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Abstract

Let G be a simple linear algebraic group of inner type over a field ¥
and X be a projective homogeneous G-variety such that G splits over
the function field of X. In the present paper we introduce an invariant
of G called J-invariant which characterizes the motivic behavior of
X. This generalizes the respective notion invented by A. Vishik in
the context of quadratic forms. As a main application we obtain
a uniform proof of all known motivic decompositions of generically
split projective homogeneous varieties (Severi-Brauer varieties, Pfister
quadrics, maximal orthogonal Grassmannians, Go- and F4-varieties)
as well as provide new examples (exceptional varieties of types Eg,
E7 and Eg). We also discuss relations with torsion indices, canonical
dimensions and cohomological invariants of the group G.

Introduction

Let GG be a simple linear algebraic group over a field F' and X be a projective
homogeneous G-variety. In the present paper we address the problem of
computing the Grothendieck-Chow motive M(X) of X or, in other words,
providing a direct sum decomposition of M (X).

This problem turns to be strongly related with several classical conjec-
tures concerning algebraic cycles. For instance, the motivic decomposition
of a Pfister quadric plays the major role in the proof of Milnor’s conjecture
by V. Voevodsky. The proof of the generalization of this conjecture known
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as the Bloch-Kato conjecture was recently announced by M. Rost and V. Vo-
evodsky. It essentially uses motivic decompositions of the norm varieties
which are closely related to projective homogeneous varieties.

Another deep application deals with the famous Kaplansky problem on
the values of the u-invariant of a field. It has a long history starting from
the works of A. Merkurjev and O. Izhboldin. Recently an essential break-
through in this problem was achieved by A. Vishik [Vi06], where he used
the J-invariant of quadrics. The present paper was mostly motivated by this
result. The invariant that we introduce and study is a generalization of the
J-invariant of A. Vishik to arbitrary projective homogeneous varieties.

The next application is related with the structure of the Chow groups
of projective homogeneous varieties. For instance, the computation of the
Chow group of an excellent quadric provided by N. Karpenko, A. Merkurjev
and M. Rost (see [KM02]) essentially uses motivic decompositions.

It was first observed by B. Kock [K691] that if the group G is split, i.e.,
contains a split maximal torus, then the motive of X has the simplest possible
decomposition — it is isomorphic to a direct sum of twisted Tate motives. The
next step was done by V. Chernousov, S. Gille and A. Merkurjev [CGM] and
P. Brosnan [Br05]. They proved that if G is isotropic, i.e., contains a split
1-dimensional torus, then the motive of X can be always decomposed as
a direct sum of the motives of projective homogeneous varieties of smaller
dimensions corresponding to anisotropic groups, thus, reducing the problem
to the anisotropic case.

For anisotropic groups only very few partial results are known. In this
case the components of a motivic decomposition of X are expected to have
a non-geometric nature, i.e., can not be identified with (twisted) motives
of some other varieties. The first examples of such decompositions were
provided by M. Rost [R0o98]. He proved that the motive of a Pfister quadric
decomposes as a direct sum of twisted copies of a certain non-geometric
motive R called Rost motive. The motives of Severi-Brauer varieties were
computed by N. Karpenko [Ka96]. For exceptional varieties examples of
motivic decompositions were provided by J.-P. Bonnet [Bo03] (varieties of
type Gz) and by S. Nikolenko, N. Semenov, K. Zainoulline [NSZ] (varieties
of type F,). Observe that in all these examples the respective group G splits
over the generic point of X. Such varieties will be called generically split.

In the present paper we provide a uniform proof of all these results.
Namely, we prove that (see Theorem 5.1)



Theorem. Let G be a simple linear algebraic group of inner type over a
field F' and p be a prime integer. Let X be a generically split projective
homogeneous G-variety. Then the Chow motive of X with Z/p-coefficients
18 1somorphic to a direct sum

M(X;Z/p) ~ P Ry(G)(0)
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of twisted copies of an indecomposable motive R,(G) for some finite multiset
Z of non-negative integers.

Observe that the motive R,(G) depends only on G and p but not on
the type of a parabolic subgroup defining X. Moreover, considered with
Q-coefficients it always splits as a direct sum of twisted Tate motives.

Our proof is based on two different observations. The first comes from
the topology of compact Lie groups. Namely, to compute the Chow ring
of a compact Lie group V. Kac [Kc85] invented the notion of p-exceptional
degrees — numbers which have purely combinatorial nature. On the other
hand the results of N. Karpenko, A. Merkurjev [KMO06] and K. Zainoulline
[Za06] concerning canonical p-dimensions of algebraic groups tell us that
there is a strong interrelation between p-exceptional degrees and the ‘size’
of the image of the restriction map res: CH*(X)/p — CH*(X)/p to the
separable closure of F'. To measure this image we introduce the notion of a
J-invariant J,(G) of a group G mod p (see Definition 4.5). In the most cases
the values of J,(G) were implicitly computed by V. Kac in [Kc85] and can
be easily extracted from Table 6.3.

