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Abstract. We introduce and investigate a new notion of the approximation
property AP[c], where c = (cn) is an arbitrary positive real sequence, tending
to infinity. Also, we study the corresponding notion of [c]-nuclear operators in
Banach spaces. Some characterization of the AP[c] in terms of tensor products,
as well as sufficient conditions for a Banach space to have the AP[c], are given.
We give also sufficient conditions for a positive answer to the question: when
it follows from the [c]-nuclearity of an adjoint operator the nuclearity of the
operator itself. Obtained results are applied then to the study of properties of
nuclear operators in some spaces of analytical functions. Many examples are
given.

1. Introduction and preliminaries

1.1. Introduction. A Banach space X has the approximation property AP if
the identity operator in X can be approximated, in the topology of compact
convergence, by finite rank operators. As was noted by A. Grothendieck [6,
Chap I, Lemma 12, p. 112], J. Dieudonné and L. Schwartz showed that every
compact subset of a Banach space is contained in the closed convex hull of a
sequence, converging to zero (see [4, proof of Theorem 5] or [10, p. 30, Proposition
1.e.2]). Therefore, the notion of the approximation property can be define in the
following way: the space X has the AP if for every sequence (xn) in X with
||xn|| → 0 and every ε > 0 there exists a finite rank operator R in X such that
supn ||xn −Rxn|| ≤ ε. It is natural to replace in this definition the condition ”for
every sequence (xn) in X with ||xn|| → 0”, e. g., by the condition ”

∑
||xn||p <∞

for some p ∈ (0,∞)” and to get corresponding approximation property (say
AP [p]). It seems that for the first time it was done in the second author’s paper
[19, Lemma 2.1]. Let us mention that instead of lp-sequences, we can take in the
definition any other sets of zero-sequences.

Once a new notion of approximation property is defined, a natural next step
is to study whether some results on the classical approximation property can
be extended to the case of this new notion. As examples, we can consider the
characterizations of the AP in terms of tensor products, some sufficient conditions
for a space to have AP, the statements like ”X∗ has the AP =⇒ X has the
AP”, the connections between the approximation property and the properties
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of so-called nuclear operators, question of whether an operator is nuclear if its
adjoint is nuclear etc.

In this paper, we introduce and investigate approximation properties defined
(as above) by one-point sets of zero-sequences. Namely, suppose (cn) is a real
positive sequence, tending to ∞. We say that a Banach space X has the approx-
imation property with respect to (cn) (or the approximation property up to cn),
shortly the AP[c], if for every sequence (xn) in X with ||xn|| ≤ 1/cn and every
ε > 0 there exists a finite rank operator R in X such that supn ||xn −Rxn|| ≤ ε.
Our interest in such properties was inspired by the known fact, that the space H∞

of bounded analytic functions in the unit disk has the approximation property
”up to log” [1, Theorem 9]. As a matter of fact, we first had some new properties
of nuclear operators, acting from H∞ or from the space L1/H

1
0 (predual to H∞)

(see Sections 5 and 6 below) and then decided to consider, instead of only the
sequence (log(n+ 1)), also other positive sequences (cn) with cn → ∞.

These properties AP[c] are closely connected with a new notion of so-called [c]-
nuclear operators For example, a [log]-nuclear operator between Banach spaces
X and Y is an operator T : X → Y, that admits a nuclear representation of
type Tx =

∑
n 1/ log(n + 1) x′n(x) yn with

∑
n ||x′n|| ||yn|| < ∞. One of the main

questions in our study of the classes of [c]-nuclear operators is to give conditions,
under which it follows from [c]-nuclearity of an adjoint operator T ∗ the nuclearity
of the operator T itself.

The history of the questions of such a type takes its beginning from a result
of A. Grothendieck on the linear operators with nuclear adjoints. He showed in
[6] that if a linear operator T maps a Banach space X into a Banach space Y,
if T ∗ is nuclear and if the dual space X∗ has the approximation property, then
the operator T is nuclear. This result turned up to be sharp (with respect to
the space X), in the sense that there exists an operator T in a Banach space X,
which is not nuclear but has a nuclear adjoint. This was shown already in 1973
by T. Figiel and W. B. Johnson [5]. Moreover, in their example, the space X
possesses the Grothendieck approximation property. Later, E. Oja and O. Reinov
[12] gave another sufficient condition for a positive answer to the above question:
If T maps X into Y, T ∗ is nuclear and Y ∗∗∗ has the approximation property, then
the operator T is nuclear. Again, as was shown in the same paper, the condition
is essential: There are a Banach space Z and an operator T : Z∗∗ → Z so that
Z∗∗ has a basis, T ∗ is nuclear but T is not nuclear. Of course, here the space Z∗∗∗

(which is, by the way, separable in the example) does not have the approximation
property.

It is easy to see that the nuclearity of an adjoint operator T ∗ : Y ∗ → X∗ is
equivalent to the nuclearity of the operator πY T : X → Y → Y ∗∗, where πY is the
natural injection of Y into its second dual Y ∗∗. Thus, the above positive results say
that, under some approximation conditions posed on the spaces X or Y, the space
N(X,Y ) of all nuclear operators from X to Y possesses a property of ”regularity”
(recall that an operator ideal J is regular if it follows from U : X → Y and
πYU ∈ J(X,Y ∗∗) that U ∈ J(X,Y ); see [14]). After the Figiel-Johnson example
had appeared, the natural questions about the regularity of such operator ideals
as the ideals of p-nuclear or p-integral (in the sense of A. Pietsch) operators were
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posed in 1970s (e. g., by A. Pe lczyński, A. Pietsch, P. Saphar and others; see
[17]). In a more general setting, a corresponding question on the regularity of
the so-called ideals of (p, q, r)-nuclear operators can be found in the book [14].
Between 1980 and 2017, E. Oja and O. Reinov made several contributions in
answering such questions. We refer here only to a nice paper of E. Oja [11],
where also some corresponding references can be found.

Roughly speaking, we can divide such problems on the regularity (of in differ-
ent senses nuclear operators) in three parts: Let A1 be the set of all projective
tensor products of Banach spaces, A+

1 be the set of all tensor products of Banach
spaces, equipped with norms, which are less then the projective tensor norm
|| · ||∧ and greater then the operator norm, A−

1 be the set of all subspaces of all
projective tensor products of Banach spaces. In a natural way, we can define

the corresponding classes Ã1, Ã
+
1 and Ã−

1 of operators induced by these sets. In
this setting, we can define a notion of regularity (note that it can be defined in
more general cases of Banach tensor products or quasi-normed tensor products
of Banach spaces): For example, let X⊗̃Y belong to one of the above sets and
J(X∗, Y ) be the corresponding set of operators. We say that J(X∗, Y ) is regular
if the conditions

U : X∗ → Y, πYU is generated by an element from X⊗̃Y ∗∗

imply that U ∈ J(X∗, Y ) and generated by an element from X⊗̃Y.
The cases of the sets A1 and A+

1 (for so-called tensor norms; see [23]) were
studied carefully by E. Oja in [11]. She showed that if X or Y ∗∗∗ has the approx-

imation property, then every space of operators from Ã1 and Ã+
1 is regular (recall

that the corresponding tensor products in [11] are equipped with tensor norms in
the sense of [23]). Some results, concerning the case of A−

1 can be found in [20]
and [21].

