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Abstract

Let G be a semisimple algebraic group over a field k. We introduce
the higher Tits indices of G as the set of all Tits indices of G over all
field extensions K/k. In the context of quadratic forms this notion
coincides with the notion of the higher Witt indices introduced by
M. Knebusch and classified by N. Karpenko and A. Vishik.

Next we classify the higher Tits indices for exceptional algebraic
groups. Our main tools involve the Chow groups and the Chow mo-
tives of projective homogeneous varieties, Steenrod operations as well
as the notion of the J-invariant introduced in [PSZ07].

1 Introduction

Let G denote a semisimple algebraic group of inner type defined over a field
k. In his famous paper [Ti66] J. Tits defined the Tits index of G as a data
consisting of the Dynkin diagram of G with some vertices being circled. Let
K be an arbitrary field extension of k. In the present paper we investigate
the following problem: What values can take the Tits index of the group
GK?

In the theory of central simple algebras (i.e., when G is a group of type
An) this problem is equivalent to the index reduction formula of A. Blanchet,
A. Schofield, and M. Van den Bergh (see [SVB92]). Later their result was
generalized by A. Merkurjev, I. Panin, and A. Wadsworth (see [MPW96] and
[MPW98]).

In the theory of quadratic forms (i.e, when G is an orthogonal group) the
problem above is equivalent to study of the higher Witt indices of quadratic
forms. The higher Witt indices were introduced by M. Knebusch [Kn76].
They provide a nice discrete invariant of quadratic forms over any field k.
Numerous results have been obtained so far. One of the main achievements
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here is the celebrated result of N. Karpenko [Ka03], where he proves Hoff-
mann’s conjecture about all possible values of the first higher Witt index.
One should also mention the interesting papers of N. Karpenko, A. Merkur-
jev and A. Vishik [Ka04], [KM03], [Vi04], [Vi06] concerning closely related
problems in the theory of quadratic forms.

The main result of M. Knebusch in his paper [Kn76] asserts that one can
always reduce the problem above to a certain finite number of field extensions
Ki/k, i = 0, . . . , h such that the Tits index of G over a field K/k equals one of
the Tits indices of GKi

. The fields Ki appearing in the Knebusch theory are
the fields of rational functions on certain projective G-homogeneous varieties
(see Section 2 below).

Moreover, the result of Karpenko [Ka04, Theorem 2.6] asserts that infor-
mation on the higher Tits indices is hidden in a subring of the Chow ring of
certain projective G-homogeneous varieties1. In the present paper we exploit
further this connection. Our main tools include the Steenrod operations in
the Chow theory, Tits’ classification, Chow motives, and motivic invariants,
like the J-invariant of algebraic groups introduced in [PSZ07].

It turns out, that in the most cases the splitting behaviour of an alge-
baic group G does not depend on the base field k, but on triviality and
non-triviality of a certain discrete invariant of G called the J-invariant. By
definition this invariant measures the “size” of the subring of rational cycles
in the Chow ring of the G-variety of complete flags (see Section 4). But
usually the (non)-triviality of this invariant can be expressed in terms of
(non)-triviality of the Tits algebras of G and/or of certain cohomological
invariants of G, like the Rost invariant.

In Section 6 we study the existence of the anisotropic kernels of type D6

in the groups of type E7 over suitable field extensions K/k of the base field
(“index reduction formula” for groups of type E7). We prove equivalence
of this problem with the problem of existence of zero-cycles of degree 1 on
certain anisotropic projective homogeneous varieties. The latter problem has
a long history starting with the paper [Serre] and has obviously a positive
answer (in the sense that an anisotropic projective variety does not have a
zero-cycle of degree 1) over fields k with the absolute Galois group Gal(ks/k)
a pro p-group. We refer the reader to papers [Fl04], [Par05], [To04] that
discuss this problem.

1His result concerns only quadrics, but can be straightforwardly generalized to arbitrary
projective homogeneous varieties.
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The main results of our paper are Theorems 5.3 and 6.1 that allow to
compute all possible higher Tits indices for groups of type F4,

1E6, and E7

with trivial Tits algebras, and to classify all generically cellular varieties of
exceptional types.

The main goal of the present paper is to study the general restrictions
on the splitting behaviour of algebraic groups, i.e., those restrictions which
don’t depend on the base field.

Acknowledgements

2 Tits’ classification and Knebusch theory

We recall the definition and basic properties of the Tits indices of semisimple
algebraic groups following J. Tits [Ti66] and [Ti71].

Let k be a field, ks be a separable closure of k, G a semisimple algebraic
group defined over k, S a maximal split torus of G defined over k, T a
maximal torus containing S and defined over k, ∆ = ∆(G) the system of
simple roots of G with respect to T and ∆0 = ∆0(G) the subsystem of those
roots which vanish on S.

In the present paper we consider only groups of inner type, i.e., groups
that are twisted forms of a split group by means of a 1-cocycle in H1

et(k, G0),
where G0 denotes the split adjoint group over k of the same type as G.
Equivalently, this means that the ∗-action (see [Ti66]) of the absolute Galois
group on ∆ is trivial. Therefore we don’t define the ∗-action and don’t
include it in the definition of the Tits index of G.

The index of G is a pair (∆, ∆0). We represent the index as the Dynkin
diagram of G with the vertices that don’t belong to ∆0 being circled.

There exists a certain subgroup of G called semisimple anisotropic kernel.
We refer the reader to [Ti66] for its definition. Note that the index of the
semisimple anisotropic kernel of G can be easiely deduced from the index of
G by removing the vertices of the Dynkin diagram which are circled.

To any semisimple group over k one can functorially associate certain
central simple algebras, called the Tits algebras. We refer the reader to
[Ti71] for a definition and description.

2.1 Examples. 1. Let A be a central simple k-algebra of degree n + 1 and
G = SL1(A) the respective group of type An. Then the index of A equals

3



n + 1

r + 1
, where r is the number of circled vertices on the Tits diagram of G.

The Tits algebras of G are the λ-powers λiA, i = 1, . . . , n.
2. Let (V, q) be a regular odd-dimensional quadratic space over k and

G = Spin(V, q) be the respective group of type Bn. Then the number of
circled vertices on its Tits diagram equals the Witt index of q.

