
Препринт Санкт-Петербургского математического общества
Поступил 24 января 2026 г.
Доступен на сайте http://www.mathsoc.spb.ru/preprint/

Усреднение одномерных гиперболических
уравнений с корректором. Приближение

решений в классе Соболева 𝐻1(R)1

Дородный М. А.2

Аннотация
Рассматривается действующий в 𝐿2(R) эллиптический дифференциальный оператор
𝐴𝜀 = − 𝑑

𝑑𝑥𝑔(𝑥/𝜀)
𝑑
𝑑𝑥 , 𝜀 > 0, с периодическим коэффициентом. Мы изучаем поведение

решений задачи Коши для гиперболического уравнения 𝜕2
𝜏𝑤𝜀(𝑥, 𝜏) = −(𝐴𝜀𝑤𝜀)(𝑥, 𝜏)

при 𝜀 → 0: получена аппроксимация решения 𝑤𝜀(·, 𝜏) по 𝐻1(R)-норме с погрешностью
𝑂(𝜀) при учёте корректора.
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оценки погрешности.

Введение

Работа относится к теории усреднения (гомогенизации) периодических дифференциаль-
ных операторов. Задачам гомогенизации посвящена обширная литература; см., например,
книги [1–3]. Один из методов изучения задач усреднения в R𝑑 — это спектральный метод,
основанный на применении теории Флоке–Блоха (см., например, [1, гл. 4], [2, гл. 2], [4–6]).

Обсудим типичную задачу теории усреднения. Пусть Γ — решётка в R𝑑, Ω — ячейка ре-
шётки Γ. Для любой Γ-периодической функции 𝐹 (x) введём обозначение 𝐹 𝜀(x) := 𝐹 (𝜀−1x),
𝜀 > 0 — (малый) параметр. В 𝐿2(R𝑑) рассмотрим дифференциальный оператор (ДО),
формально заданный выражением

𝒜𝜀 = − div 𝑔𝜀(x)∇, (0.1)

где 𝑔(x) — эрмитова (𝑑 × 𝑑)-матрица-функция периодическая относительно решётки Γ,
ограниченная и положительно определённая. Оператор (0.1) моделирует простейшие случаи
микронеоднородных сред с 𝜀Γ-периодической структурой. Пусть 𝑢𝜀(x) — слабое (в смысле
интегрального тождества) решение эллиптического уравнения

− div 𝑔𝜀(x)∇𝑢𝜀(x) + 𝑢𝜀(x) = 𝑓(x), x ∈ R𝑑,

где 𝑓 ∈ 𝐿2(R𝑑). Хорошо известно, что при 𝜀 → 0 решение 𝑢𝜀 сходится в некотором
подходящем смысле к решению 𝑢0 “усреднённого” уравнения

− div 𝑔0∇𝑢0(x) + 𝑢0(x) = 𝑓(x), x ∈ R𝑑.

1 Исследование выполнено при поддержке РНФ, проект 22-11-00092-П.
2 Санкт-Петербургский государственный университет; 199034, Россия, Санкт-Петербург, Университет-

ская наб. 7/9; e-mail: mdorodni@yandex.ru.
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Оператор 𝒜hom = − div 𝑔0∇ называется эффективным оператором для 𝒜𝜀. Матрица 𝑔0

определяется согласно следующей процедуре (см., например, [3, гл. 2, § 3], [7, гл. 3, § 1]).
Требуется найти Γ-периодическое решение Ψ(x) (𝑑-вектор-строку) задачи на ячейке Ω:

div 𝑔(x)
(︀
∇Ψ(x) + 1𝑑

)︀
= 0,

ˆ
Ω

Ψ(x) 𝑑x = 0 (0.2)

(здесь 1𝑑 — единичная (𝑑 × 𝑑)-матрица). Тогда 𝑔0 =
´
Ω
𝑔(x)(∇Ψ(x) + 1𝑑) 𝑑x.

0.1.Операторные оценки погрешности при усреднении эллиптических и пара-
болических уравнений. М. Ш. Бирманом и Т. А. Суслиной (см. [7]) был предложен и
развит теоретико-операторный подход к задачам усреднения в R𝑑 (вариант спектрального
метода), основанный на масштабном преобразовании, теории Флоке–Блоха и аналитиче-
ской теории возмущений. В [7] было доказано, что

‖𝑢𝜀 − 𝑢0‖𝐿2(R𝑑) ⩽ 𝐶𝜀‖𝑓‖𝐿2(R𝑑). (0.3)

Здесь константа 𝐶 не зависит ни от 𝜀, ни от 𝑓 . Поскольку 𝑢𝜀 = (𝒜𝜀 + 𝐼)−1𝑓 , 𝑢0 = (𝒜hom +
𝐼)−1𝑓 , оценку (0.3) можно переписать в операторных терминах:

‖(𝒜𝜀 + 𝐼)−1 − (𝒜hom + 𝐼)−1‖𝐿2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶𝜀. (0.4)

Аппроксимации резольвенты (𝒜𝜀 + 𝐼)−1 по (𝐿2 → 𝐿2)-норме с погрешностью 𝑂(𝜀2) и по
(𝐿2 → 𝐻1)-норме с погрешностью 𝑂(𝜀) (при учёте корректоров) были получены в [8,9]:⃦⃦

(𝒜𝜀 + 𝐼)−1 − (𝒜hom + 𝐼)−1 − 𝜀𝐾(𝜀)
⃦⃦
𝐿2(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶𝜀2, (0.5)⃦⃦
(𝒜𝜀 + 𝐼)−1 − (𝒜hom + 𝐼)−1 − 𝜀𝐾1(𝜀)

⃦⃦
𝐿2(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶𝜀. (0.6)

Здесь 𝐾1(𝜀) = Ψ𝜀∇(𝒜hom + 𝐼)−1Π𝜀 — традиционный для теории усреднения корректор,
который дополнительно содержит вспомогательный сглаживающий оператор Π𝜀, а 𝐾(𝜀)
имеет более сложную структуру: 𝐾(𝜀) = 𝐾1(𝜀) +𝐾1(𝜀)

* +𝐾3, где 𝐾3 не зависит от 𝜀.
К усреднению параболических задач теоретико-операторный подход применялся в [10–

13]. В операторных терминах речь идёт об аппроксимации полугруппы 𝑒−𝜏𝒜𝜀 , 𝜏 > 0.
В [10, 11] была установлена оценка

‖𝑒−𝜏𝒜𝜀 − 𝑒−𝜏𝒜hom‖𝐿2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶𝜀(𝜏 + 𝜀2)−1/2, 𝜏 > 0. (0.7)

Аппроксимации полугруппы 𝑒−𝜏𝒜𝜀 по (𝐿2 → 𝐿2)-норме с погрешностью 𝑂(𝜀2) и по
(𝐿2 → 𝐻1)-норме с погрешностью 𝑂(𝜀) (при учёте корректоров) были получены в [12,13].

Оценки (0.4)–(0.7) точны по порядку; константы 𝐶 контролируются явно в терминах
данных задачи. Оценки такого вида называются операторными оценками погрешности в
задачах усреднения. Другой подход к получению операторных оценок погрешности (“метод
сдвига”) для эллиптических и параболических задач был предложен В. В. Жиковым и
С. Е. Пастуховой в работах [14–16]. См. также обзор [17].

0.2.Операторные оценки погрешности для уравнений типа Шрёдингера и ги-
перболического типа. C усреднением нестационарных уравнений типа Шрёдингера и
гиперболического типа дело обстоит несколько иначе. Им были посвящены статьи [18–23],
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где изучалось поведение решений задач Коши⎧⎨⎩
𝑖𝜕𝑧𝜀(x, 𝜏)

𝜕𝜏
= (𝒜𝜀𝑧𝜀)(x, 𝜏),

𝑧𝜀(x, 0) = 𝜑(x),
x ∈ R𝑑, 𝜏 ∈ R,

⎧⎨⎩
𝜕2𝑤𝜀(x, 𝜏)

𝜕𝜏 2
= −(𝒜𝜀𝑤𝜀)(x, 𝜏),

𝑤𝜀(x, 0) = 𝜑(x), (𝜕𝜏𝑤𝜀)(x, 0) = 𝜓(x),
x ∈ R𝑑, 𝜏 ∈ R. (0.8)

Соответствующие им “усреднённые” задачи выглядят следующим образом:⎧⎨⎩
𝑖𝜕𝑧0(x, 𝜏)

𝜕𝜏
= (𝒜hom𝑧0)(x, 𝜏),

𝑧0(x, 0) = 𝜑(x),
x ∈ R𝑑, 𝜏 ∈ R,

⎧⎨⎩
𝜕2𝑤0(x, 𝜏)

𝜕𝜏 2
= −(𝒜hom𝑤0)(x, 𝜏),

𝑤0(x, 0) = 𝜑(x), (𝜕𝜏𝑤0)(x, 0) = 𝜓(x),
x ∈ R𝑑, 𝜏 ∈ R.

Поскольку

𝑧𝜀(·, 𝜏) = 𝑒−𝑖𝜏𝒜𝜀𝜑, 𝑤𝜀(·, 𝜏) = cos(𝜏𝒜1/2
𝜀 )𝜑+𝒜−1/2

𝜀 sin(𝜏𝒜1/2
𝜀 )𝜓,

в операторных терминах речь идёт о поведении при малом 𝜀 оператор-функций 𝑒−𝑖𝜏𝒜𝜀 и
cos(𝜏𝒜1/2

𝜀 ), 𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 ), где 𝜏 ∈ R, соответственно. Для этих оператор-функций уже не
удаётся получить аппроксимации по операторной норме в 𝐿2(R𝑑), а приходится рассматри-
вать норму операторов, действующих из пространства Соболева 𝐻𝑞(R𝑑) (с подходящим 𝑞)
в 𝐿2(R𝑑). В [18] были получены точные по порядку оценки

‖𝑒−𝑖𝜏𝒜𝜀 − 𝑒−𝑖𝜏𝒜hom‖𝐻3(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)𝜀, (0.9)

‖ cos(𝜏𝒜1/2
𝜀 )− cos(𝜏(𝒜hom)1/2)‖𝐻2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)𝜀. (0.10)

Аналогичный результат для оператора 𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 ) получен в работе [19]:

‖𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 )− (𝒜hom)−1/2 sin(𝜏(𝒜hom)1/2)‖𝐻1(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)𝜀. (0.11)

Далее, в [20–23] была доказана точность этих результатов как по типу операторной нормы,
так и относительно зависимости от 𝜏 (при больших 𝜏). С другой стороны, было установлено,
что при некоторых дополнительных предположениях (например, если матрица 𝑔(x) имеет
вещественные элементы) оценки (0.9)–(0.11) допускают улучшения:

‖𝑒−𝑖𝜏𝒜𝜀 − 𝑒−𝑖𝜏𝒜hom‖𝐻2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)1/2𝜀, (0.12)

‖ cos(𝜏𝒜1/2
𝜀 )− cos(𝜏(𝒜hom)1/2)‖𝐻3/2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)1/2𝜀, (0.13)

‖𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 )− (𝒜hom)−1/2 sin(𝜏(𝒜hom)1/2)‖𝐻1/2(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)1/2𝜀. (0.14)

Поясним метод на примере вывода оценки (0.10). Ясно, что эта оценка эквивалентна
неравенству⃦⃦(︀

cos(𝜏𝒜1/2
𝜀 )− cos(𝜏(𝒜hom)1/2)

)︀
(−Δ+ 𝐼)−1

⃦⃦
𝐿2(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀. (0.15)
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За счёт масштабного преобразования неравенство (0.15) равносильно оценке⃦⃦(︀
cos(𝜏𝜀−1𝒜1/2)− cos(𝜏𝜀−1(𝒜hom)1/2)

)︀
𝜀2(−Δ+ 𝜀2𝐼)−1

⃦⃦
𝐿2(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀, (0.16)

где 𝒜 := 𝒜1. Далее, с помощью теории Флоке–Блоха оператор 𝒜 раскладывается в прямой
интеграл по операторам 𝒜(k), действующим в пространстве 𝐿2(Ω). Оператор 𝒜(k) задаёт-
ся дифференциальным выражением − divk 𝑔(x)∇k, где ∇k = ∇ + 𝑖k, divk = div+𝑖⟨·,k⟩,
при периодических граничных условиях. Параметр k называют квазиимпульсом. Спектр
оператора 𝒜(k) дискретен. Оказывается, что вклад в усреднение дают лишь пороговые
характеристики на краю спектра оператора 𝒜, т. е. достаточно знать спектральное раз-
ложение 𝒜 лишь вблизи нижнего края спектра. В частности, эффективная матрица 𝑔0 —
это гессиан первой зонной функции 𝐸1(k) в точке k = 0.

0.3.Аппроксимации решений уравнений гиперболического типа: “классические”
результаты с корректором. Отдельно обсудим известные “классические” результаты
с корректором, которые не могут быть записаны в терминах равномерной операторной
сходимости. Эти результаты относятся к операторам в ограниченной области 𝒪 ⊂ R𝑑. Ап-
проксимации для решений гиперболических уравнений с нулевыми начальными данными
и ненулевой правой частью были получены в [1, гл. 2, п. 3.6] и [3, гл. 4, п. 5]. В [1] была
доказана сильная сходимость к нулю в 𝐿2((0, 𝑇 );𝐻

1(𝒪)) разности решения и соответству-
ющего первого приближения, а в [3] в предположении 𝐶∞-гладкости правой части было
построено полное асимптотическое разложение для решения и получена оценка порядка
𝑂(𝜀1/2) для 𝐻1(𝒪 × (0, 𝑇 ))-нормы разности решения и его первого приближения.

Задача поиска приближения с корректором для решений гиперболических систем с
ненулевыми начальными данными изучалась в статье [24]. В этой работе было выяснено, что
получить член корректора с традиционной для теории усреднения структурой возможно
лишь для очень специального класса начальных данных. В общем случае для произвольных
начальных данных аппроксимации с корректором были найдены в [25, 26].

0.4.Операторные оценки погрешности для уравнений типа Шрёдингера и ги-
перболического типа: результаты с корректорами. Перейдём теперь к описанию
известных результатов об операторных оценках погрешности при усреднении уравнений
типа Шрёдингера и гиперболического типа с корректорами. В [19] была получена аппрок-
симация по “энергетической” норме для оператора 𝒜−1/2

𝜀 sin
(︀
𝜏𝒜1/2

𝜀

)︀
:⃦⃦

𝒜−1/2
𝜀 sin

(︀
𝜏𝒜1/2

𝜀

)︀
− (𝒜hom)−1/2 sin

(︀
𝜏(𝒜hom)1/2

)︀
− 𝜀𝒦̃1(𝜀, 𝜏)

⃦⃦
𝐻2(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀,
(0.17)

где 𝒦̃1(𝜀, 𝜏) = Ψ𝜀∇(𝒜hom)−1/2 sin
(︀
𝜏(𝒜hom)1/2

)︀
Π𝜀 — соответствующий корректор. Далее, в

рукописи [27] и в работах [28,29] была найдена аппроксимация оператора 𝒜−1/2
𝜀 sin

(︀
𝜏𝒜1/2

𝜀

)︀
по (𝐻3 → 𝐿2)-норме при учёте корректора с погрешностью 𝑂(𝜀2):

‖𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 )− (𝒜hom)−1/2 sin(𝜏(𝒜hom)1/2)− 𝜀𝒦̃(𝜀, 𝜏)‖𝐻3(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)2𝜀2,
(0.18)

где 𝒦̃(𝜀, 𝜏) = 𝒦̃1(𝜀, 𝜏) + 𝒦̃2(𝜏), член 𝒦̃2(𝜏) не зависит от 𝜀. Результаты (0.17) и (0.18) уда-
лось получить за счёт присутствия “сглаживающего” множителя 𝒜−1/2

𝜀 в приближаемом
операторе.

