

Препринт Санкт-Петербургского математического общества Поступил 26.11.2023 Доступен на сайте http://www.mathsoc.spb.ru/preprint/

Boundary Point Principle for divergence type parabolic equations with principal coefficients discontinuous in time [preliminary version]

Darya E. Apushkinskaya, Alexander I. Nazarov

1 Introduction

1.1 Notation and conventions

Throughout the paper we use the following notation: $x = (x', x_n) = (x_1, \dots, x_{n-1}, x_n)$ is a point in \mathbb{R}^n ; $(x;t) = (x', x_n;t) = (x_1, \dots, x_n;t)$ is a point in \mathbb{R}^{n+1} ; $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_n > 0\}, \qquad \mathbb{R}^{n+1}_+ = \{(x;t) \in \mathbb{R}^{n+1} : x_n > 0\};$ |x|, |x'| are the Euclidean norms in corresponding spaces; $B_r(x^0)$ is the open ball in \mathbb{R}^n with center x^0 and radius r; $B_r = B_r(0);$ $Q_r(x^0;t^0) = B_r(x^0) \times (t^0 - r^2;t^0); \qquad Q_r = Q_r(0;0);$

1

 D_i denotes the operator of (weak) differentiation with respect to x_i ; $D = (D', D_n) = (D_1, \dots, D_{n-1}, D_n); \quad \partial_t = \frac{\partial}{\partial t}.$

We adopt the convention that the indices i and j run from 1 to n. We also adopt the convention regarding summation with respect to repeated indices.

We use standard notation for the functional spaces. For a bounded domain $\mathcal{E} \subset \mathbb{R}^{n+1}$ we understand $\mathcal{C}_{x,t}^{1,0}(\overline{\mathcal{E}})$ as the space of $u \in \mathcal{C}(\overline{\mathcal{E}})$ such that $Du \in \mathcal{C}(\overline{\mathcal{E}})$.

Definition 1. We say that a continuous function $\sigma : [0,1] \to \mathbb{R}_+$ belongs to the class \mathcal{D} if

- σ is increasing, and $\sigma(0) = 0$;
- $\sigma(\tau)/\tau$ is summable and decreasing.

Remark 1. It should be noted that our assumption about the monotonicity of $\sigma(\tau)/\tau$ is not restrictive, and moreover, without loss of generality σ can be assumed continuously differentiable on (0; 1] (see [AN16, Remark 1.2] and [AN19, Remark 1] for details).

For $\sigma \in \mathcal{D}$ we define the function \mathcal{J}_{σ} as

$$\mathcal{J}_{\sigma}(s) := \int_{0}^{s} \frac{\sigma(\tau)}{\tau} \, d\tau.$$

Definition 2. Let \mathcal{E} be a bounded domain in \mathbb{R}^n . We say that a function $\zeta : \mathcal{E} \to \mathbb{R}$ belongs to the class $\mathcal{C}^{0,\mathcal{D}}(\mathcal{E})$, if

• $|\zeta(x) - \zeta(y)| \leq \sigma(|x - y|)$ for all $x, y \in \overline{\mathcal{E}}$, and σ belongs to the class \mathcal{D} .

Similarly, suppose that \mathcal{E} is a bounded domain in \mathbb{R}^{n+1} . A function $\zeta : \mathcal{E} \to \mathbb{R}$ is said to belong to the class $\mathcal{C}_x^{0,\mathcal{D}}(\mathcal{E})$, if

• $|\zeta(x;t) - \zeta(y;t)| \leq \sigma(|x-y|)$ for all $(x;t), (y;t) \in \overline{\mathcal{E}}$, and σ belongs to the class \mathcal{D} .

We use the letters C and N (with or without indices) to denote various constants. To indicate that, say, C depends on some parameters, we list them in parentheses: $C(\ldots)$.

2 Statement of the problem

Let Q be a bounded domain in \mathbb{R}^{n+1} with topological boundary ∂Q . We define the parabolic boundary $\partial' Q$ as the set of all points $(x^0; t^0) \in \partial Q$ such that for any $\varepsilon > 0$, we have $Q_{\varepsilon}(x^0; t^0) \setminus \overline{Q} \neq \emptyset$. By $d_p(x; t)$ we denote the parabolic distance between (x; t) and $\partial' Q$ which is defined as follows:

$$d_{p}(x;t) := \sup\{\rho > 0 : Q_{\rho}(x;t) \cap \partial' Q = \emptyset\}.$$

Next, we define the lateral surface $\partial''Q$ as the set of all points $(x^0; t^0) \in \partial'Q$ such that $Q_{\varepsilon}(x^0; t^0) \cap Q \neq \emptyset$ for any $\varepsilon > 0$.

We suppose that Q satisfies the *parabolic interior* $\mathcal{C}^{1,\mathcal{D}}$ -*paraboloid* condition. It means that in a local coordinate system $\partial''Q$ is given by the equation $x_n = F(x';t)$, where F is a \mathcal{C}^1 -function such that F(0;0) = 0 and the inequality

$$F(x';t) \leqslant \sqrt{|x'|^2 - t} \cdot \sigma(\sqrt{|x'|^2 - t}) \quad \text{for} \quad t \leqslant 0 \tag{1}$$

holds in some neighborhood of the origin. Here σ is a C^1 -function belonging to the class \mathcal{D} (see Remark 1).

