊗̂Y )α (in the concrete cases we will use some speci�c
notations). Thus,

X⊗̂αY := {u ∈ X⊗̂Y : α(u) < ∞ and ∃ (un) ⊂ X ⊗ Y : α(u− un) →
n→∞

0}.

More generally:

Definition 4.2. (i) Let ⊗̂ denotes the class of all tensor elements of the pro-
jective tensor products of arbitrary Banach spaces. A projective tensor quasi-norm

α is a map from ⊗̂ to R̂ such that α is a quasi-norm on each component X⊗̂Y with
the properties:
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(Q1) α(x⊗ y) = ||x|| ||y|| for x ∈ X, y ∈ Y.
(Q2) There exists a constant C > 0 such that α(u1+u2) ≤ C [α(u1)+α(u2)] for

all X,Y and u1, u2 ∈ X⊗̂Y.
(Q3) If u ∈ X⊗̂Y, A ∈ L(X,E) and B ∈ L(Y, F ), then α(A ⊗ B(u)) ≤

||A||α(u) ||B||.
(ii) A projective tensor quasi-norm α ia said to be complete, if every α-projective

tensor product X⊗̂αY is complete, that is quasi-Banach.

For every projective tensor quasi-norm α there exist β ∈ (0, 1] and an equivalent
β-norm || · ||β on ⊗̂ so that X⊗̂αY = X⊗̂||·||βY (i.e. there exists a quasi-norm || · ||β
with β-triangle inequality such that for some positive constants C1, C2 and for all
projective tensor elements u the inequalities C1α(u) ≤ ||u||β ≤ C2α(u) hold). Thus,
we may assume, if needed, that a priori α is a β-norm.

We are not going to consider here in detail the properties of just introduced
objects. But we need below the fact that the inclusions X⊗̂αY ↪→ X⊗̂Y are con-
tinuous for all Banach spaces X,Y (in the main Example 4.1 below this will be
automatically ful�lled).

Proposition 4.1. Let α be a complete projective tensor norm. The natural
injections X⊗̂αY → X⊗̂Y are continuous for all Banach spaces X and Y. Moreover,
there is a constant d = d(α) such that for all X, Y and u ∈ X⊗̂αY we have:
||u||∧ ≤ dα(u).

Proof. Suppose the last assertion is not true and there exist the sequences
(Xn), (Yn) and (un) with un ∈ Xn⊗̂αYn so that α(un) ≤ 1/(2C)n and ||un||∧ ≥ n.
Put X :=

(∑
Xn

)
l2
and Y :=

(∑
Yn

)
l2
. Let in : Xn → X and jn : Yn → Y be

the natural injections. Consider the sequence (zN) :=
(∑N

k=1(ik ⊗ jk)(uk)
)
. For any

natural numbers K and m, we have:

α
( K+m∑
k=K+1

(ik ⊗ jk)(uk)
)
≤

m∑
k=1

Ck α
(
(iK+k ⊗ jK+k)(uK+k)

)
≤

∞∑
k=1

Ck

(2C)K+k
≤ 1

(2C)K
.

Hence, (zN) is a Cauchy sequence in X⊗̂αY and, by the completeness of α, converges
to an element u :=

∑∞
k=1(ik ⊗ jk)(uk) ∈ X⊗̂αY. On the other hand, if Pn : X → Xn

and Qn : Y → Yn are the natural "projections", then ||u||∧ ≥ ||(Pn ⊗ Qn)(u)||∧ =
||un||∧ ≥ n. �

Since X⊗̂αY ia a linear subspace of X⊗̂Y, the space L(Y,X∗) separates points
of X⊗̂αY. If u ∈ X⊗̂αY, then u = 0 i� trace U ◦ u = 0 for every U ∈ L(Y,X∗). In
particular, the dual space (X⊗̂αY )∗ separates points of X⊗̂αY.

It is clear that every tensor element u ∈ X⊗̂αY generates a nuclear operator
ũ : X∗ → Y. If X is a dual space, say E∗, then we get a canonical mapping jα :
E∗⊗̂αY → L(E, Y ). The image of jα is denoted here by Nα(E, Y ), and we equip
it with an "α-nuclear" quasi-norm να : This is a quasi-norm induced from E∗⊗̂αY
via the quotient map E∗⊗̂αY → Nα(E, Y ). If the projective tensor quasi-norm α is
complete, then Nα(E, Y ) is a quasi-Banach space.
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Definition 4.3. Let α be a complete projective tensor quasi-norm. We say
that a Banach space X has the approximation property APα, if for every Banach
space E the canonical map E∗⊗̂αX → Nα(E,X) is one-to-one (in other words, if
E∗⊗̂αX = Nα(E,X)).

