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Abstract

Consider a system of polynomial equations in n variables of degrees
at most d with integer coefficients with the lengths at most M . We show
using the construction close to smooth stratification of algebraic varieties
that one can construct a positive integer

∆ < 2M(nd)c 2nn3

(here c > 0 is a constant) depending on these polynomials and satisfying
the following property. For every prime p the considered system has a
solution in the ring of p-adic numbers if and only if it has a solution
modulo pN for the least integer N such that pN does not divide ∆. This
improves the previously known, at present classical result by B. J. Birch
and K. McCann.

Introduction

Let f1, . . . , fk ∈ Z[X1, . . . , Xn] be polynomials, n > 1. Assume that for all i the
degrees

degX1,...,Xn fi 6 d

and the lengths of integer coefficients of the polynomials fi are bounded from
above by M (it means that the absolute value of every coefficient of each fi is
at most 2M−1). Here d > 3 and M > 1 are integers. We shall suppose without
loss of generality that f1, . . . , fk are linearly independent over Q and k > 1. In
particular f1 6= 0.

Denote by Z(f1, . . . , fk) the algebraic variety of all zeroes of the polynomials
f1, . . . , fk in the affine space An(Q) over the algebraic closure Q of the field of
rational numbers Q. The dimension dimZ(f1, . . . , fk) 6 n− 1 since f1 6= 0.
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By definition the degree of an irreducible affine (or quasiprojective) algebraic
variety is equal to the degree of its closure in the corresponding projective space.
The degree of an arbitrary affine (or quasiprojective) algebraic variety is equal
to the sum of the degrees of its irreducible components.

By definition the codimension of an affine algebraic variety V ⊂ An(Q) is
equal to n − dimV where dimV is the dimension of V (the dimension of an
empty variety is equal to −1). Put m to be the codimension of the algebraic
variety Z(f1, . . . , fk). So 1 6 m 6 n+ 1.

Let Zp be the ring of all p-adic integers.

THEOREM 1 For given polynomials f1, . . . , fk there are an absolute constant
c > 0 and a positive integer

∆ < 2M(nd)cm 2n−mn3

< 2M(nd)c 2n n3

satisfying the following property. For every prime p the system

f1 = . . . = fk = 0

has a solution in Znp if and only if it has a solution in (Z/pNZ)n for the least

integer N such that pN does not divide ∆. The constant c can be computed
explicitly from the proof of this theorem. The codimension m can be computed
within the time polynomial in M and dn

2

. The integer ∆ can be constructed
within the time polynomial in M(nd)m 2n−mn3

.

The previous result on this subject was obtained in the well known paper
by B. J. Birch and K. McCann [8] for the case of one polynomial k = 1, f = f1.
Let L(f) denote the maximum of absolute values of coefficients of f . Then [8]
gives

∆ < (2ndL(f))(2d)
4nn!

i.e.
∆ < 2Md(Cn)n

.

for a constant C > 1. So our result improves the highest level exponent from
n log2(Cn) to n(1 + o(1)). As far as we know the estimate from Theorem 1 is
the best known so far. Thus our result is important.

The present paper has an interesting history. Actually it contains our old
unpublished result. Initially, more than twenty years ago, I wrote a preprint
[9] during my stay in Bonn by the program “Volkswagen Stiftung”. There are
two authors of this preprint. I suggested the main ideas of the preprint and
their technical realization. Actually I did all the work. Marek Karpinski was
the host of the program in Bonn. The contribution of M. Karpinski was mainly
in stimulating me to investigate this problem by persistent discussions of the
subject (but in truth they gave no new ideas). I would like to thank again M.
Karpinski for hospitality and good conditions for my fruitful research at that
time. Now due to the importance of this result and no new progress in this area
(in the considered general situation) since that time I decided at last to publish
the obtained result in a journal. One should note that the preprint [9] was
written not very accurately. It was not ready for publishing in a journal. There
are many small drawbacks in it. So I made a decision to revise this preprint
completely. In the present paper a lot of work has been done to correct the
inaccuracies from [9].
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Now we would like to formulate some problems.

PROBLEM 1 Is it possible to strengthen Theorem 1? Namely is it possible
to replace (nd)cm 2n−mn3

by dn
c

(where the constant c > 0 is absolute) in the
statement of Theorem 1?

PROBLEM 2 Are there an absolute constant c > 0 and constants C(n) > 0
(depending on n) satisfying the following property? Let p be an arbitrary prime
number. Then any system from Theorem 1 has a solution in the ring of p-adic
numbers if and only if it has a solution modulo pN for the least integer N such
that N log p > C(n)Mdn

c

.

The last problem is motivated by our deep result from [2]. There we con-
struct a smooth stratification of the algebraic variety Z(f1, . . . , fk) with strata
given by equations of degrees bounded from above by C(n)d and with the num-

ber of strata at most C(n)dn
2

, i.e., all the strata have the degrees bounded from
above by a linear polynomial in dn for sufficiently large d (the bound for d here
depends on n). In papers devoted to smooth stratification of algebraic varieties
of all other authors the bound for degrees of strata is like dn

cn

(or may be d2
cn

).
This double exponential bound is proved always more or less straightforward.
In [2] a slightly different definition of smooth stratification is used. There might
be some long sequences W1,W2, . . . ,Wm of smooth strata of the same dimension
such that the intersections of closures W i ∩W i+1 6= ∅ for all 1 6 i < m. This
is an obstacle to use directly the result of [2] (in place of Theorem 3, see below)
to the subject of the present paper. However the question is not closed here.

We consider the ring Zp of p-adic integers. But, of course, the main problem
in this area remains to obtain an explicit complexity bound for the decidability
of polynomial systems over the field Qp of p-adic numbers. We could not solve
it at that time in Bonn, more than twenty years ago. But I noticed that most
likely an effective algorithm for the decidability of polynomial systems over Qp is
inseparably linked with obtaining an explicit complexity bound for desingular-
ization of algebraic varieties in zero characteristic (possible it will be sufficient
to get estimates for some numerical invariants related to the desingularization).

Let us return to the present paper. Note that the analogs of Theorem 1
and Theorem 4, see below, are true if one consider homogeneous polynomials
f1, . . . , fk ∈ Z[X0, . . . , Xn] and their nonzero solutions, i.e. the solutions in
Zn+1
p \ {(0, . . . , 0)} and (Z/pNZ)n+1 \ {(0, . . . , 0)} respectively. The proofs are

similar if we consider projective spaces in place of affine spaces. Further, for
homogeneous polynomials the existence of a solution of a system of polynomial
equations in Pn(Qp) is equivalent to the existence of a nonzero solution in Zn+1

p \
{(0, . . . , 0)}.

Theorem 1 is a consequence of a more precise Theorem 4. The proof of Theo-
rem 4 is based on the construction which we call branching smooth stratification
of an algebraic variety. In this construction one iterates the decomposition of a
given algebraic variety into the union of irreducible components and taking the
proper closed subset containing all singular points of a component, see Defini-
tion 2 and Theorem 3. The branching smooth stratification is closely related to
a smooth stratification of an algebraic variety. So it is quite natural to define
and consider at first the latter, see Definition 1 and Theorem 2. The results of
[1] are extensively used for the proofs of Theorem 2 and Theorem 3. In Sec-
tion 2 for recursive estimations we prove basing on [1] also some additional facts
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related to the decomposition of algebraic varieties into irreducible components,
for example, Lemma 3. Note that our estimations for smooth stratification and
branching smooth stratification take into account the codimension of a given
algebraic variety, see Theorem 2 and Theorem 3 below. The upper bounds from
these theorems are also double exponential but rather accurate. Some efforts
are needed to obtain such upper bounds for the lengths of integer coefficients of
equations determining the strata.

By now we have significantly improved the results of [1] and their presenta-
tion in [3]–[5] (there is also the third part of [4], [5] but it is devoted mainly to
the systems with parameters). At present one could refer to them in place of
[1] in regard to solving systems of polynomial equations. So we recommend the
papers [3]–[5] to the interested reader. Still we refer mainly to [1] in this paper
(especially when it is necessary to use the algorithms for factoring polynomials).

1 Main definitions and more detailed formula-
tions of the obtained results

DEFINITION 1 Put

V1 = Z(f1, . . . , fk).

We give a recursive definition. Suppose that the closed in An(Q) defined over Q
algebraic variety Vr is already defined for some 1 6 r 6 n. If Vr 6= ∅ consider
the decomposition

Vr =
⋃
i∈Ir

Wi

into the union of irreducible and defined over Q algebraic varieties Wi. Denote
by SingWi the set of singular points of Wi and set

V ′r+1 =
⋃
i∈Ir

SingWi ∪
⋃

i,j∈Ir, i 6=j

(Wi ∩Wj).

Let the closed in An(Q) algebraic variety Vr+1 be such that Vr ⊃ Vr+1 ⊃ V ′r+1

and Wi \ Vr+1 6= ∅ for all i ∈ Ir. Set

Sr = Vr \ Vr+1, Ui = Wi \ Vr+1.

Then the quasiprojective algebraic variety Sr consists of smooth points of com-
ponents of different dimensions of the algebraic variety Vr, the quasiprojective
algebraic varieties Ui are irreducible defined over Q and smooth for all i. We
have the decomposition

Sr =
⋃
i∈Ir

Ui

into the union of irreducible and defined over Q components. We shall suppose
without loss of generality that each index from Ir is not an integer (to avoid
some ambiguity in what follows) for all r and Ir1 ∩ Ir2 = ∅ for all r1 6= r2.
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If V1 = ∅ set n0 = 0. If V1 6= ∅ set n0 to be the maximal r such that
Vr 6= ∅. Put J = ∪16r6n0

Ir. We have the decomposition

Z(f1, . . . , fk) =
⋃
i∈J

Ui (1)

which gives the smooth stratification of Z(f1, . . . , fk) with smooth strata Ui.

Note that the codimension of every component of Vr is at least m + r − 1
and hence 0 6 n0 6 n−m+ 1.

Further, this construction depends on the choice of the varieties Vr+1 ⊃ V ′r+1.
If we have Vr+1 = V ′r+1 for all r then (1) is uniquely defined (up to a choice of
indices) and we shall call it canonical smooth stratification of Z(f1, . . . , fk).