Вопрос о возможности найти аппроксимации для операторной экспоненты 𝑒−𝑖𝜏𝒜𝜀 по
(𝐻𝑞 → 𝐿2)-норме с погрешностью 𝑂(𝜀2) и по (𝐻𝑞 → 𝐻1)-норме с погрешностью 𝑂(𝜀) за счёт
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учёта корректоров исследовался в статье [30], вслед за этим для оператора cos(𝜏𝒜1/2
𝜀 ) дан-

ный вопрос изучался в [28,29]. Выяснилось, что построить такие приближения в пороговых
терминах для самих операторов не удаётся, но их можно получить для “подправленных”
операторов — композиций 𝑒−𝑖𝜏𝒜𝜀(𝐼 + 𝜀Ψ𝜀∇Π𝜀) и cos(𝜏𝒜1/2

𝜀 )(𝐼 + 𝜀Ψ𝜀∇Π𝜀):

‖𝑒−𝑖𝜏𝒜𝜀(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− 𝑒−𝑖𝜏𝒜hom − 𝜀𝒦̌1(𝜀, 𝜏)‖𝐻4(R𝑑)→𝐻1(R𝑑) ⩽ 𝐶(1 + |𝜏 |)𝜀, (0.19)

‖𝑒−𝑖𝜏𝒜𝜀(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− 𝑒−𝑖𝜏𝒜hom − 𝜀𝒦̌(𝜀, 𝜏)‖𝐻6(R𝑑)→𝐿2(R𝑑) ⩽ 𝐶(1 + |𝜏 |)2𝜀2, (0.20)

‖ cos(𝜏𝒜1/2
𝜀 )(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− cos(𝜏(𝒜hom)1/2)− 𝜀𝒦1(𝜀, 𝜏)‖𝐻3(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀,
(0.21)

‖ cos(𝜏𝒜1/2
𝜀 )(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− cos(𝜏(𝒜hom)1/2)− 𝜀𝒦(𝜀, 𝜏)‖𝐻4(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)2𝜀2,
(0.22)

где

𝒦̌(𝜀, 𝜏) = 𝒦̌1(𝜀, 𝜏) + 𝒦̌2(𝜏), 𝒦̌1(𝜀, 𝜏) = Ψ𝜀∇𝑒−𝑖𝜏𝒜hom

Π𝜀,

𝒦(𝜀, 𝜏) = 𝒦1(𝜀, 𝜏) +𝒦2(𝜏), 𝒦1(𝜀, 𝜏) = Ψ𝜀∇ cos(𝜏(𝒜hom)1/2)Π𝜀,

члены 𝒦̌2(𝜏), 𝒦2(𝜏) не зависят от 𝜀.
Оценки (0.17)–(0.22) точны по порядку. В [22, 28–30] было установлено, что в общем

случае они точны также по типу операторной нормы и в отношении зависимости от
времени 𝜏 . Однако, при дополнительных предположениях (тех же самых, при которых
выполнены оценки (0.12)–(0.14)) эти результаты допускают усиление:

‖𝑒−𝑖𝜏𝒜𝜀(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− 𝑒−𝑖𝜏𝒜hom − 𝜀𝒦̌1(𝜀, 𝜏)‖𝐻3(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶(1 + |𝜏 |)1/2𝜀,
‖𝑒−𝑖𝜏𝒜𝜀(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− 𝑒−𝑖𝜏𝒜hom − 𝜀𝒦̌(𝜀, 𝜏)‖𝐻4(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀2,
‖ cos(𝜏𝒜1/2

𝜀 )(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− cos(𝜏(𝒜hom)1/2)− 𝜀𝒦1(𝜀, 𝜏)‖𝐻5/2(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶(1 + |𝜏 |)1/2𝜀,
(0.23)

‖ cos(𝜏𝒜1/2
𝜀 )(𝐼 + 𝜀Ψ𝜀∇Π𝜀)− cos(𝜏(𝒜hom)1/2)− 𝜀𝒦(𝜀, 𝜏)‖𝐻3(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀2,⃦⃦
𝒜−1/2

𝜀 sin
(︀
𝜏𝒜1/2

𝜀

)︀
− (𝒜hom)−1/2 sin

(︀
𝜏(𝒜hom)1/2

)︀
− 𝜀𝒦̃1(𝜀, 𝜏)

⃦⃦
𝐻3/2(R𝑑)→𝐻1(R𝑑)

⩽ 𝐶(1 + |𝜏 |)1/2𝜀,
(0.24)

‖𝒜−1/2
𝜀 sin(𝜏𝒜1/2

𝜀 )− (𝒜hom)−1/2 sin(𝜏(𝒜hom)1/2)− 𝜀𝒦̃(𝜀, 𝜏)‖𝐻2(R𝑑)→𝐿2(R𝑑)

⩽ 𝐶(1 + |𝜏 |)𝜀2.

Также отметим, что в ряде случаев сглаживающий оператор Π𝜀 может быть заменён
тождественным 𝐼. Полученные оценки применяются к исследованию решений задач Ко-
ши для нестационарного уравнения типа Шрёдингера и гиперболического уравнения с
начальными данными из специального класса:

⎧⎨⎩
𝑖𝜕𝑧𝜀(x, 𝜏)

𝜕𝜏
= (𝒜𝜀𝑧𝜀)(x, 𝜏),

𝑧𝜀(x, 0) = 𝜑(x) + 𝜀Ψ𝜀(x)∇Π𝜀𝜑(x),

⎧⎪⎪⎨⎪⎪⎩
𝜕2𝑤̌𝜀(x, 𝜏)

𝜕𝜏 2
= −(𝒜𝜀𝑤̌𝜀)(x, 𝜏),

𝑤̌𝜀(x, 0) = 𝜑(x) + 𝜀Ψ𝜀(x)∇Π𝜀𝜑(x),

(𝜕𝜏 𝑤̌𝜀)(x, 0) = 𝜓(x),

x ∈ R𝑑, 𝜏 ∈ R.
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Отметим, что в работах [7–13,18–23,27–30] изучался гораздо более общий, чем (0.1), класс
операторов (включающий в себя матричные ДО).

Наконец, мы упомянем статью [31], где авторы изучали скорость сходимости для
решений начально-краевой задачи Дирихле для волнового уравнения в ограниченной
области; получены аналоги оценок (0.13), (0.14), а также результаты с корректором при
условии принадлежности начальных данных специальному классу.

0.5.Цели работы и метод исследования. В свете описанных выше результатов воз-
никает вопрос: можно ли найти приближения по 𝐿2-норме с погрешностью 𝑂(𝜀2) и по
𝐻1-норме с погрешностью 𝑂(𝜀) для решения задачи⎧⎨⎩

𝜕2𝑢𝜀(x, 𝜏)

𝜕𝜏 2
= −(𝒜𝜀𝑢𝜀)(x, 𝜏), x ∈ R𝑑, 𝜏 ∈ R,

𝑢𝜀(x, 0) = 𝜀Ψ𝜀(x)∇Π𝜀𝜑(x), (𝜕𝜏𝑢𝜀)(x, 0) = 0, 𝜑 ∈ 𝐻𝑞(R𝑑) с подходящим 𝑞.
(0.25)

Эти задачи равносильны изучению поведения оператора cos(𝜏𝒜1/2
𝜀 )𝜀Ψ𝜀∇Π𝜀, 𝜏 ∈ R, 𝜀→ 0,

для которого получить такие приближения в терминах пороговых характеристик на краю
спектра оператора 𝒜 не представляется возможным (см. обсуждение в [29, гл. 3, § 14,
п. 14.6]). В недавней работе [32] было найдено приближение для решения задачи (0.25) по
𝐿2-норме с погрешностью 𝑂(𝜀2) в одномерном случае (𝑑 = 1). При этом вклад в эффективное
приближение дают края всех “периодических” лакун.

Настоящая статья посвящена аппроксимации решения задачи (0.25) по 𝐻1-норме с
погрешностью 𝑂(𝜀) также в одномерном случае. (Когда 𝑑 = 1, мы будем обозначать
оператор (0.1) через 𝐴𝜀.) Сейчас мы дополнительно считаем, что коэффициент 𝑔 удовле-
творяет условию липшицевости, и что 𝑔′ принадлежит “периодическому” классу Соболева̃︀𝐻𝜎(0, 𝜈), где 𝜎 > 1/2. Также отметим, что в одномерном случае оператор Π𝜀 может быть
заменён тождественным.

Следуя [32], мы раскладываем решение Ψ задачи (0.2) в ряд Фурье по собственным
функциям {𝜍𝑗}∞𝑗=2 оператора 𝐴(0): Ψ =

∑︀∞
𝑗=2 𝛽𝑗𝜍𝑗, и изучаем задачи⎧⎨⎩

𝜕2𝑢𝑗,𝜀(𝑥, 𝜏)

𝜕𝜏 2
= −(𝐴𝜀𝑢𝑗,𝜀)(𝑥, 𝜏),

𝑢𝑗,𝜀(𝑥, 0) = 𝜀𝛽𝑗𝜍
𝜀
𝑗 (𝑥)𝜑

′(𝑥), (𝜕𝜏𝑢𝑗,𝜀)(𝑥, 0) = 0.
(0.26)

Отвечающие собственным функциям 𝜍𝑗 собственные числа являются краями “пери-
одических” лакун в спектре оператора 𝐴. Каждой задаче (0.26) мы сопоставляем
соответствующую эффективную задачу (см. (4.6), (4.7)) и эффективное приближе-
ние (см. (4.8)–(4.10)). Эффективные характеристики находятся на основании спектральных
приближений на краях “периодических” лакун (теоремы 2.4, 2.6, 2.7). При этом мы разби-
ваем лакуны на две группы: те, которые лежат ближе к началу спектра, и те, которые
лежат в подходящей окрестности бесконечности. Для невырожденных лакун из первой
группы мы находим эффективные характеристики для каждого из краёв по отдельности, а
для невырожденных лакун из второй группы и вырожденных лакун из обеих групп нужно
учитывать оба края вместе. Способ получения спектральных приближений базируется на
результатах из статей [32,33] (которые, в свою очередь, были получены адаптацией метода
из [34, § 4, п. 4.2, третий метод], [35, § 2, п. 2.2], [36]), а проконтролировать зависимость
оценок в этих приближениях от края лакуны удаётся за счёт асимптотики собственных
чисел оператора 𝐴(0) из работы [37] (см. теорему 2.1 ниже). Суммированием эффективных
приближений мы получаем теорему 4.6 — основной результат работы:⃦⃦

𝑢𝜀(·, 𝜏)− 𝑢eff𝜀 (·, 𝜏)
⃦⃦
𝐻1(R) ⩽ 𝐶(1 + |𝜏 |)𝜀‖𝜑‖𝐻4(R).
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Благодаря полученному результату вместе с (0.23), (0.24), нам удаётся найти прибли-
жение по 𝐻1-норме с погрешностью 𝑂(𝜀) при учёте корректора для решения исходной
задачи (0.8) в одномерном случае:⃦⃦

𝑤𝜀(·, 𝜏)− 𝑤0(·, 𝜏)−
(︀
𝜀𝒦1(𝜀, 𝜏)𝜑+ 𝜀𝒦̃1(𝜀, 𝜏)𝜓 − 𝑢eff𝜀 (·, 𝜏)

)︀⃦⃦
𝐻1(R)

⩽ 𝐶(1 + |𝜏 |)𝜀
(︀
‖𝜑‖𝐻4(R) + ‖𝜓‖𝐻3/2(R)

)︀
.

0.6.Обозначения. Пусть H и ̃︀H — комплексные сепарабельные гильбертовы пространства.
Символы (·, ·)H и ‖ · ‖H означают скалярное произведение и норму в H, а символ ‖ · ‖H→̃︀H —
норму ограниченного оператора из H в ̃︀H. Если 𝐴 : H → ̃︀H — замкнутый линейный оператор,
то через Dom𝐴 обозначается область определения оператора 𝐴, а через Ker𝐴 — его ядро;
𝐴* — сопряжённый оператор. Через 𝐼 = 𝐼H обозначается тождественный оператор в
H. Далее, если 𝐴 — самосопряжённый оператор в H, то для спектра оператора 𝐴 мы
используем обозначение spec𝐴.

Стандартные классы 𝐿𝑝 функций, заданных на интервале (𝑎, 𝑏) ⊂ R, обозначаются через
𝐿𝑝(𝑎, 𝑏), 1 ⩽ 𝑝 ⩽ ∞. Если 𝑓 — измеримая функция, то оператор умножения на функцию
𝑓 в пространстве 𝐿2 обозначается тем же символом. Далее, 𝐻𝜎(𝑎, 𝑏) — класс Соболева
порядка 𝜎 ∈ R с индексом суммирования 2; а ̃︀𝐻𝜎(0, 𝜈) — подпространство функций из
𝐻𝜎(0, 𝜈), 𝜈-периодическое продолжение которых принадлежит 𝐻𝜎

loc(R).
Если 𝐹 (𝑥) — 𝜈-периодическая функция, то 𝐹 𝜀(𝑥) := 𝐹 (𝜀−1𝑥). Через Φ := Φ𝑥→𝑘 обозна-

чается преобразование Фурье в R, определённое на классе Шварца формулой

(Φ𝑣)(𝑘) = (2𝜋)−1/2

ˆ
R
𝑒−𝑖𝑘𝑥𝑣(𝑥) 𝑑𝑥, 𝑣 ∈ 𝒮(R),

и по непрерывности распространённое до унитарного оператора Φ: 𝐿2(R) → 𝐿2(R). Ха-
рактеристическая функция множества 𝛿 ⊂ R обозначается 𝜒𝛿. Для множества значений
произвольной функции 𝑓 будем использовать обозначение Ran 𝑓 .

Далее, 𝐷 = −𝑖𝑑/𝑑𝑥. Через 𝐶, C, 𝒞, C (возможно, с индексами и значками) обозначаются
различные оценочные постоянные.

0.7. Благодарности. Автор выражает благодарность Т. А. Суслиной за полезные обсуж-
дения и внимание к работе. Также автор благодарит Н. Д. Филонова и А. И. Назарова
за ценные советы.

1. Оператор 𝐴

В 𝐿2(R) рассматривается 𝜈-периодический самосопряжённый оператор 𝐴, порождённый
дифференциальным выражением

𝐴 = − 𝑑

𝑑𝑥
𝑔(𝑥)

𝑑

𝑑𝑥
= 𝐷𝑔(𝑥)𝐷, Dom𝐴 = 𝐻2(R), (1.1)

где 𝜈 > 0,

𝑔 — липшицева вещественнозначная функция,
0 < 𝛼0 ⩽ 𝑔(𝑥) ⩽ 𝛼1 <∞, 𝑔(𝑥+ 𝜈) = 𝑔(𝑥), 𝑥 ∈ R.

