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1 Introduction

1.1 Notation and conventions

Throughout the paper we use the following notation:
x=(2,x,) = (21,...,Zy_1,T,) is a point in R™;

(z;t) = (2, 2p;t) = (21, ..., Ty;t) is a point in R

R} ={z € R":z, > 0}, R = {(2;t) € R™ @ 2, > 0};
|z|, |2’| are the Euclidean norms in corresponding spaces;
B,(2°) is the open ball in R" with center z° and radius r;

B, = B,.(0);

Qr(2%1%) = B, (%) x (1 = r%1%);  Qr = Q.(0;0);
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D; denotes the operator of (weak) differentiation with respect to x;;
0

D:<D/,Dn):(Dl,...,anl,Dn); at:a

We adopt the convention that the indices ¢ and j run from 1 to n.

We also adopt the convention regarding summation with respect to

repeated indices.

We use standard notation for the flinctional spaces. For a bounded
domain € C R"*! we understand C, 7} (€) as the space of u € C(€) such

that Du € C(&).

Definition 1. We say that a continuous function ¢ : [0,1] — Ry
belongs to the class D if

e o is increasing, and o(0) = 0;

e o(7)/7 is summable and decreasing.

Remark 1. It should be noted that our assumption about the mo-
notonicity of o(7)/7 is not restrictive, and moreover, without loss of

generality o can be assumed continuously differentiable on (0; 1] (see
[AN16, Remark 1.2] and [AN19, Remark 1| for details).

For 0 € D we define the function J, as

S

To(s) = / o) 4.

-
0

Definition 2. Let £ be a bounded domain in R”. We say that a

function ¢ : £ — R belongs to the class C®P (&), if

e |((z) — ((y)| < o(lz —y|) for all 7,y € &, and & belongs to the
class D.

Similarly, suppose that £ is a bounded domain in R**!. A function
¢ : £ — R is said to belong to the class COP(€), if
o [((z;t) — C(y;t)] < o(lz — y|) for all (z;t),(y;t) € &, and o
belongs to the class D.

We use the letters C' and N (with or without indices) to denote
various constants. To indicate that, say, C' depends on some parameters,
we list them in parentheses: C(...).
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2 Statement of the problem

Let Q be a bounded domain in R"*! with topological boundary 9(Q).
We define the parabolic boundary &'Q as the set of all points (z°%;t°) €
dQ such that for any € > 0, we have Q.(2°;t°) \ Q # 0. By d,(x;t) we
denote the parabolic distance between (z;t) and ¢'Q) which is defined
as follows:

dy(z;t) :==sup{p > 0: Q,(z;t)NIQ = 0}.

Next, we define the lateral surface 9”Q as the set of all points (x°; %) €
9'Q such that Q.(z%;t°) N Q # 0 for any € > 0.

We suppose that ) satisfies the parabolic interior CP-paraboloid
condition. It means that in a local coordinate system 9”@ is given
by the equation z, = F(x2';t), where F is a C'-function such that
F(0;0) = 0 and the inequality

Fa'i) < VieP—t-o(VeP—1)  for t<0 (1

holds in some neighborhood of the origin. Here o is a C!-function
belonging to the class D (see Remark 1).

Let an operator M be defined by the formula
Mu := dyu — Di(a" (z;t)Dju) + b (25 t) Diu = 0. (2)
Suppose that the coefficients of M satisfy the following conditions:

VI, < (aV(z;t)) < v 'Z,,
a? € COP(Q)  forall i,j=1,...,n,

(3)

and
w,(r) =0 and wi(r)—=0 as r—0, (4)
where
b(y; s x —y|?
1=, | e )
Qr(z;t)NQ
dp(y; 5)

dyds;

X
dy(y; s) + /|lz —yP+t—s
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4o byl eyl
“p (r) = (xS;SIG)Q / (s — t)ntD)/2 exXp |\ =7 p— X
Qr(@it+17)NQ
dp(y; 5)

X
dp(y; ) + ]z —yP+s—t

dyds.

Here v is a positive constant, Z,, is identity (n x n)-matrix, b(y; s) =
(b (y;s),...,b"(y;s)), and v is a positive constant to be determined
later, depending only on n, v and on the moduli of continuity of the
coefficients a* in spatial variables.