Note that if α = || · ||∧, then we get the classical approximation property AP
of A. Grothendieck [7]. It must be clear that the AP implies the APα, for any
projective tensor quasi-norm.

We will need below the following

Lemma 4.1. A Banach space X has the APα i� the canonical map X∗⊗̂αX →
L(X) is one-to-one.

Proof. It is enough to repeat (word for word with same notations) the proof
of [20, Proposition 6.1]. �

Example 4.1. Let 0 < r, s ≤ 1, 0 < p, q ≤ ∞ and 1/r + 1/p + 1/q = 1/β ≥ 1.
We de�ne a tensor product X⊗̂r,p,qY as a linear subspace of the projective tensor
product X⊗̂Y, consisting of all tensor elements z which admit representations of
type

(1) z =
∞∑
k=1

αkxk ⊗ yk, (αk) ∈ lr, (xk) ∈ lw,p(X), (yk) ∈ lw,q(Y );

we equip it with the quasi-norm ||z||r,p,q := inf ||(αk)||r ||(xk)||w,p ||(yk)||w,q, where
the in�mum is taken over all representations of z in the above form (1). Note that
this tensor product is β-normed (cf. [10], where it is considered a "�nite-sums-
representation" version of the above tensor product). It is quasi-Banach (for the
completeness, see the author's preprint "Approximation properties associated with
quasi-normed operator ideals of (r, p, q)-nuclear operators"1). The corresponding
quasi-normed operator ideal Nr,p,q is the quasi-Banach ideal of (r, p, q)-nuclear op-
erators (cf. [13, 10]). In particular cases where one or two of the exponents p, q are
∞, we will use the notations close to those from [18, 20] (here we change p′, q′ to
p, q) : We denote Nr,∞,∞ by Nr, Nr,∞,q by N[r,q], Nr,p,∞ by N [r,p], ⊗̂r,∞,∞ by ⊗̂r,

⊗̂r,∞,q by ⊗̂[r,q], ⊗̂r,p,∞, by ⊗̂[r,p]
.

The corresponding notations are used also for the APr,p,q :
(i) For p = q = ∞, we get the APr from [20].
(ii) For p = ∞, we get the AP[r,q] from [18, 20].

(iii) For q = ∞, we get the AP [r,p] from [18, 20].

We will need some known facts concerning the approximation properties from
Example 4.1. Let us collect them in

Lemma 4.2. 1) [16, Corollary 10] Let s ∈ (0, 1], p ∈ [1,∞] and 1/s = 1+ |1/p−
1/2|. If a Banach space Y is isomorphic to a subspace of a quotient (or to a quotient
of a subspace) of an Lp-space then it has the property APs.

1http://www.mathsoc.spb.ru/preprint/2017/index.html#08
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2) [18, Corollary 4.1], [20, Theorem 7.1] Let 1/r − 1/p = 1/2. Every Banach
space has the properties AP[r,p′] and AP [r,p′].

A proof of the assertion 2) can be found below (see Example 4.3). See also [20]
for some other results in this direction.

Remark 4.2. As a matter of fact, a proof of the assertion that every Banach
space has the AP [1,2] is contained implicitly in [13]. It was obtained also there
that this assertion (after applying some results of Complex Analysis) implies the
Grothendieck-Lidski�i type trace formulas for operators from N [1,2] [13, 27.4.11] (and
this implies the Lidski�i trace formula for trace-class operators in Hilbert spaces and
the Grothendieck trace formula for N2/3 as well). On the other hand, there is a very

simple way to get these results on AP [1,2] and N [1,2] from the Lidski�i theorem (see
the proofs of [20, Theorems 7.1-7.3] for p = 2).

