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Abstract
Consider a system of polynomial equations in n variables of degrees
at most d with integer coefficients with the lengths at most M. We show
using the construction close to smooth stratification of algebraic varieties
that one can construct a positive integer

A< 2M(nd)c2”n3

(here ¢ > 0 is a constant) depending on these polynomials and satisfying
the following property. For every prime p the considered system has a
solution in the ring of p-adic numbers if and only if it has a solution
modulo p™ for the least integer N such that p™ does not divide A. This
improves the previously known, at present classical result by B. J. Birch
and K. McCann.

Introduction

Let f1,..., fx € Z[X1,...,X,] be polynomials, n > 1. Assume that for all i the
degrees
degxlvngn fi<d

and the lengths of integer coefficients of the polynomials f; are bounded from
above by M (it means that the absolute value of every coeflicient of each f; is
at most 2M~1). Here d > 3 and M > 1 are integers. We shall suppose without
loss of generality that fi,..., fi are linearly independent over Q and k£ > 1. In
particular f; # 0.

Denote by Z(f1, ..., fx) the algebraic variety of all zeroes of the polynomials
fi,.-., fx in the affine space A"(Q) over the algebraic closure Q of the field of
rational numbers Q. The dimension dim Z(fi,..., fx) < n — 1 since f1 # 0.
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By definition the degree of an irreducible affine (or quasiprojective) algebraic
variety is equal to the degree of its closure in the corresponding projective space.
The degree of an arbitrary affine (or quasiprojective) algebraic variety is equal
to the sum of the degrees of its irreducible components.

By definition the codimension of an affine algebraic variety V' C A™(Q) is
equal to n — dim V' where dim V' is the dimension of V' (the dimension of an
empty variety is equal to —1). Put m to be the codimension of the algebraic
variety Z(f1,...,fr). Sol<m <n+1.

Let Z, be the ring of all p-adic integers.

THEOREM 1 For given polynomials f1, ..., fr there are an absolute constant
¢ > 0 and a positive integer

A < 2M(nd)cm2n77nn3 < 2M(nd)62n n3

satisfying the following property. For every prime p the system

hi=...=fk=0

has a solution in Zy if and only if it has a solution in (Z)pNZ)™ for the least
integer N such that p" does not divide A. The constant ¢ can be computed
explicitly from the proof of this theorem. The codimension m can be computed
within the time polynomial in M and d™’. The integer A can be constructed
within the time polynomial in M (nd)™2" "™,

The previous result on this subject was obtained in the well known paper
by B. J. Birch and K. McCann [8] for the case of one polynomial k =1, f = f.
Let L(f) denote the maximum of absolute values of coefficients of f. Then [§]
gives ;

A < (2"dL(f)E0" "
ie.
A< 2M dtem”
for a constant C' > 1. So our result improves the highest level exponent from
nlog,(Cn) to n(1 + o(1)). As far as we know the estimate from Theorem 1 is
the best known so far. Thus our result is important.

The present paper has an interesting history. Actually it contains our old
unpublished result. Initially, more than twenty years ago, I wrote a preprint
[9] during my stay in Bonn by the program “Volkswagen Stiftung”. There are
two authors of this preprint. I suggested the main ideas of the preprint and
their technical realization. Actually I did all the work. Marek Karpinski was
the host of the program in Bonn. The contribution of M. Karpinski was mainly
in stimulating me to investigate this problem by persistent discussions of the
subject (but in truth they gave no new ideas). I would like to thank again M.
Karpinski for hospitality and good conditions for my fruitful research at that
time. Now due to the importance of this result and no new progress in this area
(in the considered general situation) since that time I decided at last to publish
the obtained result in a journal. One should note that the preprint [9] was
written not very accurately. It was not ready for publishing in a journal. There
are many small drawbacks in it. So I made a decision to revise this preprint
completely. In the present paper a lot of work has been done to correct the
inaccuracies from [9].



Now we would like to formulate some problems.

PROBLEM 1 Is it poﬁssible to strengthen Theorem 17 Namely is it possible
to replace (nd)°™2"” """ by d™ (where the constant ¢ > 0 is absolute) in the
statement of Theorem 17

cm

PROBLEM 2 Are there an absolute constant ¢ > 0 and constants C(n) > 0
(depending on n) satisfying the following property? Let p be an arbitrary prime
number. Then any system from Theorem 1 has a solution in the ring of p-adic
numbers if and only if it has a solution modulo p for the least integer N such
that Nlogp > C(n)Md™".

The last problem is motivated by our deep result from [2]. There we con-
struct a smooth stratification of the algebraic variety Z(fi,..., fi) with strata
given by equations of degrees bounded from above by C(n)d and with the num-
ber of strata at most C (n)d”2, i.e., all the strata have the degrees bounded from
above by a linear polynomial in d" for sufficiently large d (the bound for d here
depends on n). In papers devoted to smooth stratification of algebraic varieties
of all other authors the bound for degrees of strata is like d»”" (or may be d*™").
This double exponential bound is proved always more or less straightforward.
In [2] a slightly different definition of smooth stratification is used. There might
be some long sequences W1, Ws, ..., W, of smooth strata of the same dimension
such that the intersections of closures W; N W ;1 # @ for all 1 <4 < m. This
is an obstacle to use directly the result of [2] (in place of Theorem 3, see below)
to the subject of the present paper. However the question is not closed here.

We consider the ring Z,, of p-adic integers. But, of course, the main problem
in this area remains to obtain an explicit complexity bound for the decidability
of polynomial systems over the field Q, of p-adic numbers. We could not solve
it at that time in Bonn, more than twenty years ago. But I noticed that most
likely an effective algorithm for the decidability of polynomial systems over Q,, is
inseparably linked with obtaining an explicit complexity bound for desingular-
ization of algebraic varieties in zero characteristic (possible it will be sufficient
to get estimates for some numerical invariants related to the desingularization).

Let us return to the present paper. Note that the analogs of Theorem 1
and Theorem 4, see below, are true if one consider homogeneous polynomials
fis-ooy fr € Z[Xo,...,X,] and their nonzero solutions, i.e. the solutions in
Zy\{(0,...,0)} and (Z/pN7Z)" 1\ {(0,...,0)} respectively. The proofs are
similar if we consider projective spaces in place of affine spaces. Further, for
homogeneous polynomials the existence of a solution of a system of polynomial
equations in P"(Q),) is equivalent to the existence of a nonzero solution in ZZ‘H\
{(0,...,0)}.

Theorem 1 is a consequence of a more precise Theorem 4. The proof of Theo-
rem 4 is based on the construction which we call branching smooth stratification
of an algebraic variety. In this construction one iterates the decomposition of a
given algebraic variety into the union of irreducible components and taking the
proper closed subset containing all singular points of a component, see Defini-
tion 2 and Theorem 3. The branching smooth stratification is closely related to
a smooth stratification of an algebraic variety. So it is quite natural to define
and consider at first the latter, see Definition 1 and Theorem 2. The results of
[1] are extensively used for the proofs of Theorem 2 and Theorem 3. In Sec-
tion 2 for recursive estimations we prove basing on [1] also some additional facts



related to the decomposition of algebraic varieties into irreducible components,
for example, Lemma 3. Note that our estimations for smooth stratification and
branching smooth stratification take into account the codimension of a given
algebraic variety, see Theorem 2 and Theorem 3 below. The upper bounds from
these theorems are also double exponential but rather accurate. Some efforts
are needed to obtain such upper bounds for the lengths of integer coefficients of
equations determining the strata.

By now we have significantly improved the results of [1] and their presenta-
tion in [3]-[5] (there is also the third part of [4], [5] but it is devoted mainly to
the systems with parameters). At present one could refer to them in place of
[1] in regard to solving systems of polynomial equations. So we recommend the
papers [3]-[5] to the interested reader. Still we refer mainly to [1] in this paper
(especially when it is necessary to use the algorithms for factoring polynomials).

1 Main definitions and more detailed formula-
tions of the obtained results

DEFINITION 1 Put

Vi :Z(f17"°7fk)‘

We give a recursive definition. Suppose that the closed in A™(Q) defined over Q
algebraic variety V,. is already defined for some 1 < r < n. If V. # & consider
the decomposition

v.=Jw

el

into the union of irreducible and defined over Q algebraic varieties W;. Denote
by SingW; the set of singular points of W; and set

r/+1 = U SingW,; U U (Wl n WJ>
i€l 1,5€1, i#£]
Let the closed in A™(Q) algebraic variety V,,1 be such that V., D V.1 D Vi
and W;\ V41 # @ for alli € I,.. Set

Sr:‘/r\‘/;“—o—la Ui:Wi\Vr+1~

Then the quasiprojective algebraic variety S, consists of smooth points of com-
ponents of different dimensions of the algebraic variety V,., the quasiprojective
algebraic varieties U; are irreducible defined over Q and smooth for all i. We
have the decomposition

S, = U
i€l

into the union of irreducible and defined over Q components. We shall suppose
without loss of generality that each index from I, is not an integer (to avoid
some ambiguity in what follows) for all r and I., N I., = & for all r1 # ra.