}︃
(1.2)
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Без ограничения общности будем считать, что
ˆ 𝜈

0

𝑔(𝑥)−1/2𝑑𝑥 = 𝜋. (1.3)

Отметим также следующую оценку, которая нам понадобится в дальнейшем (см. [7, гл. 2,
§ 1, (1.11)])

‖𝑔−1‖−1/2
𝐿∞

‖𝐷𝑢‖𝐿2(R) ⩽ ‖𝐴1/2𝑢‖𝐿2(R) ⩽ ‖𝑔‖1/2𝐿∞
‖𝐷𝑢‖𝐿2(R), 𝑢 ∈ 𝐻1(R). (1.4)

2. Спектр оператора 𝐴

2.1.Операторы 𝐴(𝑘). Опишем спектр оператора (1.1). Для этого введём объекты,
связанные со спектральным разложением оператора (1.1) (разложением Флоке–Блоха).
Рассмотрим в 𝐿2(0, 𝜈) семейство операторов

𝐴(𝑘) = (𝐷 + 𝑘)𝑔(𝑥)(𝐷 + 𝑘), 𝑘 ∈ R,

с периодическими граничными условиями. Параметр 𝑘 ∈ R называют квазиимпульсом.
Пусть 𝐸𝑙(𝑘), 𝑙 ∈ N, — последовательные (с учётом кратностей) собственные значения
оператора 𝐴(𝑘) и 𝜙𝑙(·, 𝑘), 𝑙 ∈ N, — соответствующие ортонормированные собственные
функции. Функции 𝐸𝑙(𝑘) называются зонными функциями; они (2𝜋/𝜈)-периодичны. Да-
лее, 𝜙𝑙(𝑥+ 𝜈, 𝑘) = 𝜙𝑙(𝑥, 𝑘), а функции 𝑒𝑖𝑘𝑥𝜙𝑙(𝑥, 𝑘) можно выбрать (2𝜋/𝜈)-периодическими
по 𝑘. Обозначим через ̃︀Ω =

[︀
−𝜋/𝜈, 𝜋/𝜈

)︀
центральную (первую) зону Бриллюена. В силу

периодичности функций 𝐸𝑙(𝑘) и 𝑒𝑖𝑘𝑥𝜙𝑙(𝑥, 𝑘) достаточно рассматривать только 𝑘 ∈ ̃︀Ω.
Рассмотрим функцию 𝐸𝑠(𝑘) для некоторого 𝑠 ∈ N. Следующие утверждения хорошо

известны (см., например, [38, XIII.16]).

1∘. Функция 𝐸𝑠 липшицева и чётна.
2∘. Функция 𝐸𝑠 — кусочно вещественно аналитическая, гладкость которой может

нарушаться только в точках перемены кратности.
3∘. Отображение 𝑘 ↦→ 𝐸𝑠(𝑘), 𝑘 ∈ ̃︀Ω, дважды покрывает зону Ran𝐸𝑠.
4∘. Равенство 𝐸𝑠(𝑘) = 𝐸𝑠+1(𝑘) возможно только если 𝑘 = 𝜋/𝜈 (mod 2𝜋/𝜈) (𝑠 — нечётное

число).
5∘. Равенство 𝐸𝑠(𝑘) = 𝐸𝑠−1(𝑘) возможно только если 𝑘 = 0 (mod 2𝜋/𝜈) (𝑠 — нечётное

число).
6∘. При 0 ⩽ 𝑘 ⩽ 𝜋/𝜈 функция 𝐸𝑠(𝑘) строго монотонна.
7∘. Если номер 𝑠 — нечётный, то при 𝑘 = 0 (mod 2𝜋/𝜈) функция 𝑘 ↦→ 𝐸𝑠(𝑘) имеет

минимум, а при 𝑘 = 𝜋/𝜈 (mod 2𝜋/𝜈) — максимум.
8∘. Если номер 𝑠 — чётный, то при 𝑘 = 0 (mod 2𝜋/𝜈) функция 𝑘 ↦→ 𝐸𝑠(𝑘) имеет

максимум, а при 𝑘 = 𝜋/𝜈 (mod 2𝜋/𝜈) — минимум.

Преобразование Гельфанда G первоначально определяется на функциях из класса
Шварца 𝑣 ∈ 𝒮(R) формулой

𝑣(𝑥, 𝑘) = (G 𝑣)(𝑥, 𝑘) =

(︂
2𝜋

𝜈

)︂−1/2∑︁
𝑛∈Z

𝑒−𝑖𝑘(𝑥+𝜈𝑛)𝑣(𝑥+ 𝜈𝑛), 𝑥 ∈ R, 𝑘 ∈ R.

Функция 𝑣(𝑥, 𝑘) — 𝜈-периодическая по 𝑥 и (2𝜋/𝜈)-квазипериодическая по 𝑘 (т. е. функция
𝑒𝑖⟨𝑥,𝑘⟩𝑣(𝑥, 𝑘) является (2𝜋/𝜈)-периодической). Таким образом, достаточно рассматривать
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𝑣(𝑥, 𝑘) при 𝑥 ∈ [0, 𝜈) и 𝑘 ∈ ̃︀Ω. Обратное преобразование даётся формулой

𝑣(𝑥) = (G −1𝑣)(𝑥) =

(︂
2𝜋

𝜈

)︂−1/2 ˆ
̃︀Ω 𝑣(𝑥, 𝑘)𝑒

𝑖𝑘𝑥𝑑𝑘, 𝑥 ∈ R,

и восстанавливает 𝑣 по 𝑣. При этом
´̃︀Ω ´Ω |𝑣(𝑥, 𝑘)|2𝑑𝑥 𝑑𝑘 =

´
R |𝑣(𝑥)|

2𝑑𝑥 и G продолжается
по непрерывности до унитарного отображения:

G : 𝐿2(R) →
ˆ
̃︀Ω ⊕𝐿2(0, 𝜈) 𝑑𝑘 =: 𝒦.

Оператор умножения на ограниченную периодическую функцию в 𝐿2(R) под действием
G переходит в умножение на ту же функцию в слоях прямого интеграла 𝒦. Действие опера-
тора 𝐷 на 𝑣 ∈ 𝐻1(R) переходит в послойное действие оператора 𝐷 + 𝑘 на 𝑣(·, 𝑘) ∈ ̃︀𝐻1(0, 𝜈).

Под действием преобразования Гельфанда G оператор 𝐴 раскладывается в прямой
интеграл по операторам 𝐴(𝑘):

G𝐴G −1 =

ˆ
̃︀Ω ⊕𝐴(𝑘) 𝑑𝑘. (2.1)

В силу (2.1) спектр оператора 𝐴 представляет собой объединение отрезков (зон), которые
являются образами функций 𝐸𝑙:

spec𝐴 =
∞⋃︁
𝑙=1

Ran𝐸𝑙 = [𝐸1(0), 𝐸1(𝜋/𝜈)] ∪ [𝐸2(𝜋/𝜈), 𝐸2(0)] ∪ [𝐸3(0), 𝐸3(𝜋/𝜈)] ∪ . . . .

В одномерном случае спектральные зоны не перекрываются. Интервалы(︀
−∞, 𝐸1(0)

)︀
,
(︀
𝐸1(𝜋/𝜈), 𝐸2(𝜋/𝜈)

)︀
,
(︀
𝐸2(0), 𝐸3(0)

)︀
, . . .

называются лакунами в спектре. Отметим, что зоны могут касаться друг друга, т. е.
возможно их пересечение по граничной точке. Это означает, что некоторые лакуны мо-
гут быть пустыми.

Введём оператор 𝑃1, который действует как усреднение по интервалу периодично-
сти (0, 𝜈):

𝑃1𝑢 =
1

𝜈

ˆ 𝜈

0

𝑢(𝑥) 𝑑𝑥, 𝑢 ∈ 𝐿2(0, 𝜈).

Оператор 𝑃1 является ортопроектором на подпространство констант

N1 = {𝑢 ∈ 𝐿2(0, 𝜈) : 𝑢 = 𝑐 ∈ C}.

Справедливы следующие соотношения (см., например, [8, § 6, п. 6.1] и [39, (2.8), (2.9)]):

([𝑃1]G 𝑢)(𝑘) = 𝜈−1/2(Φ𝑢)(𝑘), 𝑢 ∈ 𝐿2(R), 𝑘 ∈ ̃︀Ω; (2.2)

(G −1𝑐)(𝑥) = 𝜈1/2(Φ*𝑐)(𝑥), 𝑐 ∈ 𝐿2(R), supp 𝑐 ⊂ ̃︀Ω. (2.3)

Здесь [𝑃1] — проектор в 𝒦, действующий послойно как оператор 𝑃1.
Для нас важную роль будут играть спектральные характеристики оператора 𝐴 в

окрестности точки 𝑘 = 0. Введём обозначения 𝜆𝑙 := 𝐸𝑙(0), 𝜍𝑙(𝑥) := 𝜙𝑙(𝑥, 0). Это собственные
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числа и собственные функции задачи⎧⎨⎩− 𝑑

𝑑𝑥
𝑔(𝑥)

𝑑

𝑑𝑥
𝜍𝑙(𝑥) = 𝜆𝑙𝜍𝑙(𝑥), 0 < 𝑥 < 𝜈,

𝜍𝑙(0) = 𝜍𝑙(𝜈),
(︀

𝑑
𝑑𝑥
𝜍𝑙
)︀
(0) =

(︀
𝑑
𝑑𝑥
𝜍𝑙
)︀
(𝜈).

(2.4)

Преобразование Грина–Лиувилля (см. [40, гл. 3, п. 3.2])

𝑡(𝑥) =

ˆ 𝑥

0

𝑔(𝑥̃)−1/2𝑑𝑥̃, 𝑧𝑙(𝑡) = 𝑔(𝑥)1/4𝜍𝑙(𝑥)
⃒⃒
𝑥=𝑥(𝑡)

(2.5)

преобразует задачу (2.4) в задачу с сингулярным потенциалом⎧⎨⎩− 𝑑2

𝑑𝑡2
𝑧𝑙(𝑡) + 𝑉 (𝑡)𝑧𝑙(𝑡) = 𝜆𝑙𝑧𝑙(𝑡), 0 < 𝑡 < 𝜋,

𝑧𝑙(0) = 𝑧𝑙(𝜋), 𝑧
[1]
𝑙 (0) = 𝑧

[1]
𝑙 (𝜋),

(2.6)

где 𝑧[1]𝑙 (𝑡) =
(︀

𝑑
𝑑𝑡
𝑧𝑙 −𝑄𝑧𝑙

)︀
(𝑡) – квазипроизводная,

𝑉 (𝑡) = − 𝑔(𝑥)1/4
𝑑

𝑑𝑥

(︂
𝑔(𝑥)

𝑑

𝑑𝑥
𝑔(𝑥)−1/4

)︂⃒⃒⃒⃒
𝑥=𝑥(𝑡)

, 𝑉 ∈ 𝑊−1
∞ ⊂ 𝐻−1

loc (R), 𝑉 (𝑡+ 𝜋) = 𝑉 (𝑡),

и 𝑄 определяется из соотношения

𝑉 = 𝑉0 +𝑄′; 𝑉0 = const, 𝑄 ∈ 𝐿∞ ⊂ 𝐿2,loc(R), 𝑄(𝑡+ 𝜋) = 𝑄(𝑡),

ˆ 𝜋

0

𝑄(𝑡) 𝑑𝑡 = 0. (2.7)

(Точную постановку задачи (2.6) c сингулярным потенциалом 𝑉 ∈ 𝐻−1
loc (R) см. в [37,41].)

Для больших собственных чисел 𝜆𝑙 задачи (2.6) известна асимптотика [37, теорема 28]
(для случая регулярного потенциала см. также [40, гл. 3, пп. 3.3–3.5]).

Теорема 2.1 ([37]). Для достаточно больших номеров 𝑚 ⩾ 𝑀 = 𝑀(𝑉 ) имеют место
оценки

|𝜆2𝑚 − (2𝑚)2| < 𝑚

2
, |𝜆2𝑚+1 − (2𝑚)2| < 𝑚

2
. (2.8)

Далее, следующая лемма позволяет оценить скорость изменения 𝐸𝑙(𝑘) при изменении 𝑘
([32, лемма 2.2], см. также [42, лемма 4.2]).

Лемма 2.2 ([32]). Для достаточно больших 𝑙 ⩾ ̃︁𝑀 справедливы оценки

|𝐸𝑙(𝑘)− 𝜆𝑙| ⩽ 2‖𝑔‖𝐿∞‖𝑔−1‖1/2𝐿∞

√︀
𝜆𝑙|𝑘|+ ‖𝑔‖𝐿∞𝑘

2.

Собственные функции задачи (2.6) принадлежат 𝐻1([0, 𝜋]) и для них справедлива
асимптотика ([37, теорема 45]; см. также [43, (1.3.9)] для случая регулярного потенциала)

𝑧2𝑚(𝑡) = 𝑎2𝑚𝑒
𝑖2𝑚𝑡 + 𝑏2𝑚𝑒

−𝑖2𝑚𝑡 + 𝑜(1),

𝑧2𝑚+1(𝑡) = 𝑎2𝑚+1𝑒
𝑖2𝑚𝑡 + 𝑏2𝑚+1𝑒

−𝑖2𝑚𝑡 + 𝑜(1),
𝜋(|𝑎𝑗|2 + |𝑏𝑗|2) = 1 + 𝑜(1),

при больших 𝑚. Вместе с (1.2), (2.5) отсюда следует равномерная ограниченность соб-
ственных функций задачи (2.4):

sup
𝑙∈N

max
𝑥∈[0,𝜈]

|𝜍𝑙(𝑥)| ⩽ 𝐶𝜍 <∞. (2.9)
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Далее, квазипроизводные cобственных функций задачи (2.6) абсолютно непрерывны
и для них справедлива асимптотика [44]

𝑧
[1]
2𝑚(𝑡) = 𝑖2𝑚

(︀
𝑎2𝑚𝑒

𝑖2𝑚𝑡 − 𝑏2𝑚𝑒
−𝑖2𝑚𝑡

)︀
+ 𝑜(𝑚),

𝑧
[1]
2𝑚+1(𝑡) = 𝑖2𝑚

(︀
𝑎2𝑚+1𝑒

𝑖2𝑚𝑡 − 𝑏2𝑚+1𝑒
−𝑖2𝑚𝑡

)︀
+ 𝑜(𝑚),

𝜋(|𝑎𝑗|2 + |𝑏𝑗|2) = 1 + 𝑜(1),

при больших 𝑚. Вместе с (1.2), (2.5), (2.7) отсюда следует оценка

ess-sup
𝑥∈[0,𝜈]

|𝜍 ′𝑙(𝑥)| ⩽ 𝐶 ′
𝜍 · 𝑙. (2.10)

Наконец, через 𝜆∘𝑙 обозначим различные собственные числа оператора 𝐴(0), занумеро-
ванные в порядке возрастания, и пусть 𝑝𝑙 — их кратности (которые могут равняться 1
или 2). Введём обозначения

ϒ(1) = {𝑙 ∈ N ∖ {1} : 𝑝𝑙 = 1}, ϒ(2) = {𝑙 ∈ N : 𝑝𝑙 = 2},

и положим

𝑞(𝑙) = 𝑝1 + . . .+ 𝑝𝑙−1 + 1,

ϒ(<) = {𝑙 ∈ N ∖ {1} : 𝑞(𝑙) < max{2(𝑀 + 1),̃︁𝑀, 20}},
ϒ(1,<) = ϒ(<) ∩ϒ(1), ϒ(2,<) = ϒ(<) ∩ϒ(2),

ϒ(1,>) = {𝑙 ∈ ϒ(1) : 𝑞(𝑙) ⩾ max{2(𝑀 + 1),̃︁𝑀, 20}, 𝑞(𝑙) — чётное число},
ϒ(2,>) = {𝑙 ∈ ϒ(2) : 𝑞(𝑙) ⩾ max{2(𝑀 + 1),̃︁𝑀, 20}}.

