Around Grothendieck's theorem on operators with nuclear adjoins

Oleg Reinov

Saint Petersburg State University

Oleg Reinov Around Grothendieck's theorem on operators with nuclear

Nuclear operators

Definition

$$T: X \to Y$$

is nuclear, if it's admits a factorization

$$T: X \stackrel{A}{\to} I_{\infty} \stackrel{\Delta}{\to} I_{1} \stackrel{B}{\to} Y,$$

where
$$\Delta(a_k) = (\delta_k a_k), \ (\delta_k) \in I_1.$$

Question

Let
$$T: X \to Y$$
 and T^* be nuclear:
 $X \xrightarrow{T} Y \xrightarrow{\pi_Y} Y^{**} \qquad X^* \xleftarrow{A^*} l_1 \xleftarrow{A} l_\infty \xleftarrow{B^*} Y^*$
 $\downarrow_A \qquad \pi_Y \uparrow$
 $l_\infty \xrightarrow{\Delta} l_1 \xrightarrow{B} Y \qquad \Downarrow \xrightarrow{\exists ?} X \xrightarrow{A_0} l_\infty \xrightarrow{\Delta_0} l_1 \xrightarrow{B_0} Y$

Oleg Reinov

Around Grothendieck's theorem on operators with nuclear

AP and Grothendieck's theorem

Definition

X has the approximation property (the AP), if

 $\forall \ \varepsilon > 0, \ (x_n) \in c_0(X)$ $\exists \ R : X \to X, \quad of \ finite \ rank :$ $\sup ||Rx_n - x_n|| \le \varepsilon.$

Theorem

Let $T \in L(X, Y)$ be such that T^* is nuclear. If X^* has the AP, then T is nuclear from X to Y.

n

A. Grothendieck, Produits tensoriels topologiques et espases nucléaires, Mem. Amer. Math. Soc., Volume 16, 1955, 196 + 140.

Simple Example

EXAMPLE.

$$egin{aligned} \pi U(f) &= \int_0^1 f(t) \, ar{g}(t) \, dt \ ar{g} &\in L_1([0,1], \, Y^{**}) \ \pi U(f) &\in \mathcal{N}(C[0,1], \, Y^{**}) \ \Delta(a_k) &= (\delta_k a_k) \end{aligned}$$

Since $C^*[0,1] \in AP$, we have:

 $U \in N(C[0,1], Y).$

Theorem

There exists a Banach space X : X has the AP,

 $\exists T: X \rightarrow X, T^*$ is nuclear, but T is not.

T. Figiel, W.B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc., Volume 41 (1973), 197–200.

Theorem

Let $T \in L(X, Y)$ be such that T^* is nuclear. If Y^{***} has the AP, then T is nuclear from X to Y.

Theorem

There exists a Banach space $X : X, X^*, X^{**}$ have the AP,

 $\exists T: X^{**} \rightarrow X, T^*$ is nuclear, but T is not.

E. Oja, O.I. Reinov, Un contre-exemple à une affirmation de A.Grothendieck, C. R. Acad. Sc. Paris. — Serie I, Volume 305 (1987), 121–122.

Generalizations

Up to now, we considered the factorizations through

$$I_{\infty} \stackrel{\Delta}{\rightarrow} I_1.$$

General questions were posed in different time about the factorizations through diagonal operators of type

$$l_r \stackrel{\Delta}{\rightarrow} l_s$$

[e. g., by A. Pełczyński F. Pietsch, P. Saphar, A. Hinrichs etc]. Different methods were used by the author to get some sharp results for $1 \le r, s \le \infty$ and for $0 < r, s \le 1$.

Particular cases: $r = p = \infty$, $s = q \ge 1$ (so-called *q*-nuclear operators).

Example of normed tensor products

We need some information about topological tensor products.

Example

Let $p \ge 1$. $\mathcal{F}(X, Y) = \{ \text{all finite rank operators } R : X \to Y. \}$ Put $n_p(R) := \inf\{||A|| ||\Delta_n|| ||B||\},$ where inf is taken over all factorizations of R of type

$$R: X \xrightarrow{B} I_{\infty}^{n} \xrightarrow{\Delta_{p}} I_{p}^{n} \xrightarrow{A} Y, \ n \in \mathbb{N}.$$

We consider $\mathcal{F}(X,Y)$ as a tensor product $X^*\otimes Y$:

 $x'(\cdot) y \in \mathcal{F}(X, Y)$ means $x' \otimes y \in X^* \otimes Y$.

Let $X^* \widehat{\otimes}_p Y$ be a completion of $(X^* \otimes Y, n_p)$. Then $X^* \widehat{\otimes}_p Y$ generates a Banach space $N_p(X, Y)$ of *p*-nuclear operators T:

$$T: X \to I_{\infty} \stackrel{\Delta}{\to} I_p \to Y.$$

Scale of tensor products

If p = 1, 0 < s < 1 and $\Delta \sim (\delta_k) \in I_s$, then we get *s*-nuclear operators.