In our paper, we study the case of the sub-set of A−
1 of tensor products, which

corresponds to the approximation properties AP[c], mentioned above. We will see
that some of the approximation properties that were considered and studied in
[20], [21] and [22] (e.g., APs, AP1;p,r AP(pq)) as well as the corresponding tensor
products are, essentially, special cases of our considerations.

Shortly about the content of the paper.
In Subsection 1.2, we present some standard notations concerning Banach

spaces, spaces of nuclear operators, tensor products, the approximation prop-
erty and formulate a classical result of J. Lindenstrauss from his famous paper
[9], which we will need below.

In Section 2, we introduce the notion of the approximation property AP[c],
where c := (cn) is a positive real sequence, tending to infinity. We also define
the notions of so-called [c]-projective tensor products of Banach spaces and cor-
responding spaces of [c]-nuclear operators. The main result here is Theorem 2.3,
which gives some characterizations of the AP[c] in terms of tensor products. In
the end of the section, we show that if a dual space X∗ has the AP[c], then the
space X has the AP[c] too.

In Section 3, some sufficient conditions for a Banach space to have the AP[c]

are given. As a consequence, we get an essential generalization of some previous
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facts about the approximation properties in subspaces of quotients of Lp-spaces.
In particular, we show that every Banach space has the AP[(

√
n)] (before it was

known that every Banach space has the approximation property ”up to o(
√
n)”,

that was a generalization of a famous 2/3-result of A. Grothendieck). In the end
of the section we present some examples with some assertions. In particular, as a
consequence of Example 3.8, we obtain the existence of an asymptotically Hilber-
tian space without the compact approximation property but with the property
AP[log1+ε] (see Proposition 3.10).

Section 4 is devoted to a study of operators with [c]-nuclear adjoints. We
get here an analogue of the main result of the paper [10], showing that the
set N[c](X

∗, Y ) of all [c]-nuclear operators from X∗ to Y is almost regular (cf.
definition of regularity mentioned above) if eitherX or Y ∗∗∗ has the AP[c]. Namely,
if X or Y ∗∗∗ has the AP[c], T : X∗ → Y, πY T is generated by an element from

X⊗̃Y ∗∗, then T ∈ N(X∗, Y ) (i.e., nuclear) and generated by an element from the
projective tensor product X⊗̂Y (Theorem 4.1). The main consequence of the
theorem is Corollary 4.2 that gives some sufficient conditions for an operator to
be nuclear if its adjoint is [c]-nuclear.

In Section 5, some examples are given. These examples show, in particular,
that the condition ”either X or Y ∗∗∗ has the AP[c]” is essential for the results of
the previous section, as well as the conclusion ’”T is nuclear” is the best possible
(this was known before; see e.g. [21] and Section 6 below). After the examples,
we present several results on the nuclear operators in some spaces of analytical
functions, for instance: If an operator from L1/H

1
0 has a [(log(n + 1))]-nuclear

adjoint, then it is nuclear; if an operator from H∞ to a Banach space Y is
generated by a tensor element from L1⊗̂Y ∗∗, then it is nuclear as an operator
from H∞ to Y.

Finally, in Section 6, we generalize the notion of the AP[c] to the case where
one considers some subset C0 of the set of all positive real sequences, tending to
infinity. We introduce a notion of the approximation property APC0 for a Banach
space X (the property means that X has the AP[c] for every sequence c ∈ C0).
Also, we define a corresponding notion of a C0-nuclear operator. Examples 6.3
and 6.6 show that in some particular cases we get the notions of some approxi-
mation properties and the corresponding nuclear operators which were studied,
for example, in [22]. We give some generalizations of results from Section 4 and
present some applications. For example, we show that if 0 < s < 1, Z is either
any space of the spaces A,L1/H

1
0 or H∞ or any of its duals and T is an operator

from or into Z, then it follows from s-nuclearity of T ∗ the nuclearity of the oper-
ator T itself. The last theorem of the paper (Theorem 6.9) is a direct application
of Theorem 4.1 to the case where one of the Banach spaces under consideration
if H∞.

Let us mention that the results of the paper concerning nuclear operators in
the spaces of analytical functions were partially presented by the authors at the
Voronezh Winter Mathematical School ”Modern methods of theory of functions
and related problems” (2003, Jan 26–Feb 2, Voronezh, Russia) [8].
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1.2. Preliminaries. All the spaces under considerations (X,Y,W . . . ) are Ba-
nach, all linear mappings (operators) are continuous; as usual, X∗, X∗∗, . . . are
Banach duals (to X), and x′, x′′, . . . (or y′, . . . ) are the functionals on X,X∗, . . .
(or on Y, . . . ). If x ∈ X, x′ ∈ X∗ then ⟨x, x′⟩ = ⟨x′, x⟩ = x′(x). L(X,Y ) stands
for the Banach space of all linear bounded operators from X to Y ; B(X,Y ) is
the Banach space of all continuous bilinear forms on X × Y. Every Banach space
is considered as a subspace of its second dual. If needed, by πY we denote the
natural isometric injection of Y into Y ∗∗.

We consider the algebraic tensor product X ⊗ Y as the linear subspace of
all continuous finite rank operators from X∗ to Y. The projective tensor product
X⊗̂Y of the spaces X and Y is the completion of X⊗Y with respect to the norm
||z||∧ := inf{

∑
|λk|}, where the infimum is taken over all finite representations of

z ∈ X ⊗ Y in the form z =
∑
λk xk ⊗ yk with ||xk|| = ||yk|| = 1. Every element

z ∈ X⊗̂Y admits a representation z =
∑∞

k=1 λkxk ⊗ yk such that
∑

|λk| < ∞
and ||xk|| = ||yk|| = 1. We denote by zt the transposed tensor element from
Y ⊗̂X : zt :=

∑∞
k=1 λkyk ⊗ xk. If X = Y ∗, then the functional ”trace” on the

tensor product Y ∗⊗̂Y is well defined by the formula trace z :=
∑
λk ⟨xk, yk⟩.

The Banach dual to X⊗̂Y can be identified with the space L(Y,X∗) = B(X,Y )
with duality given by ”trace”: for z ∈ X⊗̂Y and U ∈ L(Y,X∗) we put ⟨U, z⟩ :=
trace U ◦ z =

∑
λk ⟨xk, Uyk⟩.