If Vi = @ set ng = 0. If Vi # & set ng to be the maximal r such that
Vi #@. Put J =Uigrgnglr- We have the decomposition

Z(flu"'7fk):UUi (1)

=
which gives the smooth stratification of Z(f1,..., fx) with smooth strata U;.

Note that the codimension of every component of V. is at least m +r — 1
and hence 0 < ng <n—m+1.

Further, this construction depends on the choice of the varieties V,.;1 D V.
If we have V;41 = V;/,; for all » then (1) is uniquely defined (up to a choice of
indices) and we shall call it canonical smooth stratification of Z(f1,..., fx)-

Denote by W(S) the union of all irreducible and defined over Q components
of codimensions s of the algebraic variety V,. where 1 <r < ng, 1 < s < n. Let
Wi, i€ I,gs), be the family of all the defined and irreducible over Q components
of the algebraic variety V,*). Note that I{*) can be empty for some s and then
also VT(S) = .

By definition put DI = Zielﬁ” deg W; for all 1 <

s
0 < DY) € Z). Hence the number of elements #I” <

deg V,*) = D¥.
‘We shall assume that:

(s)

<n, 1 <r<ng(so
Dy’ and the degree

(a) Each irreducible and defined over Q component W;, i € Iﬁs), is given as a
set of all common zeroes of a family of polynomials h, € Z[X7, ..., X,],
a € A;, herewith the number of polynomials #A; < (Dfns))"7 the degrees
degy, . x, ha < degW; < D and the lengths of integer coefficients of
h., are at most M,gs) for some integer MT(S) >1forallae A;, i€ Iﬁs).

More than that, see Definition 4 Section 2, h,, a € A;, is a family of poly-
nomials corresponding to the generic projection of the algebraic variety

W;.
(b) For every smooth point x € W;, i € IT(S), there are a,...,a5 € A; such
that ha,, ..., hq, is a system of local local parameters of W; at the point

x (i.e. hays ..., ha, generate the ideal of W; in the local ring O, ,.. @) of

the point = in A"(Q)).

The families of polynomials h,, o € A;, satisfying (a) and (b) for all i € 1,
1<r<nyg, m+r—1<s < n, completely determine the canonical smooth
stratification of the algebraic variety Z(fi,..., fx) (it is obvious but see the
next section for some details).

Factually condition (b) follows from (a) since ho, o € A;, is a family of
polynomials corresponding to the generic projection of the algebraic variety W;,
see Lemma 2 Section 2. But still it is convenient to formulate (b) separately.

DEFINITION 2 Let an algebraic variety Z(f1,..., fi) be given. Set I = {i*}
for some element i* € Z (one should choose and fix this element i*) and

Vi = Z(f17~-~,fk)-



We give a recursive definition. Assume that a family of defined over Q algebraic
varieties Vi, i, ipg € Ly, s, 1 < B < 1, is already defined for some 1 <
r < n. We suppose that for all 3 each element from I;, . ;,_, is not an integer
and Ly ig, =1 for B =1. The base of the recursion r = 1.

IfVig, s, =@ put Iy, i = 2.

Let Vi, . i, # @. Consider the decomposition

Viyoin = U Wiy, v (2)

into the union of irreducible and defined over Q components W, So
the set of indices I;, .. ;. is defined by (2).
Let a smooth quasiprojective algebraic variety Uy, . i, i,

open in the Zariski topology defined over Q subset of Wi, .

‘-~7Z‘7‘ai7'+1 ‘

be a mon—empty
Set

--7i7‘7i7‘+1 °

‘/;17-~'7i7‘7i'r+1 = Wiy, it \Ui1;-<~7ir7i7‘+1

for all iy 1 € I . ;.. Thus, the family of algebraic varieties Vi, ;. .., ig €
Liy, igoy 1 < B <1+ 1, is defined. The recursive step of the definition is
described.

If Vix = @ setng = 0. If Vix # & set ng to be the mazimal v such that there
exists Vi, ... which is non—empty. So 0 <ng <n—m+ 1.

Now by definition the family of all Ui, . i, .\, ig € Liy, . iz, 1 < B <
r+1, 1 <r < ng, is a branching smooth stratification of the algebraic variety

Z(frss fr)

Notice that if 7 = ng +1 then Vi, . ;. = @ forallig € I;,, i, ,, 1 < B <
r. Further, the codimension of every algebraic variety W;, is at least
m+r—1.

So the branching smooth stratification depends on the choice of U;, ... 4, 4.,
IfUi,,... i, 4.4, i always coincides with the set of all smooth points of Wy, | ;. 4.,
then such a branching smooth stratification is uniquely defined (up to a choice
of indices) and we shall call it canonical branching smooth stratification of
Z(flv"‘afk)'

Some our notations for the smooth stratification and the branching smooth
stratification coincide. It will not lead to an ambiguity since the sense of nota-
tions always will be seen from a context.

7---7ir1i7‘+1

For every 1 < r < ng, 1 < s < n denote by Iﬁs) the family of all (r+41)-tuples

(41,...,4p,9p41) of indices such that there is an algebraic variety Wi, . i i .,

from Definition 2 of codimension codimW;, | . = 5. We have Ir(s) = @ for
alll<r<ng, 1<s<m-+r—1.

By definition put DY) = Z(il ieyel deg W5, . for all 1 < s < n,

1<r<ng(s00< Dgs) € Z). Hence the number of elements #Ir(s) < D$3’.
We shall suppose that for branching smooth stratification conditions (a)
and (b) are satisfied if one replaces in them W; by W; and i by

st

--air+1

Tyeeoybpybrg 1
i1,...,0r,4p41. Hence for a branching smooth stratification the numbers M,gs)
are defined. Also the sets of indices A; . ; ., are defined.

The families of polynomials h,, o € A satisfying (a) and (b) for all

Tl 5eeslp 1

(i1, yipy1) € Iﬁs), 1<r<ng, m+r—1<s < n, completely determine the



canonical branching smooth stratification of the algebraic variety Z(f1,..., fx)
(it is obvious but see the next section for some details).

In what follows in this paper we use the notation P for a polynomial in one
variable with non-negative integer coefficients. Unless we state otherwise we
don’t assume that this polynomial is the same in different places of the text
(even close to each other).

If D( *) = 0 for some 7 and s then by definition put MT(S) = 0. Notice that

I = @ and DY) = 0 for all  and s such that 1 < s < m+7r—1, see Definition 1
and Definition 2. Put

M =max{M® : 1<r<ng, m+r—1<s<n},
b:max{(Dﬁs))"2 1< r<ng, m+r—1<s<n}

We shall prove in Section 2 the following results.

THEOREM 2 For given polynomials f1,..., fr one can construct the canon-
ical smooth stratification of Z(f1,..., fr) described above. More precisely, for
all integers r,s such that 1 < r <ng, m+r—1<s<nandalli € IT(S) we
construct families of polynomials hy, a € A;, satisfying (a) and (b). Herewith
forall1 <r <mng and m+r—1< s < n the inequalities

D) < (sd) T M) < (M 4 n)P((sd) DT

hold true for some polynomial P. The working time of the algomthm for con-
structing this canonical smooth stratification is polynomial in M, n™ L d”
and D. Hence this working time is polynomial in M and (nd)mQ” "

THEOREM 3 For given polynomials f1,..., fr one can construct the canon-
ical branching smooth stratification of Z(f1,..., fr) described above. More pre-
cisely, for all integers r,s such that 1 < r < ng, m+r—1< s < n and all
(11, ,0p11) € L(as) we construct families of polynomials hea, o € Ay i, , sat-
isfying (a) and (b) (with corresponding changes). Herewith for all 1 < r < mg
and m+1r — 1 < s < n the inequalities

D) < (sd) ™2 M) < (M n?)P((sd)mHD2TT )

hold true for some polynomial P. The working time of the algorithm for con-
structmg this canonical branching smooth stratification is polynomial in M, n™ %
d™, M and D. Hence this working time is polynomial in M and (nd)™ m2"

Let us return to the question of solvability of polynomial systems over p-adic
integers. For the canonical branching smooth stratification defined above put

Sz{s: U Iﬁs)#Q & mésén}.
1<r<ng

Further, for every s € S set

M, = max M( ), Dy=1+ max {Dﬁs),S}. (3)

1<r<no 1<r<ng

(Here “14” and “3” appear by a technical reason: to apply later in the proof
the Effective Nullstellensatz.)



Recall that Z, denotes the ring of p-adic integers. Theorem 1 is an immediate
consequence of Theorem 3 and the following result which will be proved in
Section 3.

