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Abstract

We establish various properties of the online centering of Gaussian processes and

discuss their application to goodness-of-�t testing.
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The operation of online centering was introduced in [8]. For a Gaussian process X on

[0, 1], we consider the process

X̂(x) = X(x)− 1

x

x∫
0

X(t) dt.

Proposition ([8, Example 4], [5, Proposition 6.3]). The online centered Brownian

motion is spectrally equivalent to the usual centered Brownian motion:

Ŵ (x) ∼ W (x) := W (x)−
1∫

0

W (t) dt. (1)
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In [8] this fact was proved by the Laplace transform while in [5] a direct calculation of

the spectrum of Ŵ was given.

In this paper we demonstrate the operator nature of the relation (1) and show that a

similar identity holds for the entire class of online centered Gaussian processes.

Let A and B be compact operators in a Hilbert space H. We call A and B spectrally

equivalent and write A ∼ B if their non-zero eigenvalues coincide (with the multiplicities).

A typical example of such operators is given by operator products AB ∼ BA, see, e.g.,

[1, Section 3.10].

Also we call two Gaussian random functions X and Y spectrally equivalent and write

X ∼ Y if their covariance operators KX and KY are spectrally equivalent. The notion

of spectral equivalence was introduced in the recent paper [14] though examples of such

functions, both in univariate and in multivariate case, were known much earlier, see the

references in [14].

We de�ne some operators in L2(0, 1): operators of integration from the left and from

the right

(Tu)(x) =

x∫
0

u(t) dt, (T ∗u)(x) =

1∫
x

u(t) dt,

the orthogonal projector onto the subspace of constants, the multiplication operator

(Pu)(x) =

1∫
0

u(t) dt, (Su)(x) = xu(x),

and the operator of online centering

(T̂u)(x) = u(x)− 1

x

x∫
0

u(t) dt.

Proposition 1. The following identities hold:

T̂∗T̂ = I − P ; T̂ T̂∗ = I. (2)

This statement shows that operators T̂ and T̂∗ form, respectively, the left and the

right shifts in L2(0, 1). This fact was proved in [2], see also [9, Theorem 1.1]. We give

here an elementary proof for the reader's convenience. We have

T̂∗T̂u = (I − T ∗S−1)(I − S−1T )u,
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i.e.

(T̂∗T̂u)(x) = u(x)− 1

x

x∫
0

u(t) dt−
1∫

x

u(t)

t
dt+

1∫
x

1

t2

t∫
0

u(s) dsdt.

Since

1∫
x

(u(t)
t
− 1

t2

t∫
0

u(s) ds
)
dt =

(1
t

t∫
0

u(s) ds
)∣∣∣1

x
=

1∫
0

u(t) dt− 1

x

x∫
0

u(t) dt,

we arrive at

(T̂∗T̂u)(x) = u(x)−
1∫

0

u(t) dt = ((I − P )u)(x).

On the other hand,

(T̂ T̂∗u)(x) = u(x)− 1

x

x∫
0

u(t) dt−
1∫

x

u(t)

t
dt+

1

x

x∫
0

1∫
t

u(s)

s
dsdt.

Integration by parts annihilates three last terms, and the statement follows. �

Now we can formulate our �rst main result.

Theorem 1. For any zero mean-value Gaussian process X (x) on [0, 1], the online

centered process X̂ (x) is spectrally equivalent to the usual centered process:

X̂ (x) ∼ X (x) := X (x)−
1∫

0

X (t) dt. (3)

Proof. It is easy to see that the covariance operators of the online centered and the

usual centered process admit the representation

KX̂ = T̂KX T̂∗; KX = (I − P )KX (I − P ).

Therefore, we can write down the following chain:

T̂ ·
[
KX T̂∗

]
∼
[
KX T̂∗

]
· T̂ •

= KX (I −P ) =
[
KX (I −P )

]
· (I −P ) ∼ (I −P ) ·

[
KX (I −P )

]
,

(the equality (•) follows from Proposition 1), and the statement follows. �

Remark 1. Notice that the online centered Brownian motion is a Green Gaussian

process, i.e. its covariance function is the Green function of a boundary value problem

for an ordinary di�erential operator, see [5, Proposition 6.3]. Since the spectral theory
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of ODOs is well developed, this fact always helps a lot in search of the spectrum, see,

e.g., [13], [10]. In contrast, for many Green Gaussian processes, the corresponding online

centered process is NOT a Green Gaussian process. For instance, this is the case for the

Brownian bridge. However, the equivalence (3) associates the spectrum of B̂ with that of

B which is known long ago, see [18].

Another interesting example is related to the fractional Brownian motion (FBM) WH

that is a zero mean-value Gaussian process with covariance function

GWH (x, y) =
1

2

(
x2H + y2H − |x− y|2H

)
, x, y ∈ [0, 1],

(here H ∈ (0, 1) is the so-called Hurst index, the case H = 1
2
corresponds to the standard

Brownian motion). Using Theorem 1 we obtain

ŴH(x) ∼ WH(x).

Notice that all fractional processes are not Green Gaussian processes, and their spec-

trum is not known exactly. However, recently the sharp spectral asymptotics for WH

were obtained in [11] using a breakthrough approach of [3].