Отметим, что в силу свойств зонных функций числа 𝑞(𝑙), 𝑙 ∈ ϒ(2), всегда чётные.

2.2.Спектральные приближения. Положим N𝑙 := Ker(𝐴(0) − 𝜆∘𝑙 𝐼), 𝑙 ∈ N, и пусть
𝑃𝑙 — ортопроектор пространства 𝐿2(0, 𝜈) на N𝑙. Далее, обозначим N𝑙,𝑙+1 := N𝑙 ⊕N𝑙+1 и,
соответственно, 𝑃𝑙,𝑙+1 := 𝑃𝑙 + 𝑃𝑙+1. Введём в рассмотрение операторы

G∘
1,𝑙 := 𝑃𝑙𝑔𝐷𝑃𝑙 + (𝐷𝑃𝑙)

*𝑔𝑃𝑙,̃︀G∘
1,𝑙 := 𝑃𝑙,𝑙+1𝑔𝐷𝑃𝑙,𝑙+1 + (𝐷𝑃𝑙,𝑙+1)

*𝑔𝑃𝑙,𝑙+1,

A𝑙(𝑘) :=
√︀
𝜆∘𝑙𝑃𝑙 +

𝑘

2
(𝜆∘𝑙 )

−1/2G∘
1,𝑙𝑃𝑙, (2.11)̃︀A𝑙(𝑘) := (𝜆∘𝑙𝑃𝑙 + 𝜆∘𝑙+1𝑃𝑙+1)

1/2𝑃𝑙,𝑙+1

+
𝑘

𝜋

ˆ ∞

0

𝜁1/2𝑃𝑙,𝑙+1(𝜆
∘
𝑙𝑃𝑙 + 𝜆∘𝑙+1𝑃𝑙+1 + 𝜁𝐼)−1̃︀G∘

1,𝑙(𝜆
∘
𝑙𝑃𝑙 + 𝜆∘𝑙+1𝑃𝑙+1 + 𝜁𝐼)−1𝑃𝑙,𝑙+1 𝑑𝜁. (2.12)

Получим сначала спектральные приближения в окрестности собственного числа 𝜆∘𝑙 ,
𝑙 ∈ ϒ(<), оператора 𝐴(0) c кратностью 𝑝𝑙. Пусть 𝑑𝑙 — расстояние от 𝜆∘𝑙 до остального спектра
оператора 𝐴(0). В силу непрерывности зонных функций можно выбрать κ𝑙 > 0 такое, что
при |𝑘| ⩽ κ𝑙 на отрезке [𝜆∘𝑙 − 𝑑𝑙/3, 𝜆

∘
𝑙 + 𝑑𝑙/3] имеется 𝑝𝑙 собственных чисел оператора 𝐴(𝑘) и(︀

[𝜆∘𝑙 − 2𝑑𝑙/3, 𝜆
∘
𝑙 − 𝑑𝑙/3) ∪ (𝜆∘𝑙 + 𝑑𝑙/3, 𝜆

∘
𝑙 + 2𝑑𝑙/3]

)︀
∩ spec𝐴(𝑘) = ∅.

Через 𝐹𝑙(𝑘) обозначим спектральный проектор оператора 𝐴(𝑘), отвечающий отрез-
ку [𝜆∘𝑙 − 𝑑𝑙/3, 𝜆

∘
𝑙 + 𝑑𝑙/3], и пусть 𝛾𝑙 — контур, эквидистантно охватывающий отрезок
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[𝜆∘𝑙 − 𝑑𝑙/3, 𝜆
∘
𝑙 + 𝑑𝑙/3] и проходящий через точку 𝜆∘𝑙 + 𝑑𝑙/2. Его длина равна

ℓ𝑙 =
𝜋 + 4

3
𝑑𝑙.

Лемма 2.3. Пусть |𝑘| ⩽ κ𝑙. Справедливы оценки⃦⃦
𝐴(𝑘)1/2

(︀
𝐹𝑙(𝑘)− 𝑃𝑙

)︀⃦⃦
⩽ C ′

1,𝑙|𝑘|,
⃦⃦
𝐴(𝑘)1/2𝑃𝑙

⃦⃦
⩽ C ′

1,𝑙|𝑘|+
√︁
𝜆∘𝑙 + 𝑑𝑙/3. (2.13)

Здесь константа C ′
1,𝑙 задана выражением

C ′
1,𝑙 = (2𝜋)−1ℓ𝑙

(︀
𝐶2,𝑙𝐶2,𝑙𝐶4 + 𝐶1,𝑙𝐶2,𝑙𝐶4κ𝑙 + 𝐶1,𝑙𝐶3,𝑙 + 2𝐶1,𝑙𝐶2,𝑙𝐶4κ𝑙 + 𝐶2

1,𝑙𝐶4κ2
𝑙

)︀
, (2.14)

где

𝐶1,𝑙 = 6‖𝑔‖1/2𝐿∞
𝑑−1
𝑙 , 𝐶2,𝑙 = (24𝑑−1

𝑙 + 36𝜆∘𝑙 𝑑
−2
𝑙 )1/2, 𝐶2,𝑙 = 𝐶2,𝑙 + 6‖𝑔‖1/2𝐿∞

κ𝑙𝑑
−1
𝑙 ,

𝐶3,𝑙 = 4 + 6𝜆∘𝑙 𝑑
−1
𝑙 , 𝐶4 = ‖𝑔‖1/2𝐿∞

.

(Здесь и далее в этом пункте мы опускаем индекс у (𝐿2(0, 𝜈) → 𝐿2(0, 𝜈))-операторной
нормы.)

Доказательство. Докажем первую оценку (2.13). Справедливо представление [39, (3.3),
(3.15)]

𝐹𝑙(𝑘)− 𝑃𝑙 =
1

2𝜋𝑖

‰
𝛾𝑙

𝑇 (𝑘, 𝜁) 𝑑𝜁, |𝑘| ⩽ κ𝑙,

𝑇 (𝑘, 𝜁) := 𝒴0(𝑘, 𝜁
*)*𝒳 (𝑘, 𝜁) + 𝒳0(𝜁

*)*𝒴(𝑘, 𝜁) + 𝒴0(𝑘, 𝜁
*)*𝒴(𝑘, 𝜁), (2.15)

где
𝒳 (𝑘, 𝜁) = 𝑔1/2𝐷𝑅(𝑘, 𝜁), 𝒴(𝑘, 𝜁) = 𝑔1/2𝑘𝑅(𝑘, 𝜁),

𝒳0(𝜁) = 𝑔1/2𝐷𝑅0(𝜁), 𝒴0(𝑘, 𝜁) = 𝑔1/2𝑘𝑅0(𝜁),

𝑅(𝑘, 𝜁) = (𝐴(𝑘)− 𝜁𝐼)−1, 𝑅0(𝜁) = (𝐴(0)− 𝜁𝐼)−1,

(2.16)

а значит
𝐴(𝑘)1/2

(︀
𝐹𝑙(𝑘)− 𝑃𝑙

)︀
=

1

2𝜋𝑖

‰
𝛾𝑙

𝐴(𝑘)1/2𝑇 (𝑘, 𝜁) 𝑑𝜁, |𝑘| ⩽ κ𝑙. (2.17)

Для операторов 𝒳 (𝑘, 𝜁), 𝒳0(𝜁), 𝒴(𝑘, 𝜁) и 𝒴0(𝑘, 𝜁) справедливы оценки [39, (3.5), (3.7) и (3.8)]

‖𝒴(𝑘, 𝜁)‖ ⩽ 𝐶1,𝑙|𝑘|, ‖𝒴0(𝑘, 𝜁)‖ ⩽ 𝐶1,𝑙|𝑘|, |𝑘| ⩽ κ𝑙, 𝜁 ∈ 𝛾𝑙; (2.18)
‖𝒳0(𝜁)‖ ⩽ 𝐶2,𝑙, ‖𝒳 (𝑘, 𝜁)‖ ⩽ 𝐶2,𝑙, |𝑘| ⩽ κ𝑙, 𝜁 ∈ 𝛾𝑙. (2.19)

Также отметим, что [39, (3.6)]

‖𝐴(0)1/2𝑅0(𝜁)‖ ⩽ 𝐶2,𝑙, ‖𝐴(0)𝑅0(𝜁)‖ ⩽ 𝐶3,𝑙, 𝜁 ∈ 𝛾𝑙. (2.20)

Рассмотрим слагаемые в выражении для 𝐴(𝑘)1/2𝑇 (𝑘, 𝜁). Начнём с 𝐴(𝑘)1/2𝒴0(𝑘, 𝜁
*)*𝒳 (𝑘, 𝜁).

Используя (2.18), (2.19) и первую оценку (2.20), имеем⃦⃦
𝐴(𝑘)1/2𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦
=
⃦⃦
𝑔1/2(𝐷 + 𝑘)𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦

⩽
⃦⃦
𝑔1/2𝐷𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦

=
⃦⃦
𝐴(0)1/2𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦
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=
⃦⃦(︀
𝑔1/2𝑘𝐴(0)1/2𝑅0(𝜁

*)
)︀*𝒳 (𝑘, 𝜁)

⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒴0(𝑘, 𝜁

*)*𝒳 (𝑘, 𝜁)
⃦⃦

⩽ 𝐶2,𝑙𝐶2,𝑙𝐶4|𝑘|+ 𝐶1,𝑙𝐶2,𝑙𝐶4𝑘
2, |𝑘| ⩽ κ𝑙, 𝜁 ∈ 𝛾𝑙.

Далее оценим 𝐴(𝑘)1/2𝒳0(𝜁
*)*𝒴(𝑘, 𝜁). Применяя (2.18), (2.19) и вторую оценку (2.20), полу-

чаем⃦⃦
𝐴(𝑘)1/2𝒳0(𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦
=
⃦⃦
𝑔1/2(𝐷 + 𝑘)𝒳0(𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦

⩽
⃦⃦(︀
𝑔1/2𝐷𝐴(0)1/2𝑅0(𝜁

*)
)︀*𝒴(𝑘, 𝜁)

⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒳0(𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦

⩽
⃦⃦
𝐴(0)𝑅0(𝜁

*)
⃦⃦
·
⃦⃦
𝒴(𝑘, 𝜁)

⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒳0(𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦

⩽ 𝐶1,𝑙𝐶3,𝑙|𝑘|+ 𝐶1,𝑙𝐶2,𝑙𝐶4𝑘
2, |𝑘| ⩽ κ𝑙, 𝜁 ∈ 𝛾𝑙.

Наконец, рассмотрим 𝐴(𝑘)1/2𝒴0(𝑘, 𝜁
*)*𝒴(𝑘, 𝜁). С помощью (2.18) и первой оценки (2.20) мы

приходим к⃦⃦
𝐴(𝑘)1/2𝒴0(𝑘, 𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦
=
⃦⃦
𝑔1/2(𝐷 + 𝑘)𝒴0(𝑘, 𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦

⩽
⃦⃦(︀
𝑔1/2𝑘𝐴(0)1/2𝑅0(𝜁)

)︀*𝒴(𝑘, 𝜁)
⃦⃦
+
⃦⃦
𝑔1/2𝑘𝒴0(𝑘, 𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦

⩽ 𝐶1,𝑙𝐶2,𝑙𝐶4𝑘
2 + 𝐶2

1,𝑙𝐶4|𝑘|3, |𝑘| ⩽ κ𝑙, 𝜁 ∈ 𝛾𝑙.

Из полученных оценок вместе с (2.15) и (2.17) следует (2.13).
Вторая оценка (2.13) следует из равенства

𝐴(𝑘)1/2𝑃𝑙 = 𝐴(𝑘)1/2𝐹𝑙(𝑘)− 𝐴(𝑘)1/2
(︀
𝐹𝑙(𝑘)− 𝑃𝑙

)︀
,

первой оценки (2.13), а также
⃦⃦
𝐴(𝑘)1/2𝐹𝑙(𝑘)

⃦⃦
⩽
√︀
𝜆∘𝑙 + 𝑑𝑙/3, |𝑘| ⩽ κ𝑙.

Теорема 2.4. Пусть 𝜏 ∈ R и |𝑘| ⩽ κ𝑙, где κ𝑙 подчинено дополнительному условию

κ𝑙 ⩽ min{(4𝐶5,𝑙)
−1𝜆∘𝑙 , (8C1,𝑙)

−1}.