THEOREM 4 Let polynomials fi,..., fr be given. Consider the canonical
branching smooth stratification of the algebraic variety Z(f1,..., fr) with cor-
responding Ds and Mg, s € S. Then one can construct a positive integer

2 2
A< 2M73(d" )+Zses MP(D;" )d™ Htes,t<s(tDI+l)n

for a polynomial P (the exact formula (13) for A is given in Section 3) satisfying
the following property. For every prime p the system

fr= = =0 (4)

has a solution in Zj if and only if it has a solution in (Z/pN7Z)™ for the least
integer N > 0 such that p" does not divide A. The integer A can be constructed
within the time polynomial in M, d”z, maxges My, maxges D§"2.

More than that, if for a given p there is a solution of the system (4) in
(Z/pNZ)"™ then one can construct a solution of this polynomial system in Zy
using the Hensel lifting (see (20) in Section 3 for details). The initial data to
apply this Hensel lifting (not only the solution mod p™) can be constructed
within the time polynomial in pN™, M, d"2, maxses My, maxses DI .

2 Construction of the smooth stratification and
branching smooth stratification of an algebraic
variety

The aim of this section is to prove Theorem 2 and Theorem 3 for the described
canonical smooth stratification and canonical branching smooth stratification
of Z(f1,.-y fx)-

Let u; 4, i = 0,8, +1,...,m, 0 < j < n be algebraically independent
elements over Q. Introduce for brevity the family

U = {uij}iz0,5,5+1,....n,0<j<n-

Denote by Z[U] the ring of polynomials over Z in all all the variables u; ; from the
family U (we shall use also other similar notations). Set U; = > ¢, ui ;X
Let V C P*(Q) be an irreducible projective algebraic variety defined over Q
of dimension n — s, 1 < s < n. Then there is a unique (up to a factor £1)
irreducible polynomial

HeZU, 2o, Zy, ..., 7

homogeneous with respect to Zy, Zs, ..., Z, such that H(U, Uy, Us,..., Uy,) is
vanishing on V' considered as a subvariety of P"(Q()). The polynomial H has
the degrees deg,,, ;. ., ., H = degV for every i and degy, ,
cf. [7], [1].

Put f, = X8l fi(X1 /X0, ..., X/ X0) € Z[Xo, ..., X,], 1 <i <k, ie, f
are homogenizations of the polynomials f;.

yens



LEMMA 1 LetV be an irreducible component of the algebraic variety Z(f,, ...,
fr) and dimV = n — s, see above. Then the lengths of integer coefficients of
the polynomial H are bounded from above by (M + n?)P(d*) for a polynomial
P. One can construct the polynomial H within the time polynomial in M, ar’
and (deg(V))"2.

PROOF The polynomial H is homogeneous with respect to Zy, Zs, ..., Zy,.
Hence it is sufficient to construct the polynomial H(U, 1, Zs, ..., Z,) and esti-
mate the lengths of integer coefficients of this polynomial.

Actually in what follows everything in the proof is a direct consequence of the
construction from the algorithm for solving polynomial systems, see [1]. Namely,
replacing if necessary the family of polynomials fi,..., f by f;X ;-l —deg f 1<
i < k, 0 < j < n, we shall suppose without loss of generality that the degrees
degy, . x., 71- =dforall 1 <7 < k. There are integers g; j, 1 <1<s5,1<j<k
with lengths O(log(1 + d*~1)) (note that here also a weaker bound like P(d*)
is sufficient) satisfying the following property. Put g; = g 1f1 + giafo + ... +
Gikfr, 1 <i < s Then V is an irreducible component of the algebraic variety
Z(g1,---,9s)-

Notice that one can construct all the integers g; ; within the time polynomial
in M and d"° using the algorithm from [1].

Write for brevity the family

U = {uij}i=0,541,....n, 0<j<n- (5)
There are unique linear forms Yy, ...,Y, € QU')[Xo, ..., X,] such that
}/;/(U07X13"~7XS,U5+13"'7Un):Xi 0<i<n

Denote by A the determinant of the matrix of coefficients of the linear forms
Up, X1,y Xsy Usy1,...,Up. Put Y; = XY/, Then all Y; € ZIU', Xy, ..., X,]
and the degrees deg,, ; ., Y; <lforall0<j<n, i=0,s+1,...,n. We
construct all the linear forms Y.

Put g, = ¢:(Yo,...,Yn), 1 <i<sand U, = Us(Yp,...,Y,). Let € be a tran-
scendental element over the field Q(U). Let us extend the ground field Q till the
field K1 = QU)(e, Zs, ..., Zyn). Set also the field Ko = QU')(e, Zsy1,---,Zn).
Put

Gi=4\(Xo,..., X5, Ze1X0, ..., ZnXo) —eX?, 1<i<s.

Hence all g; € ZIU', Xo, ..., Xs,8, Zs11,...,%Zy) and g; are homogeneous with
respect to Xp, ..., Xs. We construct all polynomials g;.

Let P*(K3) has homogeneous coordinates Xo, ..., X,. By our construction,
see [1] (and also [4], [5]) for more details, the dimension dim Z(g,...,gs) = 0 in
P$(K>), or which is the same the system g; = ... = g5 = 0 has a finite number
of solutions in the projective space P*(K>).

Put N = sd — s+ 1. For every integer v > 0 denote by H, the K;—vector
space of monomials in Xy, ..., X, of degree v. Let us choose the base of each
‘H, consisting of monomials in Xy, ..., X with coefficients 1. Notice that the
dimension of the space Hy = (del) < P(d®) for a polynomial P.

Consider the Kj—linear mapping

H?\/—d X HN—l — ,HNv ((QM .. -aQS)aT> = Z 52"]1’ + (Ué - ZSX())T, (6)

1<i<s



where all ¢; € Hy_q and 7 € Hy_1. Denote by A the matrix of this mapping
in the chosen bases.

Recall the system g; = ... = gs = 0 has a finite number of solutions z in
the projective space P*(K3). Furthermore U!(z) # 0 for every such solution
z since the coefficients of the linear form U, are transcendental over the field
K. Therefore also (U, — Z;Xo)(z) # 0. This implies that the mapping (6)
is surjective see e.g. [11] and also [4] Section 3. Hence rankA = dimHy.
So we can construct a nonzero minor @ of order dimHy of the matrix A.
We have 0 # Q € Z[U,e, Zs,...,Zy,]. Let us represent Q = €*Q; where an
integer a > 0, the polynomial Q1 € Z[U,e,Zs,...,Z,] and @Q1]c=0 # 0. Put
Q2 = Q1le=0 = Q1(U,0,Zs, ..., Z,). Then the polynomial H(U,1,Z,,...,Z,)
is an irreducible factor of Q2 in the ring Z[U, Zs, ..., Z,], cf. [1] (and also [4],
5)).

From the described construction we get immediately that all the degrees
degy, . .z, Q2, degy, . ., Q@2 @ = 0,s,...,n, are bounded from above by
P(d*) and the lengths of integer coefficients of the polynomial Q2 are bounded
from above by (M + n?)P(d®) for a polynomial P. Now the required estima-
tion for the lengths of integer coefficients of the polynomial H(U,1, Z, ..., Z,)
follows from [6] Chapter III §4 Lemma 2 or [1].

It remains to find the polynomial H. Let £ € Q(ts41, --.,tn)[0] be a generic
point of the algebraic variety V' constructed in [1]. Here t441,...,t, are alge-
braically independent over Q and 6 is an algebraic over Q(ts41,...,t,) element
of degree deg V. The point £ is constructed within the time polynomial in M
and d*. Let 0 < %9 < n be an index such that X;, does not vanish on V. Then
the representations are constructed

1 . _
(Xi/Xi0)() = ~ Y at, 0<i<n, (7)
0<j<degV
where all a,a; j € Z[tsi1,...,ty], the degrees deg, , a,deg, . ., a;;are

bounded from above by P(d®) and the lengths of integer coefficients of all a,
a; ; are bounded from above by (M +n)P(d°) for a polynomial P. The point £
is given by (7). Using (7) we find all the values (U;/X;,)(§), 1 =0,s,...,n.

One can represent H = ZI’J h[’]uIZJ where I,.J are multiindices and
hry € Z, ie., H is a sum of monomials in the elements of the family ¢/ and
20, Lst1, - - -, Ly with integer coefficients. We have

HU, (Uo/Xio) (), (Us/ Xig)(€), -, (Un/ Xi)(€)) = 0.