Let an operator \mathcal{M} be defined by the formula

$$\mathcal{M}u := \partial_t u - D_i(a^{ij}(x;t)D_j u) + b^i(x;t)D_i u = 0.$$
(2)

Suppose that the coefficients of \mathcal{M} satisfy the following conditions:

$$\nu \mathcal{I}_n \le (a^{ij}(x;t)) \le \nu^{-1} \mathcal{I}_n,$$

$$a^{ij} \in \mathcal{C}_x^{0,\mathcal{D}}(Q) \quad \text{for all} \quad i,j = 1,\dots,n,$$
(3)

and

$$\omega_p^-(r) \to 0 \quad \text{and} \quad \omega_p^+(r) \to 0 \qquad \text{as} \quad r \to 0,$$
 (4)

where

$$\begin{split} \omega_p^-(r) &:= \sup_{(x;t)\in Q} \int\limits_{Q_r(x;t)\cap Q} \frac{|\mathbf{b}(y;s)|}{(t-s)^{(n+1)/2}} \exp\left(-\gamma \frac{|x-y|^2}{t-s}\right) \times \\ &\times \frac{d_p(y;s)}{d_p(y;s) + \sqrt{|x-y|^2 + t-s}} \, dy ds; \end{split}$$

$$\begin{split} \omega_p^+(r) &:= \sup_{(x;t)\in Q} \int_{Q_r(x;t+r^2)\cap Q} \frac{|\mathbf{b}(y;s)|}{(s-t)^{(n+1)/2}} \exp\left(-\gamma \, \frac{|x-y|^2}{s-t}\right) \times \\ &\times \frac{d_p(y;s)}{d_p(y;s) + \sqrt{|x-y|^2 + s - t}} \, dy ds. \end{split}$$

Here ν is a positive constant, \mathcal{I}_n is identity $(n \times n)$ -matrix, $\mathbf{b}(y;s) = (b^1(y;s), \ldots, b^n(y;s))$, and γ is a positive constant to be determined later, depending only on n, ν and on the moduli of continuity of the coefficients a^{ij} in spatial variables.

Remark 2. Notice that in any strict interior subdomain of $\overline{Q} \setminus \partial' Q$ condition (4) means that **b** is an element of the parabolic Kato class \mathbf{K}_n , see [CKP12]. Indeed, in this case (4) can be rewritten as follows:

$$\sup_{\substack{(x;t)\in Q\\(t-r^2,t+r^2)\times B_r(x)}} \int \frac{|\mathbf{b}(y;s)|}{|s-t|^{(n+1)/2}} \cdot \exp\left(-\gamma \frac{|x-y|^2}{|s-t|}\right) dy ds \to 0$$
(5)

as $r \to 0$.

This condition differs from Definition 3.1 [CKP12] only in that the integration in [CKP12] is over $(t - r^2, t + r^2) \times \mathbb{R}^n$. However, using the covering of $\mathbb{R}^n \setminus B_r(x)$ by the balls of radius r/3 one can check that corresponding suprema converge to zero simultaneously.

In the whole domain Q our condition (4) is weaker then $\mathbf{b} \in \mathbf{K}_n$.

To formulate our main result we need the following notion.

Definition 3. For a point $(x;t) \in \overline{Q}$ we define its *dependence set* as the set of all points $(y;s) \in \overline{Q}$ admitting a vector-valued map $\mathfrak{F}: [0,1] \mapsto \mathbb{R}^{n+1}$ such that the last coordinate function \mathfrak{F}_{n+1} is strictly increasing and

$$\mathfrak{F}(0) = (y; s); \quad \mathfrak{F}(1) = (x; t); \quad \mathfrak{F}((0, 1)) \subset Q.$$

If Q is a right cylinder with generatrix parallel to the t-axis, then for any $(x;t) \in \overline{Q}$ the dependence set is $\overline{Q} \cap \{s < t\}$.

Theorem 2.1. Let Q be a bounded domain in \mathbb{R}^{n+1} , let $\partial''Q$ satisfy the interior parabolic $\mathcal{C}^{1,\mathcal{D}}$ -paraboloid condition, let \mathcal{M} be defined by (2), and let assumptions (3)-(4) be satisfied.

In addition, assume that a function $u \in \mathcal{C}^{1,0}_{x,t}(\overline{Q})$ satisfies, in the weak sense, the inequality

$$\mathcal{M}u \ge 0$$
 in Q .

Then, if u attends its minimum at a point $(x^0; t^0) \in \partial''Q$, and u is nonconstant on the dependence set of $(x^0; t^0)$, we have

$$\frac{\partial u}{\partial \mathbf{n}}(x^0;t^0) < 0$$

Here $\frac{\partial}{\partial \mathbf{n}}$ denotes the derivative with respect to the spatial exterior normal on $\partial'' Q \cap \{t = t^0\}$.