Remark 2. Notice that in any strict interior subdomain of Q \ 9'Q
condition (4) means that b is an element of the parabolic Kato class
K, see [CKP12|. Indeed, in this case (4) can be rewritten as follows:

Ib(y; 5)| |z =y
i oo P () s =0 9
T (=2 t4r2) x By ()

as r — 0.

This condition differs from Definition 3.1 [CKP12| only in that the
integration in [CKP12] is over (t —r? ¢t +7?) x R". However, using the
covering of R" \ B,(z) by the balls of radius r/3 one can check that
corresponding suprema converge to zero simultaneously.

In the whole domain () our condition (4) is weaker then b € K,,.

To formulate our main result we need the following notion.

Definition 3. For a point (z;t) € Q we define its dependence set
as the set of all points (y;5) € @ admitting a vector-valued map
5 : [0,1] = R™*! such that the last coordinate function §, 1 is strictly
increasing and

§0) = (y;8); (1) = (z;t); F((0,1)) CQ.

If @ is a right cylinder with generatrix parallel to the t-axis, then for
any (z;t) € @ the dependence set is Q N {s < t}.
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Theorem 2.1. Let Q be a bounded domain in R" L, let 8"Q satisfy
the interior parabolic CYP-paraboloid condition, let M be defined by
(2), and let assumptions (3)-(4) be satisfied.

In addition, assume that a function u € Ci?(@) satisfies, in the
weak sense, the inequality

Mu>0 in Q.

Then, if u attends its minimum at a point (z%t°) € 9"Q, and u is
nonconstant on the dependence set of (z°;t°), we have

g—z(xo;to) < 0.

Here 8% denotes the deriwative with respect to the spatial exterior
normal on 9"Q N {t = t°}.

Remark 3. Notice that we do not care of the behavior of u after
t°. Thus, without loss of generality we suppose Q@ = Q N {t < ty}.
Moreover, we may assume that (z%;¢°) = (0;0), and 9"Q is locally a
paraboloid

o = Pla’t) i= V[P =t o(VI]e']? =),

where o € D is smooth.

3 Estimates of solutions

We begin with flattening the boundary of the paraboloid by the coor-
dinate transform

¥=a t=t I,=um,—P;t). (6)

Proposition 3.1 (JAN19, Lemma 3.2]). Assumptions (3) and (4) on
a’ and b remain valid under transform (6).

Thus, we may consider ") locally as a flat boundary z,, = 0 and
assume, without loss of generality, that Qr "R’ C Q.
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Next, we take for 0 < p < R/2 the cylinder A, = Q,(2”;0) (here
¥ = (0,...,0,p)). Define the auxiliary function z as the solution of
the initial-boundary value problem

Moz := 0,2 — Di(a” (z;t)D;jz) = 0 in A,
2= 0 on 0"A,, (7)
dw;=p*) = @(*57) for x€ By(a’),

where ¢ is a smooth cut-off function such that
p(x) =1 for |z|<1/2; o(x) =0 for |z|>3/4.

The existence of (unique) weak solution z follows from the general
parabolic theory.

Theorem 3.2. The function z belongs to C;Z?(ZP) for sufficiently
small p. Moreover, there exists a positive constant py < R/2 depending
only onn, v and o, such that the inequality

Detmol < 2 e, 8)

holds true for all p < po.

Proof. We partially follow the line of the proof of [AN19, Theorem
3.3|. Let z* be an arbitrary point in B,(z”). We introduce the auxiliary
function 1.« as the solution of the problem

ME tppe = 0 in A,
Ypr = 0 on  9"A,, (9)
wx* (l’; _p2) = (p(x;;;?) fOI‘ S BP('rp)?

where ME := 0, — D;a"(z*;t)D; is the operator with coefficients
frozen at the point z* (and thus constant in spatial variables). It is well
known (see [KN09, Section 5]) that ¢, € W2'(A,) forany 1 < p < oc.
By homogeneity argument,

Dot < 280 i) € 4, (10)
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Setting wM) = z — 1)« we observe that w(!) vanishes on &'A,.
Hence, w) can be represented in the cylinder A, as

w(z;t) = / I (@, y; ¢, s)ME w (y; 5) dyds,

A,N{s<t}

—~

*

W / T (2, 5) (ME 2(y) — Moz(y) dy,
A, {s<t}

N

where Ff,f* stands for the Green function of the operator Mg in A,.
The equality () follows from the relation MZ t,» = Moz = 0.