Furthermore, using (7) we get that the last equality is equivalent to

L, 4m, 07 =0,
1<r<R,0<g<degV

where m,. are pairwise distinct monomials in the elements of the family ¢/ and
ts41,--.,tn; and L, 4 are linear forms in Ay ; with integer coefficients. Consider
hr,; as unknowns. Then we get a linear system L, , =0,1 <r < R,0<¢<
deg V' with respect to h; ;. By the bounds for a and a; ; from (7) the number
of elements #R is bounded from above by a polynomial in (d deg(V))”2 and the
lengths of integer coefficients of the linear forms L, , are bounded from above
by (M + n?)P(d®). This is an immediate consequence of the bounds for the

10



generic point £ from [1]. The number of unknowns Ay ; is bounded from above

by (deg(V') + 1)”2+”. The vector space over QQ of solutions of this linear system
is of dimension 1. Solving it we find all the integer coefficients h; ; . Thus we
can construct the polynomial H within the required working time. The lemma
is proved. [

Let us represent

HWU,Uo, Us,...,Uy) = > H, 11 uls o (8)

e:(ei)j)eZ(vtfer?)('nJrl) i=0,s,5+1,...,n,0<j<n

where H, € Z[Xy,...,X,] are homogeneous polynomials. Note that if H, # 0
then > .e;; < 2degV for all i. Put E' = {e : H. # 0}. Then #E’ <

P((deg V + 1)) for a polynomial P.

Notice that under conditions of Lemma 1 one can construct all the polyno-
mials H,, e € E' within the time polynomial in M, d*°, (deg V)"z, and further
the lengths of integer coefficients of all polynomials H., e € E’ are bounded
from above by (M + n?)P(d*) for a polynomial P (this follows immediately
from Lemma 1).

Choose a maximal subset £ C E’ such that the polynomials H,, e € E, are
linearly independent. So #E < (deg(V))™.

We have, cf. the construction of the system of polynomial equations for
the components of an algebraic variety from [1], Z(H., e € E) = V (i.e. the
set of all common zeroes of the polynomials H., e € E, coincides with V; in
what follows we shall use also other similar notations). Thus, if the polynomial
H is known then one can construct within the polynomial time the system of
homogeneous polynomial equations giving V.

DEFINITION 3 We shall say that a defined and irreducible over Q projective
algebraic variety V is given by the generic projection if the corresponding poly-
nomial H is given. The system H, =0, e € E, for the algebraic variety V will
be called system of polynomial equations corresponding to the generic projection
of the algebraic variety V. So this system depends on the choice of E.

DEFINITION 4 Let W C A™(Q) be a defined and irreducible over Q affine
algebraic variety. Assume that W is a set of all common zeroes in A™(Q) of
a family of polynomials h, € Z[X1,...,Xy], @« € A. We shall say that hg,
a € A, is a family of polynomials corresponding to the generic projection of the
algebraic variety W if and only if the following property hold true.

Denote by V the closure of W in the projective space P*(Q). Denote by
he € Z[Xo, ..., X,] the homogenization of the polynomial hy, for every a € A.
Then there is a system of polynomial equations H, = 0, e € E, corresponding
to the generic projection of the algebraic variety V such that #F = #A and the
sets of polynomials {ho : a« € A} = {H, : e € E} coincide.

LEMMA 2 Let V C P*(Q) be a defined and irreducible over Q projective alge-
braic variety of degree degV = D and dimension n—s where 1 < s < n. Let V be
given by the generic projection and H, = 0, e € E, be the corresponding system
of polynomial equations. Let x € V be a smooth point. Let L € Q[Xy,...,X,]
be a linear form such that L(x) # 0. Then there are ey, ...,es € E such that

H., /LP, ..., H../LP is a system of local parameters of V at the point x.

11



PROOF Let Yy,...,Y, be linearly independent linear forms with integer co-
efficients. Consider the projections

T VNZ(Yo,Ysq1,..,Yn) 2 PP(Q), (Kot : X)) = (Yo : Yigr 1.1 Yn),
and

i V\Z2(Y0,Y:,Yes1,...,Y,) = P"5THQ),
(Xo:oo oo X)) Yo: Y Y1 :...0Y,), 1<i<s.

Denote by Y; the family of coefficients of the linear forms Yy, Y;, Yii1,...,Ys
for 1 < ¢ < s. There are linear forms Yy, ..., Y, such that Yy(x) # 0 and

(i) the projection 7 is finite, i.e. V N Z(Yy, Ysi1,...,Yn) =&,

(ii) the inverse image 7~ !(7(x)) consists of degV pairwise distinct points,
(iii) #(Y;/Yo)(r Y (n(x))) = #7~ (7w (2)) for every 1 <i < s,
(iv) the polynomial H(Y;,Yo,Y;, Yei1,...,Y,) #0 for 1 <i < s.

By (ii) the differential d,7 at the point = of the projection 7 is an isomor-
phism. The projection 7; is also finite for every 1 < ¢ < s. Hence the set
m;(V) is closed in the Zariski topology and ; (V') is a set of zeroes of a homo-
geneous polynomial h; € Z[Yy,Y;, Ysi1,...,Y,] of the degree degh; = deg V' by
(iii). By the Zariski main theorem the point ;(x) is smooth on m;(V'). Now
the differentials d,(hi/LP),...,d.(hs/LP) are linearly independent. Therefore
hi/LP,... hy/LP is a system of local parameters of the variety V at the point
z. By (iv) each h; coincides with H();,Yy,Y;, Ys41,...,Y,) up to a nonzero
factor from the ground field. Hence h,..., hs are linear combinations of poly-
nomials H., e € E. Therefore, the required system of local parameters can be
chosen among polynomials H./L?, e € E. The lemma is proved. [J

LEMMA 3 Let V C P*(Q) be an irreducible and defined over Q projective
algebraic variety of dimension n —s, 1 < s <n. Let V be given by the generic
projection and H = Hy be the corresponding polynomial. Let the degree deg V' <
D’ where D' > 2 and lengths of integer coefficients of Hy be at most M' where
M' > 1. Let F € Q[Xo,...,X,] be a homogeneous polynomial of the degree at
most D" where D" > 2, and lengths of integer coefficients of F be at most M"
where M" > 1. Suppose that F is not vanishing on V. Let Wy be an arbitrary
irreducible and defined over Q component of the algebraic variety V N Z(F).
Then the degree of the intersection VNZ(F) is at most D' D" and the component
Wi can be given by the generic projection. The corresponding polynomial Hyy,
has integer coefficients with the lengths bounded from above

(M'+M”—|—n2)73(D’D”)

for a polynomial P. The polynomials Hy, corresponding to all the irreducible
components Wy of the intersection VN Z(F) can be constructed within the time

polynomial in (D’D”)"Z, M, M.

PROOF Let Uy, Usyq,...,U, be generic linear forms such as above. Recall
that their family of coefficients U’ is defined by (5). For brevity set the field
K =QU").

12



Set
Ry = Reszs (H, H/ZS) S Q[Z/{, Zy, ZS+1, ey Zn]

to be the resultant of the polynomials H and H ’Z with respect to Zs (so Ry co-
incides with the discriminant of the polynomial H with respect to Z, multiplied
by the leading coefficient lc H of the polynomial H with respect to Z).
There are integers wg, u1, . . ., u, with lengths O(log(D’ + 1)) such that the
polynomial
R = Rulu, j=u;,0<j<n # 0 9)

(here R is a notation). Set Y =} ., u;X;. Denote by
® e Z[ula Z07 Za ZS+17 BN ZTL]

(here Z is a new variable) the homogeneous with respect to Zy, Z, Zs1,.-.,Zn
polynomial such that

DU, Zo, Z, Zsi1y. .y Zn) =HU, Zo, Zy Zsi1y- oy Zn)

us,j=uj, 0<j<n

(one should substitute here the coefficients u; for the generic coefficients us ;,
0 < j < n). Notice that the polynomial ®U’,Uy,Y, Usy1,...,U,) is vanishing
on V.

Note that the lengths of integer coefficients of the polynomial ® are bounded
from above by (M’ +n?)P(D’) for a polynomial P. The resultant R = Resz(®,
®7,) # 0. Put ¢ = lcz® to be the leading coefficient of the polynomial ® with
respect to Z. Then ¢ # 0 since R # 0. Furthermore ¢ € Z[U'], deg, & = degV
by (9) and since lez Hy € Z[U].

Denote by K (V') the field of defined over the field K rational functions of the
algebraic variety V. The polynomial ® is nonzero and separable and, therefore,
irreducible since V is irreducible. Therefore n =Y /Uy is a primitive element of
the extension

K(V) D) K(U5+1/U0, .. 7U'n/[]())

The minimal polynomial of the element 7 is ®U’, 1, Z,Usy1/U, ..., Upn/Up).
Hence there is a generic point x of the algebraic variety V' over the field K such
that (Y/Up)(x) = n and all

(Xi/UQ)(X)EK(Us+1/Uo,...,Un/U0)[77], 0<i<n.

Put x; = (Xi/Uo)(x), 0 < i < n.
Let T be a new variable. Put the field K3 = K(Usy1/Uy, ..., Un/Up)[n] and
the polynomial

h = H(Z/l,l,T, US+1/U0,...,UH/U0) S K3[T,us707u5,1,...,usyn].

