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1 Introduction

1.1 Notation and conventions

Throughout the paper we use the following notation:
x = (x′, xn) = (x1, . . . , xn−1, xn) is a point in Rn;
(x; t) = (x′, xn; t) = (x1, . . . , xn; t) is a point in Rn+1;
Rn

+ = {x ∈ Rn : xn > 0}, Rn+1
+ = {(x; t) ∈ Rn+1 : xn > 0};

|x|, |x′| are the Euclidean norms in corresponding spaces;
Br(x

0) is the open ball in Rn with center x0 and radius r;
Br = Br(0);
Qr(x

0; t0) = Br(x
0)× (t0 − r2; t0); Qr = Qr(0; 0);
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Di denotes the operator of (weak) differentiation with respect to xi;

D = (D′, Dn) = (D1, . . . , Dn−1, Dn); ∂t =
∂

∂t
.

We adopt the convention that the indices i and j run from 1 to n.
We also adopt the convention regarding summation with respect to
repeated indices.

We use standard notation for the functional spaces. For a bounded
domain E ⊂ Rn+1 we understand C1,0

x,t (E) as the space of u ∈ C(E) such
that Du ∈ C(E).
Definition 1. We say that a continuous function σ : [0, 1] → R+

belongs to the class D if

• σ is increasing, and σ(0) = 0;

• σ(τ)/τ is summable and decreasing.

Remark 1. It should be noted that our assumption about the mo-
notonicity of σ(τ)/τ is not restrictive, and moreover, without loss of
generality σ can be assumed continuously differentiable on (0; 1] (see
[AN16, Remark 1.2] and [AN19, Remark 1] for details).

For σ ∈ D we define the function Jσ as

Jσ(s) :=

s∫
0

σ(τ)

τ
dτ.

Definition 2. Let E be a bounded domain in Rn. We say that a
function ζ : E → R belongs to the class C0,D(E), if

• |ζ(x)− ζ(y)| ⩽ σ(|x− y|) for all x, y ∈ E , and σ belongs to the
class D.

Similarly, suppose that E is a bounded domain in Rn+1. A function
ζ : E → R is said to belong to the class C0,D

x (E), if

• |ζ(x; t) − ζ(y; t)| ⩽ σ(|x − y|) for all (x; t), (y; t) ∈ E , and σ
belongs to the class D.

We use the letters C and N (with or without indices) to denote
various constants. To indicate that, say, C depends on some parameters,
we list them in parentheses: C(. . . ).
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2 Statement of the problem
Let Q be a bounded domain in Rn+1 with topological boundary ∂Q.
We define the parabolic boundary ∂′Q as the set of all points (x0; t0) ∈
∂Q such that for any ε > 0, we have Qε(x

0; t0) \Q ̸= ∅. By dp(x; t) we
denote the parabolic distance between (x; t) and ∂′Q which is defined
as follows:

dp(x; t) := sup{ρ > 0 : Qρ(x; t) ∩ ∂′Q = ∅}.

Next, we define the lateral surface ∂′′Q as the set of all points (x0; t0) ∈
∂′Q such that Qε(x

0; t0) ∩Q ̸= ∅ for any ε > 0.
We suppose that Q satisfies the parabolic interior C1,D-paraboloid

condition. It means that in a local coordinate system ∂′′Q is given
by the equation xn = F (x′; t), where F is a C1-function such that
F (0; 0) = 0 and the inequality

F (x′; t) ⩽
√

|x′|2 − t · σ(
√

|x′|2 − t) for t ⩽ 0 (1)

holds in some neighborhood of the origin. Here σ is a C1-function
belonging to the class D (see Remark 1).

Let an operator M be defined by the formula

Mu := ∂tu−Di(a
ij(x; t)Dju) + bi(x; t)Diu = 0. (2)

Suppose that the coefficients of M satisfy the following conditions:

νIn ≤ (aij(x; t)) ≤ ν−1In,

aij ∈ C0,D
x (Q) for all i, j = 1, . . . , n,

(3)

and
ω−
p (r) → 0 and ω+

p (r) → 0 as r → 0, (4)

where

ω−
p (r) := sup

(x;t)∈Q

∫
Qr(x;t)∩Q

|b(y; s)|
(t− s)(n+1)/2

exp

(
−γ |x− y|2

t− s

)
×

× dp(y; s)

dp(y; s) +
√

|x− y|2 + t− s
dyds;
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ω+
p (r) := sup

(x;t)∈Q

∫
Qr(x;t+r2)∩Q

|b(y; s)|
(s− t)(n+1)/2

exp

(
−γ |x− y|2

s− t

)
×

× dp(y; s)

dp(y; s) +
√

|x− y|2 + s− t
dyds.