The Tits algebra of G is the even Clifford algebra C0(V, q).

One can give similar descriptions for all semisimple algebraic groups over
k.

Next we recall the construction of the generic splitting tower of Knebusch
for semisimple algebraic groups (see [Kn76], [Kn77]).

Consider the set

{ind(GK)an | K/k is a field extension}, (1)

where ind(GK)an stands for the Tits index of the semisimple anisotropic
kernel of GK .

2.2 Definition. Set (1) is called the set of the Higher Tits Indices of G.

This set can be obtained using the generic splitting tower, i.e., it suffices
to consider not all field extensions K/k, but just a finite number of generic
ones. The latter are defined inductively as follows.

First we set K0 = k, G1 = Gan and consider the function fields K1
i =

K0(Xi), i ∈ ∆(G1) ⊂ ∆(G), of the projective varieties of the maximal
parabolic subgroups of G1 of type i. Note that there are precisely rkGan =
|∆(Gan)| such varieties.

Next for each j ∈ ∆(G1) we consider the group G2
j = (G1

K1
j
)an over

K1
j and apply the same procedure, i.e., consider the fields K2

i = K1
j (Xi),

i ∈ ∆(G2
j) ⊂ ∆(G), where Xi stands for the projective variety over K1

j of the
maximal parabolic subgroups of type i of the group G2

j . Proceeding further
we obtain a set (a tower) of fields K∗

∗ . Its main property is that

{ind(GK)an | K/k is a field extension} (2)

= {ind(GKj
i
)an | Kj

i /k is an element in the generic splitting tower of G}.

The maximal value of the upper index of K∗
∗ ’s is called the height of G.
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Conversely, given the higher Tits index of G, the Tits index of Gk(Xi) can
be restored as the minimal higher Tits index containing i. An overview of
this ideas can be found in [KR94].

Sometimes it is convenient to represent the right hand side of identity (2)
as an oriented labelled graph as following. First we define a graph whose
vertices are the anisotropic groups Gs

j appearing in the construction above
and which we denote by their Dynkin diagrams. There is an edge from Gs

j to

Gs′

j′ with the label i if and only if s′ = s+1, i = j′ and Gs+1
i = ((Gs

j)Ks−1
j (Xi)

)an.

Next we identify the vertices of this graph which correspond to the same
Dynkin types. Thus, the vertices of this graph represent all possible Tits
indices of GK without repetitions for all K/k. The height of G is the maximal
length of the paths on the graph.

2.3 Examples. 1. Let G be an anisotropic group of type B2. Then its
splitting graph is: B2
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(enumeration of simple roots follows Bourbaki).

2. Let G be an anisotropic group of type B3 and q the respective quadratic
form of discriminant 1. Then its splitting graph is: B3
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otherwise.

There exist generalizations for quadratic forms of bigger dimensions due
to N. Karpenko and A. Vishik.

The pictures in the examples remind an automaton. Therefore one can
call the graphs defined above the Tits automata.

2.4 Remark. Note that the first step, i.e., the groups G2
∗ are the most

important ones. Indeed, the next groups G≥3
∗ involved in the construction

are anisotropic kernels of the groups G2
∗. Since the rank of G2

∗ is smaller than
the rank of G1, we are deduced to the same situation but for groups of a
smaller rank.
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3 Cycles on projective homogeneous varieties

and Chow motives

In this section we briefly describe the main properties of projective homoge-
neous varieties and their Chow rings (see [De74], [Hi82]).

Let G be a split semisimple algebraic group of rank n defined over a
field k. We fix a split maximal torus T in G and a Borel subgroup B of G
containing T and defined over k. We denote by Φ the root system of G, by
Π = {α1, . . . , αn} the set of simple roots of Φ with respect to B, by W the
Weyl group, and by S = {s1, . . . , sn} the corresponding set of fundamental
reflections.

Let P = PΘ be the (standard) parabolic subgroup corresponding to a
subset Θ ⊂ Π, i.e., P = BWΘB, where WΘ = 〈sθ, θ ∈ Θ〉. Denote

WΘ = {w ∈ W | ∀ s ∈ Θ l(ws) = l(w) + 1},

where l is the length function. It is easy to see that WΘ consists of all
representatives in the left cosets W/WΘ which have minimal length.

As Pi we denote the maximal parabolic subgroup PΠ\{αi} of type i and as
w0 the longest element of W . Enumeration of simple roots follows Bourbaki.

It is well known that any projective G-homogeneous variety X is isomor-
phic to G/PΘ for some subset Θ of the simple roots.

Now consider the Chow ring of the variety X = G/PΘ. It is known that
CH∗(G/PΘ) is a free abelian group with a basis given by varieties [Xw] that
correspond to the elements w ∈ WΘ. The degree (codimension) of the basis
element [Xw] equals l(wθ)− l(w), where wθ is the longest element of WΘ.

Moreover, there exists a natural injective pull-back homomorphism

CH∗(G/P ) → CH∗(G/B)

[Xw] 7→ [Xwwθ
]

The following results provide tools to perform computations in the Chow
ring CH(G/PΘ).

In order to multiply two basis elements h = [Xw] and g = [Xw′ ] of
CH∗(G/PΘ) such that deg h+deg g = dim G/PΘ we use the following formula
(Poincaré duality):

[Xw] · [Xw′ ] = δw,w0w′wθ
· [X1]. (3)
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In view of Poincaré duality we denote as [Zw] the cycle dual to [Xw] with
respect to the canonical basis. In other words, [Zw] = [Xw0wwθ

].
In order to multiply two basis elements of CH∗(G/B) one of which is of

codimension 1 we use the following formula (Pieri formula):

[Xw0sα ][Xw] =
∑

β∈Φ+, l(wsβ)=l(w)−1

〈β∨, ω̄α〉[Xwsβ
], (4)

where α is a simple root and the sum runs through the set of positive roots
β ∈ Φ+, sβ denotes the reflection corresponding to β and ω̄α is the fundamen-
tal weight corresponding to α. Here [Xw0sα ] is the element of codimension
1.