To construct all x; = (X;/Up)(x) we factor using the algorithm from [1], Chap-
ter I §1 Proposition 1.1, the polynomial h = h(T, us 0, s 1, .,Usn) Over the
field K3. The polynomial / has a linear factor 7' — 3", us,ixi- Thus by [1]
there are representations

Z bi7j(ul’U5+1/U07'"7Un/U0)’I7j
b(ulaUs+1/U0,...,Un/U0) ’

Xi = 0<i<n, (10)

0<j<degV

13



where all b,b; j € ZU', Zs11, ..., Zy,] are polynomials with degrees

degzs+1,...,zn b, degzsﬂ,...,zn bijs
degui,u,...,ui,n b, deguw’._,uiyn bij, 1=0,s4+1,...,n,

bounded from above by P(D’) for a polynomial P. The lengths of integer
coefficients of all polynomials b,b; ; are bounded from above (M’ + n?)P(D')
for a polynomial P.

LEMMA 4 Let g > D’ be an integer. Then one can represent

1 ,
= > WU Ui [Us,... Un [Uo),
® 0<j<degV

where all b;‘n €U, Zsin,...,Zy,) are polynomials with degrees

b(Q)

s+17--~7Zn J

bounded from above by P(D’)(q — D" + 1) for a polynomial P. The lengths of
integer coefficients of all polynomials b§q) are bounded from above

degZ ) degui)(),...,'ll,q‘,yn b§Q), t= 07 5+ 1a s Ty

(M’ +1logy(q — D' +1))(q — D' + 1) +n?logy(P(D")(q — D' + 1))
for a polynomial P.

PROOF Let ¢ = Zogjgdequ)jzj where all ®; € ZU', Zsy1,...,Zy,) (so
Qyegv = ¢). Set ¢ = g — D"+ 1. One can represent Z? = ®A + B where
A W' B € LU Z, Zs1, ..., Zn) and 9 B = Y _qegy bV Z7. Then the
polynomial A can be found by solving a linear system over the field K (Zs41,. ..,
Zy,) with a square triangular matrix 7 of size ¢’. Each nonzero entry of this
matrix is equal to some ®; and on the diagonal all the entries are equal to (.
Solving this linear system by Cramer’s rule we get that the lengths of integer
coefficients of the polynomial <pq/A are bounded from above by

M'(¢" = 1)+ n®logy(P(D")q') + ¢'log,(q')

for a polynomial P (note that (¢’ — 1) appears here since to obtain the coeffi-
cients of gpq,A from the field K(Zs41,...,Z,) we compute minors of the matrix
T of order (¢' —1)). Hence the the lengths of integer coefficients of the poly-
nomial ¢4 B = p? Z¢ — &¢9 A are bounded from above by (M’ + log,(¢'))q’ +
n?logy(P(D')q').

The required estimations for the degrees of all b;q) are obtained in a similar
way by solving the considered linear system by Cramer’s rule. Lemma 4 is
proved. [J

_ b
b=2Zy I WU Zosr [ Zos s T Z0) € LU, Zoy Zasrs - -, Zon)-

to be the homogenization of b. Assume that b is vanishing on Wj. Then Hyy,
coincides with an irreducible factor of b in the ring Z{U', Zo, Zsi1, ..., Zn).
In this case the required estimate for the lengths of integer coefficients of the
polynomial Hyy, follows from [6] Chapter III §4 Lemma 2 or [1].
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In what follows we shall assume that b is not vanishing on W;. We have
F(x) # 0 since F is not vanishing on V. Using (10) and Lemma 4 one can
represent

ZO<j<degV ¢(j)(u/7 US+1/U07 D} UH/UO)nJ
U\ Usi1/Uss - Un[Uo) P g0 =D =071}

F(XO?vXn):b

where all ) € Z[U', Zy11, ..., Z,]. By Lemma 4 and the estimates for degrees
and lengths of integer coefficients of b and b1, see (10), we deduce that for all
j the degrees

deng+1,..4,Zn 1/)(3)7 deguiyo,...,ui,n 1/)(])) 1= 07 s+ 1a ceey My

are bounded from above by P(D’)D"” for a polynomial P. Further, the lengths
of integer coefficients of all polynomials ¢() are bounded from above (M’ +
M" +n?)P(D'D") for a polynomial P.

Put

V= max i + de
0<j<deg V(] 8211

,,,,,

and

V=28 Y OU, Zer/ 20, D) 20) 2 € LU 2o, Z, ..., Zn).
0<j<degV

Then ¥ # 0, the degree deg, ¥ < degV'.

Recall that n = Y/Uy € K(V). We have X; /Uy — x; =0, 0 < i < n, in the
field K (V). The rational function X; /Uy — x; is defined for every z € V'\ Z(Up)
such that b(z) # 0, see (10). Hence if z € V' \ Z(Upb) then (X;/Up)(z) = xi(2)
for 0 < 7 < n. Therefore the polynomial U(U’, Uy, Y,Usi1,...,U,) is vanishing
on Wy \ Z(Upb) # @. Hence ¥(U',Uy,Y,Usy1,...,U,) is vanishing on Wj.

If deg, ¥ = 0 then Hy, coincides with an irreducible factor of . Now
the required estimate for lengths of integer coefficients of the polynomial Hyy,
follows from [6] Chapter III §4 Lemma 2 or [1].

Assume that deg, ¥ > 0. Put
Ry =Resz(®,V) € ZIU', Zo, Zsi1, - - -, Zn)

to be the resultant of the polynomials ® and ¥ with respect to Z. Then Ry # 0
since the polynomial ® is irreducible over the field K and 0 < deg, ¥ < deg, ®.
We have Wy C Z(@U', Uy, Y, Usy1,...,Uyn), (U Uy, Y,Usy1,...,Upy)). Hence
Wi C Z(RU',Uo, Usy1, ..., Uy)).

The bounds for degrees and lengths of integer coefficients of the polynomi-
als ® and ¥ are known. Using them we get immediately that the lengths of
integer coefficients of the resultant R; are bounded from above by (M’ + M" +
n?)P(D'D") for a polynomial P. Now Hyy, coincides with an irreducible fac-
tor of Ry in the ring Z[U', Zy, Zsi1,- .., Zn]. Again the required estimate for
lengths of integer coefficients of the polynomial Hyy, follows from [6] Chapter III
§4 Lemma 2 or [1].

Finally, using the algorithm from [1] and the described construction one can
construct the polynomial Hyy, within the required working time. Lemma 3 is
proved. [J
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At present our aim is to prove Theorem 2. In what follows when it is re-
quired to construct a system of polynomial equations determining an affine
algebraic variety U C A™(Q) we shall construct system of homogeneous poly-
nomial equations corresponding to the generic projection of the closure of this
variety U C P"(Q) using the algorithm from [1] and Lemma 1. This will gives
also a system for U. The condition (b) when it is required will be satisfied by
Lemma 2.

We proceed to the details. Compute using [1] all the irreducible and defined
over Q components W of the algebraic variety Z(f1,..., fx). After that we
apply Lemma 1. Let the codimension of the variety W is equal to s > m.
Then according to Lemma 1 (with W in place of V') the algebraic variety W is
given by a system of polynomial equations of degree at most degW < d° and
the lengths of integer coefficients of these equations are bounded from above by
(M + n?)P(d*) for a polynomial P. Besides, Z{W:COdimW:s} degW < d*® by
the Bézout theorem. Notice that (m+1)2°"™ —1 > s for all integers s > m > 1.
Hence the estimations of Theorem 2 hold true for D{* and M{*). By Lemma 1

and Lemma 2 properties (a) and (b) hold for all ¢ € Ifs), m<s<n.

Let 1 < r < n and suppose that we have constructed recursively all the
algebraic varieties W;, i € IT(S), m41r—1<s<n We assume that I'° £+ @
for at least one s such that m +r — 1 < s < n. Further, suppose that (a) and
(b) hold and the required estimations for Dﬁs) and MT(S) are fulfilled for the
considered r, s.

Let us show how to construct the families of algebraic varieties W;, i € Iﬁi)l
for all s such that m +r < s < n. We also ascertain the required upper bounds
for fogl and Mr(i)l (if at least one Ifi)l # ).

Let ¢+ € Ir(i)l. Then either W, is an irreducible component of SingW; for

some 1 € Ir(u), m+r—1<u<s,or W, is an irreducible component of W; N W;

for some ¢ € I,Eu), j e Ir(v)7 m+r—1<v<u<s, i#j. PutdegW;, = d,,
deg W; = d; for all i, j.
Letic I, m+r—1<u<s. Put B} =AY x {1,...,n}". For every

B:((al,...,au),(jl...,ju))EBZ'-

compute the Jacobian

oh
Jﬁ = det < X ) . (11)
8va 1<l,v<u

Compute a maximal subset B; C B; such that all the Jacobians Jg, § € B;, are
linearly independent. We have by (b)

SngWi =Ww;N Z({Jﬁ}BGBi)’

Further, degJJs < u(d; — 1) < ud;. Hence by the Bézout theorem the de-
gree of the union of all the components of codimension s of SingWW; is at most
di(udl)S*“

For every integer s such that m + r < s < n, for all ¢, u such that i € Iﬁ“),

m+7r—1< u < s denote by W,, ¢ € IZ-(;)H, the family of all the defined
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and irreducible over Q components W, of the variety SingWW; such that the
codimension codimW, = s.