4.2. Spectral type l1. Let T be an operator in X, all non-zero spectral values
of which are eigenvalues of �nite multiplicity and have no limit point except possibly
zero. Put λ(T ) = {λ ∈ eigenvalues (T ) \ {0}} (the eigenvalues of T are taken in
according to their multiplicities). We say that an operator T ∈ L(X,X) is of spectral
type l1, if the sequence of all eigenvalues λ(T ) := (λk(T )) is absolutely summable. In
this case, we can de�ne the spectral trace of T : sp tr (T ) :=

∑
λk(T ). We say that a

subspace L1(X,X) ⊂ L(X,X) is of spectral type l1, if every operator T ∈ L1(X,X)
is of spectral type l1. Recall that an operator ideal A is of spectral type l1, if every
its component A(X,X) is of spectral type l1.

Definition 4.4. Let α be a projective tensor quasi-norm. The tensor product
X⊗̂αX is of spectral type l1, if the space Nα(X,Y ) is of spectral type l1. The pro-
jective tensor quasi-norm α (or the tensor product ⊗̂α) is of spectral type l1, if the
corresponding operator ideal Nα is of spectral type l1.

Example 4.2. N1(H) (= N[1,2](H) = N [1,2](H) = S1(H), trace class operators

in a Hilbert space) is of spectral type l1 [21]. ⊗̂2/3 and N1 ◦N1 are of spectral type

l1 [7]. N
[1,2] is of spectral type l1 (see [13, see 27.4.9, end of the proof]). N[1,2] is of

spectral type l1 (see [20, Theorem 7.2 for p = 2]; it follows also from the previous

assertion). More general, if 1/r − 1/p = 1/2, then ⊗̂[r,p] = N[r,p], ⊗̂
[r,p]

= N [r,p] and
they are of spectral type l1 (see [20, Theorems 7.1-7.3]).

Let us note that in all cases in Example 4.2 the trace formula for corresponding
operators (say, T ) is valid: trace T = sp tr T. A general result in this direction is

Proposition 4.2. Let α be a complete projective tensor quasi-norm of spectral
type l1. For every Banach space X with the APα and every T ∈ Nα(X), one has:
trace T = sp tr T. Conversely, if for a Banach space X and for every z ∈ X∗⊗̂αX
the equality trace z = sp tr z̃ holds, then X possesses the APα.
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Proof. Let X has the APα. Since the ideal Nα is quasi-Banach and of spectral
type l1, by White's theorem [22, Theorem 2.2] the spectral trace is linear and contin-
uous onNα.On the other hand, by Proposition 4.1 the usual (nuclear) trace is contin-
uous on X∗⊗̂αX, which can be identi�ed with Nα(X) by assumption about X. Since
the tensor product X∗ ⊗X is dense in X∗⊗̂αX, we obtain that trace T = sp tr T.

Now, suppose that X does not have the APα. By Lemma 4.1, there exists an
element z ∈ X∗⊗̂αX such that trace z = 1 and z̃ = 0. By assumptions, sp tr z̃ =
trace z = 1. Contradiction. �

Example 4.3. Let 0 < r ≤ 1, 1 ≤ p ≤ 2, 1/r = 1/2 + 1/p.
1) If T ∈ N[r,p′](X) (see Example 4.1), then T admits a factorization

T = BA : X
A→ lp

B→ X, A ∈ Nr(X, lp), B ∈ L(lp, X).

The complete systems of eigenvalues of T = BA and AB are the same. But AB ∈
Nr(lp, lp). Therefore, AB is of spectral type l1, as any r-nuclear operator in lp [8,
Theorem 7]. It follows from this that N[r,p′] is of spectral type l1. It is easy to see

that if z ∈ X∗⊗̂[r,p′]X such that z̃ = T, then trace z = trace AB (recall that lp has
the AP ). But trace AB = sp tr AB (it was shown, e.g., in [19, 20] and follows also
from Proposition 4.2). Hence, for each z ∈ X∗⊗̂[r,p′]X we have: trace z = sp tr z̃.
By the second part of Proposition 4.2, every Banach space has the property AP[r,p′]

(= APr,∞,p′ , see Example 4.1; thus, we gave a proof of Lemma 4.2, 2) for the case
of AP[r,p′]).

2) If T ∈ N [r,p′](X) (see Example 4.1), then T admits a factorization

T = BA : X
A→ lp

B→ X, A ∈ L(X, lp), B ∈ Nr(lp, X).

As in 1), we see that for each z ∈ X∗⊗̂[r,p′]
X we have: trace z = sp tr z̃. Furthermore,

by the second part of Proposition 4.2, every Banach space has the property AP [r,p]

(= AP r,∞,p′ , see Example 4.1; thus, we have a proof of Lemma 4.2, 2) for the case
of AP [r,p′]).