The Poincaré polynomial of a free Z-graded finitely generated group A∗

is, by definition, the polynomial g(A∗, t) =
∑+∞

i=−∞ ait
i ∈ Z[t, t−1] with ai =

rkAi(X). The following formula (the Solomon theorem) allows to compute
the Poincaré polynomial of CH∗(X):

g(CH∗(X), t) =
r(Π)

r(Θ)
, r(−) =

l∏
i=1

tdi(−) − 1

t− 1
, (5)

where di(Θ) (resp. di(Π)) denote the degrees of the fundamental polynomial
invariants of the root subsystem of Φ generated by Θ (resp. Π) and l its
rank (see [Ca72]). The dimension of X equals deg g(CH∗(X), t). There
exists a Maple package [St] of J. Stembridge that provides tools to compute
the Poincaré polynomials of projective G-homogeneous varieties.

Let P = P(Φ) denote the weight space. We denote as ω̄1, . . . ω̄n the basis
of P consisting of the fundamental weights. The symmetric algebra S∗(P) is
isomorphic to Z[ω̄1, . . . ω̄n]. The Weyl group W acts on P, hence, on S∗(P).
Namely, for a simple root αi

si(ω̄j) =

{
ω̄i − αi, i = j;

ω̄j, otherwise.

We define a linear map c : S∗(P)WΘ → CH∗(G/PΘ) as follows. For a homo-
geneous WΘ-invariant u ∈ Z[ω̄1, . . . , ω̄n]

c(u) =
∑

w∈WΘ, l(w)=deg(u)

∆w(u)[Xw0wwθ
],
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where for w = si1 . . . sik we denote by ∆w the composition of derivations
∆si1

◦ . . . ◦ ∆sik
and the derivation ∆si

: S∗(P) → S∗−1(P) is defined by

∆si
(u) =

u− si(u)

αi

.

Let U = Σu(PΘ) denote the set of the (positive) roots lying in the unipo-
tent radical of the parabolic subgroup PΘ. Then the elementary symmetric
polynomials

∑
u∈U σi(u) are WPΘ

-invariant and, in fact, coincide with the
Chern classes of the tangent bundle TX :

c(TX) = c(
∏
γ∈U

(1 + γ)). (6)

The Maple package [map] provides efficient tools to compute the Chern
classes of the tangent bundles.

To multiply two cycles [Xw1 ] and [Xw2 ] in CH∗(X) we proceed as follows.
First, we find preimages of [Xw1 ] and [Xw2 ] in S∗(P)⊗Q = Q[ω̄1, . . . , ω̄n] (the
preimages always exist; see below), then we either expand the product in the
polynomial ring Q[ω̄1, . . . , ω̄n] and apply the function c, or apply c directly
using the Pieri formula (4), the Leibniz rule [Hi82, Ch. IV, Lemma 1.1(e)]
or/and Poincaré duality (3).

To find a preimage of some [Xw] we do the following. It is well known
that the map c ⊗ Q : Q[ω̄1, . . . ω̄n]WΘ → CH∗(G/PΘ) ⊗ Q defined above is a
ring epimorphism, and the ring Q[ω̄1, . . . ω̄n]WΘ is generated by ω̄i, i 6∈ Θ,
and by the WΘ-invariant fundamental polynomials for the semisimple part
of the Levi part of PΘ, i.e., for the split group of type 〈Θ〉 ⊂ Φ. The
latter polynomials (as well as their degrees called degrees of fundamental
polynomial invariants) are known. Explicit formulas for them are provided
in [Meh88]. Now, since we know a generating set of Q[ω̄1, . . . ω̄n]WΘ , we can
compute its image in CH∗(G/PΘ) ⊗ Q and, thus, find a set of generators of
CH∗(G/PΘ)⊗Q together with their preimages in Q[ω̄1, . . . ω̄n]WΘ . Therefore
we can compute a preimage of any element in CH∗(G/PΘ) ⊗ Q. Observe
that we don’t loose any information extending scalars to Q, since the group
CH∗(G/PΘ) is free abelian.

The effective procedures to multiply cycles in the Chow rings of projective
homogeneous varieties are implemented in the Maple package [map]2.

Next we briefly describe Steenrod operations and motivic decompositions
of projective G-homogeneous varieties with isotropic group G. The main

2Created in collaboration with S. Nikolenko and K. Zainoulline.
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reference to this account can be found in [CGM05] and [Br05]. We refer the
reader to the book [EKM] of R. Elman, N. Karpenko, and A. Merkurjev or
to the original paper [Ma68] of Yu. Manin for the definition and properties
of the Chow motives.

The main result of papers [CGM05] and [Br05] asserts that the Chow
motive a projective G-homogenous variety X with isotropic group G is de-
composable as a direct sum of (twisted) motives of anisotropic projective
Gan-homogeneous varieties Yi. Moreover, one has an explicit algorithm to
compute these motivic decompositions.

In the present section we give a combinatorial interpretation of these
decompositions in terms of the Hasse diagrams of the weak Bruhat order.
Namely, consider an oriented labelled graph, called Hasse diagram of X,
whose vertices are elements of WΘ, where Θ denotes the type of the variety
X, i.e., a graph whose vertices correspond to the free additive generators of
CH∗(X), where X = X ×Spec k Spec ks and ks stands for a separable closure
of k. There is an edge from a vertex w to a vertex w′ labelled with i if and
only if l(w) < l(w′) and w′ = siw.

Consider now the Chow motive of X and erase from the Hasse diagram
of X all edges with labels not in ∆0 (see Section 2). The Hasse diagram
splits then into several non-connected components which correspond to the
varieties Yi. To illustrate this construction we give the following example.