Similarly if ¢ € Ir(u), jE IT( D omr— 1<v<u<s,i#j, then the degree
of the union of all the components of codnnenswn s of the intersection W; N W;
is at most did‘;_“ (of course this degree is at most d;d; by the Bézout theorem
but it is not principal now).

For every integer s such that m+r < s < n for all u, v, 4, j such that i € I(u)

je LE D omr— 1<v<u<s, i#] denote by W,, v € I(J)T+1 the family of
all the deﬁned and 1rreduc1ble over Q components W, of the variety W; N W;
such that the codimension codimW, = s.

We shall assume without loss of generality that the introduced sets of indices

are pairwise non—intersecting, i.e. Ii(ilr)Jrl N IZ(SIT)JFI = @ if (i1,81) # (i2, S2),
further I(“) ry1 0 [i(:fj)z)rﬂ = @ if (i1, 41, 81) # (42, j2, 52) and finally Il(élr)+1 N
Iz(;fj)%r_|r1 = @ for all (i1,5s1) and (iz, jo, $2).
For every m +r < s < n put Iﬁi)l to be the union of all the introduced sets
(s) (s) 7 (s)
Ii,i+1 and Iz? rp1- et Lpg = Um+r<s<n Irj—l'

Applying the algorithm from [1] one can construct the family of the algebraic
varieties W,, v € I.41. Further, again using the algorithm from [1] we construct a
minimal (by inclusion) subset I,41 C Ir+1 satisfying the following property. For
every i1 € I,_H there is i9 € I, 41 such that W;, C W,,. Put 1(4_)1 = A( ) 1Ny
for every m + r < s < n. Thus using the algorlthm from [1] we construct the
required families of algebraic varieties W,, « € IT( +)1, m+r < s < n. After that
applying Lemma 1 for every ¢ € IT( +)1 for every m +r < s < n we construct the
polynomials hs, @ € A,. So now by Lemma 1 and Lemma 2 properties (a) and
(b) hold for all these algebraic varieties W,.

If Ir(j_)l = @ for all m+r < s < n then ng = r, the required smooth
stratification is constructed and all the assertions of Theorem 2 are proved.

Assume that I7E+)1 # & for at least one s such that m+r < s < n. For brevity
put m, = (m + 1)2*~™ — 1 for all integers u > m. Note that by the recursive
assumption Z I(u) d; < (ud)™» for every u such that m+r—1 < u < n. Hence
for every integer a > 1 we have

g d? < (ud)™ .
617(‘“>

Let us show that

(8_1>m5(s—m)<1. (12)

S

for all integers s > m > 1. Indeed, (1 — 1/s)* < e~!. Therefore (12) is a
consequence of the inequality e_ms/s(s —m) < 1. Put ¢ = s —m. Then the
last inequality is equivalent to —(m + 1)2% 4+ 1 + (¢ + m)log(g) < 0. We have
29 > log(q) for ¢ > 1. Hence (12) follows from —29t1 + 1 + (¢ + 1) log(q) < 0.
One can check immediately that the last inequality holds true for all ¢ > 1. The
required assertion is proved.

Also for all integers s > u > v > m > 1 we have

My +My(s —u) <Kmy(s—u+1) < ((m+1)2%" =1)2°7% <m, — 1,
(my+1)(s—u+1)—1< (m+1)2%7"2°7% — 1 =m;.
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Now

Dw(fizl = Z degWL <

LEIii)l

> d;(ud;)* ™" + > dids ™" <
mtr—1<u<s, i€I™ m+r—1<vgu<s,
i, jeI() i)
> di(ud;)®™" + > did; ™" <

m+r71§u<s,i€I$“) m4r—1u<s, m+r—1<v<u,
ieI(™, jeI( i#j

Z (ud)mu(s—u+1)us—u+ Z Z (ud)m“(vd)m“(s_u) <

muLs—1 mluLs—1 m<o<u

dms—l( Z umu(u(mu—&-l)(s—u)_i_ Z Umv(s—u))) <

m{uLs—1 mv<u

dms—l Z umu(2u(mu+1)(s—u)) < dms Z u(mu-l-l)(s—u-‘rl)—l <

mLuLs—1 mLuLs—1

(sd)™ > (u/s)™ < (sd)™((s = 1)/s)™ (s —m) < (sd)™.
m{uLs—1
Thus, we have proved the required estimation from Theorem 2 for Di‘jzl.

At present to complete the proof it is sufficient to ascertain the estimate for
M, Let e 18,

Let i € Lgu), m+r—1 < u<s. Assume that W, is a component of SingW;.
Then there are polynomials F, 41, ..., F,s which are linear combinations of Jg,
B € B;, with integer coefficients of the lengths O(nlog(nd;)) and satisfy the
following property ().

() There is a sequence of irreducible and defined over Q algebraic varieties
w® =w,, weth W) =W,

such that WU+ is an irreducible over Q component of W) N Z(Fj4)
for every u < j < s.

Similarly let i € Ir(u), J € IT(U), m+r—1<v<u<s, i#j and W,
is a component of W; N W;. Then there are polynomials F,11,...,F, which
are linear combinations of h,, a € A;, with integer coefficients of the lengths
O(nlog((d;d;)) satisfying the property (f).

In the both cases the estimation for Mr(i)l can be obtained straightforwardly

by subsequent applying Lemma 3 using the ascertained inequalities for Mr(w)7

w < u. One should only take the degree of the polynomial P from Theorem 2
sufficiently large relative to the degree of the polynomials from Lemma 3.
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Let us give more details. In what follows till the end of the proof P is the
polynomial from the statement of Theorem 3 (it is fixed). By the Bézout theo-
rem in the first case the degree of the algebraic variety Wt9) 1 < g <s—u,
is bounded from above by d;(ud;)? < (ud)™(@+t1)yd by the recursive assump-
tion. In the second case deg W (vt < didg- < (ud)™ (@D In the first case
by the recursive assumption the lengths of integer coefficients of the polyno-
mial Fy 44, 1 < ¢ < s — u, are bounded from above by qu(u) + O(nQD,(«u)) <
Cru(M +n?)P((ud)™) for an absolute constant C; > 0 (of course, one can give
here a better bound but it is not essential for the proof). Similarly in the second
case the lengths of integer coefficients of the polynomial F,, 1, are bounded from
above by M) + O(n2(D{™ + D)) < C1(M + n2)P((ud)™).

Now denote by Py the polynomial P from the statement of Lemma 3 (to
avoid an ambiguity we change the notation). Denote by W, the closure of the
algebraic variety W, in the projective space P*(Q). Then applying Lemma 3
subsequently s — u times we get (here the details are left to the reader) that
in the both cases the lengths of integer coeflicients of the polynomial Hy are
bounded from above by

(s —u+ 1)Cru(M 4+ n?)P((ud)™) H Po((ud)™ @+ D) <

1<gss—u

(M + n2)P((ud)™ Py ((ud)™ "),

for a polynomial P; depending only on Py and C';. One can choose a polynomial
P such that P((ud)™ )Py ((ud)™ =) < P((sd)™) for all integers d, s, u, m
satisfying the inequalities s > v > m > 1, d > 3. The last assertion follows
from the following fact. There is a constant C' > 0 such that for all integers
s >u > 1 we have Cmy, +my (s —u)? < Cmy. The required estimation for Mﬁs)
is proved.

Thus we can construct all the algebraic varieties W,, + € I,(.j_)l, within the re-
quired working time applying several times the algorithm from [1] and Lemma 1.
Further, for the estimation of the lengths of integer coefficients we use Lemma 3.
The theorem is proved. [

The proof of Theorem 3 is completely analogous to the one of Theorem 2
and even easier since here one should consider only the sets of singular points
of the components but not the intersections of different components. Note also
that in the proof of Theorem 3 we have a more complicated system of notaion.
Namely, any index i € L(,w) from the proof of Theorem 2 is replaced by a (v+1)-

tuple of indices (i1,...,%pt1) € quw) for all v,w. This implies other changes of
notations. In particular, in the proof of Theorem 3 the sets of indices B;,
and By, ... i,,, are similar to B! and B; from the proof of Theorem 2.
Besides, according to the Definition 2 in the proof of Theorem 3 for all m +
7 < 5 < n we have Ir(j_)l = fﬁ?l, where fr(fl is a union of the sets Ii(i)_”’iuﬂyrﬂ

1)

(now they play the role of 1,77,

from the proof of Theorem 2, see above) over

all (i1,...,%u41) € Iﬁu) and m+r —1 < u < s. So here one don’t need to

consider the set I. Theorem 3 is also proved. [
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3 Solvability of systems over the ring of p-adics
integers and branching smooth stratification

Our aim is to prove Theorem 4. Let a # 0 be an integer. Set ord,(a) =b€ Z
if and only if a/p® € Z but a/p**! € Z. If z € R then set [z] to be the minimal
integer 2o such that zg > z and define [z]4+ = max{[z],1}.