4.3. α-extension property and α-lifting property. We give now two def-
initions, which will be of use below. Let us note that these de�nitions can be
generalized in many di�erent ways.

Definition 4.5. Let α be a complete projective tensor quasi-norm. A Banach
space X has the α-extension property, if for any subspace X0 ⊂ X and every tensor
element z0 ∈ X∗

0 ⊗̂αX0 there exists an extension z ∈ X∗⊗̂αX0 (so that z ◦ i = z0
and trace i ◦ z = trace z0, where i : X0 → X is the natural injection). A Banach
space X has the α-lifting property, if for every subspace X0 and every tensor element
z0 ∈ (X/X0)

∗⊗̂αX/X0 there exists a lifting z ∈ (X/X0)
∗⊗̂αX (so that Q ◦ z = z0,

where Q is a quotient map from X onto X/X0, and trace z ◦Q = trace z0).

Example 4.4. For instance, every Banach space has the || · ||r,∞,q-extension
property and || · ||r,p,∞-lifting property (see Example 4.1). For the tensor products
(⊗̂s, || · ||s,∞,∞), s ∈ (0, 1], all Banach spaces have both the || · ||s,∞,∞-extension
and || · ||s,∞,∞-lifting properties. This follows from Hahn-Banach theorem and from
de�nition of Banach quotients.
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Proposition 4.3. Let α be a complete projective tensor quasi-norm and X have
the α-extension property. Suppose that X possesses the APα, but there exists a
subspace X0 ⊂ X without the APα. There exists an operator S ∈ Nα(X) such that
trace S = 1 and S2 = 0.

Proof. Take z0 ∈ X0⊗̂αX0 with trace z0 = 1 and z̃0 = 0 (we use Lemma 4.1).
By assumption, there exists z ∈ X∗⊗̂αX0 such that z0 = z ◦ i and trace i ◦ z = 1,
where i : X0 → X is an inclusion. Here is a diagram for the operators:

(2) X0
i→ X

z̃→ X0
i→ X.

Now, X has the APα. Therefore, we can identify the operator S := ĩ ◦ z with the
tensor element i ◦ z. It is clear that trace S = 1 and S2 = 0. �

The following proposition is a strengthening of Proposition 4.2 in an important
case.

Proposition 4.4. Let α be a complete projective tensor quasi-norm of spec-
tral type l1 and X have the α-extension property. If for every z ∈ X∗⊗̂αX the
equality trace z = sp tr z̃ holds, then every subspace X0 of X possesses the APα.
Consequently, for every T ∈ Nα(X0), one has: trace T = sp tr T.

Proof. Firstly, note that by Proposition 4.2 X has the APα. Let X0 be a
subspace of X, i : X0 → X be an inclusion map and z0 ∈ X∗

0 ⊗̂αX0 with trace z0 =
1. Take an extension z ∈ X∗⊗̂αX0 (as in De�nition 4.5; hence, z̃|X0 = z̃0 and

trace i◦z = trace z0) and consider the operators ĩ ◦ z : X → X and z̃ ◦ i : X0 → X0

(see the diagram (2)). By the principle of related operators [13, 27.3.3], sp tr ĩ ◦ z =

sp tr z̃ ◦ i. By assumption, sp tr ĩ ◦ z = trace i ◦ z Now, since X has the APα, it
follows from the equality trace i ◦ z = trace z0 that

1 = trace z0 = sp tr ĩ ◦ z = sp tr z̃ ◦ i = sp tr z̃0.

Therefore, z̃0 ̸= 0. By Lemma 4.1, X0 has the APα . The last statement follows from
the �rst part of Proposition 4.2. �

The following propositions are in a sense dual the previous ones.

Proposition 4.5. Let α be a complete projective tensor quasi-norm and X have
the α-lifting property. Suppose that X possesses the APα, but there exists a factor
space X/X0 (X0 ⊂ X) without the APα. There exists an operator S ∈ Nα(X) such
that trace S = 1 and S2 = 0.

Proof. Take z0 ∈ X/X0⊗̂αX/X0 with trace z0 = 1 and z̃0 = 0 By assumption,
there exists z ∈ (X/X0)

∗⊗̂αX such that Q ◦ z = z0, where Q is a factor map from
X onto X/X0, and trace z ◦Q = trace z0 = 1. Here is a diagram for the operators:

(3) X
Q→ X/X0

z̃→ X
Q→ X/X0

z̃→ X.