Sharp versions of the Grothendieck's theorem were obtained by the author for these situations: $0 < s \le 1, 1 \le p < \infty$.

We have two different cases here:

1) $1 \leq p < \infty$ — a case of "tensor norms".

2) 0 < s < 1 - a case of "tensor quasi-norms"

("triangle inequality" with a constant: $||a + b|| \le C (||a|| + ||b||)$).

Рис.: Norms/Quasi-norms illustrated

Projective/injective tensor norms

As was said above, $X^* \otimes Y$ can be considered as $\mathcal{F}(X, Y)$: $x' \otimes y : X \to Y, (x' \otimes y)x = \langle x', x \rangle y.$ Projective norm $|| \cdot ||_{\wedge} (= n_1)$ can be defined by

$$(X^*\otimes Y,||\cdot||_\wedge)^*=L(Y,X^{**}).$$

with duality

$$\langle U, x' \otimes y \rangle = \langle Uy, x' \rangle =: \mathsf{trace} \ U \circ (x' \otimes y), \ U \in L(Y, X^{**}).$$

Completion: $X^* \widehat{\otimes} Y$ (projective tensor product). Injective norm is the usual operator norm $|| \cdot ||$:

$$(X^*\otimes Y,||\cdot||)\subset (L(X,Y),||\cdot||)=L(X,Y).$$

Completion: $X \widehat{\otimes} Y$ (injective tensor product).

Tensor norm α on $X^* \otimes Y$ (roughly):

 $||\cdot|| \le \alpha(\cdot) \le ||\cdot||_{\wedge}$

(plus some additional properties).

$$X^* \widehat{\otimes}_{\alpha} Y$$
 - completion of $(X^* \otimes Y, \alpha)$.

One has a natural map:

$$j_{\alpha}: X^*\widehat{\otimes}_{\alpha}Y \to L(X,Y).$$

The image is

 $N_{lpha}(X,Y) := j_{lpha}(X^* \widehat{\otimes}_{lpha} Y) - lpha$ -nuclear operators.

Eve Oja's Theorem 2012

Theorem

Let $T \in L(X, Y)$ and $\pi_Y T \in N_\alpha(X, Y^{**})$. If X^* or Y^{***} has the AP, then $T \in N_\alpha(X, Y)$.

$$\begin{array}{cccc} X & \xrightarrow{T} & Y & & X^* & \overleftarrow{T^* \in N^{\alpha}} & Y^* \\ & & & & & \downarrow^{\pi_Y} \\ & & & & & & Y^{**} \end{array}$$

Eve Oja, Grothendieck's nuclear operator theorem revisited with an application to p*n*-ull sequences, J, Func. Anal. 263 (2012) 2876-2892

Remark

 E. Oja has proved a more general theorem.
 The author showed that the conditions about the AP ("AP w.r. to the projective tensor norm") can be changed by a weaker conditions ("AP w.r. to a tensor norm").

Description

Projective tensor quasi-norm (on all tensor products $Z \otimes W$): Take a quasi-norm β on $X^* \otimes Y$ such that $\beta(\cdot) \ge n_1(\cdot) = || \cdot ||_{\wedge}$, consider a completion $X^* \widehat{\otimes}_{\beta} Y$. It is supposed that a natural map

 $X^*\widehat{\otimes}_{\beta}Y \to X^*\widehat{\otimes}Y.$

is one-to-one (plus some additional properties). β^t is a transposed quasi-norm: $\beta^t(z\otimes w):=\beta(w\otimes z)$

Example

Let $0 < s \leq 1$.

$$X^*\widehat{\otimes}_s Y := \{z \in X^*\widehat{\otimes} Y : z = \sum x'_k \otimes y_k, \sum ||x'_k||^s ||y_k||^s < \infty \}.$$

イロト イポト イヨト イヨト

-

One has a natural map:

$$j_{\beta}: X^*\widehat{\otimes}_{\beta}Y \to L(X,Y).$$

The image is

$$N_eta(X,Y):=j_eta(X^*\widehat{\otimes}_eta Y)-eta ext{-nuclear operators}.$$

In Example: s-nuclear operators. A question for these operators:

Question

Let
$$T : X \rightarrow Y$$
 and T^* be s-nuclear.
Is T s-nuclear too?

A. Hinrichs, A. Pietsch, p-nuclear operators in the sense of Grothendieck, Math. Nachr., Volume 283, No. 2 (2010), 232–261.

Corresponding question in general case:

Generally, the answer is NO (already for Hinrichs-Pietsch question).

For a formulation of the main result we need one more definition. Recall that

Z has the AP iff for every W the natural map

$$W^*\widehat{\otimes} Z \to L(W,Z)$$

is one-to-one (A. Grothendieck).

Definition

Z has the AP_{β} if for every W the natural map

$$W^*\widehat{\otimes}_{\beta}Z \to L(W,Z)$$

is one-to-one.

In Example above (s-nuclear operators), this property is the AP_s . The AP implies all the AP's!