Denote by V
(s)
r the union of all irreducible and defined over Q components

of codimensions s of the algebraic variety Vr where 1 6 r 6 n0, 1 6 s 6 n. Let

Wi, i ∈ I(s)r , be the family of all the defined and irreducible over Q components

of the algebraic variety V
(s)
r . Note that I

(s)
r can be empty for some s and then

also V
(s)
r = ∅.

By definition put D
(s)
r =

∑
i∈I(s)r

degWi for all 1 6 s 6 n, 1 6 r 6 n0 (so

0 6 D
(s)
r ∈ Z). Hence the number of elements #I

(s)
r 6 D

(s)
r and the degree

deg V
(s)
r = D

(s)
r .

We shall assume that:

(a) Each irreducible and defined over Q component Wi, i ∈ I(s)r , is given as a
set of all common zeroes of a family of polynomials hα ∈ Z[X1, . . . , Xn],

α ∈ Ai, herewith the number of polynomials #Ai 6 (D
(s)
r )n, the degrees

degX1,...,Xn hα 6 degWi 6 D
(s)
r and the lengths of integer coefficients of

hα are at most M
(s)
r for some integer M

(s)
r > 1 for all α ∈ Ai, i ∈ I(s)r .

More than that, see Definition 4 Section 2, hα, α ∈ Ai, is a family of poly-
nomials corresponding to the generic projection of the algebraic variety
Wi.

(b) For every smooth point x ∈ Wi, i ∈ I(s)r , there are α1, . . . , αs ∈ Ai such
that hα1 , . . . , hαs is a system of local local parameters of Wi at the point
x (i.e. hα1 , . . . , hαs generate the ideal of Wi in the local ring Ox,An(Q) of

the point x in An(Q)).

The families of polynomials hα, α ∈ Ai, satisfying (a) and (b) for all i ∈ I(s)r ,
1 6 r 6 n0, m + r − 1 6 s 6 n, completely determine the canonical smooth
stratification of the algebraic variety Z(f1, . . . , fk) (it is obvious but see the
next section for some details).

Factually condition (b) follows from (a) since hα, α ∈ Ai, is a family of
polynomials corresponding to the generic projection of the algebraic variety Wi,
see Lemma 2 Section 2. But still it is convenient to formulate (b) separately.

DEFINITION 2 Let an algebraic variety Z(f1, . . . , fk) be given. Set I = {i∗}
for some element i∗ 6∈ Z (one should choose and fix this element i∗) and

Vi∗ = Z(f1, . . . , fk).
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We give a recursive definition. Assume that a family of defined over Q algebraic
varieties Vi1,...,ir , iβ ∈ Ii1,...,iβ−1

, 1 6 β 6 r, is already defined for some 1 6
r 6 n. We suppose that for all β each element from Ii1,...,iβ−1

is not an integer
and Ii1,...,iβ−1

= I for β = 1. The base of the recursion r = 1.
If Vi1,...,ir = ∅ put Ii1,...,ir = ∅.
Let Vi1,...,ir 6= ∅. Consider the decomposition

Vi1,...,ir =
⋃

ir+1∈Ii1,...,ir

Wi1,...,ir,ir+1
(2)

into the union of irreducible and defined over Q components Wi1,...,ir,ir+1
. So

the set of indices Ii1,...,ir is defined by (2).
Let a smooth quasiprojective algebraic variety Ui1,...,ir,ir+1

be a non–empty
open in the Zariski topology defined over Q subset of Wi1,...,ir,ir+1 . Set

Vi1,...,ir,ir+1
= Wi1,...,ir,ir+1

\ Ui1,...,ir,ir+1

for all ir+1 ∈ Ii1,...,ir . Thus, the family of algebraic varieties Vi1,...,ir+1
, iβ ∈

Ii1,...,iβ−1
, 1 6 β 6 r + 1, is defined. The recursive step of the definition is

described.
If Vi∗ = ∅ set n0 = 0. If Vi∗ 6= ∅ set n0 to be the maximal r such that there

exists Vi1,...,ir which is non–empty. So 0 6 n0 6 n−m+ 1.
Now by definition the family of all Ui1,...,ir+1

, iβ ∈ Ii1,...,iβ−1
, 1 6 β 6

r + 1, 1 6 r 6 n0, is a branching smooth stratification of the algebraic variety
Z(f1, . . . , fk).

Notice that if r = n0 + 1 then Vi1,...,ir = ∅ for all iβ ∈ Ii1,...,iβ−1
, 1 6 β 6

r. Further, the codimension of every algebraic variety Wi1,...,ir,ir+1 is at least
m+ r − 1.

So the branching smooth stratification depends on the choice of Ui1,...,ir,ir+1
.

If Ui1,...,ir,ir+1
is always coincides with the set of all smooth points ofWi1,...,ir,ir+1

then such a branching smooth stratification is uniquely defined (up to a choice
of indices) and we shall call it canonical branching smooth stratification of
Z(f1, . . . , fk).

Some our notations for the smooth stratification and the branching smooth
stratification coincide. It will not lead to an ambiguity since the sense of nota-
tions always will be seen from a context.

For every 1 6 r 6 n0, 1 6 s 6 n denote by I
(s)
r the family of all (r+1)-tuples

(i1, . . . , ir, ir+1) of indices such that there is an algebraic variety Wi1,...,ir,ir+1

from Definition 2 of codimension codimWi1,...,ir,ir+1 = s. We have I
(s)
r = ∅ for

all 1 6 r 6 n0, 1 6 s < m+ r − 1.

By definition put D
(s)
r =

∑
(i1,...,ir+1)∈I(s)r

degWi1,...,ir+1
for all 1 6 s 6 n,

1 6 r 6 n0 (so 0 6 D(s)
r ∈ Z). Hence the number of elements #I

(s)
r 6 D(s)

r .
We shall suppose that for branching smooth stratification conditions (a)

and (b) are satisfied if one replaces in them Wi by Wi1,...,ir,ir+1
, and i by

i1, . . . , ir, ir+1. Hence for a branching smooth stratification the numbers M
(s)
r

are defined. Also the sets of indices Ai1,...,ir+1
are defined.

The families of polynomials hα, α ∈ Ai1,...,ir+1
, satisfying (a) and (b) for all

(i1, . . . , ir+1) ∈ I(s)r , 1 6 r 6 n0, m + r − 1 6 s 6 n, completely determine the
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canonical branching smooth stratification of the algebraic variety Z(f1, . . . , fk)
(it is obvious but see the next section for some details).

In what follows in this paper we use the notation P for a polynomial in one
variable with non-negative integer coefficients. Unless we state otherwise we
don’t assume that this polynomial is the same in different places of the text
(even close to each other).

If D
(s)
r = 0 for some r and s then by definition put M

(s)
r = 0. Notice that

I
(s)
r = ∅ and D

(s)
r = 0 for all r and s such that 1 6 s < m+r−1, see Definition 1

and Definition 2. Put

M̃ = max{M (s)
r : 1 6 r 6 n0, m+ r − 1 6 s 6 n},

D̃ = max{(D(s)
r )n

2

: 1 6 r 6 n0, m+ r − 1 6 s 6 n}.

We shall prove in Section 2 the following results.

THEOREM 2 For given polynomials f1, . . . , fk one can construct the canon-
ical smooth stratification of Z(f1, . . . , fk) described above. More precisely, for

all integers r, s such that 1 6 r 6 n0, m + r − 1 6 s 6 n and all i ∈ I(s)r we
construct families of polynomials hα, α ∈ Ai, satisfying (a) and (b). Herewith
for all 1 6 r 6 n0 and m+ r − 1 6 s 6 n the inequalities

D(s)
r 6 (sd)

(m+1)2s−m−1
, M

(s)
r 6 (M + n2)P((sd)(m+1)2s−m−1)

hold true for some polynomial P. The working time of the algorithm for con-
structing this canonical smooth stratification is polynomial in M , nn

2

, dn
2

, M̃
and D̃. Hence this working time is polynomial in M and (nd)m2n−mn2

.

THEOREM 3 For given polynomials f1, . . . , fk one can construct the canon-
ical branching smooth stratification of Z(f1, . . . , fk) described above. More pre-
cisely, for all integers r, s such that 1 6 r 6 n0, m + r − 1 6 s 6 n and all

(i1, . . . , ir+1) ∈ I(s)r we construct families of polynomials hα, α ∈ Ai1,...,ir+1
, sat-

isfying (a) and (b) (with corresponding changes). Herewith for all 1 6 r 6 n0
and m+ r − 1 6 s 6 n the inequalities

D(s)
r 6 (sd)

(m+1)2s−m−1
, M

(s)
r 6 (M + n2)P((sd)(m+1)2s−m−1)

hold true for some polynomial P. The working time of the algorithm for con-
structing this canonical branching smooth stratification is polynomial in M , nn

2

,
dn

2

, M̃ and D̃. Hence this working time is polynomial in M and (nd)m2n−mn2

.

Let us return to the question of solvability of polynomial systems over p-adic
integers. For the canonical branching smooth stratification defined above put

S =
{
s :

⋃
16r6n0

I(s)r 6= ∅ & m 6 s 6 n
}
.

Further, for every s ∈ S set

Ms = max
16r6n0

M (s)
r , Ds = 1 + max

16r6n0

{D(s)
r , 3}. (3)

(Here “1+” and “3” appear by a technical reason: to apply later in the proof
the Effective Nullstellensatz.)
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Recall that Zp denotes the ring of p-adic integers. Theorem 1 is an immediate
consequence of Theorem 3 and the following result which will be proved in
Section 3.

THEOREM 4 Let polynomials f1, . . . , fk be given. Consider the canonical
branching smooth stratification of the algebraic variety Z(f1, . . . , fk) with cor-
responding Ds and Ms, s ∈ S. Then one can construct a positive integer

∆ < 2MP(d
n2

)+
∑
s∈SMsP(Dsn

2

s )dn
∏
t∈S, t<s(tD

t+1
t )n

for a polynomial P (the exact formula (13) for ∆ is given in Section 3) satisfying
the following property. For every prime p the system

f1 = . . . = fk = 0 (4)

has a solution in Znp if and only if it has a solution in (Z/pNZ)n for the least

integer N > 0 such that pN does not divide ∆. The integer ∆ can be constructed
within the time polynomial in M , dn

2

, maxs∈SMs, maxs∈S D
sn2

s .
More than that, if for a given p there is a solution of the system (4) in

(Z/pNZ)n then one can construct a solution of this polynomial system in Znp
using the Hensel lifting (see (20) in Section 3 for details). The initial data to
apply this Hensel lifting (not only the solution mod pN ) can be constructed

within the time polynomial in pNn, M , dn
2

, maxs∈SMs, maxs∈S D
sn2

s .