Remark 3. Notice that we do not care of the behavior of u after t^0 . Thus, without loss of generality we suppose $Q = Q \cap \{t < t_0\}$. Moreover, we may assume that $(x^0; t^0) = (0; 0)$, and $\partial''Q$ is locally a paraboloid

$$x_n = \mathcal{P}(x';t) := \sqrt{|x'|^2 - t} \cdot \sigma(\sqrt{|x'|^2 - t}),$$

where $\sigma \in \mathcal{D}$ is smooth.

3 Estimates of solutions

We begin with flattening the boundary of the paraboloid by the coordinate transform

$$\tilde{x}' = x'; \quad \tilde{t} = t; \quad \tilde{x}_n = x_n - \mathcal{P}(x';t).$$
 (6)

Proposition 3.1 ([AN19, Lemma 3.2]). Assumptions (3) and (4) on a^{ij} and **b** remain valid under transform (6).

Thus, we may consider $\partial''Q$ locally as a flat boundary $x_n = 0$ and assume, without loss of generality, that $Q_R \cap \mathbb{R}^{n+1}_+ \subset Q$.

Next, we take for $0 < \rho \leq R/2$ the cylinder $\mathcal{A}_{\rho} = Q_{\rho}(x^{\rho}; 0)$ (here $x^{\rho} = (0, \ldots, 0, \rho)$). Define the auxiliary function z as the solution of the initial-boundary value problem

$$\begin{cases} \mathcal{M}_0 z := \partial_t z - D_i(a^{ij}(x;t)D_j z) = 0 & \text{in} \quad \mathcal{A}_\rho, \\ z = 0 & \text{on} \quad \partial'' \mathcal{A}_\rho, \\ z(x;-\rho^2) = \varphi(\frac{x-x^\rho}{\rho}) & \text{for} \quad x \in B_\rho(x^\rho), \end{cases}$$
(7)

where φ is a smooth cut-off function such that

$$\varphi(x) = 1$$
 for $|x| < 1/2$; $\varphi(x) = 0$ for $|x| > 3/4$.

The existence of (unique) weak solution z follows from the general parabolic theory.

Theorem 3.2. The function z belongs to $C_{x,t}^{1,0}(\overline{\mathcal{A}}_{\rho})$ for sufficiently small ρ . Moreover, there exists a positive constant $\tilde{\rho}_0 \leq R/2$ depending only on n, ν and σ , such that the inequality

$$|Dz(x;t)| \leqslant \frac{C_1(n,\nu)}{\rho}, \qquad (x;t) \in \overline{\mathcal{A}}_{\rho}, \tag{8}$$

holds true for all $\rho \leq \widetilde{\rho}_0$.

Proof. We partially follow the line of the proof of [AN19, Theorem 3.3]. Let x^* be an arbitrary point in $\overline{B}_{\rho}(x^{\rho})$. We introduce the auxiliary function ψ_{x^*} as the solution of the problem

$$\begin{cases} \mathcal{M}_{0}^{x^{*}}\psi_{x^{*}} = 0 & \text{in } \mathcal{A}_{\rho}, \\ \psi_{x^{*}} = 0 & \text{on } \partial''\mathcal{A}_{\rho}, \\ \psi_{x^{*}}(x; -\rho^{2}) = \varphi(\frac{x-x^{\rho}}{\rho}) & \text{for } x \in B_{\rho}(x^{\rho}), \end{cases}$$
(9)

where $\mathcal{M}_0^{x^*} := \partial_t - D_i a^{ij}(x^*; t) D_j$ is the operator with coefficients frozen at the point x^* (and thus constant in spatial variables). It is well known (see [KN09, Section 5]) that $\psi_{x^*} \in W_p^{2,1}(\mathcal{A}_\rho)$ for any 1 .By homogeneity argument,

$$|D\psi_{x^*}(y;s)| \leqslant \frac{N_1(n,\nu)}{\rho}, \qquad (y;s) \in \overline{\mathcal{A}}_{\rho}.$$
 (10)

Setting $w^{(1)} = z - \psi_{x^*}$ we observe that $w^{(1)}$ vanishes on $\partial' \mathcal{A}_{\rho}$. Hence, $w^{(1)}$ can be represented in the cylinder \mathcal{A}_{ρ} as

$$w^{(1)}(x;t) = \int_{\mathcal{A}_{\rho} \cap \{s \leq t\}} \Gamma_{\rho}^{x^*}(x,y;t,s) \mathcal{M}_0^{x^*} w^{(1)}(y;s) \, dy ds,$$
$$\stackrel{(\star)}{=} \int_{\mathcal{A}_{\rho} \cap \{s \leq t\}} \Gamma_{\rho}^{x^*}(x,y;t,s) \left(\mathcal{M}_0^{x^*} z(y) - \mathcal{M}_0 z(y) \right) \, dy,$$

where $\Gamma_{\rho}^{x^*}$ stands for the Green function of the operator $\mathcal{M}_0^{x^*}$ in \mathcal{A}_{ρ} . The equality (*) follows from the relation $\mathcal{M}_0^{x^*}\psi_{x^*} = \mathcal{M}_0 z = 0$.