Here ν is a positive constant, In is identity (n× n)-matrix, b(y; s) =
(b1(y; s), . . . , bn(y; s)), and γ is a positive constant to be determined
later, depending only on n, ν and on the moduli of continuity of the
coefficients aij in spatial variables.

Remark 2. Notice that in any strict interior subdomain of Q \ ∂′Q
condition (4) means that b is an element of the parabolic Kato class
Kn, see [CKP12]. Indeed, in this case (4) can be rewritten as follows:

sup
(x;t)∈Q

∫
(t−r2,t+r2)×Br(x)

|b(y; s)|
|s− t|(n+1)/2

· exp
(
−γ |x− y|2

|s− t|

)
dyds→ 0 (5)

as r → 0.
This condition differs from Definition 3.1 [CKP12] only in that the

integration in [CKP12] is over (t− r2, t+ r2)×Rn. However, using the
covering of Rn \ Br(x) by the balls of radius r/3 one can check that
corresponding suprema converge to zero simultaneously.

In the whole domain Q our condition (4) is weaker then b ∈ Kn.

To formulate our main result we need the following notion.

Definition 3. For a point (x; t) ∈ Q we define its dependence set
as the set of all points (y; s) ∈ Q admitting a vector-valued map
F : [0, 1] 7→ Rn+1 such that the last coordinate function Fn+1 is strictly
increasing and

F(0) = (y; s); F(1) = (x; t); F((0, 1)) ⊂ Q.

If Q is a right cylinder with generatrix parallel to the t-axis, then for
any (x; t) ∈ Q the dependence set is Q ∩ {s < t}.
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Theorem 2.1. Let Q be a bounded domain in Rn+1, let ∂′′Q satisfy
the interior parabolic C1,D-paraboloid condition, let M be defined by
(2), and let assumptions (3)-(4) be satisfied.

In addition, assume that a function u ∈ C1,0
x,t (Q) satisfies, in the

weak sense, the inequality

Mu ⩾ 0 in Q.

Then, if u attends its minimum at a point (x0; t0) ∈ ∂′′Q, and u is
nonconstant on the dependence set of (x0; t0), we have

∂u

∂n
(x0; t0) < 0.

Here ∂
∂n

denotes the derivative with respect to the spatial exterior
normal on ∂′′Q ∩ {t = t0}.

Remark 3. Notice that we do not care of the behavior of u after
t0. Thus, without loss of generality we suppose Q = Q ∩ {t < t0}.
Moreover, we may assume that (x0; t0) = (0; 0), and ∂′′Q is locally a
paraboloid

xn = P(x′; t) :=
√

|x′|2 − t · σ(
√
|x′|2 − t),

where σ ∈ D is smooth.

3 Estimates of solutions
We begin with flattening the boundary of the paraboloid by the coor-
dinate transform

x̃′ = x′; t̃ = t; x̃n = xn − P(x′; t). (6)

Proposition 3.1 ([AN19, Lemma 3.2]). Assumptions (3) and (4) on
aij and b remain valid under transform (6).

Thus, we may consider ∂′′Q locally as a flat boundary xn = 0 and
assume, without loss of generality, that QR ∩ Rn+1

+ ⊂ Q.



Boundary Point Principle for parabolic equations 6

Next, we take for 0 < ρ ⩽ R/2 the cylinder Aρ = Qρ(x
ρ; 0) (here

xρ = (0, . . . , 0, ρ)). Define the auxiliary function z as the solution of
the initial-boundary value problem

M0z := ∂tz −Di(a
ij(x; t)Djz) = 0 in Aρ,

z = 0 on ∂′′Aρ,

z(x;−ρ2) = φ(x−xρ

ρ
) for x ∈ Bρ(x

ρ),

(7)

where φ is a smooth cut-off function such that

φ(x) = 1 for |x| < 1/2; φ(x) = 0 for |x| > 3/4.

The existence of (unique) weak solution z follows from the general
parabolic theory.