Тогда справедливы оценки⃦⃦(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙

)︀
𝑃𝑙

⃦⃦
⩽ 3C1,𝑙|𝑘|+ C2,𝑙|𝜏 |𝑘2, (2.21)⃦⃦

𝐴(𝑘)1/2
(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙

)︀
𝑃𝑙

⃦⃦
⩽ (2C ′

1,𝑙 + C ′′
1,𝑙)|𝑘|+ C ′

2,𝑙|𝜏 |𝑘2. (2.22)

Константа C ′
1,𝑙 определена в (2.14), а 𝐶5,𝑙, C1,𝑙, C ′′

1,𝑙, C2,𝑙 и C ′
2,𝑙 заданы выражениями

𝐶5,𝑙 = (2𝜋)−1(𝜆∘𝑙 + 𝑑𝑙/2)ℓ𝑙(𝐶1,𝑙𝐶2,𝑙 + 𝐶1,𝑙𝐶2,𝑙 + 𝐶2
1,𝑙κ𝑙),

C1,𝑙 = (2𝜋)−1ℓ𝑙(𝐶1,𝑙𝐶2,𝑙 + 𝐶1,𝑙𝐶2,𝑙 + 𝐶2
1,𝑙κ𝑙),

C ′′
1,𝑙 =

(︂
C ′
1,𝑙κ𝑙 +

√︁
𝜆∘𝑙 + 𝑑𝑙/3

)︂
C1,𝑙,

C2,𝑙 = 4
(︁√︀

𝜆∘𝑙𝐶
2
7,𝑙 +

√︀
𝜆∘𝑙𝐶8,𝑙κ𝑙 + (𝜆∘𝑙 )

−1/2𝐶9,𝑙 + (𝜆∘𝑙 )
−3/2𝐶5,𝑙𝐶10,𝑙

)︁
,

C ′
2,𝑙 =

(︂
C ′
1,𝑙κ𝑙 +

√︁
𝜆∘𝑙 + 𝑑𝑙/3

)︂
C2,𝑙,

где

𝐶6,𝑙 = 2𝐶1,𝑙𝐶2,𝑙𝐶2,𝑙𝐶4 + 𝐶2
1,𝑙𝐶3,𝑙 + 2𝐶2

1,𝑙𝐶2,𝑙𝐶4κ𝑙 + 𝐶1,𝑙𝐶
2
2,𝑙𝐶4 + 𝐶2

1,𝑙,

𝐶7,𝑙 = 𝜋−1ℓ𝑙𝐶1,𝑙𝐶2,𝑙, 𝐶8,𝑙 = 2−1𝜋−2ℓ2𝑙𝐶1,𝑙𝐶2,𝑙𝐶6,𝑙,

𝐶9,𝑙 = (2𝜋)−1(𝜆∘𝑙 + 𝑑𝑙/2)ℓ𝑙𝐶6,𝑙, 𝐶10,𝑙 = 𝜋−1(𝜆∘𝑙 + 𝑑𝑙/2)ℓ𝑙𝐶1,𝑙𝐶2,𝑙.
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Доказательство. Оценка (2.21) была доказана в [33, теорема 4.15]. Проверим (2.22). Спра-
ведливо равенство

𝐴(𝑘)1/2
(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙𝑃𝑙

)︀
𝑃𝑙

= 𝐴(𝑘)1/2𝑃𝑙

(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙(𝑘)− 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙𝑃𝑙

)︀
+ 𝐴(𝑘)1/2𝑒−𝑖𝜏𝐴(𝑘)1/2(𝑃𝑙 − 𝐹𝑙(𝑘))

+ 𝐴(𝑘)1/2(𝐹𝑙(𝑘)− 𝑃𝑙)𝑒
−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙(𝑘).

В силу первой оценки (2.13) последние два слагаемых допускают оценки

‖𝐴(𝑘)1/2𝑒−𝑖𝜏𝐴(𝑘)1/2(𝑃𝑙 − 𝐹𝑙(𝑘))‖ ⩽ C ′
1,𝑙|𝑘|, |𝑘| ⩽ κ𝑙,

‖𝐴(𝑘)1/2(𝐹𝑙(𝑘)− 𝑃𝑙)𝑒
−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙(𝑘)‖ ⩽ C ′

1,𝑙|𝑘|, |𝑘| ⩽ κ𝑙.

Первое слагаемое оценивается с помощью второй оценки (2.13) и [33, (119)–(122)]:⃦⃦
𝐴(𝑘)1/2𝑃𝑙

(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙(𝑘)− 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙𝑃𝑙

)︀⃦⃦
⩽

(︂
C ′
1,𝑙κ𝑙 +

√︁
𝜆∘𝑙 + 𝑑𝑙/3

)︂
(C1,𝑙|𝑘|+ C2,𝑙|𝜏 |𝑘2), |𝑘| ⩽ κ𝑙.

Таким образом, оценка (2.22) доказана.

Теперь получим спектральные приближения в окрестности пары собственных чисел 𝜆∘𝑙
и 𝜆∘𝑙+1, 𝑙 ∈ ϒ(1,>), оператора 𝐴(0). Как было проверено в [32, § 3, п. 3.2], при |𝑘| ⩽ κ(>), где

κ(>) =
1

3
√
2
‖𝑔‖−1

𝐿∞
‖𝑔−1‖−1/2

𝐿∞
, (2.23)

на отрезке [𝑞(𝑙)2 − 4𝑞(𝑙)/3, 𝑞(𝑙)2 + 4𝑞(𝑙)/3] имеется 2 собственных числа оператора 𝐴(𝑘) и(︀[︀
𝑞(𝑙)2 − 8𝑞(𝑙)/3, 𝑞(𝑙)2 − 4𝑞(𝑙)/3

)︀
∪
(︀
𝑞(𝑙)2 + 4𝑞(𝑙)/3, 𝑞(𝑙)2 + 8𝑞(𝑙)/3

]︀)︀
∩ spec𝐴(𝑘) = ∅. (2.24)

Обозначим через 𝐹𝑙,𝑙+1(𝑘) спектральный проектор оператора 𝐴(𝑘), |𝑘| ⩽ κ(>), отвеча-
ющий отрезку [𝑞(𝑙)2 − 4𝑞(𝑙)/3, 𝑞(𝑙)2 + 4𝑞(𝑙)/3]. Далее, пусть 𝛾𝑙 — контур, эквидистантно
охватывающий этот отрезок и проходящий через точку 𝑞(𝑙)2 + 2𝑞(𝑙). Его длина равна

ℓ̃𝑙 =
𝜋 + 4

3
· 4𝑞(𝑙).

Лемма 2.5. Пусть 𝑙 ∈ ϒ(1,>) и |𝑘| ⩽ κ(>). Справедливы оценки⃦⃦
𝐴(𝑘)1/2

(︀
𝐹𝑙,𝑙+1(𝑘)− 𝑃𝑙,𝑙+1

)︀⃦⃦
⩽ ̃︀C ′

1,𝑙|𝑘|,
⃦⃦
𝐴(𝑘)1/2𝑃𝑙,𝑙+1

⃦⃦
⩽ 2𝑞(𝑙) + ̃︀C ′

1,𝑙|𝑘|. (2.25)

Здесь константа ̃︀C ′
1,𝑙 задана выражением

̃︀C ′
1,𝑙 = (2𝜋)−1ℓ̃𝑙

(︁ ̃︀𝐶2
̃̌︀𝐶2𝐶4 + ̃︀𝐶1,𝑙

̃̌︀𝐶2𝐶4κ(>) + ̃︀𝐶1,𝑙
̃︀𝐶3,𝑙 + 2 ̃︀𝐶1,𝑙

̃︀𝐶2𝐶4κ(>) + ̃︀𝐶2
1,𝑙𝐶4

(︀
κ(>)

)︀2)︁
, (2.26)

где ̃︀𝐶1,𝑙 =
3

2
‖𝑔‖1/2𝐿∞

𝑞(𝑙)−1, ̃︀𝐶2 = 3, ̃̌︀𝐶2 = 3 +
3

2
‖𝑔‖1/2𝐿∞

κ(>), ̃︀𝐶3,𝑙 = 4 +
3

2
𝑞(𝑙).
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Доказательство. Докажем первую оценку (2.25). Следующее представление следует из [32,
(6.1), (6.3)]:

𝐴(𝑘)1/2
(︀
𝐹𝑙,𝑙+1(𝑘)− 𝑃𝑙,𝑙+1

)︀
=

1

2𝜋𝑖

‰
𝛾𝑙

𝐴(𝑘)1/2𝑇 (𝑘, 𝜁) 𝑑𝜁, (2.27)

где оператор 𝑇 (𝑘, 𝜁) определён в (2.15), (2.16). Справедливы оценки [32, (6.5), (6.6)]

‖𝒴(𝑘, 𝜁)‖ ⩽ ̃︀𝐶1,𝑙|𝑘|, ‖𝒴0(𝑘, 𝜁)‖ ⩽ ̃︀𝐶1,𝑙|𝑘|, |𝑘| ⩽ κ(>), 𝜁 ∈ 𝛾𝑙; (2.28)

‖𝒳0(𝜁)‖ ⩽ ̃︀𝐶2, ‖𝒳 (𝑘, 𝜁)‖ ⩽ ̃̌︀𝐶2, |𝑘| ⩽ κ(>), 𝜁 ∈ 𝛾𝑙, (2.29)

а также (ср. [39, (3.6)])

‖𝐴(0)1/2𝑅0(𝜁)‖ ⩽ ̃︀𝐶2, ‖𝐴(0)𝑅0(𝜁)‖ ⩽ ̃︀𝐶3,𝑙, 𝜁 ∈ 𝛾𝑙. (2.30)

Действуя аналогично доказательству леммы 2.3 с использованием оценок (2.28)–(2.30),
получаем⃦⃦

𝐴(𝑘)1/2𝒴0(𝑘, 𝜁
*)*𝒳 (𝑘, 𝜁)

⃦⃦
⩽ ̃︀𝐶2

̃̌︀𝐶2𝐶4|𝑘|+ ̃︀𝐶1,𝑙
̃̌︀𝐶2𝐶4𝑘

2, |𝑘| ⩽ κ(>), 𝜁 ∈ 𝛾𝑙,⃦⃦
𝐴(𝑘)1/2𝒳0(𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦
⩽ ̃︀𝐶1,𝑙

̃︀𝐶3,𝑙|𝑘|+ ̃︀𝐶1,𝑙
̃︀𝐶2𝐶4𝑘

2, |𝑘| ⩽ κ(>), 𝜁 ∈ 𝛾𝑙,⃦⃦
𝐴(𝑘)1/2𝒴0(𝑘, 𝜁

*)*𝒴(𝑘, 𝜁)
⃦⃦
⩽ ̃︀𝐶1,𝑙

̃︀𝐶2𝐶4𝑘
2 + ̃︀𝐶2

1,𝑙𝐶4|𝑘|3, |𝑘| ⩽ κ(>), 𝜁 ∈ 𝛾𝑙.

Из этих оценок вместе с (2.27) получаем первую оценку (2.25).
Вторая оценка (2.25) следует из равенства

𝐴(𝑘)1/2𝑃𝑙,𝑙+1 = 𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘)− 𝐴(𝑘)1/2
(︀
𝐹𝑙,𝑙+1(𝑘)− 𝑃𝑙,𝑙+1

)︀
,

первой оценки (2.25) и
⃦⃦
𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘)

⃦⃦
⩽
√︀
𝑞(𝑙)2 + 4𝑞(𝑙)/3 ⩽ 2𝑞(𝑙).

Теорема 2.6. Пусть 𝑙 ∈ ϒ(1,>), 𝜏 ∈ R и |𝑘| ⩽ κ(>). Справедливы оценки⃦⃦(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏 ̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1

)︀
𝑃𝑙,𝑙+1

⃦⃦
⩽ 3 ̃︀C1,𝑙|𝑘|+ ̃︀C2,𝑙|𝜏 |𝑘2, (2.31)⃦⃦

𝐴(𝑘)1/2
(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏 ̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1

)︀
𝑃𝑙,𝑙+1

⃦⃦
⩽ (2 ̃︀C ′

1,𝑙 +
̃︀C ′′
1,𝑙)|𝑘|+ ̃︀C ′

2,𝑙|𝜏 |𝑘2. (2.32)

Константа ̃︀C ′
1,𝑙 определена в (2.26), а ̃︀C1,𝑙, ̃︀C ′′

1,𝑙, ̃︀C2,𝑙 и ̃︀C ′
2,𝑙 заданы выражениями

̃︀C1,𝑙 = (2𝜋)−1ℓ̃𝑙( ̃︀𝐶1,𝑙
̃︀𝐶2 + ̃︀𝐶1,𝑙

̃̌︀𝐶2 + ̃︀𝐶2
1,𝑙κ(>)),̃︀C ′′

1,𝑙 =
(︁
2𝑞(𝑙) + ̃︀C ′

1,𝑙κ(>)
)︁ ̃︀C1,𝑙,̃︀C2,𝑙 = 20

√
2
(︀
𝑞(𝑙) ̃︀𝐶2

6,𝑙 + 𝑞(𝑙) ̃︀𝐶7,𝑙κ(>) + 𝑞(𝑙)−1 ̃︀𝐶9,𝑙 + 𝑞(𝑙)−3 ̃︀𝐶8,𝑙
̃︀𝐶10,𝑙

)︀
,̃︀C ′

2,𝑙 =
(︁
2𝑞(𝑙) + ̃︀C ′

1,𝑙κ(>)
)︁ ̃︀C2,𝑙,

где

̃︀𝐶5,𝑙 = 2 ̃︀𝐶1,𝑙
̃︀𝐶2
̃̌︀𝐶2𝐶4 + ̃︀𝐶2

1,𝑙
̃︀𝐶3,𝑙 + 2 ̃︀𝐶2

1,𝑙
̃︀𝐶2𝐶4κ(>) + ̃︀𝐶1,𝑙

̃︀𝐶2
2𝐶4 + ̃︀𝐶2

1,𝑙,̃︀𝐶6,𝑙 = 𝜋−1ℓ̃𝑙 ̃︀𝐶1,𝑙
̃︀𝐶2, ̃︀𝐶7,𝑙 = 2−1𝜋−2ℓ̃2𝑙

̃︀𝐶1,𝑙
̃︀𝐶2
̃︀𝐶5,𝑙,̃︀𝐶8,𝑙 = 3(2𝜋)−1𝑞(𝑙)2ℓ̃𝑙( ̃︀𝐶1,𝑙

̃︀𝐶2 + ̃︀𝐶1,𝑙
̃̌︀𝐶2 + ̃︀𝐶2

1,𝑙κ(>)),̃︀𝐶9,𝑙 = 3(2𝜋)−1𝑞(𝑙)2ℓ̃𝑙 ̃︀𝐶5,𝑙, ̃︀𝐶10,𝑙 = 3𝜋−1𝑞(𝑙)2ℓ̃𝑙 ̃︀𝐶1,𝑙
̃︀𝐶2.
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Доказательство. Оценка (2.31) была проверена в [32, теорема 3]. Докажем (2.32). Спра-
ведливо равенство

𝐴(𝑘)1/2
(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏 ̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1𝑃𝑙,𝑙+1

)︀
𝑃𝑙,𝑙+1

= 𝐴(𝑘)1/2𝑃𝑙,𝑙+1

(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘)− 𝑒−𝑖𝜏 ̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1𝑃𝑙,𝑙+1

)︀
+ 𝐴(𝑘)1/2𝑒−𝑖𝜏𝐴(𝑘)1/2(𝑃𝑙,𝑙+1 − 𝐹𝑙,𝑙+1(𝑘))

+ 𝐴(𝑘)1/2(𝐹𝑙,𝑙+1(𝑘)− 𝑃𝑙,𝑙+1)𝑒
−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘).

В силу первой оценки (2.25) последние два слагаемых допускают оценки

‖𝐴(𝑘)1/2𝑒−𝑖𝜏𝐴(𝑘)1/2(𝑃𝑙,𝑙+1 − 𝐹𝑙,𝑙+1(𝑘))‖ ⩽ ̃︀C ′
1,𝑙|𝑘|, |𝑘| ⩽ κ(>),

‖𝐴(𝑘)1/2(𝐹𝑙,𝑙+1(𝑘)− 𝑃𝑙,𝑙+1)𝑒
−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘)‖ ⩽ ̃︀C ′

1,𝑙|𝑘|, |𝑘| ⩽ κ(>).

Первое слагаемое оценивается с помощью второй оценки (2.25) и [32, (6.39)–(6.42)]:

‖𝐴(𝑘)1/2𝑃𝑙,𝑙+1

(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2𝐹𝑙,𝑙+1(𝑘)− 𝑒−𝑖𝜏 ̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1𝑃𝑙,𝑙+1

)︀
‖

⩽
(︀
2𝑞(𝑙) + ̃︀C ′

1,𝑙κ(>)
)︀(︀ ̃︀C1,𝑙|𝑘|+ ̃︀C2,𝑙|𝜏 |𝑘2

)︀
, |𝑘| ⩽ κ(>).