Applying integration by parts we get another version of the representation formula:

$$w^{(1)}(x;t) = \int_{\mathcal{A}_{\rho} \cap \{s \leq t\}} D_{y_i} \Gamma_{\rho}^{x^*}(x,y;t,s) \left(a^{ij}(x^*;s) - a^{ij}(y;s) \right) \times D_j z(y;s) \, dy ds.$$

Differentiating both sides with respect to x_k , k = 1, ..., n, we get the system of equations

$$D_k z(x;t) - \int_{\mathcal{A}_\rho \cap \{s \leqslant t\}} D_{x_k} D_{y_i} \Gamma_\rho^{x^*}(x,y;t,s) \times \left(a^{ij}(x^*;s) - a^{ij}(y;s)\right) D_j z(y;s) \, dy ds = D_k \psi_{x^*}(x;t).$$
(11)

Now we put $x^* = x$ and get the relation

$$\left(\mathbb{I} - \mathbb{T}_1\right) Dz = \Psi,\tag{12}$$

where

$$\Psi = D\psi_{x^*}(x;t)\Big|_{x^*=}$$

while \mathbb{T}_1 denotes the matrix integral operator whose kernel is matrix T_1 with entries

$$T_1^{kj}(x,y;t,s) = D_{x_k} D_{y_i} \Gamma_{\rho}^{x^*}(x,y;t,s) \big|_{x^*=x} \times \left(a^{ij}(x;s) - a^{ij}(y;s) \right) \chi_{\{s \le t\}}.$$

It is easy to see that $\Psi \in \mathcal{C}(\overline{\mathcal{A}}_{\rho})$. Therefore, the statement of Theorem follows from the next assertion.

Boundary Point Principle for parabolic equations

Lemma 3.3. The operator \mathbb{T}_1 is bounded in $\mathcal{C}(\overline{\mathcal{A}}_{\rho})$, and

$$\|\mathbb{T}_1\|_{\mathcal{C}\to\mathcal{C}}\leqslant C_2\,\mathcal{J}_{\sigma}(2\rho),$$

where C_2 depends only on n and ν .

Proof. The following estimate for the Green function $\Gamma_{\rho}^{x^*}(x, y; t, s)$ is obtained similarly to [KN09, Theorem 3.6]:

$$|D_x D_y \Gamma_{\rho}^{x^*}(x, y; t, s)| \leqslant \frac{N_2}{(t-s)^{(n+2)/2}} \exp\left(-N_3 \frac{|x-y|^2}{t-s}\right), \quad (13)$$

where N_2 and N_3 are completely determined by n and ν .

Combination of (13) with condition (3) gives for $r \leq 2\rho$ and any $(x;t) \in \overline{\mathcal{A}}_{\rho}$

$$\int_{Q_r(x;t)\cap\mathcal{A}_{\rho}} |T_1(x,y;t,s)| \, dyds$$

$$\leqslant \int_{t-r^2}^{t} \int_{B_r(x)} \frac{N_2 \,\sigma(|x-y|)}{(t-s)^{(n+2)/2}} \exp\left(-N_3 \,\frac{|x-y|^2}{t-s}\right) dy ds.$$

Change of variables $\rho = |x - y| / \sqrt{t - s}$, $\tau = |x - y|$ gives

$$\int_{\substack{Q_r(x;t)\cap\mathcal{A}_{\rho}\\ \leqslant}} |T_1(x,y;t,s)| \, dyds$$

$$\leqslant \int_{0}^{\infty} \int_{0}^{r} N_4 \exp\left(-N_3 \varrho^2\right) \varrho^{n-1} \frac{\sigma(\tau)}{\tau} \, d\tau d\varrho \leqslant C_2 \mathcal{J}_{\sigma}(r)$$
(14)

 $(N_4 \text{ and } C_2 \text{ depend only on } n \text{ and } \nu).$

For a vector function $\mathbf{f} \in \mathcal{C}(\overline{\mathcal{A}}_{\rho})$ and for all $(x; t) \in \overline{\mathcal{A}}_{\rho}$ we have

$$|\mathbb{T}_1 \mathbf{f}(x;t)| \leq \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \int_{\mathcal{A}_{\rho}} |T_1(x,y;t,s)| \, dy ds \leq C_2 \, \mathcal{J}_{\sigma}(2\rho) \cdot \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})}.$$

It remains to show that $\mathbb{T}_1 \mathbf{f} \in \mathcal{C}(\overline{\mathcal{A}}_{\rho})$. We take arbitrary points $(x;t), (\tilde{x};\tilde{t}) \in \overline{\mathcal{A}}_{\rho}$ and assume without loss of generality that $t < \tilde{t}$. Then for any small $\delta > 0$ we have

$$(\mathbb{T}_{1}\mathbf{f})(x;t) - (\mathbb{T}_{1}\mathbf{f})(\tilde{x};\tilde{t}) = J_{1} + J_{2}$$

$$:= \Big(\int_{\mathcal{A}_{\rho}\cap Q_{\delta}(\tilde{x};\tilde{t})} + \int_{\mathcal{A}_{\rho}\setminus Q_{\delta}(\tilde{x};\tilde{t})} \Big) \Big(T_{1}(x,y;t,s) - T_{1}(\tilde{x},y;\tilde{t},s)\Big) \mathbf{f}(y;s) \, dy ds.$$