2 Construction of the smooth stratification and
branching smooth stratification of an algebraic
variety

The aim of this section is to prove Theorem 2 and Theorem 3 for the described
canonical smooth stratification and canonical branching smooth stratification
of Z(f1, . . . , fk).

Let ui,j , i = 0, s, s + 1, . . . , n, 0 6 j 6 n be algebraically independent
elements over Q. Introduce for brevity the family

U = {ui,j}i=0,s,s+1,...,n, 06j6n.

Denote by Z[U ] the ring of polynomials over Z in all all the variables ui,j from the
family U (we shall use also other similar notations). Set Ui =

∑
06j6n ui,jXj .

Let V ⊂ Pn(Q) be an irreducible projective algebraic variety defined over Q
of dimension n − s, 1 6 s 6 n. Then there is a unique (up to a factor ±1)
irreducible polynomial

H ∈ Z[U , Z0, Zs, . . . , Zn]

homogeneous with respect to Z0, Zs, . . . , Zn such that H(U , U0, Us, . . . , Un) is
vanishing on V considered as a subvariety of Pn(Q(U)). The polynomial H has
the degrees degui,0,...,ui,n H = deg V for every i and degZ0,Zs,...,Zn H = deg V ,
cf. [7], [1].

Put f i = Xdeg fi
0 fi(X1/X0, . . . , Xn/X0) ∈ Z[X0, . . . , Xn], 1 6 i 6 k, i.e., f i

are homogenizations of the polynomials fi.
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LEMMA 1 Let V be an irreducible component of the algebraic variety Z(f1, . . . ,
fk) and dimV = n − s, see above. Then the lengths of integer coefficients of
the polynomial H are bounded from above by (M + n2)P(ds) for a polynomial

P. One can construct the polynomial H within the time polynomial in M , dn
2

and (deg(V ))n
2

.

PROOF The polynomial H is homogeneous with respect to Z0, Zs, . . . , Zn.
Hence it is sufficient to construct the polynomial H(U , 1, Zs, . . . , Zn) and esti-
mate the lengths of integer coefficients of this polynomial.

Actually in what follows everything in the proof is a direct consequence of the
construction from the algorithm for solving polynomial systems, see [1]. Namely,

replacing if necessary the family of polynomials f1, . . . , fk by f iX
d−deg fi
j , 1 6

i 6 k, 0 6 j 6 n, we shall suppose without loss of generality that the degrees
degX0,...,Xn f i = d for all 1 6 i 6 k. There are integers gi,j , 1 6 i 6 s, 1 6 j 6 k
with lengths O(log(1 + di−1)) (note that here also a weaker bound like P(ds)
is sufficient) satisfying the following property. Put gi = gi,1f1 + gi,2f2 + . . . +
gi,kfk, 1 6 i 6 s. Then V is an irreducible component of the algebraic variety
Z(g1, . . . , gs).

Notice that one can construct all the integers gi,j within the time polynomial

in M and dn
2

using the algorithm from [1].
Write for brevity the family

U ′ = {ui,j}i=0,s+1,...,n, 06j6n. (5)

There are unique linear forms Y ′0 , . . . , Y
′
n ∈ Q(U ′)[X0, . . . , Xn] such that

Y ′i (U0, X1, . . . , Xs, Us+1, . . . , Un) = Xi, 0 6 i 6 n.

Denote by λ the determinant of the matrix of coefficients of the linear forms
U0, X1, . . . , Xs, Us+1, . . . , Un. Put Yi = λY ′i . Then all Yi ∈ Z[U ′, X0, . . . , Xn]
and the degrees degui,0,...,ui,n Yj 6 1 for all 0 6 j 6 n, i = 0, s + 1, . . . , n. We
construct all the linear forms Yj .

Put g′i = gi(Y0, . . . , Yn), 1 6 i 6 s and U ′s = Us(Y0, . . . , Yn). Let ε be a tran-
scendental element over the field Q(U). Let us extend the ground field Q till the
field K1 = Q(U)(ε, Zs, . . . , Zn). Set also the field K2 = Q(U ′)(ε, Zs+1, . . . , Zn).
Put

g̃i = g′i(X0, . . . , Xs, Zs+1X0, . . . , ZnX0)− εXd
i , 1 6 i 6 s.

Hence all g̃i ∈ Z[U ′, X0, . . . , Xs, ε, Zs+1, . . . , Zn] and g̃i are homogeneous with
respect to X0, . . . , Xs. We construct all polynomials g̃i.

Let Ps(K2) has homogeneous coordinates X0, . . . , Xs. By our construction,
see [1] (and also [4], [5]) for more details, the dimension dimZ(g̃1, . . . , g̃s) = 0 in
Ps(K2), or which is the same the system g̃1 = . . . = g̃s = 0 has a finite number
of solutions in the projective space Ps(K2).

Put N = sd − s + 1. For every integer ν > 0 denote by Hν the K1–vector
space of monomials in X0, . . . , Xs of degree ν. Let us choose the base of each
Hν consisting of monomials in X0, . . . , Xs with coefficients 1. Notice that the
dimension of the space HN =

(
sd+1
s

)
6 P(ds) for a polynomial P.

Consider the K1–linear mapping

HsN−d ×HN−1 → HN , ((q1, . . . , qs), r) 7→
∑

16i6s

g̃iqi + (U ′s − ZsX0)r, (6)
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where all qi ∈ HN−d and r ∈ HN−1. Denote by A the matrix of this mapping
in the chosen bases.

Recall the system g̃1 = . . . = g̃s = 0 has a finite number of solutions z in
the projective space Ps(K2). Furthermore U ′s(z) 6= 0 for every such solution
z since the coefficients of the linear form U ′s are transcendental over the field
K2. Therefore also (U ′s − ZsX0)(z) 6= 0. This implies that the mapping (6)
is surjective see e.g. [11] and also [4] Section 3. Hence rankA = dimHN .
So we can construct a nonzero minor Q of order dimHN of the matrix A.
We have 0 6= Q ∈ Z[U , ε, Zs, . . . , Zn]. Let us represent Q = εaQ1 where an
integer a > 0, the polynomial Q1 ∈ Z[U , ε, Zs, . . . , Zn] and Q1|ε=0 6= 0. Put
Q2 = Q1|ε=0 = Q1(U , 0, Zs, . . . , Zn). Then the polynomial H(U , 1, Zs, . . . , Zn)
is an irreducible factor of Q2 in the ring Z[U , Zs, . . . , Zn], cf. [1] (and also [4],
[5]).

From the described construction we get immediately that all the degrees
degZs,...,Zn Q2, degui,0,...,ui,n Q2, i = 0, s, . . . , n, are bounded from above by
P(ds) and the lengths of integer coefficients of the polynomial Q2 are bounded
from above by (M + n2)P(ds) for a polynomial P. Now the required estima-
tion for the lengths of integer coefficients of the polynomial H(U , 1, Zs, . . . , Zn)
follows from [6] Chapter III §4 Lemma 2 or [1].

It remains to find the polynomial H. Let ξ ∈ Q(ts+1, . . . , tn)[θ] be a generic
point of the algebraic variety V constructed in [1]. Here ts+1, . . . , tn are alge-
braically independent over Q and θ is an algebraic over Q(ts+1, . . . , tn) element
of degree deg V . The point ξ is constructed within the time polynomial in M
and dn

2

. Let 0 6 i0 6 n be an index such that Xi0 does not vanish on V . Then
the representations are constructed

(Xi/Xi0)(ξ) =
1

a

∑
06j<deg V

ai,jθ
j , 0 6 i 6 n, (7)

where all a, ai,j ∈ Z[ts+1, . . . , tn], the degrees degts+1,...,tn a, degts+1,...,tn ai,j are
bounded from above by P(ds) and the lengths of integer coefficients of all a,
ai,j are bounded from above by (M + n)P(ds) for a polynomial P. The point ξ
is given by (7). Using (7) we find all the values (Uj/Xi0)(ξ), j = 0, s, . . . , n.

One can represent H =
∑
I,J hI,Ju

IZJ where I, J are multiindices and
hI,J ∈ Z, i.e., H is a sum of monomials in the elements of the family U and
Z0, Zs+1, . . . , Zn with integer coefficients. We have

H(U , (U0/Xi0)(ξ), (Us/Xi0)(ξ), . . . , (Un/Xi0)(ξ)) = 0.

Furthermore, using (7) we get that the last equality is equivalent to∑
16r6R, 06q<deg V

Lr,qmr θ
q = 0,

where mr are pairwise distinct monomials in the elements of the family U and
ts+1, . . . , tn; and Lr,q are linear forms in hI,J with integer coefficients. Consider
hI,J as unknowns. Then we get a linear system Lr,q = 0, 1 6 r 6 R, 0 6 q <
deg V with respect to hI,J . By the bounds for a and ai,j from (7) the number

of elements #R is bounded from above by a polynomial in (ddeg(V ))n
2

and the
lengths of integer coefficients of the linear forms Lr,q are bounded from above
by (M + n2)P(ds). This is an immediate consequence of the bounds for the

10



generic point ξ from [1]. The number of unknowns hI,J is bounded from above

by (deg(V ) + 1)n
2+n. The vector space over Q of solutions of this linear system

is of dimension 1. Solving it we find all the integer coefficients hI,J . Thus we
can construct the polynomial H within the required working time. The lemma
is proved. �

Let us represent

H(U , U0, Us, . . . , Un) =
∑

e=(ei,j)∈Z(n−s+2)(n+1)

He

∏
i=0,s,s+1,...,n, 06j6n

u
ei,j
i,j (8)

where He ∈ Z[X0, . . . , Xn] are homogeneous polynomials. Note that if He 6= 0
then

∑
j ei,j 6 2 deg V for all i. Put E′ = {e : He 6= 0}. Then #E′ 6

P((deg V + 1)n
2

) for a polynomial P.
Notice that under conditions of Lemma 1 one can construct all the polyno-

mials He, e ∈ E′ within the time polynomial in M , dn
2

, (deg V )n
2

, and further
the lengths of integer coefficients of all polynomials He, e ∈ E′ are bounded
from above by (M + n2)P(ds) for a polynomial P (this follows immediately
from Lemma 1).