Theorem 3.2. The function z belongs to C1,0
x,t (Aρ) for sufficiently

small ρ. Moreover, there exists a positive constant ρ̃0 ⩽ R/2 depending
only on n, ν and σ, such that the inequality

|Dz(x; t)| ⩽ C1(n, ν)

ρ
, (x; t) ∈ Aρ, (8)

holds true for all ρ ⩽ ρ̃0.

Proof. We partially follow the line of the proof of [AN19, Theorem
3.3]. Let x∗ be an arbitrary point in Bρ(x

ρ). We introduce the auxiliary
function ψx∗ as the solution of the problem

Mx∗

0 ψx∗ = 0 in Aρ,

ψx∗ = 0 on ∂′′Aρ,

ψx∗(x;−ρ2) = φ(x−xρ

ρ
) for x ∈ Bρ(x

ρ),

(9)

where Mx∗
0 := ∂t − Dia

ij(x∗; t)Dj is the operator with coefficients
frozen at the point x∗ (and thus constant in spatial variables). It is well
known (see [KN09, Section 5]) that ψx∗ ∈ W 2,1

p (Aρ) for any 1 < p <∞.
By homogeneity argument,

|Dψx∗(y; s)| ⩽ N1(n, ν)

ρ
, (y; s) ∈ Aρ. (10)
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Setting w(1) = z − ψx∗ we observe that w(1) vanishes on ∂′Aρ.
Hence, w(1) can be represented in the cylinder Aρ as

w(1)(x; t) =

∫
Aρ∩{s⩽t}

Γx∗

ρ (x, y; t, s)Mx∗

0 w
(1)(y; s) dyds,

(⋆)
=

∫
Aρ∩{s⩽t}

Γx∗

ρ (x, y; t, s)
(
Mx∗

0 z(y)−M0z(y)
)
dy,

where Γx∗
ρ stands for the Green function of the operator Mx∗

0 in Aρ.
The equality (⋆) follows from the relation Mx∗

0 ψx∗ = M0z = 0.
Applying integration by parts we get another version of the repre-

sentation formula:

w(1)(x; t) =

∫
Aρ∩{s⩽t}

DyiΓ
x∗

ρ (x, y; t, s)
(
aij(x∗; s)− aij(y; s)

)
×

×Djz(y; s) dyds.

Differentiating both sides with respect to xk, k = 1, . . . , n, we get the
system of equations

Dkz(x; t)−
∫

Aρ∩{s⩽t}

Dxk
DyiΓ

x∗

ρ (x, y; t, s)×

×
(
aij(x∗; s)− aij(y; s)

)
Djz(y; s) dyds = Dkψx∗(x; t). (11)

Now we put x∗ = x and get the relation

(I− T1)Dz = Ψ, (12)

where
Ψ = Dψx∗(x; t)

∣∣
x∗=x

while T1 denotes the matrix integral operator whose kernel is matrix
T1 with entries

T kj
1 (x, y; t, s) = Dxk

DyiΓ
x∗

ρ (x, y; t, s)
∣∣
x∗=x

×
×

(
aij(x; s)− aij(y; s)

)
χ{s≤t}.

It is easy to see that Ψ ∈ C(Aρ). Therefore, the statement of Theorem
follows from the next assertion.
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Lemma 3.3. The operator T1 is bounded in C(Aρ), and

∥T1∥C→C ⩽ C2 Jσ(2ρ),

where C2 depends only on n and ν.

Proof. The following estimate for the Green function Γx∗
ρ (x, y; t, s)

is obtained similarly to [KN09, Theorem 3.6]:

|DxDyΓ
x∗

ρ (x, y; t, s)| ⩽ N2

(t− s)(n+2)/2
exp

(
−N3

|x− y|2

t− s

)
, (13)

where N2 and N3 are completely determined by n and ν.
Combination of (13) with condition (3) gives for r ⩽ 2ρ and any

(x; t) ∈ Aρ∫
Qr(x;t)∩Aρ

|T1(x, y; t, s)| dyds

⩽

t∫
t−r2

∫
Br(x)

N2 σ(|x− y|)
(t− s)(n+2)/2

exp
(
−N3

|x− y|2

t− s

)
dyds.