Let us apply Theorem 3 and construct the canonical branching smooth strat-
ification (with all the objects corresponding to to it) of the algebraic variety
‘/;*:Z(f]mafk) _

It is convenient also to introduce the algebraic variety W;= = A"(Q). So
the codimension codimW;» = 0, the degree deg W;« =1 and W;- is given by an
empty system of equations, i.e., A;« = @.

Set also Iéo) = {i*} and I(gu) =g foralll <u<n.

Recall that Dy = 1 +max1<r<nU{D£t),3}, M = maxigrgn, Mﬁs), te s, see
(3) Put DO = d, MQ =M.

We shall construct positive integers 0(5)7 s€SU{0},0< <2 Put

i

¢ = 0 (" o5) = ) ()P (cés))(sDjﬂ)"’ s

)

For the constructed integers ¢(*) property (*) formulated below holds true (we
shall ascertain it). Besides that, for every s € S U {0} the length of the integer
¥ is bounded from above by M,P(((s + 1)DsT1)"%).

Furthermore, we shall prove that one can take

A = (c0) T ()" Thes.esstPEY" (13)
ses

Therefore N = ord,(A) + 1.
Put

No = [2 ordp(c(o)) +2 Zordp(c(s))dn H (tDEH)n-‘ 4 (14)

seS teS, t<s

Nuz[z S o, () T] (tDﬁ“)"L, wes. (15

SES, s>u teS, ut<s

So1< N, € Zfor allu € SU{0}. If N,, = 1 then ord,(c(®)) =0 and N, = 1
for all s > u, s € S. Notice that No = [ord,(A) ], and No < N < No + 1. We
shall use the following simple fact.

LEMMA 5 Let u € SU{0} be an integer. Then

N, —20rd, (™) >0, N, —ord,(c™) > 0.

PROOF If ord,(c(™) = 0 then the both these inequalities are obvious. As-
sume that ord,(c®)) > 0. Then (15) (or (14) for u = 0) holds true with-
out [...]4 and hence N, — 2ord,(c*)) > 0. Consequently N, — ord,(c(™)) >
ord,(c®)) > 0. The lemma is proved. [J

In what follows we shall assume that there is a point « € Z" such that
filx) = 0mod pV, 1 < i < k. We shall prove that in this case the system
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Ji=...= fr =0 has a solution in Zj. Actually we shall use in the proof only
that f;(x) = 0 mod p™°, 1 < i < k. Thus Theorem 4 will be proved.

Now hq =0, a € A;, ., is the system of polynomial equations determining
the algebraic variety W;, . ;. according to the described construction of the
canonical branching smooth stratification.

Let 1 < r < no+1 be an integer. Denote by Q;, ... ;. the following assertion.

e There is an algebraic variety Wj, . ;. from the construction of the canoni-
cal branching smooth stratification such that the codimension codimW;, . ;.
= u for some u € S U {0} and

ho(z) = 0mod p  for all o€ A; . (16)

The property of the integers ¢(®) is the following one (one should ascertain
it in the proof of the theorem).

(*) Assume that the assertion Q;, . ;, holds true for some indices i1, ...,%,.
Then either the assertion Qily---1ir7ir+1 holds true for some index 4,41 €
I;,....i.,orr > 2 and there is a point of the algebraic variety W;, . ;. with
all the coordinates from Z,,.

Let us show that it is sufficient to construct ¢(*), s € SU{0}, and ascertain (*)
to finish the proof of the theorem. Indeed, suppose that all ¢{*) are constructed
and this property is proved. We have A« = &. Hence the property Q,;, with
iy =" is fulfilled. Assume that there are no points with coordinates from Z, in
any Wi, ;. with r > 2. Then applying several times property (*) we get that
(16) is valid for some W;, . ; , 1 <r <ng+1suchthat V;, ,; = @. In this
case I;, . ;, = @. It is a contradiction. Our assertion is proved.

Now we are going to define and compute the integers cgu), 0<¢<2 and
after that ¢ for all u € SU{0}.

Let u € SU{0}. Let us enumerate integers > 1 and elements (i1,...,4,) €
Ir(z)l. Assume at first that w € S and hence r > 2. Then we have codimW;, ;. =
u. The degrees degy,  x ho < D, —1foralae A; _; by (3)

Let us enumerate elements 8 = (a1,...,Qu,j1,---sJu) € Biy,...i,. Then
Rars---yha, is a system of local parameters of the algebraic variety Wy, . ;.
with the Jacobian Jg, see (11). The degrees of the Jacobians Jg, 8 € By, .. .,
defining the set of singular points of the algebraic variety W;, ;. are at most
u(D,, — 2) and lengths of integer coefficients of these Jacobians are less than
uM, + O(n?D,) (of course, one can write a better estimate here but it is not
essential for the proof).

By Wi, ..i,.r» T € T3y, i,.8, denote the family of all the defined and irre-
ducible over @ components W’ of the algebraic variety Z(hq,,-..,hq,) such
that W’ # W, . . and W'\ Z(Jz) # @. Note that the number #7T;, ;. g <
(D, —1)* —1 and the degree deg W' < (D, —1)* —deg W3, i, < (D, —1)" —1
by the Bézout theorem. We shall assume in what follows without loss of gen-
erality that for any two distinct elements (i1,...i.,3) and (¢,...4.,3’) the
intersection T3, 4. 8N ﬂi""i;/*ﬂ, = @ is empty.

Using the algorithm from [1] we construct all the algebraic varieties Wy, . ;. -,
7 € T},,..4,,3- Furthermore, for every T construct the polynomials 91,...,9, €
Z[X1,...,Xy,] such that

Wil:uwirﬂ— = Z(¢17 e 71/}0)7
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.....

.....

the degree degy,  y, %i < degWj, i . and lengths of integer coefficients of
these polynomials are less than (M, +n)P(D¥) for all 1 < ¢ < 0. The number of
polynomials o < P(D¥) for a polynomial P. The working time of the algorithm
from [1] for constructing these polynomials is polynomial in M, and DZQ.

The Jacobian Jg is vanishing on Wy, ; NW;,  ; -. Notice that Dy —1 >
max, ;{degy,  x, Yi,degx, . x, ha}and D —1 > 3, see (3). Hence by the
efficient Hilbert Nullstellensatz, see [10], we have

cil,...,ir,TJ,‘} = Z Viq; + Z haTa, (17)

1<i<o Q€A iy

where 1 <a < (DY —1)",a € Z (adepends on 7), 1 < ¢y, in7 € Z, 5,70 €
Z[X1,...,X,] are polynomials such that the degrees

degxl,...,xn(ﬂ/i%), degxl,...,xn(hara)

are bounded from above by (1+degy,  x, J3)(Dy—1)" <uDp**t! for all i, a,
see [10]. Besides, ¢;, ., - is chosen to be minimal possible in the sense that
the greatest common divisor of ¢;, . ; - and all the integer coefficients of the
polynomials ¢; and 7, is equal to 1.

For every 7 solving linear systems over Q with respect to the unknown
coefficients of the polynomials ¢;/ciy,.. .7, 1 <@ < o, and ro/ciy, . ip7s @ €
Ay, i, we construct all g;, ro with integer coeflicients and ¢;, ;. . Note
that the number of unknowns and the number of equations of any of these
linear systems are bounded from above P(DL‘Q“) for a polynomial P. The
lengths of integer coefficients of these linear systems are bounded from above
by M, P(D;*). Thus we get that the maximum of lengths of all ¢;, . ;. - is less
than MuP(DZf”) for a polynomial P.

For all u € S construct the sets

Ey={(i1, - yig,7) ¢ (i1, rin) € I, 2< 5 <+ 1,
T €T, in8r BEBiy, i }-

Recall that if K > 2 then Z(il . w deg Wiy . = D™ and hence the

k—1

number of elements #IS?I < D,. Further, #T;, .8 < Di, #B;, . . <
(#Ai,,.0.)"n" < (DI)“n*. Therefore the number of elements #E,, < P(D")
for a polynomial P.

In what follows LCM denotes the least common multiple of a family of
in7)€E (Ciy,ooin,7)- SO =1
and the length of c(()“) is bounded from above by Mu’P(DZf“) for a polynomial
P.

Put

integers. Construct the integer c((Ju) = LCM;,

.....