Choose a maximal subset E ⊂ E′ such that the polynomials He, e ∈ E, are
linearly independent. So #E 6 (deg(V ))n.

We have, cf. the construction of the system of polynomial equations for
the components of an algebraic variety from [1], Z(He, e ∈ E) = V (i.e. the
set of all common zeroes of the polynomials He, e ∈ E, coincides with V ; in
what follows we shall use also other similar notations). Thus, if the polynomial
H is known then one can construct within the polynomial time the system of
homogeneous polynomial equations giving V .

DEFINITION 3 We shall say that a defined and irreducible over Q projective
algebraic variety V is given by the generic projection if the corresponding poly-
nomial H is given. The system He = 0, e ∈ E, for the algebraic variety V will
be called system of polynomial equations corresponding to the generic projection
of the algebraic variety V . So this system depends on the choice of E.

DEFINITION 4 Let W ⊂ An(Q) be a defined and irreducible over Q affine
algebraic variety. Assume that W is a set of all common zeroes in An(Q) of
a family of polynomials hα ∈ Z[X1, . . . , Xn], α ∈ A. We shall say that hα,
α ∈ A, is a family of polynomials corresponding to the generic projection of the
algebraic variety W if and only if the following property hold true.

Denote by V the closure of W in the projective space Pn(Q). Denote by
hα ∈ Z[X0, . . . , Xn] the homogenization of the polynomial hα for every α ∈ A.
Then there is a system of polynomial equations He = 0, e ∈ E, corresponding
to the generic projection of the algebraic variety V such that #E = #A and the
sets of polynomials {hα : α ∈ A} = {He : e ∈ E} coincide.

LEMMA 2 Let V ⊂ Pn(Q) be a defined and irreducible over Q projective alge-
braic variety of degree deg V = D and dimension n−s where 1 6 s 6 n. Let V be
given by the generic projection and He = 0, e ∈ E, be the corresponding system
of polynomial equations. Let x ∈ V be a smooth point. Let L ∈ Q[X0, . . . , Xn]
be a linear form such that L(x) 6= 0. Then there are e1, . . . , es ∈ E such that
He1/L

D, . . ., Hes/L
D is a system of local parameters of V at the point x.
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PROOF Let Y0, . . . , Yn be linearly independent linear forms with integer co-
efficients. Consider the projections

π : V \ Z(Y0, Ys+1, . . . , Yn)→ Pn−s(Q), (X0 : . . . : Xn) 7→ (Y0 : Ys+1 : . . . : Yn),

and

πi : V \ Z(Y0, Yi, Ys+1, . . . , Yn)→ Pn−s+1(Q),

(X0 : . . . : Xn) 7→ (Y0 : Yi : Ys+1 : . . . : Yn), 1 6 i 6 s.

Denote by Yi the family of coefficients of the linear forms Y0, Yi, Ys+1, . . . , Yn
for 1 6 i 6 s. There are linear forms Y0, . . . , Yn such that Y0(x) 6= 0 and

(i) the projection π is finite, i.e. V ∩ Z(Y0, Ys+1, . . . , Yn) = ∅,

(ii) the inverse image π−1(π(x)) consists of deg V pairwise distinct points,

(iii) #(Yi/Y0)(π−1(π(x))) = #π−1(π(x)) for every 1 6 i 6 s,

(iv) the polynomial H(Yi, Y0, Yi, Ys+1, . . . , Yn) 6= 0 for 1 6 i 6 s.

By (ii) the differential dxπ at the point x of the projection π is an isomor-
phism. The projection πi is also finite for every 1 6 i 6 s. Hence the set
πi(V ) is closed in the Zariski topology and πi(V ) is a set of zeroes of a homo-
geneous polynomial hi ∈ Z[Y0, Yi, Ys+1, . . . , Yn] of the degree deg hi = deg V by
(iii). By the Zariski main theorem the point πi(x) is smooth on πi(V ). Now
the differentials dx(h1/L

D), . . . , dx(hs/L
D) are linearly independent. Therefore

h1/L
D, . . . , hs/L

D is a system of local parameters of the variety V at the point
x. By (iv) each hi coincides with H(Yi, Y0, Yi, Ys+1, . . . , Yn) up to a nonzero
factor from the ground field. Hence h1, . . . , hs are linear combinations of poly-
nomials He, e ∈ E. Therefore, the required system of local parameters can be
chosen among polynomials He/L

D, e ∈ E. The lemma is proved. �

LEMMA 3 Let V ⊂ Pn(Q) be an irreducible and defined over Q projective
algebraic variety of dimension n− s, 1 6 s 6 n. Let V be given by the generic
projection and H = HV be the corresponding polynomial. Let the degree deg V 6
D′ where D′ > 2 and lengths of integer coefficients of HV be at most M ′ where
M ′ > 1. Let F ∈ Q[X0, . . . , Xn] be a homogeneous polynomial of the degree at
most D′′ where D′′ > 2, and lengths of integer coefficients of F be at most M ′′

where M ′′ > 1. Suppose that F is not vanishing on V . Let W1 be an arbitrary
irreducible and defined over Q component of the algebraic variety V ∩ Z(F ).
Then the degree of the intersection V ∩Z(F ) is at most D′D′′ and the component
W1 can be given by the generic projection. The corresponding polynomial HW1

has integer coefficients with the lengths bounded from above

(M ′ +M ′′ + n2)P(D′D′′)

for a polynomial P. The polynomials HW1 corresponding to all the irreducible
components W1 of the intersection V ∩Z(F ) can be constructed within the time

polynomial in (D′D′′)n
2

, M ′, M ′′.

PROOF Let U0, Us+1, . . . , Un be generic linear forms such as above. Recall
that their family of coefficients U ′ is defined by (5). For brevity set the field
K = Q(U ′).
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Set
RH = ResZs(H,H

′
Zs) ∈ Q[U , Z0, Zs+1, . . . , Zn]

to be the resultant of the polynomials H and H ′Zs with respect to Zs (so RH co-
incides with the discriminant of the polynomial H with respect to Zs multiplied
by the leading coefficient lcZsH of the polynomial H with respect to Zs).

There are integers u0, u1, . . . , un with lengths O(log(D′ + 1)) such that the
polynomial

R = RH |us,j=uj , 06j6n 6= 0 (9)

(here R is a notation). Set Y =
∑

06j6n ujXj . Denote by

Φ ∈ Z[U ′, Z0, Z, Zs+1, . . . , Zn]

(here Z is a new variable) the homogeneous with respect to Z0, Z, Zs+1, . . . , Zn
polynomial such that

Φ(U ′, Z0, Z, Zs+1, . . . , Zn) = H(U , Z0, Z, Zs+1, . . . , Zn)|us,j=uj , 06j6n

(one should substitute here the coefficients uj for the generic coefficients us,j ,
0 6 j 6 n). Notice that the polynomial Φ(U ′, U0, Y, Us+1, . . . , Un) is vanishing
on V .

Note that the lengths of integer coefficients of the polynomial Φ are bounded
from above by (M ′+n2)P(D′) for a polynomial P. The resultant R = ResZ(Φ,
Φ′Z) 6= 0. Put ϕ = lcZΦ to be the leading coefficient of the polynomial Φ with
respect to Z. Then ϕ 6= 0 since R 6= 0. Furthermore ϕ ∈ Z[U ′], degZ Φ = deg V
by (9) and since lcZHV ∈ Z[U ].

Denote by K(V ) the field of defined over the field K rational functions of the
algebraic variety V . The polynomial Φ is nonzero and separable and, therefore,
irreducible since V is irreducible. Therefore η = Y/U0 is a primitive element of
the extension

K(V ) ⊃ K(Us+1/U0, . . . , Un/U0).

The minimal polynomial of the element η is Φ(U ′, 1, Z, Us+1/U0, . . . , Un/U0).
Hence there is a generic point χ of the algebraic variety V over the field K such
that (Y/U0)(χ) = η and all

(Xi/U0)(χ) ∈ K(Us+1/U0, . . . , Un/U0)[η], 0 6 i 6 n.

Put χi = (Xi/U0)(χ), 0 6 i 6 n.
Let T be a new variable. Put the field K3 = K(Us+1/U0, . . . , Un/U0)[η] and

the polynomial

h = H(U , 1, T, Us+1/U0, . . . , Un/U0) ∈ K3[T, us,0, us,1, . . . , us,n].

To construct all χi = (Xi/U0)(χ) we factor using the algorithm from [1], Chap-
ter I §1 Proposition 1.1, the polynomial h = h(T, us,0, us,1, . . . , us,n) over the
field K3. The polynomial h has a linear factor T −

∑
06i6n us,iχi. Thus by [1]

there are representations

χi =
∑

06j<deg V

bi,j(U ′, Us+1/U0, . . . , Un/U0)ηj

b(U ′, Us+1/U0, . . . , Un/U0)
, 0 6 i 6 n, (10)
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where all b, bi,j ∈ Z[U ′, Zs+1, . . . , Zn] are polynomials with degrees

degZs+1,...,Zn b, degZs+1,...,Zn bi,j ,

degui,0,...,ui,n b, degui,0,...,ui,n bi,j , i = 0, s+ 1, . . . , n,

bounded from above by P(D′) for a polynomial P. The lengths of integer
coefficients of all polynomials b, bi,j are bounded from above (M ′ + n2)P(D′)
for a polynomial P.

LEMMA 4 Let q > D′ be an integer. Then one can represent

ηq =
1

ϕq−D′+1

∑
06j<deg V

b
(q)
j (U ′, Us+1/U0, . . . , Un/U0)ηj ,

where all b
(q)
j ∈ Z[U ′, Zs+1, . . . , Zn] are polynomials with degrees

degZs+1,...,Zn b
(q)
j , degui,0,...,ui,n b

(q)
j , i = 0, s+ 1, . . . , n,

bounded from above by P(D′)(q − D′ + 1) for a polynomial P. The lengths of

integer coefficients of all polynomials b
(q)
j are bounded from above

(M ′ + log2(q −D′ + 1))(q −D′ + 1) + n2 log2(P(D′)(q −D′ + 1))

for a polynomial P.