Таким образом, оценка (2.32) доказана.

Наконец, получим спектральные приближения в окрестности собственного числа 𝜆∘𝑙 ,
𝑙 ∈ ϒ(2,>). Аналогично, при |𝑘| ⩽ κ(>) на отрезке [𝑞(𝑙)2 − 4𝑞(𝑙)/3, 𝑞(𝑙)2 + 4𝑞(𝑙)/3] име-
ется 2 собственных числа оператора 𝐴(𝑘) и выполнено (2.24) (с заменой 𝑙 ∈ ϒ(1,>) на
𝑙 ∈ ϒ(2,>)). Через 𝐹𝑙(𝑘) обозначим спектральный проектор оператора 𝐴(𝑘), отвечающий
отрезку [𝑞(𝑙)2 − 4𝑞(𝑙)/3, 𝑞(𝑙)2 + 4𝑞(𝑙)/3], и пусть 𝛾𝑙 — контур, эквидистантно охватывающий
этот отрезок и проходящий через точку 𝑞(𝑙)2 + 2𝑞(𝑙). Его длина равна ℓ̃𝑙 = 𝜋+4

3
· 4𝑞(𝑙). По

аналогии с теоремами 2.4 и 2.6 можно получить следующий результат.

Теорема 2.7. Пусть 𝑙 ∈ ϒ(2,>), 𝜏 ∈ R и |𝑘| ⩽ κ(>). Справедливы оценки⃦⃦(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙

)︀
𝑃𝑙

⃦⃦
⩽ 3 ̃︀C1,𝑙|𝑘|+ ̃︀C2,𝑙|𝜏 |𝑘2,⃦⃦

𝐴(𝑘)1/2
(︀
𝑒−𝑖𝜏𝐴(𝑘)1/2 − 𝑒−𝑖𝜏A𝑙(𝑘)𝑃𝑙

)︀
𝑃𝑙

⃦⃦
⩽ (2 ̃︀C ′

1,𝑙 +
̃︀C ′′
1,𝑙)|𝑘|+ ̃︀C ′

2,𝑙|𝜏 |𝑘2.

Замечание 2.8. Теорема 2.4 верна для всех номеров 𝑙 ∈ N ∖ {1}. Однако, она не позволяет
получить нужные нам оценки при больших 𝑙.

Замечание 2.9. Для нас важно отследить зависимость констант в теоремах 2.6 и 2.7
от 𝑙 (при больших 𝑙). Так как ̃︀𝐶1,𝑙 = 𝑂

(︀
𝑞(𝑙)−1

)︀
, ̃︀𝐶3,𝑙 = 𝑂

(︀
𝑞(𝑙)
)︀

и ℓ̃𝑙 = 𝑂
(︀
𝑞(𝑙)
)︀
, то мы имеем̃︀𝐶5,𝑙 = 𝑂

(︀
𝑞(𝑙)−1

)︀
, ̃︀𝐶6,𝑙 = 𝑂(1), ̃︀𝐶7,𝑙 = 𝑂(1), ̃︀𝐶8,𝑙 = 𝑂

(︀
𝑞(𝑙)2

)︀
, ̃︀𝐶9,𝑙 = 𝑂

(︀
𝑞(𝑙)2

)︀
, ̃︀𝐶10,𝑙 = 𝑂

(︀
𝑞(𝑙)2

)︀
,

а значит

̃︀C1,𝑙 = 𝑂(1), ̃︀C ′
1,𝑙 = 𝑂

(︀
𝑞(𝑙)
)︀
, ̃︀C ′′

1,𝑙 = 𝑂
(︀
𝑞(𝑙)
)︀
, ̃︀C2,𝑙 = 𝑂

(︀
𝑞(𝑙)
)︀
, ̃︀C ′

2,𝑙 = 𝑂
(︀
𝑞(𝑙)2

)︀
.

3. Матричные элементы

Материал этого пункта заимствован из [39, п. 3.3] и [32, § 4]. Пусть 𝜍 𝑙 = {𝜍𝑝𝑙 }
𝑝𝑙
𝑝=1 —

ортонормированный базис в N𝑙, 𝑙 ∈ ϒ(<) ∪ ϒ(2,>), причём 𝜍1𝑙 = 𝜍𝑞(𝑙), 𝑙 ∈ ϒ(<) ∪ ϒ(2,>), и
𝜍2𝑙 = 𝜍𝑞(𝑙)+1, если 𝑙 ∈ ϒ(2). Тогда оператор (2.11) в базисе 𝜍 𝑙 изображается числом

a𝑙(𝑘) =
√︀
𝜆∘𝑙 , если 𝑙 ∈ ϒ(1),
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или матрицей

a𝑙(𝑘) =

(︂√︀
𝜆∘𝑙 +

1
2
(𝜆∘𝑙 )

−1/2g1,11𝑙 𝑘 1
2
(𝜆∘𝑙 )

−1/2g1,12𝑙 𝑘
1
2
(𝜆∘𝑙 )

−1/2g1,21𝑙 𝑘
√︀
𝜆∘𝑙 +

1
2
(𝜆∘𝑙 )

−1/2g1,22𝑙 𝑘

)︂
, если 𝑙 ∈ ϒ(2), (3.1)

где

g1,𝑞𝑝𝑙 = 𝑖

ˆ 𝜈

0

𝑔(𝑥)

(︂
𝜍𝑝𝑙 (𝑥)

𝑑

𝑑𝑥
𝜍𝑞𝑙 (𝑥)

* − 𝜍𝑞𝑙 (𝑥)
* 𝑑

𝑑𝑥
𝜍𝑝𝑙 (𝑥)

)︂
𝑑𝑥. (3.2)

Теперь, пусть 𝜍 𝑙 = {𝜍𝑝𝑙 }2𝑝=1 — ортонормированный базис в N𝑙,𝑙+1, 𝑙 ∈ ϒ(1,>), причём
𝜍1𝑙 = 𝜍𝑞(𝑙), 𝜍2𝑙 = 𝜍𝑞(𝑙)+1. Тогда оператор (2.12) изображается матрицей

a𝑙(𝑘) =

⎛⎝ √︀
𝜆∘𝑙

1√
𝜆∘
𝑙 +
√

𝜆∘
𝑙+1

̃︀g1,12𝑙 𝑘

1√
𝜆∘
𝑙 +
√

𝜆∘
𝑙+1

̃︀g1,21𝑙 𝑘
√︀
𝜆∘𝑙+1

⎞⎠ . (3.3)

Здесь ̃︀g1,𝑞𝑝𝑙 = 𝑖

ˆ 𝜈

0

𝑔(𝑥)

(︂
𝜍𝑝𝑙 (𝑥)

𝑑

𝑑𝑥
𝜍𝑞𝑙 (𝑥)

* − 𝜍𝑞𝑙 (𝑥)
* 𝑑

𝑑𝑥
𝜍𝑝𝑙 (𝑥)

)︂
𝑑𝑥. (3.4)

4. Основные результаты работы

Пусть 𝜀 > 0 — малый параметр. Рассмотрим в 𝐿2(R) оператор, заданный дифферен-
циальным выражением

𝐴𝜀 = − 𝑑

𝑑𝑥
𝑔𝜀(𝑥)

𝑑

𝑑𝑥
, Dom𝐴 = 𝐻2(R). (4.1)

Здесь 𝜈-периодическая функция 𝑔 удовлетворяет условиям (1.2), (1.3). Операторы (1.1)
и (4.1) связаны между собой соотношением

𝐴𝜀 = 𝜀−2𝑇 *
𝜀𝐴𝑇𝜀,

где 𝑇𝜀 — оператор масштабного преобразования: (𝑇𝜀𝑢)(𝑥) = 𝜀1/2𝑢(𝜀𝑥).
Пусть Ψ(𝑥) — периодическое решение задачи (0.2) в одномерном случае. Мы изучаем

поведение при 𝜀 → 0 решения 𝑢𝜀(𝑥, 𝜏), 𝑥 ∈ R, 𝜏 ∈ R, задачи Коши для гиперболиче-
ского уравнения ⎧⎨⎩

𝜕2

𝜕𝜏 2
𝑢𝜀(𝑥, 𝜏) = −(𝐴𝜀𝑢𝜀)(𝑥, 𝜏),

𝑢𝜀(𝑥, 0) = 𝜀Ψ𝜀(𝑥)𝜑′(𝑥), (𝜕𝜏𝑢𝜀)(𝑥, 0) = 0.
(4.2)

Здесь 𝜑(𝑥) — заданная функция, далее мы будем считать, что 𝜑 ∈ 𝐻4(R). Разложим Ψ
в ряд Фурье по собственным функциям задачи (2.4):

Ψ =
∞∑︁
𝑗=2

𝛽𝑗𝜍𝑗, 𝛽𝑗 = (Ψ, 𝜍𝑗)𝐿2(0,𝜈). (4.3)

Введём также обозначение 𝛽′
𝑗 := (𝑔′, 𝜍𝑗)𝐿2(0,𝜈), 𝑗 ⩾ 2. Следующая лемма была установ-

лена в [32, лемма 5.1].
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Лемма 4.1 ([32]). Справедливо равенство

|𝛽𝑗| =
|𝛽′

𝑗|
𝜆𝑗

. (4.4)

Замечание 4.2. Из (2.8) и (4.4) следует, что |𝛽𝑗| = 𝑂
(︀
𝑗−2
)︀

при больших 𝑗. Учиты-
вая (2.9), получаем, что ряд (4.3) сходится абсолютно и равномерно. Далее, ряд из
производных

∑︀∞
𝑗=2 𝛽𝑗𝜍

′
𝑗 также сходится абсолютно и равномерно. Действительно, при-

меняя (2.8), (2.10), (4.4) с учётом 𝑔′ ∈ 𝐿2(0, 𝜈), имеем

∞∑︁
𝑗=2

|𝛽𝑗𝜍 ′𝑗| ⩽
∞∑︁
𝑗=2

|𝛽′
𝑗|
𝜆𝑗

𝐶 ′
𝜍𝑗 ⩽ 𝐶 ′

𝜍

(︃
∞∑︁
𝑗=2

(︂
𝑗

𝜆𝑗

)︂2

+
∞∑︁
𝑗=2

|𝛽′
𝑗|2
)︃
<∞.

Поэтому ряд (4.3) сходится по 𝐶1[0, 𝜈]-норме (а значит и по норме мультипликаторов
из 𝐻1(R) в 𝐻1(R); см. [45, гл. 2, теорема 2.1.1(i)]).

Рассмотрим задачи⎧⎨⎩
𝜕2

𝜕𝜏 2
𝑢𝑗,𝜀(𝑥, 𝜏) = −(𝐴𝜀𝑢𝑗,𝜀)(𝑥, 𝜏),

𝑢𝑗,𝜀(𝑥, 0) = 𝜀𝛽𝑗𝜍
𝜀
𝑗 (𝑥)𝜑

′(𝑥), (𝜕𝜏𝑢𝑗,𝜀)(𝑥, 0) = 0.
(4.5)

В 𝐿2(R) определим операторы

𝐴eff
𝑙,𝜀 = 𝜀−1

√︀
𝜆∘𝑙 𝐼, 𝑙 ∈ ϒ(1,<);

𝐴eff
𝑙,𝜀 =

(︂
𝜀−1
√︀
𝜆∘𝑙 𝐼 − 𝑖(𝜆∘𝑙 )

−1/2g1,11𝑙
𝑑
𝑑𝑥

−𝑖(𝜆∘𝑙 )−1/2g1,12𝑙
𝑑
𝑑𝑥

−𝑖(𝜆∘𝑙 )−1/2g1,21𝑙
𝑑
𝑑𝑥

𝜀−1
√︀
𝜆∘𝑙 𝐼 − 𝑖(𝜆∘𝑙 )

−1/2g1,22𝑙
𝑑
𝑑𝑥

)︂
, 𝑙 ∈ ϒ(2);

𝐴eff
𝑙,𝜀 =

⎛⎝ 𝜀−1
√︀
𝜆∘𝑙 𝐼 −𝑖 1√

𝜆∘
𝑙 +
√

𝜆∘
𝑙+1

̃︀g1,12𝑙
𝑑
𝑑𝑥

−𝑖 1√
𝜆∘
𝑙 +
√

𝜆∘
𝑙+1

̃︀g1,21𝑙
𝑑
𝑑𝑥

𝜀−1
√︀
𝜆∘𝑙+1𝐼

⎞⎠ , 𝑙 ∈ ϒ(1,>);

которые назовём эффективными операторами. Напомним, что g1,𝑙𝑝𝑙 и ̃︀g1,𝑙𝑝𝑙 определены в (3.2)
и (3.4). Пусть 𝑣eff𝑙,𝜀 (𝑥, 𝜏) и veff

𝑙𝑟,𝜀(𝑥, 𝜏) =
(︀
𝑣eff𝑙𝑟,1,𝜀(𝑥, 𝜏), 𝑣

eff
𝑙𝑟,2,𝜀(𝑥, 𝜏)

)︀t — решения соответствующих
“эффективных” задач⎧⎨⎩𝑖

𝜕

𝜕𝜏
𝑣eff𝑙,𝜀 (𝑥, 𝜏) = 𝐴eff

𝑙,𝜀𝑣
eff
𝑙,𝜀 (𝑥, 𝜏),

𝑣eff𝑙,𝜀 (𝑥, 0) = 𝜑′(𝑥),
𝑙 ∈ ϒ(1,<); (4.6)

⎧⎨⎩𝑖
𝜕

𝜕𝜏
veff
𝑙𝑟,𝜀(𝑥, 𝜏) = 𝐴eff

𝑙,𝜀v
eff
𝑙𝑟,𝜀(𝑥, 𝜏),

veff
𝑙𝑟,𝜀(𝑥, 0) = 𝜑′(𝑥)e𝑟,

𝑙 ∈ ϒ(2) ∪ϒ(1,>), 𝑟 = 1, 2. (4.7)

Здесь e1, e2 — стандартный базис в C2. Определим “эффективные” приближения:

𝑢eff𝑙,𝜀(𝑥, 𝜏) :=
1

2
𝜀𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)(𝑥)

(︀
𝑣eff𝑙,𝜀 (𝑥, 𝜏) + 𝑣eff𝑙,𝜀 (𝑥,−𝜏)

)︀
, 𝑙 ∈ ϒ(1,<); (4.8)

𝑢eff𝑙,1,𝜀(𝑥, 𝜏) :=
1

2
𝜀

2∑︁
𝑠=1

𝛽𝑞(𝑙)𝜍
𝜀
𝑞(𝑙)+𝑠−1(𝑥)

(︀
𝑣eff𝑙1,𝑠,𝜀(𝑥, 𝜏) + 𝑣eff𝑙1,𝑠,𝜀(𝑥,−𝜏)

)︀
, 𝑙 ∈ ϒ(2) ∪ϒ(1,>); (4.9)