3.1 Example. Let G be an isotropic group of type E7 such that Gan has
type D4. This means that the vertices 1, 6, and 7 on the Tits diagram of G
are circled. Consider the projective G-homogeneous variety X of parabolic
subgroups of type 7. Its Hasse diagram is provided in [PlSeVa, Figure 21].
Cutting the Hasse diagram along the edges with labels 1, 6, and 7 we see
that the diagram splits into 14 components: 8 alone standing vertices which
correspond to the elements of WΘ of length 0, 1, 9, 10, 17, 18, 26, and
27, and therefore to the (twisted) Lefschetz motives Z, Z(1), Z(9), Z(10),
Z(17), Z(18), Z(26), Z(27), and 6 diagrams that correspond to different
varieties of type D4. It is well known and easy to see that Gan corresponds
to a(n anisotropic) 3-fold Pfister form ϕ and therefore by the celebrated
result of M. Rost [Ro98] the Chow motives of a projective Gan-homogeneous
variety splits as a direct sum of (twisted) Rost motives R which depend only
on ϕ. The Rost motive R is indecomposable and over ks (where ϕ splits)
Rs ' Z⊕ Z(3). Thus,

M(X) ' (⊕i=0,1,9,10,17,18,26,27Z(i))⊕ (⊕22
i=2R(i))⊕R(11)⊕R(12)⊕R(13).
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One should note that in the category of the Chow motives with finite
coefficients of projective homogeneous varieties the Krull-Schmidt theorem
holds (see [CM06, Theorem 9.6]). Therefore the motivic decompositions are
unique.

Now we briefly recall following P. Brosnan [Br03] the basic properties of
Steenrod operations constructed by V. Voevodsky.

Let X be a smooth projective variety over a field k with char k 6= 2
and p = 2. For every i ≥ 0 there exist certain homomorphisms Si =
Sq2i : Ch∗(X) → Ch∗+i(X) called Steenrod operations. The total Steen-
rod operation is the sum S = SX = S0 + S1 + . . . : Ch∗(X) → Ch∗(X). This
map is a ring homomorphism. The restriction Si|Chn(X) is 0 for i > n and is
the map α 7→ α2 for n = i. The map S0 is the identity. Moreover, the total
Steenrod operation commutes with pull-backs and, in particular, preserves
rationality of cycles.

To compute the Steenrod operations on a projective G-homogeneous vari-
ety with a split group G we use an algorithm described in details in [DuZ07].
This algorithm is implemented in the Maple package [map].

4 J-invariant

In this section we recall the definition and the main properties of a motivic
invariant of a semisimple algebraic group introduced in [PSZ07] and called
the J-invariant. It was shown in paper [PSZ07] that this invariant determines
the motivic behaviour of generically split projective homogeneous varieties
(the definition of generically split varieties see below).

Let G0 be a split semisimple algebraic group over k with a split maximal
torus T and a Borel subgroup B containing T . Let G = γG0 be the twisted
form of G0 given by a 1-cocycle γ ∈ H1(k,G0).

Let X be a projective G-homogeneous variety and p a prime integer.
To simplify the notation we denote Ch∗(X) = CH∗(X) ⊗ Z/p and X =
X ×Spec k Spec ks, where ks stands for a separable closure of k. We say that
a cycle J ∈ CH∗(X) (resp. J ∈ Ch∗(X)) is rational if it lies in the image of
the natural restriction map res : CH∗(X) → CH∗(X) (resp. res : Ch∗(X) →
Ch∗(X)). We denote as CH

∗
(X) (resp. as Ch

∗
(X)) the image of this map.

From now on and till the end of this section we consider the variety
X = γ(G0/B) of complete flags. Let T̂ denote the group of characters of

T and S(T̂ ) ⊂ S∗(P) be the symmetric algebra (see Section 3). By R∗ we
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denote the image of the characteristic map c : S(T̂ ) → Ch∗(X) defined above.
According to [KM05, Theorem 6.4] R∗ ⊆ Ch

∗
(X).

Let Ch∗(G) denote the Chow ring with Z/p-coefficients of the group
(G0)ks . The explicit presentation of Ch∗(G) in terms of generators and rela-
tions is known for all groups and all primes p. Namely, by [Kc85, Theorem 3]

Ch∗(G) = (Z/p)[x1, . . . , xr]/(xpk1

1 , . . . , xpkr

r ) (7)

for certain numbers ki, i = 1, . . . , r, and deg xi = di for certain numbers 1 ≤
d1 ≤ . . . ≤ dr coprime to p. A complete list of numbers {dip

ki}i=1,...,r, called
p-exceptional degrees of G0, is provided in [Kc85, Table II]. Taking the p-
primary and p-coprimary parts of each p-exceptional degree one immediately
restores the respective ki’s and di’s.

Now we introduce an order on the set of additive generators of Ch∗(G),
i.e., on the monomials xm1

1 . . . xmr
r . To simplify the notation, we denote the

monomial xm1
1 . . . xmr

r by xM , where M is an r-tuple of integers (m1, . . . ,mr).
The codimension (in the Chow ring) of xM is denoted by |M |. Observe that
|M | =

∑r
i=1 dimi.

Given two r-tuples M = (m1, . . . ,mr) and N = (n1, . . . , nr) we say xM ≤
xN (or equivalently M ≤ N) if either |M | < |N |, or |M | = |N | and mi ≤ ni

for the greatest i such that mi 6= ni. This gives a well-ordering on the set of
all monomials (r-tuples) known also as DegLex order.

Consider the pull-back induced by the quotient map

π : Ch∗(X) → Ch∗(G)

According to [Gr58, Rem. 2◦] π is surjective with the kernel generated by the
subgroup of the non-constant elements of R∗.

Now we are ready to define the J-invariant of a group G.

4.1 Definition. Let X = γ(G0/B) be the twisted form of the variety of

complete flags by means of a 1-cocycle γ ∈ H1(k,G0). Denote as Ch
∗
(G) the

image of the composite map

Ch∗(X)
res−→ Ch∗(X)

π−→ Ch∗(G).

Since both maps are ring homomorphisms, Ch
∗
(G) is a subring of Ch∗(G).

For each 1 ≤ i ≤ r set ji to be the smallest non-negative integer such
that the subring Ch

∗
(G) contains an element a with the greatest monomial
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xpji

i with respect to the DegLex order on Ch∗(G), i.e., of the form

a = xpji

i +
∑

xM �xpji
i

cMxM , cM ∈ Z/p.

The r-tuple of integers (j1, . . . , jr) is called the J-invariant of G modulo p
and is denoted by Jp(G). Note that ji ≤ ki for all i.

In case p is not a torsion prime of G we have Ch∗(G) = Z/p. Therefore the
J-invariant is interesting only for torsion primes (see [Gr58, Definition 3] for
a definition of torsion primes). A table of possible values of the J-invariants
is given in [PSZ07, Section 6].