If $(x;t) \in \overline{Q}_{\delta/2}(\tilde{x};\tilde{t})$ then (14) gives

$$\begin{aligned} |J_1| &\leq \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \int_{\mathcal{A}_{\rho} \cap Q_{\delta}(\tilde{x};\tilde{t})} \left(|T_1(x,y;t,s)| + |T_1(\tilde{x},y;\tilde{t},s)| \right) dy ds \\ &\leq 2C_2 \, \mathcal{J}_{\sigma}(3\delta/2) \cdot \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})}. \end{aligned}$$

Thus, given ε we can choose δ such that $|J_1| \leq \varepsilon$.

Next, $D_x D_y \Gamma_{\rho}^{x^*}(x, y; t, s)$ is continuous w.r.t. (x; t) and w.r.t. x^* for $(x; t) \neq (y; s)$. Therefore, $T_1(x, y; t, s)$ is continuous w.r.t. (x; t) for $(x; t) \neq (y; s)$. Thus, it is equicontinuous on the compact set

$$\{(x,y;t,s): (x;t)\in \overline{Q}_{\delta/2}(\tilde{x};\tilde{t})\cap \overline{\mathcal{A}}_{\rho}, (y;s)\in \overline{\mathcal{A}}_{\rho}\setminus Q_{\delta}(\tilde{x};\tilde{t})\}.$$

Therefore, for chosen δ we obtain, as $(x; t) \to (\tilde{x}; \tilde{t})$,

$$|J_2| \leqslant \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \operatorname{meas}(\overline{\mathcal{A}}_{\rho}) \max_{(y;s)\in\mathcal{A}_{\rho}\setminus Q_{\delta}(\tilde{x};\tilde{t})} |T_1(x,y;t,s) - T_1(\tilde{x},y;\tilde{t},s)| \to 0,$$

and the Lemma follows.

We continue the proof of Theorem 3.2. Choose the value of ρ_0 so small that $\mathcal{J}_{\sigma}(2\rho_0) \leq (2C_2)^{-1}$, where C_2 is the constant from Lemma 3.3. Then by the Banach theorem the operator $\mathbb{I} - \mathbb{T}_1$ in (12) is invertible. This gives $z \in \mathcal{C}_{x,t}^{1,0}(\overline{\mathcal{A}}_{\rho})$. Moreover, Lemma 3.3 and inequality (10) provide (8). The proof is complete. \Box

For $\rho \leq \rho_0$ we introduce the Green function $\Gamma_{0,\rho}(x, y; t, s)$ of the operator \mathcal{M}_0 in the cylinder \mathcal{A}_{ρ} . The following statement is an analogue of Theorem 2.6 [CKP12] for the operators with $\mathcal{C}_x^{0,\mathcal{D}}$ -coefficients.

Theorem 3.4. The function $D_x\Gamma_{0,\rho}(x, y; t, s)$ is continuous for $(x; t) \neq (y; s)$, and the estimate

$$|D_{x}\Gamma_{0,\rho}(x,y;t,s)| \leq N_{4} \min\left\{\frac{1}{(t-s)^{(n+1)/2}};\frac{\operatorname{dist}\{y,\partial B_{\rho}(x^{\rho})\}}{(t-s)^{(n+2)/2}}\right\} \times \exp\left(-N_{5}\frac{|x-y|^{2}}{t-s}\right)$$
(15)

holds for any $(x;t), (y;s) \in \mathcal{A}_{\rho}$, s < t. Here N_4 and N_5 are the constants depending only on n, ν , and σ .

Proof. Under construction.

Further, we introduce the barrier function v defined as the weak solution of the initial-boundary value problem

$$\begin{cases}
\mathcal{M}v = 0 & \text{in } \mathcal{A}_{\rho}, \\
v = 0 & \text{on } \partial'' \mathcal{A}_{\rho}, \\
v(x; -\rho^{2}) = \varphi(\frac{x-x^{\rho}}{\rho}) & \text{for } x \in B_{\rho}(x^{\rho}),
\end{cases}$$
(16)

where φ is the same as in (7).

Theorem 3.5. Let **b** satisfy the first relation in (4) with $\gamma = N_5(n, \nu, \sigma)$ (here N_5 is the constant in (15)). Then there exists a positive $\hat{\rho}_0 \leq \rho_0$ such that for all $\rho \leq \hat{\rho}_0$ the problem (16) admits a unique solution $v \in C^{1,0}_{x,t}(\overline{\mathcal{A}}_{\rho})$. Moreover, the inequality

$$|Dv(x;t) - Dz(x;t)| \leq C_3 \frac{\omega_p^-(2\rho)}{\rho}$$
(17)

holds true for any $(x;t) \in \mathcal{A}_{\rho}$. Here $C_3 = C_3(n,\nu,\sigma) > 0$, $\widehat{\rho}_0$ is completely defined by n, ν, σ , and ω , while $z \in \mathcal{C}^{1,0}_{x,t}(\overline{\mathcal{A}}_{\rho})$ is defined in (7).