PROOF Let Φ =
∑

06j6deg V ΦjZ
j where all Φj ∈ Z[U ′, Zs+1, . . . , Zn] (so

Φdeg V = ϕ). Set q′ = q − D′ + 1. One can represent Zq = ΦA + B where

ϕq
′
A,ϕq

′
B ∈ Z[U ′, Z, Zs+1, . . . , Zn] and ϕq

′
B =

∑
06j<deg V b

(q)
j Zj . Then the

polynomial A can be found by solving a linear system over the field K(Zs+1, . . . ,
Zn) with a square triangular matrix T of size q′. Each nonzero entry of this
matrix is equal to some Φj and on the diagonal all the entries are equal to ϕ.
Solving this linear system by Cramer’s rule we get that the lengths of integer
coefficients of the polynomial ϕq

′
A are bounded from above by

M ′(q′ − 1) + n2 log2(P(D′)q′) + q′ log2(q′)

for a polynomial P (note that (q′ − 1) appears here since to obtain the coeffi-
cients of ϕq

′
A from the field K(Zs+1, . . . , Zn) we compute minors of the matrix

T of order (q′ − 1)). Hence the the lengths of integer coefficients of the poly-
nomial ϕq

′
B = ϕq

′
Zq − Φϕq

′
A are bounded from above by (M ′ + log2(q′))q′ +

n2 log2(P(D′)q′).

The required estimations for the degrees of all b
(q)
j are obtained in a similar

way by solving the considered linear system by Cramer’s rule. Lemma 4 is
proved. �

Put

b = Z
degZs+1,...,Zn

b

0 b(U ′, Zs+1/Z0, . . . , Zn/Z0) ∈ Z[U ′, Z0, Zs+1, . . . , Zn].

to be the homogenization of b. Assume that b is vanishing on W1. Then HW1

coincides with an irreducible factor of b in the ring Z[U ′, Z0, Zs+1, . . . , Zn].
In this case the required estimate for the lengths of integer coefficients of the
polynomial HW1

follows from [6] Chapter III §4 Lemma 2 or [1].
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In what follows we shall assume that b is not vanishing on W1. We have
F (χ) 6= 0 since F is not vanishing on V . Using (10) and Lemma 4 one can
represent

F (χ0, . . . , χn) =

∑
06j<deg V ψ

(j)(U ′, Us+1/U0, . . . , Un/U0)ηj

b(U ′, Us+1/U0, . . . , Un/U0)D′′ϕ(D′−1)D′′−(D′−1) ,

where all ψ(j) ∈ Z[U ′, Zs+1, . . . , Zn]. By Lemma 4 and the estimates for degrees
and lengths of integer coefficients of b and b(j), see (10), we deduce that for all
j the degrees

degZs+1,...,Zn ψ
(j), degui,0,...,ui,n ψ

(j), i = 0, s+ 1, . . . , n,

are bounded from above by P(D′)D′′ for a polynomial P. Further, the lengths
of integer coefficients of all polynomials ψ(j) are bounded from above (M ′ +
M ′′ + n2)P(D′D′′) for a polynomial P.

Put
ν = max

06j<deg V
(j + degZs+1,...,Zn ψ

(j))

and

Ψ = Zν0
∑

06j<deg V

ψ(j)(U ′, Zs+1/Z0, . . . , Zn/Z0)Zj ∈ Z[U ′, Z0, Z, . . . , Zn].

Then Ψ 6= 0, the degree degZ Ψ < deg V .
Recall that η = Y/U0 ∈ K(V ). We have Xi/U0 − χi = 0, 0 6 i 6 n, in the

field K(V ). The rational function Xi/U0−χi is defined for every z ∈ V \Z(U0)
such that b(z) 6= 0, see (10). Hence if z ∈ V \ Z(U0b) then (Xi/U0)(z) = χi(z)
for 0 6 i 6 n. Therefore the polynomial Ψ(U ′, U0, Y, Us+1, . . . , Un) is vanishing
on W1 \ Z(U0b) 6= ∅. Hence Ψ(U ′, U0, Y, Us+1, . . . , Un) is vanishing on W1.

If degZ Ψ = 0 then HW1
coincides with an irreducible factor of Ψ. Now

the required estimate for lengths of integer coefficients of the polynomial HW1

follows from [6] Chapter III §4 Lemma 2 or [1].
Assume that degZ Ψ > 0. Put

R1 = ResZ(Φ,Ψ) ∈ Z[U ′, Z0, Zs+1, . . . , Zn]

to be the resultant of the polynomials Φ and Ψ with respect to Z. Then R1 6= 0
since the polynomial Φ is irreducible over the field K and 0 < degZ Ψ < degZ Φ.
We have W1 ⊂ Z(Φ(U ′, U0, Y, Us+1, . . . , Un),Ψ(U ′, U0, Y, Us+1, . . . , Un)). Hence
W1 ⊂ Z(R(U ′, U0, Us+1, . . . , Un)).

The bounds for degrees and lengths of integer coefficients of the polynomi-
als Φ and Ψ are known. Using them we get immediately that the lengths of
integer coefficients of the resultant R1 are bounded from above by (M ′+M ′′+
n2)P(D′D′′) for a polynomial P. Now HW1 coincides with an irreducible fac-
tor of R1 in the ring Z[U ′, Z0, Zs+1, . . . , Zn]. Again the required estimate for
lengths of integer coefficients of the polynomial HW1

follows from [6] Chapter III
§4 Lemma 2 or [1].

Finally, using the algorithm from [1] and the described construction one can
construct the polynomial HW1 within the required working time. Lemma 3 is
proved. �
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At present our aim is to prove Theorem 2. In what follows when it is re-
quired to construct a system of polynomial equations determining an affine
algebraic variety U ⊂ An(Q) we shall construct system of homogeneous poly-
nomial equations corresponding to the generic projection of the closure of this
variety U ⊂ Pn(Q) using the algorithm from [1] and Lemma 1. This will gives
also a system for U . The condition (b) when it is required will be satisfied by
Lemma 2.

We proceed to the details. Compute using [1] all the irreducible and defined
over Q components W of the algebraic variety Z(f1, . . . , fk). After that we
apply Lemma 1. Let the codimension of the variety W is equal to s > m.
Then according to Lemma 1 (with W in place of V ) the algebraic variety W is
given by a system of polynomial equations of degree at most degW 6 ds and
the lengths of integer coefficients of these equations are bounded from above by
(M + n2)P(ds) for a polynomial P. Besides,

∑
{W : codimW=s} degW 6 ds by

the Bézout theorem. Notice that (m+1)2s−m−1 > s for all integers s > m > 1.

Hence the estimations of Theorem 2 hold true for D
(s)
1 and M

(s)
1 . By Lemma 1

and Lemma 2 properties (a) and (b) hold for all i ∈ I(s)1 , m 6 s 6 n.
Let 1 6 r < n and suppose that we have constructed recursively all the

algebraic varieties Wi, i ∈ I(s)r , m + r − 1 6 s 6 n. We assume that I
(s)
r 6= ∅

for at least one s such that m + r − 1 6 s 6 n. Further, suppose that (a) and

(b) hold and the required estimations for D
(s)
r and M

(s)
r are fulfilled for the

considered r, s.

Let us show how to construct the families of algebraic varieties Wi, i ∈ I(s)r+1

for all s such that m+ r 6 s 6 n. We also ascertain the required upper bounds

for D
(s)
r+1 and M

(s)
r+1 (if at least one I

(s)
r+1 6= ∅).

Let ι ∈ I
(s)
r+1. Then either Wι is an irreducible component of SingWi for

some i ∈ I(u)r , m+ r− 1 6 u < s, or Wι is an irreducible component of Wi ∩Wj

for some i ∈ I(u)r , j ∈ I(v)r , m + r − 1 6 v 6 u < s, i 6= j. Put degWi = di,
degWj = dj for all i, j.

Let i ∈ I(u)r , m+ r − 1 6 u < s. Put B′i = Aui × {1, . . . , n}u. For every

β = ((α1, . . . , αu), (j1 . . . , ju)) ∈ B′i

compute the Jacobian

Jβ = det

(
∂hαl
∂Xjv

)
16l,v6u

. (11)

Compute a maximal subset Bi ⊂ B′i such that all the Jacobians Jβ , β ∈ Bi, are
linearly independent. We have by (b)

SingWi = Wi ∩ Z({Jβ}β∈Bi),

Further, deg Jβ 6 u(di − 1) < udi. Hence by the Bézout theorem the de-
gree of the union of all the components of codimension s of SingWi is at most
di(udi)

s−u.

For every integer s such that m + r 6 s 6 n, for all i, u such that i ∈ I(u)r ,

m + r − 1 6 u < s denote by Wι, ι ∈ I
(s)
i,r+1, the family of all the defined
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and irreducible over Q components Wι of the variety SingWi such that the
codimension codimWι = s.

Similarly if i ∈ I(u)r , j ∈ I(v)r , m+ r − 1 6 v 6 u < s, i 6= j, then the degree
of the union of all the components of codimension s of the intersection Wi ∩Wj

is at most did
s−u
j (of course this degree is at most didj by the Bézout theorem

but it is not principal now).

For every integer s such that m+r 6 s 6 n for all u, v, i, j such that i ∈ I(u)r ,

j ∈ I(v)r , m + r − 1 6 v 6 u < s, i 6= j denote by Wι, ι ∈ I(s)i,j,r+1 the family of
all the defined and irreducible over Q components Wι of the variety Wi ∩Wj

such that the codimension codimWι = s.
We shall assume without loss of generality that the introduced sets of indices

are pairwise non–intersecting, i.e. I
(s1)
i1,r+1 ∩ I

(s1)
i2,r+1 = ∅ if (i1, s1) 6= (i2, s2),

further I
(s1)
i1,j1,r+1 ∩ I

(s2)
i2,j2,r+1 = ∅ if (i1, j1, s1) 6= (i2, j2, s2) and finally I

(s1)
i1,r+1 ∩

I
(s2)
i2,j2,r+1 = ∅ for all (i1, s1) and (i2, j2, s2).

For every m+ r 6 s 6 n put Ĩ
(s)
r+1 to be the union of all the introduced sets

I
(s)
i,r+1 and I

(s)
i,j,r+1. Set Ĩr+1 =

⋃
m+r6s6n Ĩ

(s)
r+1.