Now, X has the APα. Therefore, we can identify the operator S := z̃ ◦Q with the
tensor element z ◦Q. It is clear that trace S = 1 and S2 = 0. �
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Proposition 4.6. Let α be a complete projective tensor quasi-norm of spectral
type l1 and X have the α-lifting property. If for every z ∈ X∗⊗̂αX the equality
trace z = sp tr z̃ holds, then every quotient X/X0 of X possesses the APα. Conse-
quently, for every T ∈ Nα(X/X0), one has: trace T = sp tr T.

Proof. By Proposition 4.2, X has the APα. Let X0 be a subspace of X, Q :
X → X/X0 be a factor map and z0 ∈ (X/X0)

∗⊗̂αX/X0 with trace z0 = 1. Take a
lifting z ∈ (X/X0)

∗⊗̂αX (as in De�nition 4.5; hence, Q ◦ z = z0, and trace z ◦Q =

trace z0) and consider the operators z̃ ◦Q : X → X and Q̃ ◦ z : X/X0 → X/X0 (see

the diagram (3)). By the principle of related operators [13, 27.3.3], sp tr z̃ ◦Q =

sp tr Q̃ ◦ z. By assumption, sp tr z̃ ◦Q = trace z ◦Q. Now, since X has the APα, it
follows from the equality trace z ◦Q = trace z0 that

1 = trace z0 = sp tr z̃ ◦Q = sp tr Q̃ ◦ z = sp tr z̃0.

Therefore, z̃0 ̸= 0. By Lemma 4.1, X0 has the APα . The last statement follows from
the �rst part of Proposition 4.2. �

An immediate consequence of Propositions 4.4 and 4.6 is

Proposition 4.7. Let α be a complete projective tensor quasi-norm of spectral
type l1 such that every Banach space has both the α-extension property and the
α-lifting property. If for every z ∈ X∗⊗̂αX the equality trace z = sp tr z̃ holds,
then every quotient of any subspace of X (= every subspace of any quotient of X)
possesses the APα. Consequently, for X0 ⊂ X1 ⊂ X, Y = X1/X0 (or for X0 ⊂ X,
Y ⊂ X/X0) and for every T ∈ Nα(Y ) one has: trace T = sp tr T.

Proof. Apply in di�erent orders Propositions 4.4 and 4.6. �

4.4. Applications. Zd-symmetry for N[r,p] and N [r,p]. One of our main
result (in context of the Zd-symmetry of the spectra of nuclear operators) is

Theorem 4.1. Let α be a complete projective tensor quasi-norm of spectral type
l1 and let a Banach space X have the APα. For a �xed d = 2, 3, . . . , the spectrum of
an operator T ∈ Nα(X) is Zd-symmetric if and only if

trace T kd+j = 0 for all k = 0, 1, 2, . . . and j = 1, 2, . . . , d− 1.

In particular, if trace T ̸= 0, then T 2 ̸= 0.

Proof. Let the spectrum of an operator T ∈ Nα(X) is Zd-symmetric. The
traces trace T n (n ∈ N) are well de�ned since T n ∈ Nα(X) and X has the APα.
Take an integer l := kd+j with 0 < j < d. The eigenvalue sequences of T and T l can
be arranged in such a way that {λn(T )

l} = {λn(T
l)} (see [14, 3.2.24, p. 147]). Since

the spectrum of T l is absolutely summable, trace T l =
∑

λ∈sp (T l) λ,
∑

t∈ d√1 t = 0

and we may assume that {λm(T
l)} = {λm(T )

l}, we get that trace T kd+j = 0.
To prove the converse, we need some information from Fredholm Theory. Let

u be an element of the projective tensor product Y ∗⊗̂Y, where Y is an arbitrary
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Banach space. Recall that the Fredholm determinant det (1−wu) of u (see [7, Chap
II, �1, n◦4, p. 13], [6], [13] or [14] is an entire function

det (1− wu) = 1− w trace u+ · · ·+ (−1)nwnαn(u) + . . . ,

all zeros of which are exactly (according to their multiplicities) the inverses of
nonzero eigenvalues of the operator ũ, associated with the tensor element u. By
[7, Chap II, �1, n◦4, Corollaire 2, pp. 17-18], this entire function is of the form

det (1− wu) = e−w trace u

∞∏
i=1

(1− wwi) e
wwi ,

where {wi = λi(ũ)} is a complete sequence of all eigenvalues of the operator ũ.
Hence, there exists a δ > 0 such that for all w, |w| ≤ δ, we have

(4) det (1− wu) = exp
( ∞∑

n=1

cnw
n trace un

)
(see [6, p. 350]; cf. [5, Theorem I.3.3, p. 10]).