There is a natural map from the tensor product X ⊗ Y to L(X∗, Y ), that
takes elementary tensors x ⊗ y to operators ⟨πXx, ·⟩y of rank one. This map
is continuous as a map from (X ⊗ Y, || · ||∧) to L(X∗, Y ) and can be extended
to the natural map j : X⊗̂Y → L(X∗, Y ). We will denote by Nw(X∗, Y ) the
Banach space of operators belonging to the image j(X⊗̂Y ) of this map (one can
identify this space with the quotient X⊗̂Y/Ker j). If X is dual to a Banach
space, say W, then the corresponding map j can be considered as a map from
W ∗⊗̂Y to L(W,Y ). We denote by N(W,Y ) the image of this map with a natural
norm, induced from the quotient W ∗⊗̂Y/Ker j. The operators from N(W,Y ) are
called nuclear operators (from W to Y ). Thus, in the general case, N∗(X∗, Y ) is
a subspace of N(X∗, Y ). If z ∈ X⊗̂Y (or z ∈ W ∗⊗̂Y ), then we denote by z̃ the
corresponding nuclear operator from X∗ to Y (or from W to Y ).

A Banach space X has the approximation property (the AP ), if for every Y the
canonical map j is one-to-one. Equivalently, X has the AP if for every Banach
space Y the natural map Y ∗⊗̂X → L(Y,X) is one-to-one. The classical definition
of the AP for X is: A Banach space X has the AP, if for every compact subset
K of X and for any ε > 0 one can find a finite rank operator R in X such that
supx∈K ||Rx− x|| ≤ ε. See [4] for further information.

We use standard notations for the classical Banach spaces such as Lp(µ), C(K),
lp, c0, lpq etc. By l0p∞ we denote the minimal kernel lmin

(p,∞) of l(p,∞) (see, e. g., [14,

13.9.3 Remark]: A sequence c = (cn) belongs to l0(p,∞) if and only if limn n
1/pc∗n =

0, where (c∗n) is a non-increasing rearrangement of |c| := (|cn|). Finally, A and H∞

are the disk algebra and the space of bounded analytical functions respectively.
For information about these spaces that is needed, see [13]. Let us mention only
that A∗ = L1/H

1
0 ⊕ L and A∗∗ = H∞ ⊕ L∗, where L is an L1-space.
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We will need below the following fact from [9] (see Proof of Corollary 1 there):

Lemma 1.1. For every separable Banach space X there exist a separable Banach
space Z and a linear homomorphism φ from Z∗∗ onto X with the kernel Z ⊂ Z∗∗

so that the subspace φ∗(X∗) is complemented in Z∗∗∗ and, moreover, Z∗∗∗ ∼=
φ∗(X∗) ⊕ Z∗.

2. Approximation properties AP[c]

It is well known that every compact subset of a Banach space is contained
in the closed convex hull of a sequence converging to 0 (see, e.g., [6, p. 112
in Ch.I, Lemma 12], or [10, Proposition 1.e.2]. Therefore, the Grothendieck
approximation property for a Banach space X can be defined as follows: X has
the AP if and only if for every sequence (xn)∞n=1 ⊂ X tending to zero, for any
ε > 0 there exists a finite rank (continuous) operator R in X such that for each
n ∈ N one has ||Rxn − xn|| ≤ ε.

Replacing the set of all c0-sequences in this definition by one fixed sequence, we
get the following main definition. Namely, for a positive real sequence c := (cn)
with c→ +∞, we define a new notion of the approximation property AP[c] :

Definition 2.1. A Banach space X has the approximation property up to c, the
AP[c], if for every ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ c−1

n there exists
a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every n.

Let us denote by C the set of all such sequences: C := {(cn) : cn ∈ R+, cn →
+∞}.

Remark 2.2. One can define also the CAP[c], the compact approximation property
with respect to c : We need only to change the words ”finite rank operator” by
”compact operator” in Definition 2.1. See Example 3.8 and Proposition 3.10
below.

Note that X has the classical AP if and only if X has the AP[c] for every c ∈ C.
For c ∈ C, let us denote by X

c
⊗ Y a subset of the projective tensor product

X⊗̂Y, consisting of all tensors z such that z admits a representation of type

z =
∞∑
n=1

µn xn ⊗ yn, where
∑

||xn|| ||yn|| <∞, |µk| ≤ c−1
k (k = 1, 2, . . . ).

Let us note that we can identify (in a sense) X
c
⊗ Y with Y

c
⊗ X (in a natural

way). Also, we can consider X
c
⊗ Y as a subset of X

c
⊗ Y ∗∗ (or as a subset of

X∗∗ c
⊗ Y ). Indeed, X

c
⊗ Y is a subet of X⊗̂Y, X⊗̂Y is a subspace of X⊗̂Y ∗∗ (see

[6, Chap. I, Cor. 3, p. 41]) and X
c
⊗ Y ∗∗ is a subset of X⊗̂Y ∗∗. Thus the natural

map from X
c
⊗ Y to X

c
⊗ Y ∗∗ is one-to-one.

On the other hand, we have a natural mapping from X⊗̂Y to L(X∗, Y ) (or

to B(X∗, Y ∗)). Therefore, we can consider also a natural map jc from X
c
⊗ Y

to L(X∗, Y ). The image of this map jc will be denoted by Nw
[c](X

∗, Y ). In the
particular case where the first space is a dual space, say W ∗, we get a canonical
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mappingW ∗ c
⊗Y → L(W,Y ). The image of this map will be denoted byN[c](W,Y )

and the operators from the space N[c](W,Y ) will be called [c]-nuclear [8].
Let us present some characterizations of the AP[c] in terms of tensor products.

Theorem 2.3. For c ∈ C and for a Banach space X, the following statements
are equivalent:

1) X has the AP[c].

2) For every Banach space Y the natural mapping from Y
c
⊗X to B(Y ∗, X∗)

(or to L(Y ∗, X)) is one-to-one.

3) For every Banach space Y the natural mapping Y ∗ c
⊗X → L(Y,X) is one-

to-one.

4) The natural mapping X∗ c
⊗ X → L(X,X) is one-to-one (or, what is the

same, there exists no tensor element z ∈ X∗ c
⊗ X with trace z = 1 and z̃ = 0,

where z̃ is the associated (with z) operator from X to X).