Applying the algorithm from [1] one can construct the family of the algebraic

varietiesWι, ι ∈ Ĩr+1. Further, again using the algorithm from [1] we construct a

minimal (by inclusion) subset Ir+1 ⊂ Ĩr+1 satisfying the following property. For

every i1 ∈ Ĩr+1 there is i2 ∈ Ir+1 such that Wi1 ⊂Wi2 . Put I
(s)
r+1 = Ĩ

(s)
r+1 ∩ Ir+1

for every m + r 6 s 6 n. Thus using the algorithm from [1] we construct the

required families of algebraic varieties Wι, ι ∈ I(s)r+1, m+ r 6 s 6 n. After that

applying Lemma 1 for every ι ∈ I(s)r+1 for every m+ r 6 s 6 n we construct the
polynomials hα, α ∈ Aι. So now by Lemma 1 and Lemma 2 properties (a) and
(b) hold for all these algebraic varieties Wι.

If I
(s)
r+1 = ∅ for all m + r 6 s 6 n then n0 = r, the required smooth

stratification is constructed and all the assertions of Theorem 2 are proved.

Assume that I
(s)
r+1 6= ∅ for at least one s such that m+r 6 s 6 n. For brevity

put mu = (m + 1)2u−m − 1 for all integers u > m. Note that by the recursive
assumption

∑
i∈I(u)r

di 6 (ud)mu for every u such that m+r−1 6 u 6 n. Hence

for every integer a > 1 we have∑
i∈I(u)r

dai 6 (ud)mu a.

Let us show that (
s− 1

s

)ms
(s−m) 6 1. (12)

for all integers s > m > 1. Indeed, (1 − 1/s)s 6 e−1. Therefore (12) is a
consequence of the inequality e−ms/s(s − m) 6 1. Put q = s − m. Then the
last inequality is equivalent to −(m + 1) 2q + 1 + (q + m) log(q) 6 0. We have
2q > log(q) for q > 1. Hence (12) follows from −2q+1 + 1 + (q + 1) log(q) 6 0.
One can check immediately that the last inequality holds true for all q > 1. The
required assertion is proved.

Also for all integers s > u > v > m > 1 we have

mu +mv(s− u) 6 mu(s− u+ 1) 6 ((m+ 1)2u−m − 1)2s−u 6 ms − 1,

(mu + 1)(s− u+ 1)− 1 6 (m+ 1)2u−m2s−u − 1 = ms.
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Now

D
(s)
r+1 =

∑
ι∈I(s)r+1

degWι 6

∑
m+r−16u<s, i∈I(u)r

di(udi)
s−u +

∑
m+r−16v6u<s,
i∈I(u)r , j∈I(v)r , i 6=j

did
s−u
j 6

∑
m+r−16u<s, i∈I(u)r

di(udi)
s−u +

∑
m+r−16u<s,m+r−16v6u,
i∈I(u)r , j∈I(v)r i 6=j

did
s−u
j 6

∑
m6u6s−1

(ud)mu(s−u+1)us−u +
∑

m6u6s−1

∑
m6v6u

(ud)mu(vd)mv(s−u) 6

dms−1
( ∑
m6u6s−1

umu
(
u(mu+1)(s−u) +

∑
m6v6u

vmv(s−u)
))
6

dms−1
( ∑
m6u6s−1

umu
(
u(mu+1)(s−u) +

∑
m6v6u

umv(s−u)
))
6

dms−1
( ∑
m6u6s−1

umu
(
u(mu+1)(s−u) + umu(s−u)+1

))
6

dms−1
∑

m6u6s−1

umu(2u(mu+1)(s−u)) 6 dms
∑

m6u6s−1

u(mu+1)(s−u+1)−1 6

(sd)ms
∑

m6u6s−1

(u/s)ms 6 (sd)ms((s− 1)/s)ms(s−m) 6 (sd)ms .

Thus, we have proved the required estimation from Theorem 2 for D
(s)
r+1.

At present to complete the proof it is sufficient to ascertain the estimate for

M
(s)
r+1. Let ι ∈ I(s)r+1.

Let i ∈ I(u)r , m+ r− 1 6 u < s. Assume that Wι is a component of SingWi.
Then there are polynomials Fu+1, . . . , Fs which are linear combinations of Jβ ,
β ∈ Bi, with integer coefficients of the lengths O(n log(ndi)) and satisfy the
following property (†).

(†) There is a sequence of irreducible and defined over Q algebraic varieties

W (u) = Wi, W
(u+1), . . . , W (s) = Wι

such that W (j+1) is an irreducible over Q component of W (j) ∩ Z(Fj+1)
for every u 6 j < s.

Similarly let i ∈ I
(u)
r , j ∈ I

(v)
r , m + r − 1 6 v 6 u < s, i 6= j, and Wι

is a component of Wi ∩Wj . Then there are polynomials Fu+1, . . . , Fs which
are linear combinations of hα, α ∈ Aj , with integer coefficients of the lengths
O(n log((didj)) satisfying the property (†).

In the both cases the estimation for M
(s)
r+1 can be obtained straightforwardly

by subsequent applying Lemma 3 using the ascertained inequalities for M
(w)
r ,

w 6 u. One should only take the degree of the polynomial P from Theorem 2
sufficiently large relative to the degree of the polynomials from Lemma 3.
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Let us give more details. In what follows till the end of the proof P is the
polynomial from the statement of Theorem 3 (it is fixed). By the Bézout theo-
rem in the first case the degree of the algebraic variety W (u+q), 1 6 q 6 s− u,
is bounded from above by di(udi)

q 6 (ud)mu(q+1)uq by the recursive assump-
tion. In the second case degW (u+q) 6 did

q
j 6 (ud)mu(q+1). In the first case

by the recursive assumption the lengths of integer coefficients of the polyno-

mial Fu+q, 1 6 q 6 s − u, are bounded from above by uM
(u)
r + O(n2D

(u)
r ) 6

C1u(M+n2)P((ud)mu) for an absolute constant C1 > 0 (of course, one can give
here a better bound but it is not essential for the proof). Similarly in the second
case the lengths of integer coefficients of the polynomial Fu+q are bounded from

above by M
(v)
r +O(n2(D

(u)
r +D

(v)
r )) 6 C1(M + n2)P((ud)mu).

Now denote by P0 the polynomial P from the statement of Lemma 3 (to
avoid an ambiguity we change the notation). Denote by W ι the closure of the
algebraic variety Wι in the projective space Pn(Q). Then applying Lemma 3
subsequently s − u times we get (here the details are left to the reader) that
in the both cases the lengths of integer coefficients of the polynomial HW ι

are
bounded from above by

(s− u+ 1)C1u(M + n2)P((ud)mu)
∏

16q6s−u

P0((ud)mu(q+1)uq) 6

(M + n2)P((ud)mu)P1((ud)mu(s−u)
2

).

for a polynomial P1 depending only on P0 and C1. One can choose a polynomial
P such that P((ud)mu)P1((ud)mu(s−u)

2

) 6 P((sd)ms) for all integers d, s, u,m
satisfying the inequalities s > u > m > 1, d > 3. The last assertion follows
from the following fact. There is a constant C > 0 such that for all integers

s > u > 1 we have Cmu+mu(s−u)2 6 Cms. The required estimation for M
(s)
r

is proved.

Thus we can construct all the algebraic varieties Wι, ι ∈ I(s)r+1, within the re-
quired working time applying several times the algorithm from [1] and Lemma 1.
Further, for the estimation of the lengths of integer coefficients we use Lemma 3.
The theorem is proved. �

The proof of Theorem 3 is completely analogous to the one of Theorem 2
and even easier since here one should consider only the sets of singular points
of the components but not the intersections of different components. Note also
that in the proof of Theorem 3 we have a more complicated system of notaion.

Namely, any index i ∈ I(w)
v from the proof of Theorem 2 is replaced by a (v+1)-

tuple of indices (i1, . . . , iv+1) ∈ I(w)
v for all v, w. This implies other changes of

notations. In particular, in the proof of Theorem 3 the sets of indices B′i1,...,ir+1

and Bi1,...,ir+1 are similar to B′i and Bi from the proof of Theorem 2.
Besides, according to the Definition 2 in the proof of Theorem 3 for all m+

r 6 s 6 n we have I
(s)
r+1 = Ĩ

(s)
r+1, where Ĩ

(s)
r+1 is a union of the sets I

(s)
i1,...,iu+1,r+1

(now they play the role of I
(s)
i,r+1 from the proof of Theorem 2, see above) over

all (i1, . . . , iu+1) ∈ I
(u)
r and m + r − 1 6 u < s. So here one don’t need to

consider the set Ĩ. Theorem 3 is also proved. �
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3 Solvability of systems over the ring of p-adics
integers and branching smooth stratification

Our aim is to prove Theorem 4. Let a 6= 0 be an integer. Set ordp(a) = b ∈ Z
if and only if a/pb ∈ Z but a/pb+1 6∈ Z. If z ∈ R then set dze to be the minimal
integer z0 such that z0 > z and define dze+ = max{dze, 1}.

Let us apply Theorem 3 and construct the canonical branching smooth strat-
ification (with all the objects corresponding to to it) of the algebraic variety
Vi∗ = Z(f1, . . . , fk).

It is convenient also to introduce the algebraic variety Wi∗ = An(Q). So
the codimension codimWi∗ = 0, the degree degWi∗ = 1 and Wi∗ is given by an
empty system of equations, i.e., Ai∗ = ∅.

Set also I
(0)
0 = {i∗} and I

(u)
0 = ∅ for all 1 6 u 6 n.

Recall that Dt = 1 + max16r6n0
{D(t)

r , 3}, Mt = max16r6n0
M

(s)
r , t ∈ S, see

(3). Put D0 = d, M0 = M .

We shall construct positive integers c
(s)
i , s ∈ S ∪ {0}, 0 6 i 6 2. Put

c(0) = c
(0)
1

(
c
(0)
2

)dn
, c(s) = c

(s)
0

(
c
(s)
1

)Dnss (c(s)2

)(sDs+1
s )n

, s ∈ S.