To illustrate Definition 4.1 of the J-invariant we give the following exam-
ple. For a prime integer p we denote as vp the p-adic valuation.

4.2 Example. Let p be a prime integer and A and B be central simple
k-algebras that generate the same subgroup in the Brauer group Br(k). Set
G = PGL1(A)× PGL1(B).

Then Jp(G) = (vp(indA), 0). Indeed, the Chow ring

Ch∗(G) = (Z/p)[x1, x2]/(xpk1

1 , xpk2

2 )

with k1 = vp(deg A), k2 = vp(deg B). Therefore r in the definition of the
J-invariant equals 2. Denote Jp(G) = (j1, j2) and consider the map

res : Pic(XA ×XB) → Pic(XA ×XB),

where XA (resp. XB) denote the PGL1(A)- (resp. PGL1(B)-) variety of
complete flags and Pic stands for the Picard group modulo p. Denote by hA

(resp. hB) the image of ω̄1 ∈ S(P) in Pic(XA) (resp. Pic(XB)) by means of
the map c defined in Section 3.

Since A and B generate the same subgroup in the Brauer group, the cycle
1×hB +αhA×1 ∈ Pic(XA×XB) is rational for some α ∈ (Z/p)× (see [MT95]
for the description of the Picard groups of projective homogeneous varieties).
The image of this cycle in Ch∗(G) by means of π equals x2 +αx1 (at least we
can choose the generators x1 and x2 in such a way). Therefore, since x1 < x2

in the DegLex order, j2 = 0. The proof that j1 = vp(indA) is the same as in
[PSZ07, Section 7, case An] and we omit it.

Next we describe some useful properties of the J-invariant.
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4.3 Proposition. Let G be a semisimple algebraic group of inner type over
k, p a prime integer and Jp(G) = (j1, . . . , jr). Then

1. Let K/k be a field extension. Denote Jp(GK) = (j′1, . . . , j
′
r). Then

j′i ≤ ji, i = 1, . . . , r.

2. Fix an i = 1, . . . , r. Assume that in the presentation (7) for the
semisimple anisotropic kernel Gan of G none of xj has degree di. Then
ji = 0.

3. Assume di = 1 for some i = 1, . . . , r.

Then ji ≤ max
A

vp(indA) where A runs through all Tits algebras of G.

Conversely, if ji > 0, then there exists a Tits algebra A of G with
vp(indA) > 0.

4. Assume that the group G does not have simple components of type E8

and for all primes p the J-invariant Jp(G) is trivial. Then G is split.

Proof. 1. This is an obvious consequences of the definition of the J-invariant.

2. Let Ch∗(G) = (Z/p)[x1, . . . , xr]/(xpk1

1 , . . . , xpkr

r ) with deg xi = di,

Ch∗(Gan) = (Z/p)[x′1, . . . , x
′
r′ ]/(xpk′1

1 , . . . , xpk′r
r′ ) with deg x′i = d′i, and Jp(Gan) =

(j′1, . . . , j
′
r′). It follows from the [Kc85, Table II] that r′ ≤ r and {d′i, i =

1, . . . , r′} ⊂ {di, i = 1, . . . , r}. On the other hand, by [PSZ07, Corollary 5.4],

the polynomials
∏r

i=1

1− xdip
ji

1− xdi
and

∏r′

i=1

1− xd′ip
j′i

1− xd′i
are equal. This implies

the claim.
3. Assume that ji > 0 and all Tits algebras of G are trivial. Then by

[MT95] the group Pic(X), where X denotes the G-variety of complete flags,
is rational. Therefore by the very definition of the J-invariant ji = 0. A
contradiction.

Let A be a Tits algebra of G corresponding to a vertex t of the Dynkin
diagram such that π(ht) = xi ∈ Pic(G), where ht ∈ Pic(X) is the image of
ω̄t ∈ S(P) by means of the map c constructed above. We show now that
ji ≤ vp(indA) =: s, where A is the Tits algebra corresponding to the vertex
t.

Consider the projective homogeneous variety X × SB(A), where SB(A)
denotes the Severi-Brauer variety of right ideals of A of reduced dimension
1. Denote by hA ∈ Pic(SB(A)) = Pic(Pdeg A−1) the canonical generator as in
Section 3.

13



By the results of A. Merkurjev and J.-P. Tignol [MT95] the cycle α =
ht × 1 − 1 × hA ∈ Pic(X × SB(A)) is rational. Since the cycles αps

=
hps

t × 1− 1× hps

A ∈ Ch∗(X × SB(A)) and hps

A ∈ Ch∗(SB(A)) are rational, the

cycle hps

t × 1 ∈ Ch∗(X × SB(A)) is rational as well.
The projection morphism pr: X × SB(A) → X is a projective bundle by

[PSZ07, Corollary 3.4]. In particular, CH∗(X×SB(A)) =
⊕deg A−1

j=0 CH∗−j(X).
Therefore the pull-back pr∗ has a section δ. By the construction of this sec-
tion it is compatible with a base change. Passing to the splitting field ks we
obtain that the cycle δ̄(hps

t × 1) = hps

t ∈ Ch∗(X) is rational and the image
π(hps

t ) = xps

i . By the definition of the J-invariant, ji ≤ s.
4. The statement follows from [PSZ07, Corollary 6.10] and [Gi97, Theo-

rem C].

4.4 Remark. The fact that ji (with di = 1) provides an upper bound for
vp(indA), where A runs through the Tits algebras of G, is not true. A
counter-example is e.g. a group of type E7 with a Tits algebra of index more
than 2.

5 Generically split varieties

In this section we begin to study the higher Tits indices of semisimple alge-
braic groups over k. First, we would like to understand under what condi-
tions our group G splits over the field of rational functions of a projective
G-homogeneous variety X.

5.1 Definition. Let G be a semisimple algebraic group over k and X a
projective G-homogeneous variety. We say that X is generically split, if the
group G splits (i.e., contains a split maximal torus) over k(X).

5.2 Remark. If X is generically split, then the Chow motive of X splits over
k(X) as a direct sum of Lefschetz motives. This explains the terminology
“generically split”. One can also call such varieties generically cellular, since
over k(X) they are cellular via the Bruhat decomposition.