The second observation is the Rost Nilpotence Theorem. It was first
proved for quadrics by M. Rost and then generalized to arbitrary projective
homogeneous varieties (see [CGM, Theorem 8.2] and [Br05, Theorem 5.1]).
Roughly speaking, it reduces the problem of motivic decompositions to the
problem of providing certain idempotent cycles on X x X which belong to
the image of the restriction map. To construct such cycles we essentially use
the J-invariant of G.

As a by-product of the proof we obtain that the J-invariant also measures
the ‘size’ of the motive R,(G) and, hence, characterizes the motivic decom-
position of X. Observe that if the J-invariant takes its minimal possible
non-trivial value J,(G) = (1), then the motive R,(G) ® Q has the following



recognizable decomposition (cf. [Vo03, §5])

p—1
R,(G)®Q~PQli - 2=
=0

where n = 2 or 3 (see the last section). Moreover, the assignment G — R, (G)
can be viewed as a motivic analog of the mod p cohomological invariants of
G given for n = 2 by the Tits class of G' or for n = 3 by the Rost invariant
of G.

Apart from the notion of J-invariant we generalize some of the results of
paper [CPSZ]. Namely, using the motivic version of the result of D. Edidin
and W. Graham [EG97| on cellular fibrations we provide a general formula
which expresses the motive of the total space of a cellular fibration in terms
of the motives of its base (see Theorem 3.8). We also provide several criteria
for the existence of liftings of motivic decompositions via the reduction map
Z — Z/m. We prove that such liftings always exist (see Theorem 2.15).

The paper is organized as follows. In the first section we recall the def-
inition of Chow motives and some properties of generically split varieties.
Rather technical section 2 is devoted to lifting of idempotents. In section 3
we discuss the motives of cellular fibrations. The proof of the main result ac-
tually starts with section 4, where we introduce the notion of the J-invariant
and provide a motivic decomposition for the variety of complete flags. In
section 5 we finish the proof and give some properties of the motive R,(G).
The last two sections are devoted to various applications of the .J-invariant
and examples of motivic decompositions.

1 Motives of generically split varieties

1.1. In the present paper we work with Chow motives of smooth projective
varieties over a field F. We will use the following notation (cf. [Ma68],
[CGM, §7] or [EKM, XII]).

Given a smooth projective variety X over a field F' we denote by M (X)
its Chow motive, and by M(X)(n) = M(X) ® Z(n) the respective twist by
the Tate motive. A morphism between the motives M(X)(n) and M(Y)(m),
where X is irreducible, is given by a class ¢ of rationally equivalent cycles of
dimension dim X +n —m on X X Y. Hence, the group of endomorphisms
End(M (X)) coincides with the Chow group CHgiy, x (X x X). The element
¢ is called a correspondence between X and Y of degree n — m.
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Given a correspondence ¢ of degree d and k € Z the composite

CH(X) 2L CHy iy (X % V) 2% CHe (X x V) 222 CHy oY)

of the pull-back (pry)*, intersection product with ¢ and the push-forward
(pry )« is called the realization of ¢ and is denoted by ¢,. Given correspon-
dences ¢ € CHgim x1+a(X x Y) and ¢ € CHgimy+e(Y X Z) of degrees d and
e respectively the correspondence of degree d + e

(Prxxz)+((Pry2)" N (Prxy)) € CHaim xdre(X X Z)

is called the correspondence product of ¢ and ¢ and is denoted by ¢ o ¢. By
definition (¢ o ¢), = 1, o ¢,. Given a correspondence ¢ we denote by ¢’ its
transpose.

The correspondence product endows the group End(M (X)) with the ring
structure. The identity element of this ring is the class of the diagonal Ax.

We will often consider the category of motives with A-coefficients, where
A is a commutative ring, obtained by taking correspondences ¢ with A-
coefficients, i.e., replacing CH(X x YY) by CH(X xY)®z A. By M(X;A) we
will denote the motive of a variety X in this category.

1.2 Definition. Let L/F be a field extension. We say L is a splitting field
of a smooth projective variety X or, equivalently, a variety X splits over L if
the motive M(X) splits over L as a finite direct sum of twisted Tate motives:

M(X)p ~ @ZL(TL).

1.3 Example. A variety X over a field F'is called cellular if X has a proper
descending filtration by closed subvarieties X; such that each complement
X; \ X,y is a disjoint union of affine spaces defined over F. According to
[EKM, Corollary 67.2] if X is cellular, then X splits over F.

1.4 Definition. Let GG be a simple linear algebraic group over a field F' and
X be a projective homogeneous G-variety. We say X is generically split if
the group G splits over the generic point of X, ie., Gpxy = G xp F(X)
contains a split maximal torus defined over F'(X). In this case Xp(x) is a
cellular variety and, therefore, F/(X) is a splitting field of X. Examples of
generically split varieties are provided in 3.7.



1.5. Assume X has a splitting field L. We will write CH(X; A) for CH(X[; A)
and CH(X; A) for the image of the restriction map CH(X;A) — CH(X;A)
(cf. [KMO06, 1.2]). Similarly, by M(X) we denote the motive of X considered
over L. If M is a direct summand of M(X)(n), by M we denote the motive
M. The elements of CH(X) will be called rational cycles on X, with respect
to the field extension L/F. If L' is another splitting field of X, then there is
a chain of canonical isomorphisms CH(X) ~ CH(X /) ~ CH(XL/) where
LL' is the composite of L and L'. Hence, the groups CH(X) and CH(X) do
not depend on the choice of L.