For the constructed integers c(s) property (*) formulated below holds true (we
shall ascertain it). Besides that, for every s ∈ S ∪ {0} the length of the integer

c(s) is bounded from above by MsP(((s+ 1)Ds+1
s )n

2

).
Furthermore, we shall prove that one can take

∆ =
(
c(0)
)2 ∏

s∈S

(
c(s)
)2dn∏

t∈S, t<s(tD
t+1
t )n

. (13)

Therefore N = ordp(∆) + 1.
Put

N0 =
⌈
2 ordp(c

(0)) + 2
∑
s∈S

ordp(c
(s))dn

∏
t∈S, t<s

(tDt+1
t )n

⌉
+
, (14)

Nu =
⌈
2
∑

s∈S, s>u

ordp(c
(s))

∏
t∈S, u6t<s

(tDt+1
t )n

⌉
+
, u ∈ S. (15)

So 1 6 Nu ∈ Z for all u ∈ S∪{0}. If Nu = 1 then ordp(c
(s)) = 0 and Ns = 1

for all s > u, s ∈ S. Notice that N0 = d ordp(∆) e+ and N0 6 N 6 N0 + 1. We
shall use the following simple fact.

LEMMA 5 Let u ∈ S ∪ {0} be an integer. Then

Nu − 2ordp(c
(u)) > 0, Nu − ordp(c

(u)) > 0.

PROOF If ordp(c
(u)) = 0 then the both these inequalities are obvious. As-

sume that ordp(c
(u)) > 0. Then (15) (or (14) for u = 0) holds true with-

out d. . .e+ and hence Nu − 2ordp(c
(u)) > 0. Consequently Nu − ordp(c

(u)) >
ordp(c

(u)) > 0. The lemma is proved. �

In what follows we shall assume that there is a point x ∈ Zn such that
fi(x) = 0 mod pN , 1 6 i 6 k. We shall prove that in this case the system
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f1 = . . . = fk = 0 has a solution in Znp . Actually we shall use in the proof only

that fi(x) = 0 mod pN0 , 1 6 i 6 k. Thus Theorem 4 will be proved.

Now hα = 0, α ∈ Ai1,...,ir , is the system of polynomial equations determining
the algebraic variety Wi1,...,ir according to the described construction of the
canonical branching smooth stratification.

Let 1 6 r 6 n0 +1 be an integer. Denote by Qi1,...,ir the following assertion.

• There is an algebraic variety Wi1,...,ir from the construction of the canoni-
cal branching smooth stratification such that the codimension codimWi1,...,ir

= u for some u ∈ S ∪ {0} and

hα(x) = 0 mod pNu for all α ∈ Ai1,...,ir . (16)

The property of the integers c(s) is the following one (one should ascertain
it in the proof of the theorem).

(*) Assume that the assertion Qi1,...,ir holds true for some indices i1, . . . , ir.
Then either the assertion Qi1,...,ir,ir+1

holds true for some index ir+1 ∈
Ii1,...,ir , or r > 2 and there is a point of the algebraic variety Wi1,...,ir with
all the coordinates from Zp.

Let us show that it is sufficient to construct c(s), s ∈ S∪{0}, and ascertain (*)
to finish the proof of the theorem. Indeed, suppose that all c(s) are constructed
and this property is proved. We have Ai∗ = ∅. Hence the property Qi1 with
i1 = i∗ is fulfilled. Assume that there are no points with coordinates from Zp in
any Wi1,...,ir with r > 2. Then applying several times property (*) we get that
(16) is valid for some Wi1,...,ir , 1 6 r 6 n0 + 1 such that Vi1,...,ir = ∅. In this
case Ii1,...,ir = ∅. It is a contradiction. Our assertion is proved.

Now we are going to define and compute the integers c
(u)
i , 0 6 i 6 2, and

after that c(u) for all u ∈ S ∪ {0}.
Let u ∈ S ∪{0}. Let us enumerate integers r > 1 and elements (i1, . . . , ir) ∈

I
(u)
r−1. Assume at first that u ∈ S and hence r > 2. Then we have codimWi1,...,ir =
u. The degrees degX1,...,Xn hα 6 Du − 1 for all α ∈ Ai1,...,ir by (3)

Let us enumerate elements β = (α1, . . . , αu, j1, . . . , ju) ∈ Bi1,...,ir . Then
hα1

, . . . , hαu is a system of local parameters of the algebraic variety Wi1,...,ir

with the Jacobian Jβ , see (11). The degrees of the Jacobians Jβ , β ∈ Bi1,...,ir ,
defining the set of singular points of the algebraic variety Wi1,...,ir are at most
u(Du − 2) and lengths of integer coefficients of these Jacobians are less than
uMu + O(n2Du) (of course, one can write a better estimate here but it is not
essential for the proof).

By Wi1,...,ir,τ , τ ∈ Ti1,...ir,β , denote the family of all the defined and irre-
ducible over Q components W ′ of the algebraic variety Z(hα1 , . . . , hαu) such
that W ′ 6= Wi1,...,ir and W ′ \ Z(Jβ) 6= ∅. Note that the number #Ti1,...ir,β 6
(Du−1)u−1 and the degree degW ′ 6 (Du−1)u−degWi1,...,ir 6 (Du−1)u−1
by the Bézout theorem. We shall assume in what follows without loss of gen-
erality that for any two distinct elements (i1, . . . ir, β) and (i′1, . . . i

′
r′ , β

′) the
intersection Ti1,...ir,β ∩ Ti′1,...i′r′ ,β′ = ∅ is empty.

Using the algorithm from [1] we construct all the algebraic varietiesWi1,...,ir,τ ,
τ ∈ Ti1,...ir,β . Furthermore, for every τ construct the polynomials ψ1, . . . , ψσ ∈
Z[X1, . . . , Xn] such that

Wi1,...,ir,τ = Z(ψ1, . . . , ψσ),
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the degree degX1,...,Xn ψi 6 degWi1,...,ir,τ and lengths of integer coefficients of
these polynomials are less than (Mu+n)P(Du

u) for all 1 6 i 6 σ. The number of
polynomials σ 6 P(Du

u) for a polynomial P. The working time of the algorithm

from [1] for constructing these polynomials is polynomial in Mu and Dn2

u .
The Jacobian Jβ is vanishing on Wi1,...,ir ∩Wi1,...,ir,τ . Notice that Du

u− 1 >
maxα,i{degX1,...,Xn ψi,degX1,...,Xn hα} and Du

u − 1 > 3, see (3). Hence by the
efficient Hilbert Nullstellensatz, see [10], we have

ci1,...,ir,τJ
a
β =

∑
16i6σ

ψiqi +
∑

α∈Ai1,...,ir

hαrα, (17)

where 1 6 a 6 (Du
u − 1)n, a ∈ Z (a depends on τ), 1 6 ci1,...,ir,τ ∈ Z, qi, rα ∈

Z[X1, . . . , Xn] are polynomials such that the degrees

degX1,...,Xn(ψiqi), degX1,...,Xn(hαrα)

are bounded from above by (1+degX1,...,Xn Jβ)(Du
u−1)n < uDnu+1

u for all i, α,
see [10]. Besides, ci1,...,ir,τ is chosen to be minimal possible in the sense that
the greatest common divisor of ci1,...,ir,τ and all the integer coefficients of the
polynomials qi and rα is equal to 1.

For every τ solving linear systems over Q with respect to the unknown
coefficients of the polynomials qi/ci1,...,ir,τ , 1 6 i 6 σ, and rα/ci1,...,ir,τ , α ∈
Ai1,...,ir , we construct all qi, rα with integer coefficients and ci1,...,ir,τ . Note
that the number of unknowns and the number of equations of any of these
linear systems are bounded from above P(Dn2u

u ) for a polynomial P. The
lengths of integer coefficients of these linear systems are bounded from above
by MuP(Dnu

u ). Thus we get that the maximum of lengths of all ci1,...,ir,τ is less

than MuP(Dn2u
u ) for a polynomial P.

For all u ∈ S construct the sets

Eu =
{

(i1, . . . , iκ, τ) : (i1, . . . , iκ) ∈ I(u)κ−1, 2 6 κ 6 n0 + 1,

τ ∈ Ti1,...,iκ,β , β ∈ Bi1,...,iκ
}
.

Recall that if κ > 2 then
∑

(i1,...,iκ)∈I(u)κ−1
degWi1,...,iκ = D

(u)
κ−1 and hence the

number of elements #I
(u)
κ−1 < Du. Further, #Ti1,...,iκ,β < Du

u, #Bi1,...,iκ <
(#Ai1,...,iκ)unu 6 (Dn

u)unu. Therefore the number of elements #Eu 6 P(Dnu
u )

for a polynomial P.
In what follows LCM denotes the least common multiple of a family of

integers. Construct the integer c
(u)
0 = LCM(i1,...,iκ,τ)∈Eu(ci1,...,iκ,τ ). So c

(u)
0 > 1

and the length of c
(u)
0 is bounded from above by MuP(Dn2u

u ) for a polynomial
P.

Put
N ′u = d(Nu − ordp(c

(u)
0 ))/Dnu

u e+, u ∈ S. (18)

Now we return to the general case u ∈ S ∪ {0} and r > 1. So at present

(i1, . . . , ir) ∈ I(u)r−1 and u = codimWi1,...,ir . If u = 0 then r = 1 and i1 = i∗. By

definition put c
(0)
0 = 1, N ′0 = N0.

Denote by Gρ = 0, ρ ∈ R, the system of polynomial equations defining the
algebraic variety Vi1,...,ir in our construction. If r > 2 then this system consists
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of all equations hα = 0, α ∈ Ai1,...,ir , and Jβ = 0, β ∈ Bi1,...,ir . When r = 1
then by definition the polynomials Gρ coincide with the initial polynomials
f1, . . . , fk.

If r > 2 then set δ = (uDu)n, µ = Mu. If r = 1 then set δ = dn, µ = M .
Note that Ii1,...,ir is a set of indices of the family of irreducible components of
the algebraic variety Vi1,...,ir . Therefore #Ii1,...,ir 6 δ by the Bézout theorem.