5.3 Theorem. Let G0 be a split semisimple algebraic group over k, G = γG0

the twisted form of G0 given by a 1-cocycle γ ∈ H1(k,G0), and X a projective
G-homogeneous variety. If X is generically split, then for all primes p the
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following identity on the Poincaré polynomials holds:

g(Ch∗(X), t)

g(Ch
∗
(X), t)

=
r∏

i=1

tdip
ji − 1

tdi − 1
, (8)

where Jp(G) = (j1, . . . , jr) and di’s are the p-coprimary parts of the p-
exceptional degrees of G0.

Proof. In the proof of this theorem we use results established in our paper
[PSZ07].

Let p be a prime integer. We fix preimages ei of xi ∈ Ch∗(G). For an
r-tuple M = (m1, . . . ,mr) we set eM =

∏r
i=1 emi

i .

First we recall the definition of filtrations on Ch∗(X) and Ch
∗
(X) (see

[PSZ07, Definition 4.13]). Given two pairs (L, l) and (M, m), where L and
M are r-tuples and l and m are integers, we say that (L, l) ≤ (M, m) if either
L < M , or L = M and l ≤ m.

The (M, m)-th term of a filtration on Ch∗(X) is the subring of Ch∗(X)
generated by the elements eIα, I ≤ M , α ∈ R≤m. We denote as A∗,∗ the
graded ring associated to this filtration. As A∗,∗

rat we denote the graded subring
of A∗,∗ associated to the subring Ch

∗
(X) ⊂ Ch∗(X) of rational cycles with

the induced filtration.
Consider the Poincaré polynomial of Arat with respect to the grading in-

duced by the usual grading of Ch∗(X). Proposition 4.18 of [PSZ07] which
explicitely describes a Z/p-basis of A∗,∗

rat implies that the Poincaré polyno-
mial g(Arat, t) =:

∑dim X
i=0 ait

i (ai ∈ Z) of Arat equals the right hand side of
formula (8).

On the other hand, dim Ch
∗
(X) = dim Arat and the coefficients bi of the

Poincaré polynomial g(Ch
∗
(X), t) =:

∑dim X
i=0 bit

i are obviously bigger than

or equal to ai for all i. Therefore g(Ch
∗
(X), t) = g(Arat, t). This finishes the

proof of the theorem.

The right hand side of formula (8) depends only on the value of the J-
invariant of G. In turn, the left hand side depends on the rationality of cycles
on X. Available information on cycles that are rational as sure as fate allows
to establish the following result.

5.4 Theorem. Let G be a group of type Φ = F4, E6, E7 or E8 given by a
1-cocycle from H1(k, G0), where G0 stands for the split adjoint group of the
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same type as G, and X be the variety of the parabolic subgroups of G of type
i. The variety X is not generically split if and only if

1 Φ = F4, i = 4, J2(G) = (1)
2 Φ = E6, i = 1, 6, J2(G) = (1)
3 Φ = E6, i = 2, 4, J3(G) = (j1, ∗), j1 6= 0
4 Φ = E7, i = 1, 3, 4, 6, J2(G) = (j1, ∗, ∗, ∗), j1 6= 0
5 Φ = E7, i = 1, 6, 7, J2(G) = (∗, j2, ∗, ∗), j2 6= 0
6 Φ = E7, i = 7, J3(G) = (1)
7 Φ = E8, i = 1, 6, 7, 8, J2(G) = (j1, ∗, ∗, ∗), j1 6= 0
8 Φ = E8, i = 7, 8, J3(G) = (1, ∗)

(“∗” means any value).

Proof. First we prove using Theorem 5.3 that the cases listed in the table
are not generically split. Indeed, assume ther contrary. Then in cases 3) and
4) the right hand side of formula (8) does not have a term of degree 1. On
the other hand, the Picard group Pic(X) is rational.

In cases 1), 5), 7) the right hand side of formula (8) does not have a term
of degree 3. On the other hand, the group Ch3(X) is rational: in all these
cases it is contained in the subring generated by (rational) Ch1(X), Ch2(X),
and by the Chern classes of the tangent bundle TX (which are rational).

In case 8) one comes to the same contradiction considering Ch4(X). In
case 2) one easiely comes to a contradiction, since in this case the right hand
side of formula (8) does not divide the Poincaré polynomial g(Ch∗(X), t).

Next we show that all other varieties not listed in the table are generically
split. Let G and X be an exceptional group and a G-variety not listed in the
table. Consider Gk(X). Using Proposition 4.3(2) one immediatelly sees case-
by-case that for all primes p the J-invariant of the anisotropic kernel of Gk(X)

is trivial. Therefore this anisotropic kernel is trivial by Proposion 4.3(4) and
the group G splits over k(X).

5.5 Remark. The cases 3) and 4) in the table above also follow from the
index reduction formula for exceptional groups [MPW98].

5.6 Remark. In view of the results obtained in [PSZ07] and in the present
paper the following holds:

1. Φ = F4, E6, J2(G) = (1) if and only if G has a non-trivial cohomological
invariant f3.
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2. Φ = E6, J3(G) = (j1, ∗) or Φ = E7, J2(G) = (j1, ∗, ∗, ∗), j1 6= 0, if and
only if G has a non-trivial Tits algebra.

3. Φ = E7, J3(G) = (1) if and only if G has a non-trivial cohomological
invariant g3.

6 Index of groups of type E7

In this section we prove an index reduction formula for groups of type E7.
Our result can be considered as a generalization of the usual index reduction
formula for central simple algebras.

Another variations on this theme are the Main Tool Lemma of A. Vishik
[Vi07, Theorem 3.1] and an application of the Rost degree formula [Me03,
Theorem 7.2].

To prove the main result of this section we use Chow motives and Steenrod
operation and a relation between rational cycles on projective homogeneous
varieties and their splitting properties.

To simplify the notation we will denote the Lefschetz motives in the
category of Chow motives with Z/p-coefficient not as (Z/p)(i), but still as
Z(i).

6.1 Theorem. Let G be an anisotropic group of type E7 and X (resp. Y ) be
the projective G-homogeneous variety of parabolic subgroups ot type 1 (resp.
7). Then Y has a k(X)-rational point if and only if Y has a zero-cycle of
degree 1.