Proof. We follow the line of proof of Theorem 3.5 in [AN19]. Consider in \mathcal{A}_{ρ} the auxiliary function $w^{(2)} = v - z$. We observe that $w^{(2)}$ vanishes on $\partial' \mathcal{A}_{\rho}$, and

$$\mathcal{M}_0 w^{(2)} = -b^i \left(D_i w^{(2)} + D_i z \right) \quad \text{in} \quad \mathcal{A}_\rho.$$

Hence, $w^{(2)}$ can be represented in A_{ρ} via the Green function $\Gamma_{0,\rho}(x, y; t, s)$ as

$$w^{(2)}(x;t) = -\int_{\mathcal{A}_{\rho} \cap \{s \leq t\}} \Gamma_{0,\rho}(x,y;t,s) b^{i}(y;s) \times \left(D_{i} w^{(2)}(y;s) + D_{i} z(y;s) \right) dy ds.$$

Differentiation with respect to x_k gives

$$D_k w^{(2)}(x;t) = -\int_{\mathcal{A}_\rho \cap \{s \le t\}} D_{x_k} \Gamma_{0,\rho}(x,y;t,s) b^i(y;s) \times \left(D_i w^{(2)}(y;s) + D_i z(y;s) \right) dy ds.$$

Therefore, we get the relation

$$\left(\mathbb{I} + \mathbb{T}_2\right) Dw^{(2)} = -\mathbb{T}_2 Dz,\tag{18}$$

where \mathbb{T}_2 denotes the matrix operator whose (k, i) entries are integral operators with kernels $D_{x_k}\Gamma_{0,\rho}(x, y; t, s)b^i(y; s)\chi_{\{s \le t\}}$.

The statement of Theorem follows from the next assertion.

Lemma 3.6. The operator \mathbb{T}_2 is bounded in $\mathcal{C}(\overline{\mathcal{A}}_{\rho})$, and

$$\|\mathbb{T}_2\|_{\mathcal{C}\to\mathcal{C}} \leqslant C_4 \,\omega_p^-(2\rho),$$

where C_4 depends only on n, ν , and σ .

Proof. Recall that $\rho \leq R/2$ and $Q_R \cap \mathbb{R}^{n+1}_+ \subset Q$. Thus,

$$\operatorname{dist}\{y, \partial B_{\rho}(x^{\rho})\} \leqslant d_p(y; s)$$

for any $(y; s) \in \mathcal{A}_{\rho}$, and the combination of estimate (15) with the first relation in (4) gives for $r \leq 2\rho$ and $(x; t) \in \overline{\mathcal{A}}_{\rho}$

$$\int_{Q_r(x;t)\cap\mathcal{A}_{\rho}} |D_x\Gamma_{0,\rho}(x,y;t,s)| \, |\mathbf{b}(y;s)| \, dyds \leqslant N_6(n)N_4\,\omega_p^-(r) \qquad (19)$$

(here N_4 is the constant in (15)).

For arbitrary vector function $\mathbf{f} \in \mathcal{C}(\overline{\mathcal{A}}_{\rho})$ and for all $(x;t) \in \overline{\mathcal{A}}_{\rho}$ we have

$$\begin{aligned} |\mathbb{T}_{2}\mathbf{f}(x;t)| &\leq \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \int_{\mathcal{A}_{\rho}} |D_{x}\Gamma_{0,\rho}(x,y;t,s)| \, |\mathbf{b}(y;s)| \, dyds \\ &\leq N_{6}N_{4} \, \omega_{p}^{-}(2\rho) \cdot \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})}. \end{aligned}$$

It remains to show that $\mathbb{T}_2 \mathbf{f} \in \mathcal{C}(\overline{\mathcal{A}}_{\rho})$. We take arbitrary points $(x;t), (\tilde{x};\tilde{t}) \in \overline{\mathcal{A}}_{\rho}$ and assume without loss of generality that $t < \tilde{t}$. Then for any small $\delta > 0$ we have

$$\begin{aligned} (\mathbb{T}_{2}\mathbf{f})(x;t) &- (\mathbb{T}_{2}\mathbf{f})(\tilde{x};\tilde{t}) = \widetilde{J}_{1} + \widetilde{J}_{2} \\ &:= \Big(\int_{\mathcal{A}_{\rho} \cap Q_{\delta}(\tilde{x};\tilde{t})} + \int_{\mathcal{A}_{\rho} \setminus Q_{\delta}(\tilde{x};\tilde{t})} \Big) \Big(D_{x}\Gamma_{0,\rho}(x,y;t,s) - D_{x}\Gamma_{0,\rho}(\tilde{x},y;\tilde{t},s) \Big) \times \\ &\times \left[\mathbf{b}(y;s) \cdot \mathbf{f}(y;s) \right] dy ds. \end{aligned}$$

If $(x;t) \in \overline{Q}_{\delta/2}(\tilde{x};\tilde{t})$ then (14) gives

$$\begin{split} |\widetilde{J}_{1}| \leqslant \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \int_{\mathcal{A}_{\rho} \cap Q_{\delta}(\tilde{x};\tilde{t})} \left(|D_{x}\Gamma_{0,\rho}(x,y;t,s)| + |D_{x}\Gamma_{0,\rho}(\tilde{x},y;\tilde{t},s)| \right) \times \\ \times |\mathbf{b}(y;s)| \, dyds \leqslant 2N_{6}N_{4}\,\omega(3\delta/2) \cdot \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})}. \end{split}$$

Thus, given ε we can choose δ such that $|\widetilde{J}_1| \leq \varepsilon$.