Proof. 2) =⇒ 3) =⇒ 4) — evident.
4) =⇒ 3). Suppose that there exists a Banach space Y such that the natural

map Y ∗ c
⊗X → L(Y,X) is not one-to-one. Take an element z ∈ Y ∗ c

⊗X which is
not zero, but generates a zero operator z̃ : Y → X. Then we can find an operator
U ∈ L(X,Y ∗∗) so that trace U ◦ z = 1. If z =

∑∞
k=1 λk y

′
k ⊗ xk is a representation

of z in Y ∗ c
⊗X (

∑
||x′n|| ||yn|| <∞, |λk| ≤ c−1

k , k = 1, 2, . . . ), then

1 = trace U ◦ z =
∞∑
k=1

λk⟨Uxk, y′k⟩ =
∞∑
k=1

λk ⟨xk, U∗y′k⟩

and
∑∞

k=1 λk U
∗y′k(x)xk = 0 for every x ∈ X. Put x′k := λkU

∗y′k, z0 :=
∑∞

k=1 λkx
′
k⊗

xk ∈ X∗ c
⊗X. We have

trace z0 = 1, z̃0 ̸= 0

(by the assumption about X). Consider a 1-dimensional operator R = x′ ⊗ x in
X with the property that trace R ◦ z0 > 0. Then

0 < trace R ◦ z0 =
∞∑
k=1

λk⟨x′k, x⟩⟨x′, xk⟩ =
∞∑
k=1

λk ⟨U∗y′k, x⟩⟨x′, xk⟩

= ⟨
∞∑
k=1

λk ⟨Ux, y′k⟩xk, x′⟩ = ⟨x′,
∞∑
k=1

λk U
∗y′k(x)xk⟩ = 0.

1) =⇒ 4). Let z ∈ X∗ c
⊗X and trace z = 1. Write z =

∑
λk x

′
k ⊗ xk, where

the sequences (x′k) and (xk) are bounded and (λkck) ∈ l1. Then

z =
∞∑
k=1

(λkck x
′
k) ⊗ (c−1

k xk).

Let ε > 0 be such that ||(λkck)||l1 supk ||x′k|| · ε < 1/2. By 1), there exists a finite
rank operator R ∈ X∗ ⊗X such that ||R(c−1

k xk) − c−1
k xk|| ≤ ε for each k ∈ N. It
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follows that, for this operator R,

| trace (z −R ◦ z)| = |
∞∑
k=1

⟨λkckx′k, c−1
k xk −R(c−1

k xk)⟩|

≤
∞∑
k=1

λkck||x′k|| · ε ≤ ||(λkck)||l1 sup
k

||x′k|| · ε < 1/2.

Hence,
| trace R ◦ z| ≥ 1/2

and therefore z generates a non-zero operator z̃.

3) =⇒ 2). It follows from 3) that for every Y the natural map Y ∗∗ c
⊗ X →

L(Y ∗, X) is one-to-one. Since Y
c
⊗X is a subset of Y ∗∗ c

⊗X, we get 2).
4) =⇒ 1). Suppose that X does not have the AP[c] Then there is a sequence

(xn) such that ||xn|| ≤ c−1
n (n = 1, 2, . . . ) and there exists an ε > 0 with the

property that for any finite rank operator R ∈ X∗⊗X the inequality supn ||Rxn−
xn|| > ε is valid. Consider the space C0(K;X) for the compact setK := {xn}∞n=1∪
{0}. Every operator U in X can be considered as a continuous function on K with
values in X by setting fU(k) := U(k) for k ∈ K. In particular, for the identity
map id in X and for any R ∈ X∗ ⊗X we have

||fid − fR||C0(K;X) ≥ ε.

The subset R := {fR : R ∈ X∗ ⊗X}
C0(K;X)

of C0(K;X) is a closed linear sub-
space in C0(K;X). So, there exists anX∗-valued measure µ = (x′k)∞k=1 ∈ C∗

0(K;X) =
l1({xn}∞n=1) ∪ {0};X) such that µ|R = 0 and µ(fid) = 1. In other words, we can
find a sequence (x′k) with

∑∞
k=1 ||x′k|| < ∞ such that

∑∞
k=1⟨x′k, xk⟩ = 1 and∑∞

k=1⟨x′k, Rxk⟩ = 0 for any R ∈ X∗ ⊗X.
Define a tensor element z ∈ X∗⊗̂X by z :=

∑∞
k=1 x

′
k ⊗ xk. Since ||xn|| ≤

c−1
n for (n = 1, 2, . . . ) and (x′k) ∈ l1(X

∗), we get that z ∈ X∗ c
⊗ X, trace z =∑∞

k=1⟨x′k, xk⟩ = 1 and trace R ◦ z = 0 for every R ∈ X∗ ⊗ X. This means that
the condition 4) is not fulfilled. �

We give here only one of the natural consequences of Theorem 2.3:

Theorem 2.4. If the dual space X∗ has the AP[c], then X has the AP[c] too.

Proof. We use Theorem 2.3. As it is known [6, Chap. I, Cor. 3, p. 41], the
projective tensor product X∗⊗̂X is a subspace of the tensor product X∗⊗̂X∗∗.

The tensor product X∗ c
⊗X is a linear subspace of X∗⊗̂X, as well as X∗ c

⊗X∗∗ is

a linear subspace of X∗⊗̂X∗∗. Therefore, the natural map X∗ c
⊗X → X∗ c

⊗X∗∗

is one-to-one. Now if X∗ has the AP[c], then the canonical map X∗∗ c
⊗ X∗ →

L(X∗, X∗) is one-to-one. Since we can identify the tensor product X∗∗ c
⊗X∗ with

the tensor product X∗ c
⊗X∗∗, it follows that the natural map X∗ c

⊗X → L(X,X)
is one-to-one. Thus, if X∗ has the AP[c], then X has the AP[c] too. �

.
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Remark 2.5. The converse, generally, is not true: It is well-known that there are
Banach spaces with the AP, whose duals do not have the AP. Hence, if X is one
of such spaces, then there exists a sequence (x′n) ⊂ X∗, tending to zero, so that
X∗ does not have the AP[c], where c = (||x′n||−1).

3. Sufficient conditions for a Banach space to have the AP[c]

We give here some examples which are interesting for our notes. To state them,
we formulate and prove the following statement.

Proposition 3.1. Let c ∈ C be a non-decreasing sequence. For a Banach space
Y, suppose that

(C) there exist a number sequence (mn), mn → +∞, and a positive constant
d such that for every natural number n, for every ε > 0 and for every subspace
E of Y with dim E ≤ mn there exists a finite rank operator R in Y so that
||R|| ≤ dcmn and ||R|E − idE||L(E,Y ) ≤ ε.

Then Y ∈ AP[c].

Proof. Suppose that there is an element z ∈ Y ∗ c
⊗ Y such that trace z = a > 0,

but z̃ = 0. Consider a representation of z of the kind

z =
∞∑
k=1

c−1
k y′k ⊗ yk,

where
∑∞

k=1 ||y′k|| ||yk|| < +∞. Take a decreasing sequence (bn) ∈ co such that
0 ≤ bn ≤ 1 for all n and still

∑∞
k=1 b

−1
n ||y′k|| ||yk|| < +∞.

Fix a natural number N, large enough, such that for all m ≥ N
m∑
k=1

c−1
k ⟨y′k, yk⟩ ≥ a/2 and d bm

∞∑
k=m+1

b−1
k ||y′k|| ||yk|| ≤ a/8.