Change of variables ϱ = |x− y|/
√
t− s, τ = |x− y| gives∫

Qr(x;t)∩Aρ

|T1(x, y; t, s)| dyds

⩽

∞∫
0

r∫
0

N4 exp (−N3ϱ
2)ϱn−1σ(τ)

τ
dτdϱ ⩽ C2Jσ(r)

(14)

(N4 and C2 depend only on n and ν).
For a vector function f ∈ C(Aρ) and for all (x; t) ∈ Aρ we have

|T1f(x; t)| ⩽ ∥f∥C(Aρ)
·
∫
Aρ

|T1(x, y; t, s)| dyds ⩽ C2 Jσ(2ρ) · ∥f∥C(Aρ)
.
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It remains to show that T1f ∈ C(Aρ). We take arbitrary points
(x; t), (x̃; t̃) ∈ Aρ and assume without loss of generality that t < t̃.
Then for any small δ > 0 we have

(T1f)(x; t)− (T1f)(x̃; t̃) = J1 + J2

:=
( ∫
Aρ∩Qδ(x̃;t̃)

+

∫
Aρ\Qδ(x̃;t̃)

)(
T1(x, y; t, s)− T1(x̃, y; t̃, s)

)
f(y; s) dyds.

If (x; t) ∈ Qδ/2(x̃; t̃) then (14) gives

|J1| ⩽ ∥f∥C(Aρ)
·

∫
Aρ∩Qδ(x̃;t̃)

(
|T1(x, y; t, s)|+ |T1(x̃, y; t̃, s)|

)
dyds

⩽ 2C2 Jσ(3δ/2) · ∥f∥C(Aρ)
.

Thus, given ε we can choose δ such that |J1| ⩽ ε.
Next, DxDyΓ

x∗
ρ (x, y; t, s) is continuous w.r.t. (x; t) and w.r.t. x∗

for (x; t) ̸= (y; s). Therefore, T1(x, y; t, s) is continuous w.r.t. (x; t) for
(x; t) ̸= (y; s). Thus, it is equicontinuous on the compact set

{(x, y; t, s) : (x; t) ∈ Qδ/2(x̃; t̃) ∩ Aρ, (y; s) ∈ Aρ \Qδ(x̃; t̃)}.

Therefore, for chosen δ we obtain, as (x; t) → (x̃; t̃),

|J2| ⩽ ∥f∥C(Aρ)
·meas(Aρ) max

(y;s)∈Aρ\Qδ(x̃;t̃)
|T1(x, y; t, s)−T1(x̃, y; t̃, s)| → 0,

and the Lemma follows. □

We continue the proof of Theorem 3.2. Choose the value of ρ0
so small that Jσ(2ρ0) ⩽ (2C2)

−1, where C2 is the constant from
Lemma 3.3. Then by the Banach theorem the operator I − T1 in
(12) is invertible. This gives z ∈ C1,0

x,t (Aρ). Moreover, Lemma 3.3 and
inequality (10) provide (8). The proof is complete. □

For ρ ⩽ ρ0 we introduce the Green function Γ0,ρ(x, y; t, s) of the
operator M0 in the cylinder Aρ. The following statement is an analogue
of Theorem 2.6 [CKP12] for the operators with C0,D

x -coefficients.
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Theorem 3.4. The function DxΓ0,ρ(x, y; t, s) is continuous for (x; t) ̸=
(y; s), and the estimate

|DxΓ0,ρ(x, y; t, s)| ⩽ N4min
{ 1

(t− s)(n+1)/2
;
dist{y, ∂Bρ(x

ρ)}
(t− s)(n+2)/2

}
×

× exp
(
−N5

|x− y|2

t− s

)
(15)

holds for any (x; t), (y; s) ∈ Aρ, s < t. Here N4 and N5 are the
constants depending only on n, ν, and σ.

Proof. Under construction. □

Further, we introduce the barrier function v defined as the weak
solution of the initial-boundary value problem

Mv = 0 in Aρ,

v = 0 on ∂′′Aρ,

v(x;−ρ2) = φ(x−xρ

ρ
) for x ∈ Bρ(x

ρ),

(16)

where φ is the same as in (7).

Theorem 3.5. Let b satisfy the first relation in (4) with
γ = N5(n, ν, σ) (here N5 is the constant in (15)). Then there exists a
positive ρ̂0 ⩽ ρ0 such that for all ρ ⩽ ρ̂0 the problem (16) admits a
unique solution v ∈ C1,0

x,t (Aρ). Moreover, the inequality

|Dv(x; t)−Dz(x; t)| ⩽ C3

ω−
p (2ρ)

ρ
(17)

holds true for any (x; t) ∈ Aρ. Here C3 = C3(n, ν, σ) > 0, ρ̂0 is
completely defined by n, ν, σ, and ω, while z ∈ C1,0

x,t (Aρ) is defined
in (7).