Applying integration by parts we get another version of the repre-
sentation formula:

wW (z;t) = / DyzF:’; (z,y;t,5) (a” (2% 5) — a(y; s)) %
A,N{s<t}
x D;z(y; s) dyds.

Differentiating both sides with respect to xx, k = 1,...,n, we get the
system of equations

Yi 14

Dyz(z;t) / D, Dy, T% (z,y;t,5)x
Apn{s<t}
x (a”(z*;5) — a”(y; 5)) Djz(y; s) dyds = Dy (;1). - (11)
Now we put * = z and get the relation
(I-Ty)Dz=19, (12)
where
U = Doy« (73 t)|,._,

while T; denotes the matrix integral operator whose kernel is matrix
T} with entries

T{(z,y;t,s) = Dy, D, T2 (2, y5t, 5)

Yi 14

X

X (a (l’, S) - aij(y; 8)) X{s<t}-

It is easy to see that ¥ € C(A,). Therefore, the statement of Theorem
follows from the next assertion.
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Lemma 3.3. The operator Ty is bounded in C(A,), and

IT1]|cse < Ca T5(2p),

where Cy depends only on n and v.

Proof. The following estimate for the Green function Fg* (x,y;t,s)
is obtained similarly to [KN09, Theorem 3.6]:

Ny [z —yf?
e (- N E) ()
where Ny and N3 are completely determined by n and v.

Combination of (13) with condition (3) gives for r < 2p and any
(z;t) € A,

| Dy DI (x, 95, 5)| <

/ Ty (e, s 1, 5)] dyds

Qr(zt)NA,
t
Nao(|z - yl) |z —yP?
é/ / m@Xp(-Ng PR )dyds

t—r2 Br(z)

Change of variables o = | — y|/Vt — s, T = |z — y| gives

/ 11 (z,y;t, s)| dyds

Qr(w;t)mAﬂ
(14)
T

< / / Ny exp (—N30) 0" 27 drdo < o7, (1)
0 0

(Ny and Cy depend only on n and v). B
For a vector function f € C(.A,) and for all (z;t) € A, we have

T2 (z;8)] < [Ifllec, -/ITl(fv,y;t, s)dyds < Cy To(2p) - Iflleca,)-
A,
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It remains to show that Tif € C(A,). We take arbitrary points
(z;t),(7;t) € A, and assume without loss of generality that ¢ < ¢.
Then for any small 6 > 0 we have

(Tof)(2;t) — (Tf)(Z;1) = Jy + Jo
= < / + / ) (Tl(x, yit,s) — Ti(,y;t, s))f(y; s) dyds.

ApﬂQ(s(f;{) -AP\Q5(‘i§t~)

If (x;t) € @5/2@;{) then (14) gives

A< ey [ (Tt o)+ 173G uid ) dyds
Ameé (jf)
<20, 7,(33/2) [flecr

Thus, given € we can choose ¢ such that |J;] < e.

Next, DnyFi*(:c,y;t,s) is continuous w.r.t. (x;t) and w.r.t. z*
for (x;t) # (y; s). Therefore, T} (x, y;t, s) is continuous w.r.t. (z;t) for
(x;t) # (y; s). Thus, it is equicontinuous on the compact set

{(z,y5t,8) = (3t) € Q@ 8) N A, (y55) € A, \ Qs(T: 1)}

Therefore, for chosen § we obtain, as (z;t) — (Z;1),

Jo| < ||f| oz \-meas(A max Ty(x,y;t,s)=T1(Z,y; t,s)| — 0,
o < Wllegay meas(Ay)  max T3 yit, ) ~Ta(E g 9)

and the Lemma follows. O

We continue the proof of Theorem 3.2. Choose the value of pgy
so small that J,(2py) < (202)_1, where Oy is the constant from
Lemma 3.3. Then by the Banach theorem the operator T — T; in
(12) is invertible. This gives z € C;:? (A,). Moreover, Lemma 3.3 and
inequality (10) provide (8). The proof is complete. O