N, = [(Ny = ordy(c§) /D" 4, weS. (18)

Now we return to the general case u € S U {0} and r > 1. So at present
(i1,...,1,) € I,(,Ii)l and u = codimW;, ;. If w =0 then r =1 and i; =i*. By
definition put céo) =1, Nj = Ny.

Denote by G, = 0, p € R, the system of polynomial equations defining the
algebraic variety V;, . ;, in our construction. If » > 2 then this system consists

.....
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i,and Jg=0,08 € By, . ;. Whenr =1
then by definition the polynomials G, coincide with the initial polynomials
Jiooos fre

If r > 2 then set § = (uD,)", u = M,. If r = 1 then set 6 = d", u = M.
Note that I;, .. ;. is a set of indices of the family of irreducible components of
the algebraic variety V;, . ;.. Therefore #I;, . ;. < d by the Bézout theorem.

Let ¢yy1 € Iy, i,.. Let ag,..., a4 be all the pairwise distinct elements of
the set A; . i .., (here b = #A; i i, depends on iy,... i, 441). For
every integer 1 <y < 6" put G;, ., , = do1<j<h Y7 hq,. Notice that any b’ < b
pairwise distinct of polynomials G, , ~ are linearly independent over Q.

Note that the degree degW;, . .., <0 and b <4".

Recall that ho, a € A, i, i,.., is a family of polynomials corresponding
to the generic projection of the algebraic variety W; ;... At present we
consider Wy, ;. ., as a component of the algebraic variety Z(G,, p € R). Hence
by Lemma 1 the lengths of integer coefficients of all the polynomials h,, o €
Aiy,...\ivsivsr» are bounded from above by (u+n?)P(9) for a polynomial P. Hence
the lengths of integer coefficients of all the polynomials G;, _,  are bounded from
above by pP(6™) for a polynomial P.

We do not assume that I;, . ,; # @ (so it may happen that I;,  ,; = @
and then below the product in the left part of (19) is equal to 1). We have
degy, . x, G, < 6Y/™ for every p € R and 6'/" > 3. Hence by the efficient
Hilbert Nullstellensatz [10] for every 1 < v < §"*!

Ci17...,i7~7”/( H Gir+177)a/ = Z qup/y (19)

Grt1€10y iy PER

.....

.....

Gl

where 1 < o’ < 0, ' € Z (a’ depends on ), 1 < ¢y, iy € Z, Gpny €
Z[Xy,...,X,] are polynomials such that the degrees degy, x, (G,q,,) <
a' (62 +1) < 6(6% + 1) for all p,~, see [10]. Besides, ¢;, . i, ~ is chosen to
be minimal possible in the sense that the greatest common divisor of ¢;, .,
and all the integer coefficients of the polynomials ¢, is equal to 1.

The coefficients of polynomials g, / Cis,...,ir,y Can be constructed by solving
linear systems over Q. These linear systems have integer coefficients with lengths
bounded from above by uP(6™). The numbers of unknowns and equations of
any such linear system are bounded from above by P(6™) for a polynomial P.
An estimation for a solution of any of the considered linear systems gives also
an upper bound for |c;, i, |- So we get |¢i, i, 4| < 21P (") for a polynomial
P.

For all w € S U {0} construct the sets

Cu={(i1, - yig7) t (i1, i) €I 1<K <no+1, 1<y < 6™

Construct all the integers ¢;,, i, ~, (i1,...,1x,7) € Cy, solving linear systems
corresponding to (19). Define the integers

o = LCMi,,....in e, (Ciromin); o = H (iz — i)

1<i <igLontl

for all u € SU{0}.
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Recall that if x > 2 then #I,Sfi)l < D,(;i)l < D,. If Kk =1and u = 0 then
I(gu) = {¢*} and finally if K = 1 and u # 0 then IOU) = ¢, see the beginning of
the section.

Consequently if » > 2 then #C, < noD,6"t'. If r = 1 then v = 0 and
#C, < 0"tl. Therefore in any case |c§u)cgu)| < 24P(") for a polynomial P.

u '”2
Recall that My = M, Dy = d. Then || < OMuP(DLI™) for 5 polynomial
P. Compute A. As a result we get

2 "IL2 mn n
A < 2MP(d7L )+25€S MSp(D; )d HtES,t<s(th+1)

for a polynomial P.

Now our aim is to prove (*). Thus, suppose that 1 < r < ng + 1 and the
property Q;, . ;. holds true.

Assume at first that » > 2 and hence u € S. Recall that the integer N/, is
defined by (18) for w > 1. Suppose that there is § € B;, . ;, such that

Jg(x) # 0 mod e (20)

Then applying the standard Hensel lemma (one should fix the variables with
respect to which there are no partial derivatives in the matrix of the Jacobian)
we get that there is a point

7€ Z(hay,- - ha)\ Z(J5)

with coordinates from Z, such that T = = mod pNu—Nu+l (in the sense that this
congruence takes place coordinate-wise).

Let us show that N, — (N] — 1) > N/. Indeed, D, > 4 by (3). Hence if
1 < N, < 7then N/, =1 and consequently N, — (N, —1) > N,. If N, > 8
then N, > 2N, /4+1=2(N,/4+1)—1> 2N/ — 1. The required assertion is
proved. Hence J(Z) # 0 mod p™« and ord,J (%) < N/, — 1.

Let us show that £ € W;, ;. Suppose contrary. Then thereis T € T;,  ; g
such that & € W;, ;. . Obviously ¢;(z) = 0 for all ¢ and ho(Z) = 0 mod
pNe=(Nu=1) for all « since ho(z) = 0mod pNv and 7 = z mod pNu=(Nu=1),
Now (17) at the point Z implies that

ordy(ciy .. inr) + (D —1)" (N, — 1) = N, — (N} — 1).

u

This implies N, —1 > (Nu—ordp(céu)))/D}j. But (Nu—ordp(c(()u)))/D}j > (Ny—

ord,(c™))/D¥ > 0 by Lemma 5. Hence N/, — 1 > (N, — ord,(c\"))/D% > 0

which contradicts to the definitions of the integer N/. Our assertion is proved.
So we shall suppose in what follows without loss of generality that

Jg(xz) = 0 mod e, (21)

for all 8 € By,,...i,-

Now we return to the general case 1 < r < n. Consider the algebraic variety
Vi Put ™ = ord,(c{™) for all u € SU{0}, 0 <i < 2.

Let w € S. Then N/ > 0, V%u) > 0 and

N, =20 > (N, — 208" — 20{") D) /(D) > (N, — 20rd,, (™)) /(D) > 0
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by Lemma 5. Hence N, — V§“) > 0.

Similarly if u = 0 then N}, = Ny > 0, \*) > 0 and
Nj — 21/§O) > Ny — 2V§0) > Ny — 20rdp(c(0)) >0

by Lemma 5. Hence N — ufo) > 0.

Therefore according to (21) and the property Q;, . ;. for every u € SU {0}
for every p € R

ord,G,(z) — ordy(ciy,.. i) = N — V%u) > 0.

Hence I, ;. # @ and V;, ;. # @ by (19). Therefore u # maxS. Put
u; = min{s : s € S& s > u}. Notice that if u = 0 then u; = m.

Recall that 1 < v < 6™*!. Hence again by (19) there exists an index
ir+1 € Iila--~7ir such that

G (z) = 0 mod plVu—vi*)/81+

Trd1,75
for 6™ pairwise distinct indices v;, 1 < j < 6™
Set N/ = [(N] — V§u))/(5—|+. Let w € S. Then N/ > 0, lléu) > 0 and
N =208 > (N — ") )6 — 208" >
(N2 = 24"/ (uDu)" = 25" >
(N = 205" — 20" (D)™ = 204" (uDiy ™)) /(D)™ =
(N = 20rdy (™)) /(uDE )™ > 0
by Lemma 5. Hence N7 — v{*) > 0.
Let us show that if u € S then
N’ =" > N,,. (22)
Indeed, if N,, = 1 then it is obvious. If N,, > 1 then N, > 1 and (15) holds
true for u and w; (in place of u) without [...];. Hence
NI =5 = (N, — 20rd,, (™)) /(uDE+)" > N,,.
The required assertion is proved.
Similarly if u = 0 then N > 0, 5% > 0 and
N/ =208 > (Ny — 2049 — 208 dm) 7am > 0.

Hence N} — uéo) > 0. Furthermore,

N =" > N,,. (23)

The proof of (23) is analogous to the proof of (22).

The set of zeroes of the polynomials Gy, , ~;, 1 < j < ", coincides with
Wis,.osivsinis - Bvery polynomial he, o € A;, .., is a linear combination with
rational coefficients of the polynomials G;, ., ~,. Hence from the definition of
céu) we get

7 (u)
ho(xz) =0mod p™« "2 ", o€ Aj i, - (24)

25



The codimension of Wy, i i ., = v > u. We have N, < N,,. Now (24)

and (22), (23) imply immediately that

for

he(z) = 0 mod p™.

all o € A;, The theorem is proved. [
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