Proof. We follow the line of proof of Theorem 3.5 in [AN19]. Consider
in Aρ the auxiliary function w(2) = v−z. We observe that w(2) vanishes
on ∂′Aρ, and

M0w
(2) = −bi

(
Diw

(2) +Diz
)

in Aρ.
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Hence, w(2) can be represented inAρ via the Green function Γ0,ρ(x, y; t, s)
as

w(2)(x; t) =−
∫

Aρ∩{s⩽t}

Γ0,ρ(x, y; t, s)b
i(y; s)×

×
(
Diw

(2)(y; s) +Diz(y; s)
)
dyds.

Differentiation with respect to xk gives

Dkw
(2)(x; t) =−

∫
Aρ∩{s⩽t}

Dxk
Γ0,ρ(x, y; t, s)b

i(y; s)×

×
(
Diw

(2)(y; s) +Diz(y; s)
)
dyds.

Therefore, we get the relation

(I+ T2)Dw
(2) = −T2Dz, (18)

where T2 denotes the matrix operator whose (k, i) entries are integral
operators with kernels Dxk

Γ0,ρ(x, y; t, s)b
i(y; s)χ{s≤t}.

The statement of Theorem follows from the next assertion.

Lemma 3.6. The operator T2 is bounded in C(Aρ), and

∥T2∥C→C ⩽ C4 ω
−
p (2ρ),

where C4 depends only on n, ν, and σ.

Proof. Recall that ρ ≤ R/2 and QR ∩ Rn+1
+ ⊂ Q. Thus,

dist{y, ∂Bρ(x
ρ)} ⩽ dp(y; s)

for any (y; s) ∈ Aρ, and the combination of estimate (15) with the
first relation in (4) gives for r ⩽ 2ρ and (x; t) ∈ Aρ∫

Qr(x;t)∩Aρ

|DxΓ0,ρ(x, y; t, s)| |b(y; s)| dyds ⩽ N6(n)N4 ω
−
p (r) (19)

(here N4 is the constant in (15)).
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For arbitrary vector function f ∈ C(Aρ) and for all (x; t) ∈ Aρ we
have

|T2f(x; t)| ⩽ ∥f∥C(Aρ)
·
∫
Aρ

|DxΓ0,ρ(x, y; t, s)| |b(y; s)| dyds

⩽ N6N4 ω
−
p (2ρ) · ∥f∥C(Aρ)

.

It remains to show that T2f ∈ C(Aρ). We take arbitrary points
(x; t), (x̃; t̃) ∈ Aρ and assume without loss of generality that t < t̃.
Then for any small δ > 0 we have

(T2f)(x; t)− (T2f)(x̃; t̃) = J̃1 + J̃2

:=
( ∫
Aρ∩Qδ(x̃;t̃)

+

∫
Aρ\Qδ(x̃;t̃)

)(
DxΓ0,ρ(x, y; t, s)−DxΓ0,ρ(x̃, y; t̃, s)

)
×

× [b(y; s) · f(y; s)] dyds.

If (x; t) ∈ Qδ/2(x̃; t̃) then (14) gives

|J̃1| ⩽ ∥f∥C(Aρ)
·

∫
Aρ∩Qδ(x̃;t̃)

(
|DxΓ0,ρ(x, y; t, s)|+ |DxΓ0,ρ(x̃, y; t̃, s)|

)
×

× |b(y; s)| dyds ⩽ 2N6N4 ω(3δ/2) · ∥f∥C(Aρ)
.

Thus, given ε we can choose δ such that |J̃1| ⩽ ε.
On the other hand,DxΓ0,ρ(x, y; t, s) is continuous for (x; t) ̸= (y; s).

Thus, it is equicontinuous on the compact set

{(x, y; t, s) : (x; t) ∈ Qδ/2(x̃; t̃) ∩ Aρ, (y; s) ∈ Aρ \Qδ(x̃; t̃)}.