For p < py we introduce the Green function I'y ,(z,y;t,s) of the
operator M in the cylinder A,. The following statement is an analogue
of Theorem 2.6 [CKP12| for the operators with C2P-coefficients.
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Theorem 3.4. The function DIy ,(z,y;t,s) is continuous for (z;t) #
(y;s), and the estimate

1 dist{y, 0B,(2")}
[t =5t I2  (f — 5) D)2 }

a2
><exp(—N5|Q;f y|>
—s

| DT p(z,y;t,s)] < Nymin {

(15)
holds for any (x;t),(y;s) € A,, s < t. Here Ny and N5 are the
constants depending only on n, v, and o.

Proof. Under construction. 0

Further, we introduce the barrier function v defined as the weak
solution of the initial-boundary value problem

Mv= 0 in A,
v= 0 on 0"A,, (16)
o) = P(=2) for e By(a)

where ¢ is the same as in (7).

Theorem 3.5. Let b satisfy the first relation in (4) with
v = Ns(n,v,0) (here Ny is the constant in (15)). Then there exists a
positive py < po such that for all p < po the problem (16) admits a

unique solution v € C;:?(Ap). Moreover, the inequality

w, (2p)
p
holds true for any (z;t) € A,. Here C3 = Cs(n,v,0) > 0, py is
completely defined by n, v, o, and w, while z € Cij?(Ap) 1s defined

in (7).

Proof. We follow the line of proof of Theorem 3.5 in [AN19]. Consider
in A, the auxiliary function w® = v—2z. We observe that w® vanishes

on 9'A,, and

|Dv(z;t) — Dz(x;t)| < Cs

(17)

Mow? = —p (Diw(z) + Diz) in A,
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Hence, w® can be represented in A, via the Green function Iy ,(z, y; t, 5)
as

WWM;—/‘mm%mwww

A,N{s<t}
x (Diw® (y; 8) + Diz(y; s)) dyds.

Differentiation with respect to x gives

Dyw? (z;t) = — / D, Top(z,y;t, 8)b' (y; 8) x
A,n{s<t}

x (Diw® (y; 8) + Diz(y; s)) dyds.
Therefore, we get the relation
(I+Ty) Dw® = —Ty,Dz, (18)

where Ty denotes the matrix operator whose (k,7) entries are integral
operators with kernels D, I'g ,(, y; t, $)b (y; $) X {s<t}-
The statement of Theorem follows from the next assertion.

Lemma 3.6. The operator Ty is bounded in C(A,), and
ITallcsc < Cawy (29),
where Cy depends only on n, v, and o.
Proof. Recall that p < R/2 and Qp "R’ C Q. Thus,
dist{y, 0B, (")} < dp(y; )

for any (y;s) € A,, and the combination of estimate (15) with the
first relation in (4) gives for r < 2p and (z;t) € A,

/ |DxLo (2, y3t, 8)| [b(y; s)| dyds < No(n)Nyw, (r)  (19)
Qr(z;t)NA,

(here Ny is the constant in (15)).
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For arbitrary vector function f € C(A,) and for all (z;t) € A, we
have

| Tof ()] < [Iflleea,) - /!DzFo,p(ﬂc,y;t, s)| [b(y; s)| dyds
Ap
< NoNaw, (20) - [[Ellea,)-

It remains to show that Tof € C(A,). We take arbitrary points
(z;t), (%;1) € A, and assume without loss of generality that ¢ < .
Then for any small 6 > 0 we have

(Tof)(z; ) — (Tof)(2;8) = Ty + Jo

— ( / + ) (Dxfom(x, y;t,s) — Dwro,p(fa Y, t~, 3)) X

ApNQs(Z5t)  Ap\Qs(Z:t)
x [b(y; s) - £(y; )] dyds.

If (x;t) € Q5/5(Z; 1) then (14) gives

| Sl < fllea,) - / (ID2Top(w,y5t, 8)| + | Delo p(7, 51, 5)]) %
Ameé(ff;E)
x [b(y; s)| dyds < 2NgN1w(36/2) - [[le(a,)-

Thus, given € we can choose d such that |e71| <e.
On the other hand, D,y ,(x,y;t, s) is continuous for (z;t) # (y; s).
Thus, it is equicontinuous on the compact set

{(z,y:t,8) : (2:t) € Qspa(F ) N A, (y55) € A\ Qs(T:1)}.