Fix an m = mn,m > N, put E := span{yk}mk=1, and apply given conditions (C)

to find a corresponding operator R ∈ Y ∗ ⊗ Y for n = m and ε =
a/4∑m

k=1 c
−1
k ||y′k||

.

By our assumption, trace R ◦ z = 0. From this, we get

0 =
m∑
k=1

c−1
k ⟨y′k, Ryk⟩ +

∞∑
k=m+1

c−1
k ⟨y′k, Ryk⟩.

For the first sum:
m∑
k=1

c−1
k ⟨y′k, Ryk⟩ ≥

m∑
k=1

c−1
k ⟨y′k, yk⟩ −

∣∣ m∑
k=1

c−1
k ⟨y′k, yk −Ryk⟩

∣∣
≥ a/2−

m∑
k=1

c−1
k ||y′k|| ||yk−Ryk|| ≥ a/2−

m∑
k=1

c−1
k ||y′k|| sup

1≤j≤m
||yj−Ryj|| ≥ a/2−a/4 = a/4.

For the second sum:∣∣ ∞∑
k=m+1

c−1
k ⟨y′k, Ryk⟩

∣∣ ≤ ∞∑
k=m+1

c−1
k bk b

−1
k ||y′k|| ||Ryk||
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≤ c−1
m bm ||R||

∞∑
k=m+1

b−1
k ||y′k|| ||yk|| ≤ d c−1

m bm cm

∞∑
k=m+1

b−1
k ||y′k|| ||yk|| =: dm,

where 0 ≤ dm ≤ a/8.
Now, from the last three relations, we obtain: 0 ≥ a/4 − dm. A contradiction.

�
Let us consider some consequences of the proposition 3.1.

Corollary 3.2. Let c ∈ C be a non-decreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
and for every n-dimensional subspace E of Y there exists a finite rank operator
R in Y so that ||R|| ≤ d cn and R|E = idE. Then Y ∈ AP[c].

Corollary 3.3. Let c ∈ C be a non-decreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
and for every n-dimensional subspace E of Y there exists a finite dimensional
subspace F of Y, containing E and dcn-complemented in Y. Then Y ∈ AP[c].

Corollary 3.4. Let c ∈ C be a non-decreasing sequence. For a Banach space Y,
suppose that there exists a constant d > 0 such that for every natural number n
every n-dimensional subspace E of Y is dcn-complemented in Y. Then Y ∈ AP[c].
Moreover, every subspace of the space Y has the AP[c].

It is well-known that for each natural number n every n-dimensional subspace
E of any Banach space X is

√
n-complemented, i.e. there exists a continuous

linear projector P from X onto E with ||P || ≤
√
n (see [7]). Taking in Corollary

3.4 c = (
√
n), we get

Corollary 3.5. For any Banach space X, for every ϵ > 0 and any sequence (xn)
in X with ||xn|| ≤ 1/

√
n there exists a finite rank operator R in X such that

||Rxn − xn|| ≤ ϵ for every n.

More generally, let X be a subspace of a quotient of an Lp-space (1 ≤ p ≤
∞). There is a constant C(p) such that if n ∈ N and E is an n-dimensional
subspace of the space X, then there exists a projector P from X onto E with
||P || ≤ C(p)n|1/2−1/p| (this follows from [15, Theorem 4.1 and its Corollaries]).
Therefore, we get from Corollary 3.4:

Corollary 3.6. Let 1 ≤ p ≤ ∞ and X be a subspace of a quotient of an Lp-space.
For every ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ n−|1/2−1/p|, there exists
a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every n.

Remark 3.7. Corollary 3.5 generalizes a theorem of A. Grothendieck about the
property AP2/3 (see [6], [18] or [20]). Moreover, Corollaries 3.5 and 3.6 are gen-
eralizations of the corresponding facts, mentioned in [21, Section 1], where the
same conclusions were made for sequences (xn) with ||xn|| = o(1/

√
n) or with

||xn|| = o(n−|1/2−1/p|) respectively. Also, we have the following generalization of
the assertion (∗ ∗ ∗)′ in that paper (where the Lorentz spaces l0q,∞(X) were con-
sidered): Given α ∈ [0, 1/2] and a Banach space X with the property that every
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finite dimensional subspace F of X is contained in a finite dimensional subspace
E ⊂ X, which in turn is C (dimF )α-complemented in X, we have

(∗ ∗ ∗)′′ for every sequence (xn) ∈ lq,∞(X), where 1/q = α, for any ε > 0 there
is a finite rank operator R in X so that supn ||Rxn − xn|| ≤ ε.

Taking into account Theorem 2.3, we can reformulate this statement and
Corollaries 3.5 and 3.6 in terms of tensor products: Given α ∈ [0, 1/2] and a
Banach space X with the property that every finite dimensional subspace F
of X is contained in a finite dimensional subspace E ⊂ X, which in turn is
C (dimF )α-complemented in X, for any Banach space Y the natural mapping

Y
nα

⊗ X → L(Y ∗, X) is one-to-one. Thus, if 1 ≤ p ≤ ∞, α = |1/2 − 1/p| and X
is a subspace of a quotient of an Lp-space, then for any Y the natural mapping

Y
nα

⊗ X → L(Y ∗, X) is one-to-one. In particular, for any Banach spaces X and

Y the natural mapping Y

√
n

⊗ X → L(Y ∗, X) is one-to-one. Let us mention that
the last two statements, as well as (∗ ∗ ∗)′′, are optimal in the scale of Lorentz
sequence spaces (this follows, e.g., from Examples, given in [21]).

Example 3.8. In [16] the second author constructed, for every ε > 0, a separable
reflexive space Xε with the following properties: The space Xε does not possess
the approximation property. There exists a constant Cε > 0 such that if E is
an n-dimensional subspace of Xε, then 1) d(E, l2n) ≤ Cε log1+ε n and 2) E is
Cε log1+ε n-complemented in Xε. Fix ε > 0. By Corollary 3.4, the space Xε and
all of its subspaces have the AP[log1+ε], where log1+ε := (log1+ε(n + 1)) (but, as
was said, does not have the AP ). Note that it was used in [16] a construction of
the space Xε from [24]. Therefore, this space can be taken in such a way that a
”bad compact set” K ⊂ X (in the definition of the CAP ) possesses the properties
described in [24]. Therefore, Xε does not possess the CAP. Moreover, this space
is an asymptotically Hilbertian space as follows from the construction in [16].

Example 3.9. One can find a Banach space W such that W has a Schauder
basis and W ∗ does not have the AP but has, e.g., the AP[log2], where log2 =

(log2(n + 1)). Indeed, let Xε be a separable reflexive Banach space without the
AP, possessing the property AP[log1+ε] from Example 3.8. Let Z be a separable
space such that Z∗∗ has a basis and there exists a linear homomorphism φ from
Z∗∗ onto X∗

ε so that the subspace φ∗(Xε) is complemented in Z∗∗∗ and, moreover,
Z∗∗∗ ∼= φ∗(Xε) ⊕ Z∗ (see Lemma 1.1). Put W := Z∗∗. This (second dual) space
W has a Schauder basis and its dual W ∗ does not have the AP, but has the
AP[log1+ε]. We can take ε = 1 to get the desired example with log2 ..