Therefore, for chosen δ we obtain, as (x; t) → (x̃; t̃),

|J̃2| ⩽ ∥f∥C(Aρ)
· max
Aρ\Qδ(x̃;t̃)

|DxΓ0,ρ(x, y; t, s)−DxΓ0,ρ(x̃, y; t̃, s)|×

×
∫
Aρ

|b(y; s)| dyds→ 0,
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and the Lemma follows. □

We continue the proof of Theorem 3.5. Choose the value of ρ̂0
so small that ω−

p (2ρ̂0) ⩽ (2C4)
−1, where C4 is the constant from

Lemma 3.6. Then by the Banach theorem the operator I+T2 in (18) is
invertible. This gives the existence and uniqueness of w(2) ∈ C1,0

x,t (Aρ),
and thus, the unique solvability of the problem (16). Moreover, Lemma
3.6 and inequality (8) provide (17). The proof is complete. □

To prove Theorem 2.1 we need the following maximum principle.

Lemma 3.7. Let M be defined by (2), and let assumptions (3)-(4)
be satisfied in a domain E ⊂ Rn+1. Let a function w ∈ C1,0

x,t (E) satisfy
Mw ⩾ 0 in E. If w attains its minimum in a point (x0; t0) ∈ E \ ∂′E
then w = const on the closure of the dependence set of (x0; t0).

Proof The Harnack inequality for parabolic divergence-type operators
was established in the paper [Zha96] under the following assumptions:
the principal coefficients aij are Hölder continuous, and the lower-order
coefficients bi satisfy (5) with arbitrary γ > 0 (and integration over
(t− r2, t + r2)× Rn that is inessential, see Remark 2). However, it is
mentioned in [Zha96] that the assumption of the Hölder continuity of
principal coefficients is needed only for the pointwise gradient estimate
of the Green function for the operator M0, see (15).

By Theorem 3.4 this estimate holds for operators with C0,D
x coefficients.

Further, in fact only (5) with a certain γ occuring in the estimate of
DΓ0,ρ is used in [Zha96]. The latter coincides with the assumption
b ∈ Kn.

Since our assumption (4) implies b ∈ Kn in any strict interior
subdomain of Q \ ∂′Q (see Remark 2), the strong maximum principle
holds for the operator M. □

Remark 4. Similarly to Lemma 3.7 in [AN19], this Lemma is the
only point where we need the second relation in (4). If we could prove
at least weak maximum principle for the operator M using only the
quantity ω−

p , we did not need ω+
p at all. Unfortunately, we cannot do

it, and the question whether the second relation in (4) is necessary for
the Boundary Point Principle remains open.
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Proof of Theorem 2.1.
We begin with the function ψ0 and recall that ψ0 ∈ W 2,1

p (Aρ) for
any 1 < p < ∞. Therefore, the equation (9) can be rewritten in the
non-divergence form:

∂tψ0 − aij(0; t)DiDjψ0 = 0 in Aρ,

ψ0 = 0 on ∂′′Aρ,

ψ0(x;−ρ2) = φ(x−xρ

ρ
) for x ∈ Bρ(x

ρ).

So, it is well known1 (see [Výb57] and [Fri58]) that the boundary point
principle holds for ψ0. By rescaling Aρ into A1 we get the estimate

Dnψ0(0; 0) ⩾
N7(n, ν)

ρ
.

Next, the relation (11), Lemma 3.3, and inequality (8) imply for
sufficiently small ρ

Dnz(0; 0) ⩾ Dnψ0(0; 0)− ∥T1Dz∥C(Aρ)

⩾
N7

ρ
− C1C2

Jσ(2ρ)

ρ
⩾
N7

2ρ
.

The relation (17) gives for sufficiently small ρ

Dnv(0; 0) ⩾ Dnz(0; 0)− |Dv(0; 0)−Dz(0; 0)|

⩾
N7

2ρ
− C3

ω−
p (2ρ)

ρ
⩾
N7

4ρ
.

We fix such a ρ. Since u is nonconstant on the dependence set of (0; 0),
Lemma 3.7 ensures

u(x;−ρ2)− u(0; 0) > 0 for x ∈ B3ρ/4(x
ρ).

Therefore, we have for sufficiently small ε

M(u− u(0; 0)− εv) ⩾ 0 in Aρ; u− u(0; 0)− εv ⩾ 0 on ∂′Aρ.

1In [Výb57] and [Fri58], classical solutions were considered; however, the proof
works also for strong solutions belonging to W 2,1

n+1(Aρ) by the Aleksandrov–
Bakelman–Krylov maximum principle ([Kry76], see also [Naz05]).
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By Lemma 3.7 the estimate u − u(0; 0) ⩾ εv holds true in Aρ, with
equality at the origin. This gives

∂u

∂n
(0; 0) = −Dnu(0; 0) ⩽ −εDnv(0; 0),

which completes the proof. □
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