In particular, Y has no k(X)-rational points if G has a non-trivial Tits
algebra, or if the absolute Galois group Gal(ks/k) is a pro p-group, or if G
has the Rost invariant of order divisible by 4.

Proof. Before proving this theorem we discuss briefly the plan of the proof.
First, assuming that Y has a k(X)-rational point we find a rational cycle,
say α, in codimension 17 on the product X ×X. Using Steenrod operations
we produce certain projector-like cycle, say β, on X ×X. Applying duality
arguments to β we find a sub-cycle, say γ, in the cycle α. On the other hand,
multiplying α with certain cycle known to be always rational, we obtain again
a projector-like cycle, but of another shape because of existence of γ inside
of α. Applying duality arguments again we come to a contradiction.
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From now on an till the end of the proof of this theorem we set p = 2.
To simplify the notation we denote as pt = [X1] the class of a rational point
on X (or Y ).

Assume first that the variety Y does not have a zero-cycle of degree 1,
but Y has a k(X)-rational point. All claims below are proved under this
assumption.

6.2 Claim. The varieties X and Y are not generically split.

Assume that J2(G) is trivial. Then G splits by an odd degree field exten-
sion by [PSZ07, Corollary 6.10]. On the other hand, the variety Y becomes
isotropic over a quadratic field extension of k by [Fe72, Corollary 3.4]. There-
fore Y has a zero-cycle of degree 1. Contradiction.

Thus, J2(G) is not trivial. Now the variety X is not generically split by
Corollary 5.4. On the other hand, the variety Y is not generically split, since
it has a rational point over k(X) and G is not split over k(X).

In the following claims we use the Sweedler notation for Hopf algebras to
denote the cycles in the Chow rings of projective homogeneous varieties, i.e.,
we do not write the sums and the indices.

6.3 Claim. Some power of any element in a finite monoid is an idempotent.
In particular, for q = 1 × pt + x(1) × x(2) ∈ Chdim X(X × X) with x(2) ∈
Ch<dim X(X) there exists n ∈ N such that q◦n is a non-trivial projector.

The first statement of the claim is well known. For completeness we give
its proof. Let q be an element of our monoid. Since the monoid is finite, we
can find in the sequence {qi}i∈N two equal cycles qn1 and qn2 with n2 ≥ 2n1.
Define n = (n2 − n1)n1. Then q2n = qn, i.e., qn is an idempotent.

6.4 Lemma. Let X and Y be arbitrary projective homogeneous varieties such
that Xk(Y ) and Yk(X) have zero-cycles of degree prime to p. Then the Chow
motives M(X) and M(Y ) with Z/p-coefficients have a common non-trivial
direct summand R such that Rks ' Z⊕M for some motive M .

Proof. Since X has a k(Y )-rational cycle of degree prime to p and Y has a
k(X)-rational cycle of degree prime to p, we can apply [PSZ07, Lemma 1.6]
(generic point argument) and get two cycles α ∈ Chdim Y (X × Y ) and β ∈
Chdim X(Y×X) such that α = 1×pt+x(1)×x(2) and β = 1×pt+x′(1)×x′(2). The
compositions α◦β and β◦α give cycles on Y ×Y and X×X as in the previous
claim. Therefore some powers (α ◦ β)◦n and (β ◦ α)◦n define projectors over
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ks. The mutually inverse isomorphisms between the motives corresponding
to these projectors are given by the rational maps α and β ◦ (α ◦ β)◦n−1.
Applying the Rost nilpotence theorem [CGM05, Section 8] we finish the
proof of the lemma.

Now it easiely follows from the classification of Tits indices that our vari-
eties X and Y of the Theorem have a common motive as above. We denote
this motive as R.

6.5 Claim. Rk(X) ' Z⊕ Z(17)⊕R′ for some motive R′.

Consider the motive Rk(X). We claim first that Rk(X) ' Z ⊕ Z(l) ⊕ R′

for some motive R′ and some l ∈ Z. Indeed, let q ∈ Chdim X(X × X) be a
projector corresponding to R. Consider q over ks. The cycle q · qt, where qt

denotes the transposed cycle, equals npt × pt, where n is the dimension of
the realization Ch∗(X, q). The number n is, of course, even, since otherwise
we get a rational zero-cycle on X of odd degree, and, since by [Fe72, Corol-
lary 3.4] the group 2 CH0(Ȳ ) is rational, we get a zero-cycle of degree 1 on Y
which contradicts to the assumptions of the Theorem. On the other hand,
the Krull-Schmidt theorem [CM06, Theorem 9.6] in the category of Chow
motives implies that Rk(X) is a direct sum of the Lefschetz motives and the
indecomposable Rost motives. (The Rost motives are indecomposable, since
(Gk(X))an has type D4 by our assumptions and by Claim 6.2). Therefore
Rk(X) must contain as a direct summand some Lefschetz motive Z(l) pair to
Z.

Next we compute l. By assumptions the motive R is a common motive
of X and Y . Therefore the number l has the property that Z(l) is a direct
summand of the motives M(X) and M(Y ) over k(X) (or over k(Y )). Using
the Hasse diagrams of X and Y (see [PlSeVa, Figures 21 and 23]) one can
easiely see as in Example 3.1 that there is only one such common dimension,
namely l = 17.

In the following claim we put all computations that we need to prove
our theorem. The computations were done using algorithms described in
Section 3. As [i1, . . . , il] we denote the product si1 . . . sil in the Weyl group.

6.6 Claim. a) The 16-th Steenrod operation (modulo 2) of

f := Z[7,6,5,4,3,2,4,5,6,1,3,4,5,2,4,3,1] ∈ Ch17(X)

equals S16(f) = X[1] = pt.
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b) The 16-th Chern class of the tangent bundle TX of X equals

c := Z[6,5,4,2,3,1,4,3,5,4,2,6,5,4,3,1] + Z[4,2,3,1,4,3,6,5,4,2,7,6,5,4,3,1]

+Z[4,3,1,5,4,3,6,5,4,2,7,6,5,4,3,1] ∈ Ch16(X).

c) For any g ∈ Ch9(X) and h ∈ Ch8(X) S8(g)S8(h) = cgh.
d) c · Ch6(X) = c · Ch12(X) = 0.
e) S8(Ch8(X)) = (Z/2)c.