On the other hand, $D_x \Gamma_{0,\rho}(x, y; t, s)$ is continuous for $(x; t) \neq (y; s)$. Thus, it is equicontinuous on the compact set

$$\{(x,y;t,s): (x;t) \in \overline{Q}_{\delta/2}(\tilde{x};\tilde{t}) \cap \overline{\mathcal{A}}_{\rho}, (y;s) \in \overline{\mathcal{A}}_{\rho} \setminus Q_{\delta}(\tilde{x};\tilde{t})\}.$$

Therefore, for chosen δ we obtain, as $(x; t) \to (\tilde{x}; \tilde{t})$,

$$\begin{split} |\widetilde{J}_{2}| \leqslant \|\mathbf{f}\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})} \cdot \max_{\mathcal{A}_{\rho} \setminus Q_{\delta}(\tilde{x};\tilde{t})} |D_{x}\Gamma_{0,\rho}(x,y;t,s) - D_{x}\Gamma_{0,\rho}(\tilde{x},y;\tilde{t},s)| \times \\ & \times \int_{A_{\rho}} |\mathbf{b}(y;s)| \, dy ds \to 0, \end{split}$$

and the Lemma follows.

We continue the proof of Theorem 3.5. Choose the value of $\hat{\rho}_0$ so small that $\omega_p^-(2\hat{\rho}_0) \leq (2C_4)^{-1}$, where C_4 is the constant from Lemma 3.6. Then by the Banach theorem the operator $\mathbb{I} + \mathbb{T}_2$ in (18) is invertible. This gives the existence and uniqueness of $w^{(2)} \in \mathcal{C}_{x,t}^{1,0}(\overline{\mathcal{A}}_{\rho})$, and thus, the unique solvability of the problem (16). Moreover, Lemma 3.6 and inequality (8) provide (17). The proof is complete. \Box

To prove Theorem 2.1 we need the following maximum principle.

Lemma 3.7. Let \mathcal{M} be defined by (2), and let assumptions (3)-(4) be satisfied in a domain $\mathcal{E} \subset \mathbb{R}^{n+1}$. Let a function $w \in \mathcal{C}^{1,0}_{x,t}(\mathcal{E})$ satisfy $\mathcal{M}w \ge 0$ in \mathcal{E} . If w attains its minimum in a point $(x^0; t^0) \in \overline{\mathcal{E}} \setminus \partial' \mathcal{E}$ then w = const on the closure of the dependence set of $(x^0; t^0)$.

Proof The Harnack inequality for parabolic divergence-type operators was established in the paper [Zha96] under the following assumptions: the principal coefficients a^{ij} are Hölder continuous, and the lower-order coefficients b^i satisfy (5) with arbitrary $\gamma > 0$ (and integration over $(t - r^2, t + r^2) \times \mathbb{R}^n$ that is inessential, see Remark 2). However, it is mentioned in [Zha96] that the assumption of the Hölder continuity of principal coefficients is needed only for the pointwise gradient estimate of the Green function for the operator \mathcal{M}_0 , see (15).

By Theorem 3.4 this estimate holds for operators with $\mathcal{C}_x^{0,\mathcal{D}}$ coefficients. Further, in fact only (5) with a certain γ occuring in the estimate of $D\Gamma_{0,\rho}$ is used in [Zha96]. The latter coincides with the assumption $\mathbf{b} \in \mathbf{K}_n$.

Since our assumption (4) implies $\mathbf{b} \in \mathbf{K}_n$ in any strict interior subdomain of $\overline{Q} \setminus \partial' Q$ (see Remark 2), the strong maximum principle holds for the operator \mathcal{M} .

Remark 4. Similarly to Lemma 3.7 in [AN19], this Lemma is the only point where we need the second relation in (4). If we could prove at least weak maximum principle for the operator \mathcal{M} using only the quantity ω_p^- , we did not need ω_p^+ at all. Unfortunately, we cannot do it, and the question whether the second relation in (4) is necessary for the Boundary Point Principle remains open.

Proof of Theorem 2.1.