Therefore, for chosen 0 we obtain, as (z;t) — (Z;1t),

| o] < (Iflle,) S uax |DoTo (3 t, s) — Dploo(E, ys £, 5)| X

P s\ T3

X / |b(y; s)| dyds — 0,
Ap
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and the Lemma follows. O

We continue the proof of Theorem 3.5. Choose the value of py
so small that w,(2p0) < (2C4)~", where C, is the constant from
Lemma 3.6. Then by the Banach theorem the operator I+ T, in (18) is
invertible. This gives the existence and uniqueness of w® € Cif (A,),
and thus, the unique solvability of the problem (16). Moreover, Lemma

3.6 and inequality (8) provide (17). The proof is complete. O

To prove Theorem 2.1 we need the following maximum principle.

Lemma 3.7. Let M be defined by (2), and let assumptions (3)-(4)
be satisfied in a domain € C R". Let a function w € Cif(é’) satisfy
Muw >0 in E. If w attains its minimum in a point (2°;t°) € £\ 9'E
then w = const on the closure of the dependence set of (2°;1°).

Proof The Harnack inequality for parabolic divergence-type operators
was established in the paper [Zha96| under the following assumptions:
the principal coefficients a* are Holder continuous, and the lower-order
coefficients b° satisfy (5) with arbitrary v > 0 (and integration over
(t —r?% t +1r?) x R" that is inessential, see Remark 2). However, it is
mentioned in [Zha96| that the assumption of the Holder continuity of
principal coefficients is needed only for the pointwise gradient estimate
of the Green function for the operator My, see (15).

By Theorem 3.4 this estimate holds for operators with C%? coefficients.
Further, in fact only (5) with a certain v occuring in the estimate of
DIy, is used in [Zha96]. The latter coincides with the assumption
beK,.

Since our assumption (4) implies b € K,, in any strict interior
subdomain of @ \ &Q (see Remark 2), the strong maximum principle
holds for the operator M. O

Remark 4. Similarly to Lemma 3.7 in [AN19], this Lemma is the
only point where we need the second relation in (4). If we could prove
at least weak maximum principle for the operator M using only the
quantity w,’, we did not need wz‘f at all. Unfortunately, we cannot do
it, and the question whether the second relation in (4) is necessary for
the Boundary Point Principle remains open.
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Proof of Theorem 2.1.

We begin with the function ¢ and recall that ¢, € W2>'(A,) for
any 1 < p < oo. Therefore, the equation (9) can be rewritten in the
non-divergence form:

Oiho — a”(0;8) D; Djihg = 0 in A,
o =0 on 0"A,,
Vo(x; —p?) = gp(w_—pzp) for x € B,(z”).

So, it is well known! (see [Vyb57| and [Fri58]) that the boundary point
principle holds for ¢y. By rescaling A, into .4; we get the estimate

Dun(050) > )

Next, the relation (11), Lemma 3.3, and inequality (8) imply for
sufficiently small p

Dyz(0;0) = Dytho(0;0) — IT1 Dzlea,)
N Jo(2p) _ Nz

> — — 010,y > —.
p p 2p

The relation (17) gives for sufficiently small p

D,v(0;0) > D,z(0;0) — | Dv(0;0) — Dz(0;0)|
Ny w, (2p) S Nz
2p p 4p

We fix such a p. Since u is nonconstant on the dependence set of (0;0),
Lemma 3.7 ensures

u(z; —p*) —u(0;0) >0 for € Bs,/a(a”).
Therefore, we have for sufficiently small e

M(u—u(0;0) —ev) 20 in Ay u—u(0;0)—ev >0 on JA,.

n [Vyb57] and [Fri58], classical solutions were considered; however, the proof
works also for strong solutions belonging to stl(.Ap) by the Aleksandrov—
Bakelman-Krylov maximum principle ([Kry76], see also [Naz05]).
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By Lemma 3.7 the estimate u — u(0;0) > ev holds true in A,, with
equality at the origin. This gives

ou
(0 - _ . < _ .
an(O, 0) D, u(0;0) < —eD,v(0;0),

which completes the proof. O
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