Proof of Theorem 6.1: Consider the cycle f = Z[7,6,5,4,3,2,4,5,6,1,3,4,5,2,4,3,1] ∈
Ch17(X). This cycle is rational over k(X) by [CGM05, Proposition 6.1].
Indeed, the Hasse diagram for X is represented in [PlSeVa, Figure 23] (That
figure contains the left half of the Hasse diagram which is too big to be
represented at whole. One should symmetrically reflect that diagram to get
a complete picture). Since by assumption the group (Gk(X))an has type D4,
one should erase from the Hasse diagram of X all edges with labels 1, 6, and
7. One immediately sees that the vertex corresponding to f splits from the
diagram. Thus, f is defined over k(X).

By [PSZ07, Lemma 1.6] the cycle a := 1× f + x(1)×x(2) ∈ Ch17(X ×X),
x(2) ∈ Ch<17(X), is rational (i.e., defined over k). By Claim 6.6(a) the cycle
S16(a) = 1× pt + x′(1)× x′(2) ∈ Ch33(X ×X), x′(2) ∈ Ch<33(X) (dim X = 33).

Therefore using Claim 6.3 one obtains a (rational) projector on X ×X. We
denote this projector as q.

We claim that this projector contains a summand of the form r× s with
r ∈ Ch17(X), s ∈ Ch16(X) and rs = pt. Indeed, by Claim 6.5 the mo-
tive M(X) has an indecomposable direct summand R such the projector
corresponding to Rks contains the sum 1 × pt + r′ × s′ with r′ ∈ Ch17(X),
s′ ∈ Ch16(X) and r′s′ = pt. Our projector q contains the summand 1 × pt.
Therefore the Krull-Schmidt theorem for Chow motives with finite coeffi-
cients [CM06, Theorem 9.6] implies that q must also contain a summand
r × s with r ∈ Ch17(X), s ∈ Ch16(X) and rs = pt.

Since q comes from the cycle a by means of S16, the cycle a contains a
summand g × h with g ∈ Ch9(X) and h ∈ Ch8(X). Indeed, otherwise we
can’t get the cycle r×s in q, since Si(α) = 0 for all α ∈ Ch<i(X). Moreover, a
contains a summand g×h (g ∈ Ch9(X), h ∈ Ch8(X)) with S8(g)S8(h) = pt,
since rs = pt.

Consider now the (rational) product (1 × c) · a ∈ Ch33(X × X). This
product contains the sum 1× cf + g× ch = 1× pt + g× ch. As in Claim 6.3
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we may assume that (1× c) · a is a projector which contains the summands
1 × pt and g × ch by Claim 6.6(c). The motive corresponding to this sum
has the Poincaré polynomial 1 + t9. Consider now the motive of X over
k(X). As in Example 3.1 one can see that M(X) splits as a direct sum
of (twisted) Lefschetz motives and (twisted) Rost motives corresponding to
the anisotropic kernel of Gk(X) which has strongly inner type D4 by our
assumptions and by Claim 6.2. The Poincaré polynomial of the Rost motive
appearing in the motivic decomposition is 1 + t3. Moreover, the Lefschetz
motive Z(9) does not appear in the motivic decomposition. Therefore by
the Krull-Schmidt theorem [CM06, Theorem 9.6] the summand g× ch of the
product (1× c) · a is a part of a twisted Rost motive. Therefore the product
(1 × c) · a must contain a pair summand for g × ch. Since the Poincaré
polynomial of our Rost motive is 1 + t3 the pair to g × ch summand has
the form g̃ × ch̃ with g̃ ∈ Ch9±3(X). This leads to a contradiction with
Claim 6.6(d).

Assume now that Y does not have a k(X)-rational point. We will show
that the variety Y does not have a zero-cycle of degree 1. We may assume
that the Tits algebras of G are trivial, since over each field which makes
Y isotropic the Tits algebras of G are split and, hence, Y does not have a
zero-cycle of degree 1.

Consider Yk(X). Using the method of Chernousov-Gille-Merkurjev and
Brosnan (see Section 3) one can decompose its motive as follows: M(Yk(X)) '
M(Q) ⊕M(Z)(6) ⊕M(Q)(17), where Q is the quadric corresponding to
Gk(X) and Z is its maximal orthogonal Grassmannian. In particular, the
image of the degree map deg : CH0(Yk(X)) → Z coincides with the image of
deg : CH0(Q) → Z which is known to be 2Z by Springer’s theorem. Thus,
Yk(X) does not have a zero-cycle of degree 1 and therefore so Y does. The
theorem is proved.

6.7 Remark. The index reduction formula for central simple algebras [MPW98,
Section 8, Type E7] implies that Theorem 6.1 holds if the group G has a non-
trivial Tits algebra. Our proof does not depend on the (non)-triviality of the
Tits algebras.

6.8 Remark. The following papers discuss the problem of the existence of
zero-cycles of degree 1 on anisotropic varieties: [Fl04], [Par05], [Serre], [To04].

Now we summarize the results of the present paper and provide a complete
list of the the higher Tits indices for anisotropic groups of type F4 and 1E6.
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F4 J2 = (0) {1, F4}
F4 J2 = (1) {1, B3, F4}
E6 J2 = (0), J3 = (0, 1) {1, E6}
E6 J2 = (1), J3 = (0, ∗) {1, D4, E6}
E6 J2 = (0), J3 = (j1, ∗), j1 6= 0 {1, 2A2, E6}
E6 J2 = (1), J3 = (j1, ∗), j1 6= 0 {1, 2A2, D4, E6}

Let now G be an anisotropic group of type E7 with trivial Tits algebras.
Denote as Ω(G) the higher Tits index of G. Theorems 5.4 and 6.1 imply that
D4 ∈ Ω(G) iff J2(G) is non-trivial,
E6 ∈ Ω(G) iff J3(G) is non-trivial, and
D6 ∈ Ω(G) iff the variety of parabolic subgroups of G of type 7 does not have
a zero-cycle of degree 1.
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Séminaire Bourbaki (1993/94). Astérisque 227 (1995), exp. no.
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