These examples 3.8 and 3.9 (the space Xε) seems to be quite interesting, since,
as far as we know, this is the first example (mentioned in the literature) of an
asymptotically Hilbertian space without the CAP. Let us formulate the result as

Proposition 3.10. There exists an asymptotically Hilbertian space without the
compact approximation property. Moreover, this space can be chosen in such a
way that it has the property AP[log1+ε], but does not have the CAP.
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Recall that the first example of an asymptotically Hilbertian space without
the AP was constructed (by O. Reinov) in 1982 [16], where A. Szankowski’s
results were used (let us note that in that time there was not yet such notion
as ”asymptotically Hilbertian space”). Later, in 2000, by applying Per Enflo’s
example in a version of A. M. Davie [3], P. G. Casazza, C. L. Garćıa and W. B.
Johnson [2] gave another example of an asymptotically Hilbertian space which
fails the approximation property. In [21] O. Reinov got another example by using
a construction from [14].

4. Operators with [c]-nuclear adjoints

The following theorem is one of the main results of the paper and is an analogue
of the main result of the paper [11] (see Introduction above). Let us mention
that the condition ”either X or Y ∗∗∗ has the AP[c]” is essential in the theorem, as
well as the conclusion ’”T is nuclear” is the best possible (see Section 6 below).
Notations are as above (before Theorem 2.3).

Theorem 4.1. Let c ∈ C, z ∈ X
c
⊗ Y ∗∗), T ∈ L(X∗, Y ) be such that πY T = z̃ ∈

Nw
[c](X

∗, Y ∗∗). If either X ∈ AP[c] or Y ∗∗∗ ∈ AP[c], then T ∈ Nw(X∗, Y ). In

other words, under these conditions on the spaces involved, from the [c]-nuclearity
of the conjugate (weak∗-to-weak continuous) operator T ∗ : Y ∗ → X it follows that
the operator T belongs to the space Nw(X∗, Y ) (in particular, is nuclear).

Proof. Suppose there exists a weak∗-to-weak continuous operator T ∈ L(X∗, Y )
such that T /∈ Nw(X∗, Y ), but πY T ∈ Nw

[c](X
∗, Y ∗∗). Since either X or Y ∗∗ has

the AP[c] (see Theorem 2.4), N[c](Y
∗, X) = Y ∗∗ c

⊗X (= X
c
⊗ Y ∗∗). Therefore the

operator πY T can be identified with the tensor element z ∈ X
c
⊗Y ∗∗ ⊂ X⊗̂Y ∗∗; in

addition, by the choice of T, z /∈ X⊗̂Y (the space X⊗̂Y is considered as a closed
subspace of the space X⊗̂Y ∗∗). Hence there is an operator U ∈ L(Y ∗∗, X∗) =(
X⊗̂Y ∗∗)∗ with the properties that trace U ◦ z = trace (zt ◦ (U∗|X)) = 1 and

trace U ◦πY ◦u = 0 for each u ∈ X⊗̂Y. From the last it follows that, in particular,
UπY = 0 and π∗

Y U
∗|X = 0. In fact, if x ∈ X and y ∈ Y, then

⟨UπY y, x⟩ = ⟨y, π∗
Y U

∗|Xx⟩ = trace U ◦ (x⊗ πY (y)) = 0.

Evidently, the tensor element U ◦ z ∈ X
c
⊗X∗ induces the operator UπY T, which

is identically equal to zero.

If X ∈ AP[c] then X
c
⊗ X∗ = Nw

[c](X
∗, X∗) and, therefore, this tensor element

is zero what contradicts to the equality trace U ◦ z = 1.
Let now Y ∗∗∗ ∈ APs. In this case

V := (U∗|X) ◦ T ∗ ◦ π∗
Y : Y ∗∗∗ → Y ∗ → X → Y ∗∗∗

uniquely determines a tensor element z0 from the [c]-projective tensor product

Y ∗∗∗∗ c
⊗s Y

∗∗∗. Let us take any representation z =
∑
µn xn ⊗ y′′n for z as an

element of the space X
c
⊗s Y

∗∗. Denoting for the brevity the operator U∗|X by
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U∗, we obtain:

V y′′′ = U∗ (T ∗π∗
Y y

′′′) = U∗

(
(
∑

µn y
′′
n ⊗ xn) π∗

Y y
′′′
)

= U∗

(∑
µn ⟨y′′n, π∗

Y y
′′′⟩xn

)
=

∑
µn ⟨π∗∗

Y y
′′
n, y

′′′⟩U∗xn.

So, the operator V (or the element z0) has in the space Y ∗∗∗∗ c
⊗s Y

∗∗∗ the
representation

V =
∑

µn π
∗∗
Y (y′′n) ⊗ U∗(xn).

Therefore,

trace z0 = trace V =
∑

µn ⟨π∗∗
Y (y′′n), U∗(xn)⟩ =

∑
µn ⟨y′′n, π∗

Y U∗xn⟩ =
∑

0 = 0

(since π∗
Y U∗ = 0; see above).

On the other hand,

V y′′′ = U∗ (πY T )∗ y′′′ = U∗◦zt(y′′′) = U∗

(∑
µn ⟨y′′n, y′′′⟩xn

)
=

∑
µn ⟨y′′n, y′′′⟩U∗xn,

whence V =
∑
µn y

′′
n ⊗ U∗(xn). Therefore

trace z0 = trace V =
∑

µn ⟨y′′n, U∗xn⟩ =
∑

⟨Uy′′n, xn⟩ = trace U ◦ z = 1.

A contradiction. �

Corollary 4.2. Let S ∈ L(X,Y ) and S∗ ∈ N[c](Y
∗, X∗). If either X∗ ∈ AP[c]

or Y ∗∗∗ ∈ AP[c], then S ∈ N(X,Y ).

Proof. Suppose that the conditions are fulfilled. Let S∗ =
∑
µn y

′′
n ⊗ x′n be a

representation of S∗ in N[c](Y
∗, X∗) = Y ∗∗ c

⊗X∗ (the equality holds by the con-
ditions).

Consider S∗∗ as an operator T from X∗∗ to Y :

Tx′′ :=
∑

µn ⟨x′n, x′′⟩y′′n ∈ πY (Y ) ⊂ Y ∗∗,

identifying Y with πY (Y ) in a natural way. We are in conditions of Theorem
4.1. By this theorem, T ∈ Nw(X∗∗, Y ), i.e. T admits a nuclear representation
T =

∑
x̄′n ⊗ yn (with

∑
||x̄′n|| ||yn|| <∞). But T |Xx = Sx for all x ∈ X. �

Corollary 4.3. Under the conditions of Corollary 4.2, if the space Y has the AP
and X = Y, then the nuclear trace of S is well-defined and equal to trace S∗, i.e.
to

∑
µn ⟨y′′n, x′n⟩ in notation of the proof of Corollary 4.2.