Now, let trace T kd+r = 0 for all k = 0, 1, 2, . . . and r = 1, 2, . . . , d − 1. By (4),
det (1−wT ) = exp (

∑∞
m=1 cmdw

md trace Tmd) in a neighborhood V of zero. Hence,
for the analytic function f(w) := det (1 − wT ), we have: there exists a δ > 0 such
that for all w, |w| ≤ δ, f(tw) = f(w) for every t ∈ d

√
1. By the uniqueness theorem,

the complete system of eigenvalues of T is Zd-symmetric. �

Applying Theorem 4.1 to the tensor products ⊗̂[r,p′] and ⊗̂[r,p′]
and using Example

4.3, we get the following generalizations of Zelikin's theorem:

Theorem 4.2. Let 0 < r ≤ 1, 1 ≤ p ≤ 2, 1/r = 1/2+ 1/p and d = 2, 3, . . . . For
any Banach space X and every operator T ∈ N[r,p′](X) (or T ∈ N [r,p′](Z)) we have:
The spectrum of an operator T ∈ Nα(X) is Zd-symmetric if and only if

trace T kd+j = 0 for all k = 0, 1, 2, . . . and j = 1, 2, . . . , d− 1.

In particular, if trace T ̸= 0, then T 2 ̸= 0.

We obtain Zelikin's theorem, if we put d = 2, r = 1, p = 2 and X = H (a Hilbert
space), since N1(H) = S1(H) = N[1,2](H) = N [1,2](H).

4.5. Proof of Theorem 1.1. Here it is

Proof. Let T ∈ Nr(Y ). Under the conditions of the theorem we have: every
quotient of every subspace of an Lp-space has the APr, λ(T ) ∈ l1 and the trace of
T is well de�ned and equals the sum of the eigenvalues of T (written in according
to their multiplicities; see, e.e., [16, 20]).

Supposing that the spectrum of T is Zd-symmetric, we can proceed as in the
beginning of the proof of Theorem 4.1 to obtain that trace T kd+j = 0 for all k =
0, 1, 2, . . . and j = 1, 2, . . . , d− 1.

To proof the converse, we repeat word for word the second part of the proof of
Theorem 4.1. �
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4.6. Sharpness of main results. We need the following auxialary result:

Lemma 4.3. If r ∈ [2/3, 1), q ∈ (2,∞] and 1/r = 3/2 − 1/q, then there exist
a subspace Yq ⊂ lq (c0 for q = ∞) and a tensor element wq ∈ Y ∗

q ⊗̂Yq so that

wq ∈ Y ∗
q ⊗̂

[s,q]
Yq for every s > r, trace wq = 1 and w̃q = 0. Moreover, wq can be

chosen in such a way that wq =
∑∞

k=1 e
′
k|Yq ⊗ yk, where (e′k) is a sequence of the

linear functionals on lq generated by the unit vectors from lq′ and (yk) is in ls(Yq)
for all s > r.

Proof. Let us look at the proof from [17, Example 2] and take the space Yq

and the tensor element wq from that proof. We have: Yq is isometrically imbedded
into lq, wq =

∑∞
k=1 e

′
k|Yq ⊗ yk, where (e′k) and (yk) are as above. �

The following two theorems show that Theorem 4.2 is optimal.

Theorem 4.3. Let r ∈ [2/3, 1), q ∈ (2,∞], 1/r = 3/2 − 1/q. There exists a
nuclear operator V in lq (in c0 for q = ∞) such that

1) V ∈ N [s,q](lq) for each s ∈ (r, 1];
2) V is neither in N [r,q](lq) nor r-nuclear;
3) trace V = 1 and V 2 = 0.