Let ir+1 ∈ Ii1,...,ir . Let α1, . . . , αb be all the pairwise distinct elements of
the set Ai1,...,ir,ir+1

(here b = #Ai1,...,ir,ir+1
depends on i1, . . . , ir, ir+1). For

every integer 1 6 γ 6 δn+1 put Gir+1,γ =
∑

16j6b γ
jhαj . Notice that any b′ 6 b

pairwise distinct of polynomials Gir+1,γ are linearly independent over Q.
Note that the degree degWi1,...,ir+1

6 δ and b 6 δn.
Recall that hα, α ∈ Ai1,...,ir,ir+1

, is a family of polynomials corresponding
to the generic projection of the algebraic variety Wi1,...,ir+1

. At present we
consider Wi1,...,ir+1 as a component of the algebraic variety Z(Gρ, ρ ∈ R). Hence
by Lemma 1 the lengths of integer coefficients of all the polynomials hα, α ∈
Ai1,...,ir,ir+1

, are bounded from above by (µ+n2)P(δ) for a polynomial P. Hence
the lengths of integer coefficients of all the polynomials Gir+1,γ are bounded from
above by µP(δn) for a polynomial P.

We do not assume that Ii1,...,ir 6= ∅ (so it may happen that Ii1,...,ir = ∅
and then below the product in the left part of (19) is equal to 1). We have
degX1,...,Xn Gρ 6 δ1/n for every ρ ∈ R and δ1/n > 3. Hence by the efficient
Hilbert Nullstellensatz [10] for every 1 6 γ 6 δn+1

ci1,...,ir,γ

( ∏
ir+1∈Ii1,...,ir

Gir+1,γ

)a′
=
∑
ρ∈R

Gρqρ,γ (19)

where 1 6 a′ 6 δ, a′ ∈ Z (a′ depends on γ), 1 6 ci1,...,ir,γ ∈ Z, qρ,γ ∈
Z[X1, . . . , Xn] are polynomials such that the degrees degX1,...,Xn(Gρqρ,γ) 6
a′(δ2 + 1) 6 δ(δ2 + 1) for all ρ, γ, see [10]. Besides, ci1,...,ir,γ is chosen to
be minimal possible in the sense that the greatest common divisor of ci1,...,ir,γ
and all the integer coefficients of the polynomials qρ,γ is equal to 1.

The coefficients of polynomials qρ,γ/ci1,...,ir,γ can be constructed by solving
linear systems over Q. These linear systems have integer coefficients with lengths
bounded from above by µP(δn). The numbers of unknowns and equations of
any such linear system are bounded from above by P(δn) for a polynomial P.
An estimation for a solution of any of the considered linear systems gives also
an upper bound for |ci1,...,ir,γ |. So we get |ci1,...,ir,γ | 6 2µP(δ

n) for a polynomial
P.

For all u ∈ S ∪ {0} construct the sets

Cu = {(i1, . . . , iκ, γ) : (i1, . . . , iκ) ∈ I(u)κ−1, 1 6 κ 6 n0 + 1, 1 6 γ 6 δn+1}.

Construct all the integers ci1,...,ir,γ , (i1, . . . , iκ, γ) ∈ Cu, solving linear systems
corresponding to (19). Define the integers

c
(u)
1 = LCM(i1,...,iκ,γ)∈Cu(ci1,...,iκ,γ), c

(u)
2 =

∏
16i1<i26δn+1

(i2 − i1)

for all u ∈ S ∪ {0}.
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Recall that if κ > 2 then #I
(u)
κ−1 6 D

(u)
κ−1 < Du. If κ = 1 and u = 0 then

I
(u)
0 = {i∗} and finally if κ = 1 and u 6= 0 then I

(u)
0 = ∅, see the beginning of

the section.
Consequently if r > 2 then #Cu 6 n0Duδ

n+1. If r = 1 then u = 0 and

#Cu 6 δn+1. Therefore in any case |c(u)1 c
(u)
2 | 6 2µP(δ

n) for a polynomial P.

Recall that M0 = M , D0 = d. Then |c(u)| 6 2MuP(D(u+1)n2

u ) for a polynomial
P. Compute ∆. As a result we get

∆ < 2MP(d
n2

)+
∑
s∈SMsP(Dsn

2

s )dn
∏
t∈S, t<s(tD

t+1
t )n

for a polynomial P.

Now our aim is to prove (*). Thus, suppose that 1 6 r 6 n0 + 1 and the
property Qi1,...,ir holds true.

Assume at first that r > 2 and hence u ∈ S. Recall that the integer N ′u is
defined by (18) for u > 1. Suppose that there is β ∈ Bi1,...,ir such that

Jβ(x) 6= 0 mod pN
′
u . (20)

Then applying the standard Hensel lemma (one should fix the variables with
respect to which there are no partial derivatives in the matrix of the Jacobian)
we get that there is a point

x̃ ∈ Z(hα1
, . . . , hαu) \ Z(Jβ)

with coordinates from Zp such that x̃ = x mod pNu−N
′
u+1 (in the sense that this

congruence takes place coordinate–wise).
Let us show that Nu − (N ′u − 1) > N ′u. Indeed, Du > 4 by (3). Hence if

1 6 Nu 6 7 then N ′u = 1 and consequently Nu − (N ′u − 1) > N ′u. If Nu > 8
then Nu > 2Nu/4 + 1 = 2(Nu/4 + 1)− 1 > 2N ′u − 1. The required assertion is
proved. Hence J(x̃) 6= 0 mod pN

′
u and ordpJ(x̃) 6 N ′u − 1.

Let us show that x̃ ∈Wi1,...,ir . Suppose contrary. Then there is τ ∈ Ti1,...ir,β
such that x̃ ∈ Wi1,...,ir,τ . Obviously qi(x̃) = 0 for all i and hα(x̃) = 0 mod

pNu−(N
′
u−1) for all α since hα(x) = 0 mod pNu and x̃ = x mod pNu−(N

′
u−1).

Now (17) at the point x̃ implies that

ordp(ci1,...,ir,τ ) + (Du
u − 1)n(N ′u − 1) > Nu − (N ′u − 1).

This implies N ′u−1 > (Nu−ordp(c
(u)
0 ))/Du

u. But (Nu−ordp(c
(u)
0 ))/Du

u > (Nu−
ordp(c

(u)))/Du
u > 0 by Lemma 5. Hence N ′u − 1 > (Nu − ordp(c

(u)
0 ))/Du

u > 0
which contradicts to the definitions of the integer N ′u. Our assertion is proved.

So we shall suppose in what follows without loss of generality that

Jβ(x) = 0 mod pN
′
u , (21)

for all β ∈ Bi1,...,ir .
Now we return to the general case 1 6 r 6 n. Consider the algebraic variety

Vi1,...,ir . Put ν
(u)
i = ordp(c

(u)
i ) for all u ∈ S ∪ {0}, 0 6 i 6 2.

Let u ∈ S. Then N ′u > 0, ν
(u)
1 > 0 and

N ′u − 2ν
(u)
1 > (Nu − 2ν

(u)
0 − 2ν

(u)
1 Dnu

u )/(Dnu
u ) > (Nu − 2ordp(c

(u)))/(Dnu
u ) > 0
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by Lemma 5. Hence N ′u − ν
(u)
1 > 0.

Similarly if u = 0 then N ′0 = N0 > 0, ν
(0)
1 > 0 and

N ′0 − 2ν
(0)
1 > N0 − 2ν

(0)
1 > N0 − 2ordp(c

(0)) > 0

by Lemma 5. Hence N ′0 − ν
(0)
1 > 0.

Therefore according to (21) and the property Qi1,...,ir for every u ∈ S ∪ {0}
for every ρ ∈ R

ordpGρ(x)− ordp(ci1,...,ir,γ) > N ′u − ν
(u)
1 > 0.

Hence Ii1,...,ir 6= ∅ and Vi1,...,ir 6= ∅ by (19). Therefore u 6= maxS. Put
u1 = min{s : s ∈ S& s > u}. Notice that if u = 0 then u1 = m.

Recall that 1 6 γ 6 δn+1. Hence again by (19) there exists an index
ir+1 ∈ Ii1,...,ir such that

Gir+1,γj (x) = 0 mod pd(N
′
u−ν

(u)
1 )/δe+

for δn pairwise distinct indices γj , 1 6 j 6 δn.

Set N ′′u = d(N ′u − ν
(u)
1 )/δe+. Let u ∈ S. Then N ′′u > 0, ν

(u)
2 > 0 and

N ′′u − 2ν
(u)
2 > (N ′u − ν

(u)
1 )/δ − 2ν

(u)
2 >

(N ′u − 2ν
(u)
1 )/(uDu)n − 2ν

(u)
2 >

(Nu − 2ν
(u)
0 − 2ν

(u)
1 (Du)nu − 2ν

(u)
2 (uDu+1

u )n)/(uDu+1
u )n =

(Nu − 2ordp(c
(u)))/(uDu+1

u )n > 0

by Lemma 5. Hence N ′′u − ν
(u)
2 > 0.

Let us show that if u ∈ S then

N ′′u − ν
(u)
2 > Nu1

. (22)

Indeed, if Nu1 = 1 then it is obvious. If Nu1 > 1 then Nu > 1 and (15) holds
true for u and u1 (in place of u) without d. . .e+. Hence

N ′′u − ν
(u)
2 > (Nu − 2ordp(c

(u)))/(uDu+1
u )n > Nu1

.

The required assertion is proved.

Similarly if u = 0 then N ′′0 > 0, ν
(0)
2 > 0 and

N ′′0 − 2ν
(0)
2 > (N0 − 2ν

(0)
1 − 2ν

(0)
2 dn)/dn > 0.

Hence N ′′0 − ν
(0)
2 > 0. Furthermore,

N ′′0 − ν
(0)
2 > Nm. (23)

The proof of (23) is analogous to the proof of (22).
The set of zeroes of the polynomials Gir+1,γj , 1 6 j 6 δn, coincides with

Wi1,...,ir,ir+1 . Every polynomial hα, α ∈ Ai1,...,ir+1 is a linear combination with
rational coefficients of the polynomials Gir+1,γj . Hence from the definition of

c
(u)
2 we get

hα(x) = 0 mod pN
′′
u−ν

(u)
2 , α ∈ Ai1,...,ir+1 . (24)
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The codimension of Wi1,...,ir,ir+1
= v > u. We have Nv 6 Nu1

. Now (24)
and (22), (23) imply immediately that

hα(x) = 0 mod pNv .

for all α ∈ Ai1,...,ir+1
. The theorem is proved. �
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Comput. Sci. v.15 (1981), p. 77–110.

26