Proof. Now, we have Y ∗⊗̂Y = N(Y, Y ) and S =
∑
y′n⊗ yn (with

∑
||y′n|| ||yn|| <

∞). We can consider the tensor element
∑
y′n ⊗ yn as an element of the tensor

product Y ∗∗⊗̂Y ∗ with the same projective norm. On the other hand, the tensor
element v :=

∑
µn y

′′
n ⊗ x′n from the proof of Corollary 4.2 represents the op-

erator S∗ and this tensor element must belong to a subspace πY (Y )⊗̂Y ∗ of the
space Y ∗∗⊗̂Y ∗ (see the proof of Theorem 4.1). This means, in particular, that
⟨idY ∗ , v⟩ = ⟨idY ∗ ,

∑
y′n ⊗ πY yn⟩, i.e.

∑
µn ⟨y′′n, x′n⟩ =

∑
⟨y′n, yn⟩. �
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5. Examples and some applications

Example 5.1. Fix ε > 0 and consider the separable reflexive space Xε from
Example 3.8 above. Recall that this space (as well as its dual) has the property
AP[log1+ε] but does not have the AP. Apply Lemma 1.1 to get a separable Banach
space Zε with the property that Z∗∗∗

ε
∼= φ∗(X∗

ε ) ⊕ Z∗
ε (φ is the corresponding

linear homomorphism from Z∗∗
ε onto Xε with the kernel Zε). Let u ∈ X∗

ε ⊗̂Xε with
trace u = 1 and ũ = 0, and let u =

∑
x′n ⊗ xn be a representation of the tensor

element u in the projective tensor product (where
∑

||x′n|| ||xn|| < ∞). Taking
z′′n ∈ Z∗∗

ε such that φz′′n = xn and ||z′′n|| ≤ 2 ||xn|| and putting z′′′n := φ∗x′n, consider
ū :=

∑
z′′′n ⊗ z′′n, a tensor element of the projective tensor product Z∗∗∗

ε ⊗̂Z∗∗
ε . It

is clear that trace ū = 1 and ˜̄u(Z∗∗
ε ) ⊂ πZε(Zε) ⊂ Z∗∗

ε (since φ˜̄u = 0). On the
other hand, ˜̄u|πZε (Zε) = 0. It follows from this that the operator ˜̄u, considered as
an operator from Z∗∗

ε to Zε, is not nuclear, but is nuclear as an operator from
Z∗∗

ε to Z∗∗
ε .

On the other hand, if we take any operator T from Z∗∗ to a Banach space
Y (respectively, from a Banach space W to Z), for which the operator πY T
(respectively, the operator πZT ) has a nuclear representation of the kind

∞∑
n=1

1

log1+ε(n+ 1)
z′′′n ⊗ y′′n,

where
∑

||z′′′n || ||y′′n|| <∞ (respectively, of the kind
∞∑
n=1

1

log1+ε(n+ 1)
w′

n ⊗ z′′n,

where
∑

||w′
n|| ||z′′n|| < ∞), then the operator T is nuclear, i.e. has a nuclear

representation of the kind
∑∞

n=1 ẑ
′′′
n ⊗ yn (respectively,

∑∞
n=1 ŵ

′
n ⊗ zn). The last

follows from Corollary 4.2.

Example 5.2. Put X := L1/H
1
0 and use Lemma 1.1 to define a separable Banach

space Z with the property that Z∗∗∗ ∼= φ∗(X∗)⊕Z∗ ∼= H∞ ⊕Z∗. Since the space
Z∗ has a basis and H∞ possesses the property AP[log(1+n)] [1], the space Z∗∗∗ has
the property AP[log(1+n)] too. Thus, Corollary 4.2 can be applied and we get: For
any Banach space W, if U ∈ L(W,Z) and

πZUw =
∞∑
n=1

1

log (n+ 1)
⟨w′

n, w⟩z′′n, w ∈ W,

where
∑

||w′
n|| ||z′′n|| < ∞, then there exist sequences {v′n} ⊂ W ∗ and {zn} ⊂ Z

with
∑

||v′n|| ||zn|| <∞ so that

Uw =
∞∑
n=1

⟨v′n, w⟩zn, w ∈ W.

Let us mention that it is unknown whether we can omit ”1/log(n+ 1)” above.

Let us consider the first application of our results to the investigation of prop-
erties of nuclear operators in the spaces of analytic functions.
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Theorem 5.3. Let T ∈ L(L1/H
1
0 , Y ). If there exist sequences (gn) ⊂ H∞ and

(y′′n) ⊂ Y ∗∗ such that
∑

||gn|| ||y′′n|| <∞ and T ∗y′ =
∑

1/ log(n+1) ⟨y′′n, y′⟩gn for
all y′ ∈ Y ∗, then the operator T is nuclear. Moreover, if Y = L1/H

1
0 , then the

nuclear trace of T is well-defined and equals
∑

1/ log(n+ 1) ⟨y′′n, gn⟩.

Proof. As we know, the space H∞ = (L1/H
1
0 )∗ has the property AP[(log(n+1))].

Thus, the first part follows from Corollary 4.2. In the case where Y = L1/H
1
0 ,

the trace of T is well-defined since the space L1/H
1
0 has the AP. The equality

follows from Corollary 4.3. �

Proposition 5.4. Let a linear operator T : H∞ → Y be such that there are a
sequence of functions (gn) ⊂ L1 and a bounded sequence (y′′n) ⊂ Y ∗∗, for which∑

k

∫
|gk| dm <∞ and

πY T (f) =
∞∑
k=1

∫
gk(t) f(t) dm(t) y′′k .

Then the operator T is nuclear as an operator, acting from H∞ into Y.

Proof. Let S := T |A : A→ Y. Then πY S = (πY T )|A =
∑
g0k ⊗ y′′k ∈ L1/H

1
0 ⊗̂Y ∗∗,

where g0k is the image of gk under the quotient map L1 → L1/H
1
0 . If y′ ∈ Y ∗, then

S∗y′ =
∞∑
k=1

⟨y′′k , y′⟩g0k ∈ L1/H
1
0 and S∗∗|H∞ = πY T.

Since A∗ has the approximation property and S∗ is nuclear, the operator S is
nuclear too (by Grothendieck). Now, if S =

∑
ψn⊗yn is a nuclear representation

of S : A→ Y, where ψn ∈ A∗, yn ∈ Y,
∑

||ψn|| ||yn|| <∞, then πY T =
∑
ψn|H∞⊗

πY yn (we consider here the elements ψn as the functionals on A∗∗). It follows that
T =

∑
ψn|H∞ ⊗ yn ∈ N(H∞, Y ). �

Note that it is unknown whether the conclusion of the proposition is true if we
suppose just that the operator πY T is nuclear. The same can be said about the
next consequence of Proposition 5.4.