𝑢eff𝑙,2,𝜀(𝑥, 𝜏) :=
1

2
𝜀

2∑︁
𝑠=1

𝛽𝑞(𝑙)+1𝜍
𝜀
𝑞(𝑙)+𝑠−1(𝑥)

(︀
𝑣eff𝑙2,𝑠,𝜀(𝑥, 𝜏) + 𝑣eff𝑙2,𝑠,𝜀(𝑥,−𝜏)

)︀
, 𝑙 ∈ ϒ(2) ∪ϒ(1,>). (4.10)
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Для решений задачи (4.5), “эффективных” систем (4.6), (4.7) и “эффективных” прибли-
жений (4.8)–(4.10) справедливы операторные представления

𝑢𝑗,𝜀(·, 𝜏) = cos(𝜏𝐴1/2
𝜀 )𝜀𝑖𝛽𝑗𝜍

𝜀
𝑗𝐷𝜑,

𝑣eff𝑙,𝜀 (·, 𝜏) = 𝑒−𝑖𝜏𝐴eff
𝑙,𝜀𝑖𝐷𝜑, 𝑙 ∈ ϒ(1,<),

veff
𝑙𝑟,𝜀(·, 𝜏) = 𝑒−𝑖𝜏𝐴eff

𝑙,𝜀𝐽𝑟𝑖𝐷𝜑, 𝑙 ∈ ϒ(2) ∪ϒ(1,>),

𝑢eff𝑙,𝜀(·, 𝜏) =
1

2
𝑖𝜀𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐷𝜑, 𝑙 ∈ ϒ(1,<),

𝑢eff𝑙,1,𝜀(·, 𝜏) =
1

2
𝑖𝜀

2∑︁
𝑠=1

𝛽𝑞(𝑙)𝜍
𝜀
𝑞(𝑙)+𝑠−1𝐽𝑠

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽1𝐷𝜑, 𝑙 ∈ ϒ(2) ∪ϒ(1,>),

𝑢eff𝑙,2,𝜀(·, 𝜏) =
1

2
𝑖𝜀

2∑︁
𝑠=1

𝛽𝑞(𝑙)+1𝜍
𝜀
𝑞(𝑙)+𝑠−1𝐽𝑠

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽2𝐷𝜑, 𝑙 ∈ ϒ(2) ∪ϒ(1,>),

(4.11)

где оператор 𝐽𝑟 : C → C2 действует по правилу 𝑎 ↦→ 𝑎e𝑟, а 𝐽𝑠 : C2 → C задаётся фор-
мулой 𝐽𝑠c = ⟨c, e𝑠⟩.

Теорема 4.3. Пусть 0 < 𝜀 ⩽ 1, 𝜏 ∈ R, 𝜑 ∈ 𝐻4(R).

1∘. Пусть 𝑙 ∈ ϒ(1,<). Справедлива оценка

‖𝑢𝑞(𝑙),𝜀(·, 𝜏)− 𝑢eff𝑙,𝜀(·, 𝜏)‖𝐻1(R) ⩽
(︀
|𝛽𝑞(𝑙)|𝒞1 + |𝛽′

𝑞(𝑙)|𝒞2 + |𝛽′
𝑞(𝑙)|𝒞3|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R). (4.12)

2∘. Пусть 𝑙 ∈ ϒ(2,<). Справедливы оценки

‖𝑢𝑞(𝑙),𝜀(·, 𝜏)− 𝑢eff𝑙,1,𝜀(·, 𝜏)‖𝐻1(R) ⩽
(︀
|𝛽𝑞(𝑙)|𝒞1 + |𝛽′

𝑞(𝑙)|𝒞2 + |𝛽′
𝑞(𝑙)|𝒞3|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R),

‖𝑢𝑞(𝑙)+1,𝜀(·, 𝜏)− 𝑢eff𝑙,2,𝜀(·, 𝜏)‖𝐻1(R) ⩽
(︀
|𝛽𝑞(𝑙)+1|𝒞1 + |𝛽′

𝑞(𝑙)+1|𝒞2 + |𝛽′
𝑞(𝑙)+1|𝒞3|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R).

(4.13)

3∘. Пусть 𝑙 ∈ ϒ(2,>) ∪ϒ(1,>). Справедливы оценки

‖𝑢𝑞(𝑙),𝜀(·, 𝜏)− 𝑢eff𝑙,1,𝜀(·, 𝜏)‖𝐻1(R) ⩽
(︀
|𝛽𝑞(𝑙)|𝒞4 + |𝛽′

𝑞(𝑙)|𝒞5,𝑙 + |𝛽′
𝑞(𝑙)|𝒞6|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R),

‖𝑢𝑞(𝑙)+1,𝜀(·, 𝜏)− 𝑢eff𝑙,2,𝜀(·, 𝜏)‖𝐻1(R) ⩽
(︀
|𝛽𝑞(𝑙)+1|𝒞4 + |𝛽′

𝑞(𝑙)+1|𝒞5,𝑙 + |𝛽′
𝑞(𝑙)+1|𝒞6|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R),

(4.14)
где 𝒞5,𝑙 = 𝑂(𝑞(𝑙)−1).

Доказательство. Докажем пункт 3∘. В силу (4.11) оценки (4.14) допускают переформули-
ровку в операторных терминах:⃦⃦⃦

cos(𝜏𝐴1/2
𝜀 )𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷

− 1

2
𝜀𝑖𝛽𝑞(𝑙)

(︁
𝜍𝜀𝑞(𝑙)𝐽1

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽1

)︁
𝐷
⃦⃦⃦
𝐻4(R)→𝐻1(R)

⩽
(︀
|𝛽𝑞(𝑙)|𝒞4 + |𝛽′

𝑞(𝑙)|𝒞5,𝑙 + |𝛽′
𝑞(𝑙)|𝒞6|𝜏 |

)︀
𝜀,

(4.15)

⃦⃦⃦
cos(𝜏𝐴1/2

𝜀 )𝜀𝑖𝛽𝑞(𝑙)+1𝜍
𝜀
𝑞(𝑙)+1𝐷

− 1

2
𝑖𝜀𝛽𝑞(𝑙)+1

(︀
𝜍𝜀𝑞(𝑙)𝐽1

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽2 + 𝜍𝜀𝑞(𝑙)+1𝐽2

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽2
)︀
𝐷
⃦⃦⃦
𝐻4(R)→𝐻1(R)

⩽
(︀
|𝛽𝑞(𝑙)+1|𝒞4 + |𝛽′

𝑞(𝑙)+1|𝒞5,𝑙 + |𝛽′
𝑞(𝑙)+1|𝒞6|𝜏 |

)︀
𝜀,

(4.16)
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где 𝜏 ∈ R, 0 < 𝜀 ⩽ 1. Таким образом, наша цель — доказать (4.15) и (4.16). Докажем
оценку (4.15), оценка (4.16) проверяется совершенно аналогично.

Отметим, что оценка по (𝐻4(R) → 𝐿2(R))-норме была получена в [32, теорема 5(3∘),
(5.15)]:⃦⃦⃦

cos(𝜏𝐴1/2
𝜀 )𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷

− 1

2
𝜀𝑖𝛽𝑞(𝑙)

(︁
𝜍𝜀𝑞(𝑙)𝐽1

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐽1

)︁
𝐷
⃦⃦⃦
𝐻4(R)→𝐿2(R)

⩽
(︀
|𝛽𝑞(𝑙)|𝒞 ′

4 + |𝛽′
𝑞(𝑙)|𝒞 ′

6,𝑙|𝜏 |
)︀
𝜀2,

(4.17)

где
𝒞 ′
4 = 3𝐶𝜍

(︀
κ(>)

)︀−1
+ sup

𝑙∈ϒ(1,>)∪ϒ(2,>)

̃︀C1,𝑙, 𝒞 ′
6,𝑙 = (𝜆∘𝑙 )

−1 ̃︀C2,𝑙.

Оценим норму производной. В силу формулы Эйлера cos(𝜏𝐴
1/2
𝜀 ) = 1

2

(︀
𝑒−𝑖𝜏𝐴

1/2
𝜀 + 𝑒𝑖𝜏𝐴

1/2
𝜀
)︀

достаточно рассмотреть оператор

𝐷
(︁
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷 − 𝜀𝑖𝛽𝑞(𝑙)

(︀
𝜍𝜀𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1

)︀
𝐷
)︁
.

Оператор (−Δ+ 𝐼)2 осуществляет изометрический изоморфизм пространства Соболева
𝐻4(R) на 𝐿2(R), поэтому справедливо равенство⃦⃦⃦

𝐷
(︀
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷 − 𝜀𝑖𝛽𝑞(𝑙)

(︀
𝜍𝜀𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1

)︀
𝐷
)︀⃦⃦⃦

𝐻4(R)→𝐿2(R)

=
⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷

− 𝜀𝛽𝑞(𝑙)
(︀
𝜍𝜀𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1

)︀
𝐷
)︁
(−Δ+ 𝐼)−2

⃦⃦⃦
𝐿2(R)→𝐿2(R)

.

(4.18)

Затем, в силу унитарности оператора масштабного преобразования имеем⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷

− 𝜀𝛽𝑞(𝑙)
(︀
𝜍𝜀𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1 + 𝜍𝜀𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐽1

)︀
𝐷
)︁
(−Δ+ 𝐼)−2

⃦⃦⃦
𝐿2(R)→𝐿2(R)

= 𝜀−1
⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)
(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷
)︁

×𝜀4(−Δ+ 𝜀2𝐼)−2
⃦⃦⃦
𝐿2(R)→𝐿2(R)

,

(4.19)

где 𝐴eff
𝑙 := 𝐴eff

𝑙,1.
Далее,

Φ*𝑘𝑚𝜀4(𝑘2 + 𝜀2)−2Φ = 𝐷𝑚𝜀4(−Δ+ 𝜀2𝐼)−2, (4.20)

Φ*𝐽𝑠𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽𝑟𝑘𝜀

4(𝑘2 + 𝜀2)−2Φ = 𝐽𝑠𝑒
−𝑖𝜀−1𝜏𝐴eff

𝑙 𝐽𝑟𝐷𝜀
4(−Δ+ 𝜀2𝐼)−2, (4.21)

где 𝑠, 𝑟 = 1, 2, 𝑚 ∈ N, и a𝑙(𝑘) — символ эффективного оператора — определён в (3.1) (если
𝑙 ∈ ϒ(2,>)) или в (3.3) (если 𝑙 ∈ ϒ(1,>)). Введём проектор 𝐹κ(>) := Φ*𝜒(−κ(>),κ(>))(𝑘)Φ, где
число κ(>) было определено в (2.23). Очевидно,

𝜀4|𝑘|(𝑘2 + 𝜀2)−2
(︀
1− 𝜒(−κ(>),κ(>))(𝑘)

)︀
⩽
(︀
κ(>)

)︀−1
𝜀2, (4.22)

𝜀4𝑘2(𝑘2 + 𝜀2)−2
(︀
1− 𝜒(−κ(>),κ(>))(𝑘)

)︀
⩽ 𝜀2. (4.23)
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Далее, применяя (1.4), получаем⃦⃦
𝐷𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷𝜀
4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

⩽ ‖𝑔−1‖1/2𝐿∞

⃦⃦
𝐴1/2𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷𝜀
4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

= ‖𝑔−1‖1/2𝐿∞
|𝛽𝑞(𝑙)|

⃦⃦
𝐴1/2𝜍𝑞(𝑙)𝐷𝜀

4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))
⃦⃦
𝐿2(R)→𝐿2(R)

⩽ ‖𝑔−1‖1/2𝐿∞
‖𝑔‖1/2𝐿∞

|𝛽𝑞(𝑙)|
⃦⃦
𝐷𝜍𝑞(𝑙)𝐷𝜀

4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))
⃦⃦
𝐿2(R)→𝐿2(R)

⩽ ‖𝑔−1‖1/2𝐿∞
‖𝑔‖1/2𝐿∞

|𝛽𝑞(𝑙)|
⃦⃦
−𝑖𝜍 ′𝑞(𝑙)𝐷𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

+ ‖𝑔−1‖1/2𝐿∞
‖𝑔‖1/2𝐿∞

|𝛽𝑞(𝑙)|
⃦⃦
𝜍𝑞(𝑙)𝐷

2𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))
⃦⃦
𝐿2(R)→𝐿2(R)

.

Также легко видеть, что⃦⃦
𝐷𝛽𝑞(𝑙)

(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

⩽ |𝛽𝑞(𝑙)|
(︁
‖𝜍 ′𝑞(𝑙)‖𝐿∞

⃦⃦
𝐷𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

+ ‖𝜍𝑞(𝑙)‖𝐿∞

⃦⃦
𝐷2𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

+ ‖𝜍 ′𝑞(𝑙)+1‖𝐿∞

⃦⃦
𝐷𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

+ ‖𝜍𝑞(𝑙)+1‖𝐿∞

⃦⃦
𝐷2𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))

⃦⃦
𝐿2(R)→𝐿2(R)

)︁
.

Поэтому в силу (4.20)–(4.23) с учётом (2.9), (2.10) имеем⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)
(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷
)︁

×𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ(>))
⃦⃦⃦
𝐿2(R)→𝐿2(R)

⩽ |𝛽𝑞(𝑙)|
(︀
(1 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞
)‖𝜍 ′𝑞(𝑙)‖𝐿∞ + ‖𝜍 ′𝑞(𝑙)+1‖𝐿∞

)︀(︀
κ(>)

)︀−1
𝜀2

+|𝛽𝑞(𝑙)|
(︀
(1 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞
)‖𝜍𝑞(𝑙)‖𝐿∞ + ‖𝜍𝑞(𝑙)+1‖𝐿∞

)︀
𝜀2

⩽ |𝛽𝑞(𝑙)|
(︀
2 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀ (︁
𝐶 ′

𝜍

(︀
𝑞(𝑙) + 1

)︀(︀
κ(>)

)︀−1
+ 𝐶𝜍

)︁
𝜀2.

(4.24)

Теперь рассмотрим оператор

𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)
(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷
)︁

×𝜀4(−Δ+ 𝜀2𝐼)−2𝐹κ(>) .

В силу (1.4) справедлива оценка⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)
(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷
)︁

×𝜀4(−Δ+ 𝜀2𝐼)−2𝐹κ(>)

⃦⃦⃦
𝐿2(R)→𝐿2(R)

⩽ ‖𝑔−1‖1/2𝐿∞

⃦⃦⃦
𝐴1/2

(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)
(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒

−𝑖𝜏𝜀−1𝐴eff
𝑙 𝐽1

)︀
𝐷
)︁

×𝜀4(−Δ+ 𝜀2𝐼)−2𝐹κ(>)

⃦⃦⃦
𝐿2(R)→𝐿2(R)

.

Оператор под знаком нормы в правой части этого неравенства в силу тождеств (4.20),
(4.21) можно записать как
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𝛽𝑞(𝑙)𝐴
1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝜍𝑞(𝑙) −
(︀
𝜍𝑞(𝑙)Φ

*𝐽1𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1Φ + 𝜍𝑞(𝑙)+1Φ

*𝐽2𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1Φ

)︀)︁
× Φ*𝑘𝜀4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)Φ.