Proof. Take a pair (Yq, wq) from Lemma 4.3 and let i : Yq → lq be an isometric
imbedding. De�ne v ∈ l∗q⊗̂lq by v =

∑∞
k=1 e

′
k ⊗ iyk and put V := ṽ. This operator

possesses the properties 1)�3) (we have to mention only that N [r,q](lq) ⊂ N r(lq) and
that if T ∈ Nr(lq) with trace z = 1, then T 2 ̸= 0 by Theorem 1.1). �

Theorem 4.4. Let r ∈ [2/3, 1), p ∈ [1, 2), 1/r = 1/2 + 1/p. There exists a
nuclear operator U in lp such that

1) U ∈ N[s,p′](lp) for each s ∈ (r, 1];
2) U is neither in N[r,p′](lp) nor r-nuclear;
3) trace V = 1 and V 2 = 0.

Proof. Consider U := V ∗, where V is from the previous theorem. �
Now, Theorem 1.2 follows from the above theorems, since, e.g., N [s,q] ⊂ N s.

One more auxiliary fact:

Lemma 4.4. Let r ∈ (2/3, 1], q ∈ [2,∞), 1/r = 3/2 − 1/q. One can �nd the
number sequences (qk) and (nk) with qn > q, qn → q and kn → ∞ for which the
following statement is true: There exist a Banach space Y0 and a tensor element
w ∈ Y ∗

0 ⊗̂rY0 so that Y0 ⊂ Y :=
(∑

k l
nk
qk

)
lq
, w ̸= 0, w̃ = 0, the space Y0 (as well as

Y ∗
0 ) has the APs for every s < r (but does not have the APr,q̄ for any q̄ ∈ (q,∞]).

Moreover, w can be chosen in such a way that w =
∑∞

k=1

∑nk

m=1 e
′
mk|Y0 ⊗ ymk, where

(e′mk) is a weakly q̄-summable (∀ q̄ > q) sequence of the linear functionals on Y
generated by the unit vectors from Y ∗ and (ymk) is in lr(Y0) \ ∪s<rls(Y0).

Proof. It is enough to take the space Y0 and the tensor element w from the
proof of [17, Example 1] and put nk := 3 ·2k in that proof. After this we get exactly
the desired Banach space and tensor element. We have also: Y0 ⊂ Y ⊂ lq̄ for every
q̄ > q. Hence, the sequence (e′mk|Y0) is weakly q̄-summable (∀ q̄ > q). �
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Theorem 4.5. Let r ∈ (2/3, 1], q ∈ [2,∞), 1/r = 3/2 − 1/q. One can �nd the
number sequences (qk) and (nk) with qk > q, qk → q and nk → ∞ for which the
following statement is true:

There exists a nuclear operator U in Y :=
(∑

k l
nk
qk

)
lq
such that

1) U ∈ N [r,q̄](Y ) for each q̄ > q.
2) U is not in N [r,q](Y ).
3) trace U = 1 and U2 = 0.

Proof. Take a pair (Y0, w) from Lemma 4.4 and let j : Y0 → Y be an injection
map. De�ne u ∈ Y ∗⊗̂Y by u =

∑∞
k=1

∑nk

m=1 e
′
mk ⊗ jymk and put U := ũ. This

operator possesses the properties 1)�3) (we have to mention only that if T ∈ N[r,q](Y )
with trace z = 1, then T 2 ̸= 0 by Theorem 4.2). �

Theorem 4.6. Let r ∈ (2/3, 1], p ∈ (1, 2], 1/r = 1/2 + 1/p. One can �nd the
number sequences (pk) and (nk) with pk < p, pk → p and nk → ∞ for which the
following statement is true:

There exists a nuclear operator V in E :=
(∑

k l
nk
pk

)
lp
such that

1) V ∈ N[r,q̄](E) for each q̄ > q.
2) V is not in N[r,q](E).
3) trace V = 1 and V 2 = 0.

Proof. Consider V := U∗, where U is from the previous theorem. �
Let us emphasize an important particular case of Theorems 4.5 and 4.6, namely,

the case of so-called "asymptotically Hilbertian spaces" (see, e.g., [2] for a de�nition):

Theorem 4.7. There exist an asymptotically Hilbertian space Y2 :=
(∑

k l
nk
qk

)
l2

(qk → 2 and nk → ∞) and a nuclear operator U in this space so that
1) U ∈ N [1,2+ε](Y2) for each ε > 0.
2) U is not in N [1,2](Y2).
3) trace U = 1 and U2 = 0.
The corresponding statements hold for the adjoint operator U∗.

As we know, the last theorem is the best strengthening of related results from
[2], [15] and [17].
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