Corollary 5.5. Let a linear operator T : H∞ → A be such that there are two
sequences of functions (gn) ⊂ L1 and (fn) ⊂ H∞, for which

∑
k

∫
|gk dm < ∞,

∥fn∥ ≤ 1 for each n and

T (f) =
∞∑
k=1

∫
gk(t) f(t) dm(t) fk.

Then the operator T is nuclear as an operator, acting from H∞ into the disk-
algebra A.

Proof. As we know, the space H∞ is a complemented subspace of the second dual
A∗∗. Therefore the result follows directly from Proposition 5.4. �
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6. Generalizations and further applications

Recall that we denote by C the set C := {(cn) : cn ∈ R+, cn → +∞}.
Let us consider a fixed subset C0 of this set (for example, we can take the set

{(cn) : cn ∈ R+, (c−1
n ) ∈ l2}.

Definition 6.1. A Banach space X has the property APC0 if it has the property
AP[c] for every c ∈ C0.

Remark 6.2. Let us denote by X
C0
⊗ Y the union

∪
c∈C0 X

c
⊗ Y. It is easy to see

that Theorem 2.3 is valid also for this kind of tensor products, i. e. Theorem

2.3 holds if we replace AP[c] by APC0 and
c
⊗ by

C0
⊗. We omit a formulation of this

generalized theorem 2.3.

Example 6.3. Let 0 < p <∞ and C0 = l−1
p := {c = (cn) : cn ∈ R+, (c−1

n ) ∈ lp}.
By the main definition 2.1, a space X has the APl−1

p
if for any c ∈ l−1

p , for every

ϵ > 0 and any sequence (xn) in X with ||xn|| ≤ c−1
n there exists a finite rank

operator R in X such that ||Rxn − xn|| ≤ ϵ for every n. Or: X has this property
if and only if for every ϵ > 0 and any sequence (xn) in X with

∑
||xn||p < ∞

there exists a finite rank operator R in X such that ||Rxn − xn|| ≤ ϵ for every

n. We can see that this property APl−1
p

is exactly the property ÃP s = APs from

[22, Sect. 1-2] (see also [20], [21]), if we take s from the equality 1/s = 1 + 1/q.

Definition 6.4. An operator T ∈ L(X,Y ) is said to be C0-nuclear, if there is a
sequence c ∈ C0 such that T ∈ N[c](X,Y ).

It is easy to see that Theorem 4.1 can be formulated and proved for the general
case of C0-nuclear operators. But we consider here only an evident generalization
of Corollary 4.2:

Theorem 6.5. Let S ∈ L(X,Y ) and S∗ is C0-nuclear. If either X∗ has the
property APC0 or Y ∗∗∗ has the property APC0 , then S ∈ N(X,Y ).

Example 6.6. Let p ∈ (0,∞], r ∈ (0,∞] and consider a tensor product ⊗̂1;p,r

from [22, Sec. 3]. It is defined in the following way: For a couple of Banach spaces
X,Y the tensor product Y ⊗̂1;p,rX consists of those elements z of the projective
tensor product Y ⊗̂X which admit representations of the type

z =
∞∑
k=1

akbk yk ⊗ xk; (yk) and (xk) are bounded, (ak) ∈ l1, (bk) ∈ lpr

(recall that in [22] and here one considers l0p∞ in the case r = ∞). If we put C0 :=

l−1
p,r := {c = (cn) : cn ∈ R+, (c−1

n ) ∈ lpr}, then it is clear that Y ⊗̂1;p,rX = Y
l−1
pr

⊗ X
and the property APl−1

pr
is just the property AP1;p,r from [22] (recall that here we

consider l0p∞ in the case r = ∞).
Also, let 0 < s < 1 and 0 < u ≤ ∞, or s = 1 and 0 < u ≤ 1. If 1 + 1/p = 1/s

and 1 + 1/r = 1/u, then AP1;p,r = AP(s,u) and Y ⊗̂1;p,rX = Y ⊗̂(s,u), where the
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last tensor product is the ”Lorentz tensor product”, consisting of those tensor
elements from Y ⊗̂X which admit the representations of type

∞∑
k=1

λk yk ⊗ xk, where (yk) and (xk) are bounded and (λk) ∈ lsu

(see [22, Sec 3]). Thus the analogues of Theorems 2.3 and 6.5 are valid for the
cases of these tensor products and approximation properties (cf. Remark 6.2).

As for the case where 0 < p < ∞ and C0 = l−1
p∞, we have: Y

C0

⊗ X = Y
(n1/p)

⊗ X

and APC0 = AP[(n1/p)] (evidently,
c−1
0

⊗ = ⊗̂ and APc−1
0

= AP ). Recall that every

Banach space has the AP[(
√
n)] (see Corollary 3.5). If p = ∞, then we get one

more new result considering C0 = lp∞ in Theorem 6.5 (otherwise we can apply
the ”generalized” Theorem 2.3 to this case; cf. Remark 6.2).

Note that a partial case of Theorem 6.5 (namely, the case considered in Example
6.3) was studied already in [21]. In this case, the corresponding operators are
called s-nuclear (recall that 1/s = 1 + 1/p). Let us apply Theorem 6.5 to the
particular case of the given spaces of analytic functions.

Theorem 6.7. Let 0 < s < 1 and W be any of the following Banach spaces:
A,L1/H

1
0 or H∞. Let Z be either the space W or any of its duals (W ∗ or W ∗∗

etc.). If Y is a Banach space, T ∈ L(Z, Y ), U ∈ L(Y, Z), T ∗ and U∗ are s-
nuclear, then T ∈ N(Z, Y ) and U ∈ N(Y, Z).

Proof. As was shown in [1, Theorem 1], the space H∞ and all of its duals have
the property APs for any s ∈ (0, 1). Therefore, the same is true for the spaces
A and L1/H

1
0 . Now, the assertion of Theorem 6.7 follows from the considered

partial case of Theorem 6.5. �
Remark 6.8. In the case where s = 1, the assertion of Theorem 6.7 is known to
be valid only if Z = A and T ∗ ∈ N(Y ∗, A∗) (cf. the proof of Theorem 5.3).

We end the paper with a direct application of Theorem 4.1 to some nuclear
bilinear forms on the products of type H∞ × Y :

Theorem 6.9. Let log := (log(n + 1)) and T ∈ L((H∞)∗, X) be such that

T ∗(X∗) ⊂ H∞. If there is a tensor element z ∈ X∗∗
log
⊗ H∞ which generates the

operator T ∗, then T is a nuclear operator from (H∞)∗ to X that can be generated
by a tensor element belonging to the projective tensor product H∞⊗̂X.

References

1. J. Bourgain and O. I. Reinov, On the approximation properties for the space H∞, Math.
Nachr. 122 (1985), 19–27.
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