Напомним, что оператор 𝐴 раскладывается в прямой интеграл (2.1). Принимая также во
внимание соотношения (2.2) и (2.3), получаем равенство⃦⃦⃦

𝛽𝑞(𝑙)𝐴
1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝜍𝑞(𝑙) −
(︀
𝜍𝑞(𝑙)Φ

*𝐽1𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1Φ + 𝜍𝑞(𝑙)+1Φ

*𝐽2𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1Φ

)︀)︁
× Φ*𝑘𝜀4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)Φ

⃦⃦⃦
𝐿2(R)→𝐿2(R)

= ess-sup
𝑘∈̃︀Ω

⃦⃦⃦
𝛽𝑞(𝑙)𝐴(𝑘)

1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴(𝑘)1/2𝜍𝑞(𝑙)−

(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1

)︀)︁
× 𝑘𝜀4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)𝑃1

⃦⃦⃦
𝐿2(0,𝜈)→𝐿2(0,𝜈)

.

(4.25)
Учитывая включения

Ran 𝜍𝑞(𝑙)𝑃1 ⊂ N𝑙, Ran 𝜍𝑞(𝑙)+1𝑃1 ⊂ N𝑙 (если 𝑙 ∈ ϒ(2,>))

или
Ran 𝜍𝑞(𝑙)𝑃1 ⊂ N𝑙,𝑙+1, Ran 𝜍𝑞(𝑙)+1𝑃1 ⊂ N𝑙,𝑙+1 (если 𝑙 ∈ ϒ(1,>))

получаем, что

𝐴(𝑘)1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴(𝑘)1/2𝜍𝑞(𝑙) −

(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1

)︀)︁
×𝑘𝜀4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)𝑃1

= 𝐴(𝑘)1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴(𝑘)1/2 − 𝑒−𝑖𝜏𝜀−1A𝑙(𝑘)𝑃𝑙

)︁
𝑃𝑙𝜍𝑞(𝑙)𝑘𝜀

4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)𝑃1,

если 𝑙 ∈ ϒ(2,>);

(4.26)

𝐴(𝑘)1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴(𝑘)1/2𝜍𝑞(𝑙) −

(︀
𝜍𝑞(𝑙)𝐽1𝑒

−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1 + 𝜍𝑞(𝑙)+1𝐽2𝑒
−𝑖𝜏𝜀−1a𝑙(𝑘)𝐽1

)︀)︁
×𝑘𝜀4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)𝑃1

= 𝐴(𝑘)1/2
(︁
𝑒−𝑖𝜏𝜀−1𝐴(𝑘)1/2 − 𝑒−𝑖𝜏𝜀−1̃︀A𝑙(𝑘)𝑃𝑙,𝑙+1

)︁
𝑃𝑙,𝑙+1𝜍𝑞(𝑙)𝑘𝜀

4(𝑘2 + 𝜀2)−2𝜒(−κ(>),κ(>))(𝑘)𝑃1,

если 𝑙 ∈ ϒ(1,>).

(4.27)

Применение теоремы 2.6 (если 𝑙 ∈ ϒ(1,>)) или теоремы 2.7 (если 𝑙 ∈ ϒ(2,>)) с заменой 𝜏
на 𝜏𝜀−1 при учёте равенства ‖𝜍𝑞(𝑙)‖𝐿2(0,𝜈) = 1 даёт оценку для

(︀
𝐿2(0, 𝜈) → 𝐿2(0, 𝜈)

)︀
-норм

правых частей равенств (4.26), (4.27) через(︀
(2 ̃︀C ′

1,𝑙 +
̃︀C ′′
1,𝑙)|𝑘|+ ̃︀C ′

2,𝑙𝜀
−1|𝜏 |𝑘2

)︀
𝜀4|𝑘|(𝑘2 + 𝜀2)−2 ⩽ ((2 ̃︀C ′

1,𝑙 +
̃︀C ′′
1,𝑙) +

̃︀C ′
2,𝑙|𝜏 |)𝜀2.

Таким образом, из (4.17)–(4.19), (4.24)–(4.27) и теорем 2.6, 2.7 с учётом (4.4) следует
оценка (4.15), где в качестве констант можно выбрать

𝒞4 = 𝒞 ′
4 +

(︀
2 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀
𝐶𝜍 ,

𝒞5,𝑙 = (𝜆∘𝑙 )
−1
(︀
2 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀
(𝑞(𝑙) + 1)

(︀
κ(>)

)︀−1
𝐶 ′

𝜍 + (𝜆∘𝑙 )
−1‖𝑔−1‖1/2𝐿∞

(︀
2 ̃︀C ′

1,𝑙 +
̃︀C ′′
1,𝑙

)︀
,

𝒞6 = sup
𝑙∈ϒ(1,>)∪ϒ(2,>)

(︀
𝒞 ′
6,𝑙 + (𝜆∘𝑙 )

−1‖𝑔−1‖1/2𝐿∞
̃︀C ′
2,𝑙

)︀
.
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(конечность супремума в выражении для 𝒞6 и равенство 𝒞5,𝑙 = 𝑂(𝑞(𝑙)−1) следуют из
замечания 2.9 и (2.8)).

Докажем теперь пункт 1∘. Аналогично (4.15), (4.16) в силу (4.11) оценка (4.12) допускает
переформулировку в операторных терминах:⃦⃦⃦

cos(𝜏𝐴1/2
𝜀 )𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷 − 1

2
𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐷
⃦⃦⃦
𝐻4(R)→𝐻1(R)

⩽
(︀
|𝛽𝑞(𝑙)|𝒞1 + |𝛽′

𝑞(𝑙)|𝒞2 + |𝛽′
𝑞(𝑙)|𝒞3|𝜏 |

)︀
𝜀,

(4.28)

Оценка по (𝐻4(R) → 𝐿2(R))-норме была получена в [32, теорема 5(1∘), (5.25)]:⃦⃦⃦
cos(𝜏𝐴1/2

𝜀 )𝜀𝑖𝛽𝑞(𝑙)𝜍
𝜀
𝑞(𝑙)𝐷 − 1

2
𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)

(︀
𝑒−𝑖𝜏𝐴eff

𝑙,𝜀 + 𝑒𝑖𝜏𝐴
eff
𝑙,𝜀
)︀
𝐷
⃦⃦⃦
𝐻4(R)→𝐿2(R)

⩽
(︀
|𝛽𝑞(𝑙)|𝒞 ′

1 + |𝛽′
𝑞(𝑙)|𝒞 ′

3|𝜏 |
)︀
𝜀2.

где
𝒞 ′
1 = max

𝑙∈ϒ(<)

(︀
3𝐶𝜍κ−1

𝑙 + 3C1,𝑙

)︀
, 𝒞 ′

3 = max
𝑙∈ϒ(<)

(𝜆∘𝑙 )
−1C2,𝑙.

Оценим норму производной. В силу формулы Эйлера достаточно рассмотреть оператор

𝐷
(︁
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷 − 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐷

)︁
.

Справедливо равенство (ср. (4.18), (4.19))⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝐴

1/2
𝜀 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝐷 − 𝜀𝑖𝛽𝑞(𝑙)𝜍

𝜀
𝑞(𝑙)𝑒

−𝑖𝜏𝐴eff
𝑙,𝜀𝐷

)︁⃦⃦⃦
𝐻4(R)→𝐿2(R)

= 𝜀−1
⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝑒
−𝑖𝜏𝜀−1𝐴eff

𝑙 𝐷
)︁
𝜀4(−Δ+ 𝜀2𝐼)−2

⃦⃦⃦
𝐿2(R)→𝐿2(R)

.

Положим 𝐹κ𝑙
:= Φ*𝜒(−κ𝑙,κ𝑙)(𝑘)Φ. По аналогии с доказательством пункта 3∘ получаем⃦⃦⃦

𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝑒
−𝑖𝜏𝜀−1𝐴eff

𝑙 𝐷
)︁
𝜀4(−Δ+ 𝜀2𝐼)−2(𝐼 − 𝐹κ𝑙

)
⃦⃦⃦
𝐿2(R)→𝐿2(R)

⩽ |𝛽𝑞(𝑙)|
(︀
1 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀
‖𝜍 ′𝑞(𝑙)‖𝐿∞κ−1

𝑙 𝜀2

+|𝛽𝑞(𝑙)|
(︀
1 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀
‖𝜍𝑞(𝑙)‖𝐿∞𝜀

2,⃦⃦⃦
𝐷
(︁
𝑒−𝑖𝜏𝜀−1𝐴1/2

𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝐷 − 𝛽𝑞(𝑙)𝜍𝑞(𝑙)𝑒
−𝑖𝜏𝜀−1𝐴eff

𝑙 𝐷
)︁
𝜀4(−Δ+ 𝜀2𝐼)−2𝐹κ𝑙

⃦⃦⃦
𝐿2(R)→𝐿2(R)

⩽ ‖𝑔−1‖1/2𝐿∞
|𝛽𝑞(𝑙)|

(︀
(2C ′

1,𝑙 + C ′′
1,𝑙) + C ′

2,𝑙|𝜏 |
)︀
𝜀2.

Здесь при доказательстве второй оценки используется теорема 2.4. Это доказывает оцен-
ку (4.28), где в качестве констант можно выбрать

𝒞1 = 𝒞 ′
1 +

(︀
2 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞

)︀
𝐶𝜍 ,

𝒞2 = max
𝑙∈ϒ(<)

(𝜆∘𝑙 )
−1
(︁(︀

2 + ‖𝑔−1‖1/2𝐿∞
‖𝑔‖1/2𝐿∞

)︀
‖𝜍 ′𝑞(𝑙)‖𝐿∞κ−1

𝑙 + ‖𝑔−1‖1/2𝐿∞
(2C ′

1,𝑙 + C ′′
1,𝑙)
)︁
,

𝒞3 = 𝒞 ′
3 + max

𝑙∈ϒ(<)
(𝜆∘𝑙 )

−1‖𝑔−1‖1/2𝐿∞
C ′
2,𝑙.

(Здесь максимумы конечны, поскольку множество ϒ(<) конечно; мы написали множитель
(2 + ‖𝑔−1‖1/2𝐿∞

‖𝑔‖1/2𝐿∞
) в выражениях для 𝒞1, 𝒞2 и рассмотрели максимумы по ϒ(<) для того,

чтобы эти же константы подошли для оценок пункта 2∘).

23



Пункт 2∘ доказывается с помощью [32, теорема 5(2∘)] и теоремы 2.4 по той же схеме,
что и предыдущие два пункта.

Далее предположим, что выполнено следующее условие.

Условие 4.4. Ряд из коэффициентов Фурье функции 𝑔′ по собственным функциям зада-
чи (2.4) сходится абсолютно:

∑︀∞
𝑗=2 |𝛽′

𝑗| <∞.

Лемма 4.5. Пусть 𝑔′ ∈ ̃︀𝐻𝜎(0, 𝜈), 𝜎 > 1
2
. Тогда условие 4.4 выполнено.

Доказательство. Имеем

𝛽′
𝑗 = (𝑔′, 𝜍𝑗)𝐿2(0,𝜈) =

1

𝜆
𝜎/2
𝑗

(︀
𝑔′, 𝐴(0)𝜎/2𝜍𝑗

)︀
𝐿2(0,𝜈)

=
1

𝜆
𝜎/2
𝑗

(︀
𝐴(0)𝜎/2𝑔′, 𝜍𝑗

)︀
𝐿2(0,𝜈)

.

Поэтому
∞∑︁
𝑗=2

|𝛽′
𝑗| ⩽

∞∑︁
𝑗=2

1

𝜆𝜎𝑗
+

∞∑︁
𝑗=2

⃒⃒(︀
𝐴(0)𝜎/2𝑔′, 𝜍𝑗

)︀
𝐿2(0,𝜈)

⃒⃒2
<∞.

Здесь были учтены асимптотика (2.8) и включение 𝑔′ ∈ Dom𝐴(0)𝜎/2 (см. [46, гл. 1,
п. 1.18.10]).

Теорема 4.6. Пусть 𝑢𝜀(𝑥, 𝜏) — решение задачи (4.2), и пусть “эффективные” приближе-
ния 𝑢eff𝑙,𝜀(𝑥, 𝜏), 𝑙 ∈ ϒ(1,<), и 𝑢eff𝑙,1,𝜀(𝑥, 𝜏), 𝑢eff𝑙,2,𝜀(𝑥, 𝜏), 𝑙 ∈ ϒ(2) ∪ϒ(1,>), определены в (4.8)–(4.10).
Дополнительно предположим, что выполнено условие 4.4. Положим

𝑢eff𝜀 (𝑥, 𝜏) :=
∑︁

𝑙∈ϒ(1,<)

𝑢eff𝑙,𝜀(𝑥, 𝜏) +
∑︁

𝑙∈ϒ(2)∪ϒ(1,>)

(︀
𝑢eff𝑙,1,𝜀(𝑥, 𝜏) + 𝑢eff𝑙,2,𝜀(𝑥, 𝜏)

)︀
.

Тогда при 0 < 𝜀 ⩽ 1, 𝜏 ∈ R и 𝜑 ∈ 𝐻4(R) выполнена оценка⃦⃦
𝑢𝜀(·, 𝜏)− 𝑢eff𝜀 (·, 𝜏)

⃦⃦
𝐻1(R) ⩽

(︀
C1 + C2|𝜏 |

)︀
𝜀‖𝜑‖𝐻4(R),

где

C1 = max{𝒞1, 𝒞4} ·
∞∑︁
𝑗=2

|𝛽𝑗|+ 𝒞2
∑︁

𝑙∈ϒ(1,<)

|𝛽′
𝑞(𝑙)|+ 𝒞2

∑︁
𝑙∈ϒ(2,<)

(︀
|𝛽′

𝑞(𝑙)|+ |𝛽′
𝑞(𝑙)+1|

)︀
+

∑︁
𝑙∈ϒ(2,>)∪ϒ(1,>)

(︀
|𝛽′

𝑞(𝑙)|+ |𝛽′
𝑞(𝑙)+1|

)︀
𝒞5,𝑙,

C2 = max{𝒞3, 𝒞6} ·
∞∑︁
𝑗=2

|𝛽′
𝑗|.

Доказательство. C учётом (4.3) и замечания 4.2 утверждение теоремы доказывается при
помощи суммирования оценок (4.12)–(4.14). Остаётся проверить сходимость рядов

∞∑︁
𝑗=2

|𝛽𝑗|,
∑︁

𝑙∈ϒ(2,>)∪ϒ(1,>)

(︀
|𝛽′

𝑞(𝑙)|+ |𝛽′
𝑞(𝑙)+1|

)︀
𝒞5,𝑙 и

∞∑︁
𝑗=2

|𝛽′
𝑗|.

Сходимость первого ряда следует из равенства |𝛽𝑗| = 𝑂
(︀
𝑗−2
)︀
. Сходимость второго ряда

следует из
∑︀∞

𝑗=2 |𝛽′
𝑗|2 < ∞ (так как 𝑔′ ∈ 𝐿2(0, 𝜈)),

∑︀
𝑙∈ϒ(2,>)∪ϒ(1,>) 𝒞2

5,𝑙 < ∞ (поскольку
𝒞5,𝑙 = 𝑂(𝑞(𝑙)−1)) и неравенства Коши. Сходимость третьего ряда следует из условия 4.4.
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