We begin with the function ψ_0 and recall that $\psi_0 \in W_p^{2,1}(\mathcal{A}_\rho)$ for any 1 . Therefore, the equation (9) can be rewritten in thenon-divergence form:

$$\begin{cases} \partial_t \psi_0 - a^{ij}(0;t) D_i D_j \psi_0 = 0 & \text{in } \mathcal{A}_{\rho}, \\ \psi_0 = 0 & \text{on } \partial'' \mathcal{A}_{\rho}, \\ \psi_0(x;-\rho^2) = \varphi(\frac{x-x^{\rho}}{\rho}) & \text{for } x \in B_{\rho}(x^{\rho}). \end{cases}$$

So, it is well known¹ (see [Výb57] and [Fri58]) that the boundary point principle holds for ψ_0 . By rescaling \mathcal{A}_{ρ} into \mathcal{A}_1 we get the estimate

$$D_n\psi_0(0;0) \geqslant \frac{N_7(n,\nu)}{\rho}.$$

Next, the relation (11), Lemma 3.3, and inequality (8) imply for sufficiently small ρ

$$D_n z(0;0) \ge D_n \psi_0(0;0) - \|\mathbb{T}_1 D z\|_{\mathcal{C}(\overline{\mathcal{A}}_{\rho})}$$
$$\ge \frac{N_7}{\rho} - C_1 C_2 \frac{\mathcal{J}_{\sigma}(2\rho)}{\rho} \ge \frac{N_7}{2\rho}.$$

The relation (17) gives for sufficiently small ρ

$$D_n v(0;0) \ge D_n z(0;0) - |Dv(0;0) - Dz(0;0)|$$
$$\ge \frac{N_7}{2\rho} - C_3 \frac{\omega_p^-(2\rho)}{\rho} \ge \frac{N_7}{4\rho}.$$

We fix such a ρ . Since u is nonconstant on the dependence set of (0; 0), Lemma 3.7 ensures

$$u(x; -\rho^2) - u(0; 0) > 0$$
 for $x \in B_{3\rho/4}(x^{\rho})$.

Therefore, we have for sufficiently small ε

$$\mathcal{M}(u-u(0;0)-\varepsilon v) \ge 0 \quad \text{in } \mathcal{A}_{\rho}; \qquad u-u(0;0)-\varepsilon v \ge 0 \quad \text{on } \partial' \mathcal{A}_{\rho}.$$

¹In [Výb57] and [Fri58], classical solutions were considered; however, the proof works also for strong solutions belonging to $W_{n+1}^{2,1}(\mathcal{A}_{\rho})$ by the Aleksandrov–Bakelman–Krylov maximum principle ([Kry76], see also [Naz05]).

By Lemma 3.7 the estimate $u - u(0; 0) \ge \varepsilon v$ holds true in \mathcal{A}_{ρ} , with equality at the origin. This gives

$$\frac{\partial u}{\partial \mathbf{n}}(0;0) = -D_n u(0;0) \leqslant -\varepsilon D_n v(0;0),$$

which completes the proof.

Acknowledgments

The research of the authors is supported by the Russian Science Foundation grant 22-21-00027 fulfilled at St. Petersburg Department of the Steklov Mathematical Institute.

Список литературы

- [AN16] D.E. Apushkinskaya and A.I. Nazarov, A counterexample to the Hopf-Oleinik lemma (elliptic case), Anal. PDE 9 (2016), no. 2, 439–458.
- [AN19] _____, On the Boundary Point Principle for divergencetype equations, Rendiconti Lincei – Matematica E Applicazioni **30** (2019), no. 4, 677–699.
- [CKP12] S. Cho, P. Kim, and H. Park, Two-sided estimates on Dirichlet heat kernels for time-dependent parabolic operators with singular drifts in $C^{1,\alpha}$ -domains, J. Differential Equations **252** (2012), no. 2, 1101–1145.
- [Fri58] A. Friedman, Remarks on the maximum principle for parabolic equations and its applications, Pacific J. Math. 8 (1958), 201–211. MR 102655
- [KN09] V. Kozlov and A. Nazarov, The Dirichlet problem for nondivergence parabolic equations with discontinuous in time coefficients, Math. Nachr. 282 (2009), no. 9, 1220–1241.

- [Kry76] N.V. Krylov, Sequences of convex functions, and estimates of the maximum of the solution of a parabolic equation, Sibirsk. Mat. Ž. 17 (1976), no. 2, 290–303, [Russian]; English transl. in Sib. Math. J., 17:226–236, 1976.
- [Naz05] A.I. Nazarov, The maximum principle of A.D. Aleksandrov, Sovrem. Mat. Prilozh. 29 (2005), 127–143, [Russian]; English transl. in: J. Math. Sci. (N. Y.), 142(3):2154–2171, 2007.
- [Výb57] R. Výborný, The properties of the solutions of certain boundary problems for parabolic equations, Dokl. Akad. Nauk SSSR 117 (1957), 563–565, [Russian].
- [Zha96] Q. Zhang, A Harnack inequality for the equation $\nabla(a\nabla u) + b\nabla u = 0$, when $|b| \in K_{n+1}$, Manuscripta Math. **89** (1996), no. 1, 61–77.

Darya E. Apushkinskaya Peoples' Friendship University of Russia (RUDN University) 6 Miklukho-Maklaya St, Moscow, 117198, Russia and St. Petersburg Department of Steklov Institute Fontanka 27, St. Petersburg 191023, Russia

> Alexander I. Nazarov St. Petersburg Department of Steklov Institute Fontanka 27, St. Petersburg 191023, Russia and St. Petersburg State University Universitetskii pr. 28, St. Petersburg 198504, Russia al.il.nazarov@gmail.com

apushkinskaya@gmail.com