Result

We have the following sharp result:

Theorem

Let $T \in L(X, Y)$ and $\pi_Y T \in N_\beta(X, Y^{**})$ (or, what is the same, $T^* \in N_\beta(Y^*, X^*)$). If X^* or Y^{***} has the AP_{β^t} , then $T \in N_1(X, Y)$ (i.e. Grothendieck nuclear).

$$X^* \underset{T^* \in N_{\beta^t}}{\leftarrow} Y^*$$

$$X^*$$
 or $Y^{***} \in AP_{eta^*}$

$$\Downarrow \implies X \stackrel{\mathsf{T}}{\to} Y \text{ is nuclear.}$$

As was said, the Hinrichs–Pietsch question (on *s*-nuclearity) has a negative answer:

$$\exists X, Y, T : X o Y : \forall s \in (2/3, 1] \ T^* \in N_s(Y^*, X^*)$$

but $T \notin N_1(X, Y)$.

 O. I. Reinov, On linear operators with s-nuclear adjoints, 0 < s ≤ 1, J. Math. Anal. Appl., Volume 415 (2014) 816-824.

By the way, IT IS OPEN for a long time:

Question

Let
$$T : X \to Y$$
 and $T^* \in N_{2/3}(Y^*, X^*)$.
Is it true that $T \in N_{2/3}(X, Y)$?

Applications

Let us recall that if A and H^{∞} denote the disk algebra and the space of bounded analytical functions respectively then $A^* = L_1/H_0^1 \oplus L$ and $A^{**} = H^{\infty} \oplus L^*$, where L is an L_1 -space. It is known that H^{∞} and all its duals have the AP_s for all $s \in (0, 1)$.

Bourgain J., Reinov O.I. *On the approximation properties for the space H*[∞], Math. Nachr. – 122 (1985). - P. 19-27.

Thus, our first application is

Theorem

Let 0 < s < 1 and $A^{(n)}$ be either the space A or any of its duals $(A^* \text{ or } A^{**} \text{ etc.})$. If Y is any Banach space, $T \in L(A^{(n)}, Y), U \in L(Y, A), T^*$ and U^* are s-nuclear, then $T \in N(A^{(n)}, Y)$ and $U \in N(Y, A)$.

□□ ▶ < □ ▶ < □ ▶</p>

In particular, we have:

 $\forall s \in (0,1), \forall Y :$ $L_1/H_0^1 \xrightarrow{T} Y \qquad \Longrightarrow \ L_1/H_0^1 \xrightarrow{T} Y \text{ is nuclear.}$ $Y \xrightarrow{U} A \qquad \Longrightarrow Y \xrightarrow{U} A \text{ is nuclear.}$ $V \xrightarrow{N_s} \qquad \downarrow_{\pi_A}^{\pi_A} \qquad \Longrightarrow Y \xrightarrow{U} A \text{ is nuclear.}$

Concluding Remarks and Applications

Recalling: X has the AP iff $\forall \varepsilon > 0, \forall (x_n) \in c_0(X)$ $\exists R: X \to X$ of finite rank : $\sup_n ||Rx_n - x_n|| \leq \varepsilon$. Or: the natural map $X^* \widehat{\otimes} X \to N(X, X)$ is one-to-one.

If
$$s \in (0, 1)$$
 and $1/s = 1 + 1/p$, then $X \in AP_s$ iff
 $\forall \varepsilon > 0, \forall (x_n) \in I_p(X)$
 $\exists R : X \to X$ of finite rank : $\sup_n ||Rx_n - x_n|| \le \varepsilon$.
Or: the natural map $X^* \widehat{\otimes}_s X \to N(X, X)$ is one-to-one.
We used the last definition when we considered *s*-nuclear operators
defined on L_1/H_0^1 .

BUT:
$$H^{\infty} = (L_1/H_0^1)^*$$
 has the AP "up to log", i.e.
 $\forall \varepsilon > 0, \forall (x_n) \subset X : ||x_n|| \le 1/\log(n+1)$
 $\exists R : X \to X$ of finite rank : $\sup_n ||Rx_n - x_n|| \le \varepsilon$.

Bourgain J., Reinov O.I. On the approximation properties for the space H[∞], Math. Nachr. – 122 (1985). - P. 19-27. One can introduce a definition of the corresponding property $AP_{[log]}$ and to get, in particular:

Theorem

Let $T \in L(L_1/H_0^1, Y)$. If there exist sequences $(g_n) \subset H^{\infty}$ and $(y_n'') \subset Y^{**}$ such that $\sum ||g_n|| ||y_n''|| < \infty$ and

$$\mathcal{T}^*y' = \sum rac{1}{\log(n+1)} raket{y_n'',y'}{g_n} ext{ for all } y' \in Y^*.$$

then the operator T is nuclear. Moreover, if $Y = L_1/H_0^1$, then the nuclear trace of T is well-defined and equals $\sum 1/\log(n+1) \langle y_n'', g_n \rangle$.

Thank you for your attention!