Remark 1 generates a natural question, for which Green Gaussian processes corre-

sponding online centered process is again a Green Gaussian process. A partial answer is

given by the following theorem.

Theorem 2. Let X(x) be a zero mean-value Green Gaussian process on [0, 1]. Denote

by X (x) the left-integrated process

X (x) =
x∫

0

X(t) dt, x ∈ [0, 1].

Then the online centered process X̂ (x) is also a Green Gaussian process.

Before giving the proof we recall that the assumption of theorem means that the

covariance function GX satis�es

LGX(·, y) = δ(· − y); GX(·, y) ∈ Dom(L), (4)

where L is a self-adjoint ordinary di�erential operator of order 2`,

L ≡ (−1)`D`
(
p`(x)D

`
)
+D`−1 (p`−1(x)D`−1 )+ · · ·+ p0(x)

(here D stands for the di�erentiation operator, and p`(x) > 0) and the domain Dom(L)

is de�ned by 2` boundary conditions. In operator terms, (4) can be written as LKX = I.
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Proof. It is easy to see that the covariance operators of X and X̂ admit the represen-

tation

KX = TKXT
∗; KX̂ = T̂TKXT

∗T̂∗.

We begin with the identity

T̂T = S−1TS, (5)

which follows from a simple integration by parts formula

x∫
0

tf(t) dt = x

x∫
0

f(t) dt−
x∫

0

t∫
0

f(s) dsdt.

So, we obtain

KX̂ = S−1TSKXST
∗S−1.

We invert the operator factors consequently and arrive at L̂KX̂ = I, where L̂ is an ODO

of order 2`+ 2 given by

L̂ ≡ xDx−1Lx−1Dx.

Since for every u ∈ L2(0, 1) we have

(ST ∗S−1u)(1) = 0, KXST
∗S−1u ∈ Dom(L), (KX̂u)(0) = 0,

the domain Dom(L̂) is de�ned by 2`+ 2 boundary conditions

u(0) = 0; x−1Dxu ∈ Dom(L); (Lx−1Dxu)(1) = 0.

Thus, the covariance function GX̂ satis�es

L̂GX̂ (·, y) = δ(· − y); GX̂ (·, y) ∈ Dom(L̂),

and the statement follows. �

Remark 2. In the case where L is an operator with constant coe�cients, the funda-

mental system of solutions to the equation L̂u = µu can be written in terms of elementary

functions, see [12]. We stress that this family of explicitly solvable ODEs is not included

into classical handbooks [4, 16].

Next, by virtue of the Karhunen�Lo�eve expansion, spectrally equivalent Gaussian

functions have equally distributed L2-norms. By Theorem 1, the following identity in law

holds for any zero mean-value Gaussian process X (x) on [0, 1]:

‖X̂ ‖2L2(0,1)
d
= ‖X‖2L2(0,1)

.
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However, we provide a much stronger statement.

Theorem 3. Let X(x) be arbitrary random process on [0, 1], square integrable a.s.

Then

‖X̂ ‖2L2(0,1)
= ‖X‖2L2(0,1)

a.s.

Proof. Using Proposition 1 we derive

1∫
0

X̂ 2(t) dt =

1∫
0

(T̂X )2(t) dt =
1∫

0

(T̂∗T̂X )(t) · X (t) dt

=

1∫
0

((I − P )X )(t) · X (t) dt =
1∫

0

((I − P )X )2(t) dt =
1∫

0

X
2
(t) dt,

and the statement follows. �

The results obtained above may have an unexpected application to nonparametrric

statistics, namely to goodness-of-�t testing. Consider the classical empirical process built

on a uniform sample on [0, 1]

ξn(t) =
√
n(Fn(t)− t), 0 ≤ t ≤ 1,

where Fn(t) is the empirical distribution function. The functionals of the empirical process

are the famous nonparametric statistics such as Kolmogorov, Cram�er�von Mises, Watson,

Anderson�Darling statistics, and many others.

All them are used for goodness-of-�t testing. It is well known, see, e.g., the classical

monograph [17] that the empirical process converges weakly in the Skorokhod spaceD[0, 1]

to the Brownian bridge, and therefore the limiting distributions of statistics listed above

coincide with these of Brownian bridge, and therefore are well studied.

In nonparametric statistics, the researchers are very interested in transformations of

the empirical process and in functionals from such processes in the hope of �nding new,

more powerful or e�cient tests for �t. The examples of such transformations are the

extracting of the martingale part and more general constructions due to Khmaladze [6],

[7] or the so-called Deheuvels empirical process [15].

The online centered empirical process has never been considered in this context. It

has the form

ξ̂n(t) = ξn(t)−
1

t

t∫
0

ξn(s)ds, 0 ≤ t ≤ 1.

This process converges in Skorokhod space to the process B̂ which is spectrally equivalent

to the usual centered Brownian bridge B by Theorem 1.
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The corresponding ω2-type statistic
1∫
0

ξ̂2n(t)dt not only has the same limiting distribu-

tion as ‖B‖2L2(0,1)
but equals the Watson statistics

1∫
0

ξ2n(t)dt almost surely by Theorem 3.

However, it would be interesting to calculate and compare the local Bahadur asymptotic

e�ciency of other statistics based on ξ̂n against standard alternatives.
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