There is the Kiinneth decomposition CH(X x X) = CH(X)® CH(X) and
Poincaré duality (see [KM06, Remark 5.6]). The latter means that given a
basis of CH(X) there is a dual one with respect to the pairing (o, 3) — deg(a-
), where deg is the degree map. In view of the Kiinneth decomposition the
correspondence product of cycles in CH(X x X) is given by the formula
(a1 x B1) o (g X B2) = deg(a1f2) (a2 X B1), the realization by (a x 3).(v) =
deg(ay)f and the transpose by (a x 3)! = 3 x a. Since CH,(X) is a free
graded Z-module, we may define its Poincaré polynomial as P(CH,(X),t) =
> iso tkz CH;(X) - ¢

Sometimes we will use contravariant notation CH* for Chow groups,
where CH*(X) = CHgim x_#(X) for irreducible X.

1.6 Lemma. Let X andY be two smooth projective varieties such that F(Y)
s a splitting field of X and Y has a splitting field. Consider the projection
in the Kinneth decomposition

- CH'(X xY) @CH’" '(X) ® CHY(Y) — CH"(X).

Then for any p € CH"(X) we have pry' (p) NCH (X x Y) # 0.

Proof. Let L be a common splitting field of X and Y. The lemma follows
from the commutative diagram

SL/F

CHT(X Xp Y) —>CHT(XL X YL)

i ;e

CH"(Xp(y)) — CH"((X1)1(vy)) — CH"(X})



where the left square is obtained by taking the generic fiber of the base
change morphism X; — X; the vertical arrows are taken from the localiza-
tion sequence for Chow groups and, hence, are surjective; and the bottom
horizontal maps are isomorphisms since L is a splitting field. O

We will extensively use the following version of the Rost Nilpotence The-
orem.

1.7 Lemma. Let X be a smooth projective variety such that it splits over
any field K over which it has a rational point. Then for any o in the kernel
of the natural map End(M (X)) — End(M(X)) we have o™X+ = 0,

Proof. See [EKM, Theorem 68.1]. O

2 Lifting of idempotents

2.1 Definition. Given a Z-graded ring A* and two idempotents ¢, ¢ € A°
we say ¢; and ¢y are orthogonal if ¢y = ¢y = 0. We say an element
012 provides an isomorphism of degree d between idempotents ¢; and ¢ if
012 € poA %%, and there exists 0y € ¢ A%, such that 6120, = ¢ and
021012 = ¢1.

2.2 Example. Let A be a commutative ring. Set A* = End"(M(X;A)),
where

End"(M(X;A)) = CHFFIMX (X x X:A), keZ

and the multiplication is given by the correspondence product. By definition
End’(M(X;A)) is the ring of endomorphisms of the motive M (X; A). Note
that a direct summand of M(X;A) can be identified with a pair (X, ¢),
where ¢ is an idempotent, i.e., p o ¢ = ¢ (see [EKM, ch. XII]). Then an
isomorphism 6,5 of degree d between ¢; and ¢, can be identified with an
isomorphism between the motives (X, ¢1) and (X, ¢3)(d).

2.3 Definition. Let f: A* — B* be a homomorphism of Z-graded rings.
We say that f is decomposition preserving if given a family ¢; € BY of pair-
wise orthogonal idempotents such that ), ¢; = 1p, there exists a family of
pair-wise orthogonal idempotents ¢; € A° such that ). ¢; = 14 and each
f(¢;) is isomorphic to ¢; by means of an isomorphism of degree 0. We say f
is strictly decomposition preserving if, moreover, one can choose ¢; such that

f(pi) = ¢i.



We say f is isomorphism preserving if for any idempotents p; and ¢,
in A% and any isomorphism 6}, of degree d between idempotents f(y;) and
f(p2) in BY there exists an isomorphism 9,5 of degree d between ¢, and (s.
We say f is strictly isomorphism preserving if, moreover, one can choose ;5

such that f(12) = b1.

2.4. By definition we have the following properties of (strictly) decomposition
and isomorphism preserving morphisms:

(i) Let f: A* — B* and ¢g: B* — C* be homomorphisms such that g o f
is decomposition (resp. isomorphism) preserving and g is isomorphism
preserving. Then f is decomposition (resp. isomorphism) preserving.

(ii) Assume we are given a commutative diagram with ker f’ C im

AL pr

AI* > Bl* .

If f'is strictly decomposition (resp. strictly isomorphism) preserving,
then so is f.

2.5 Proposition. Let f: A* — B* be a surjective homomorphism such that
the kernel of the restriction of f to A° consists of nilpotent elements. Then f
is strictly decomposition (cf. [EKM, Proposition 95.1]) and strictly isomor-
phism preserving.

Proof. The fact that f is strictly decomposition preserving follows from [AF92,
Proposition 27.4]. The fact that f is strictly isomorphism preserving follows
from Lemma 2.6 below. O

2.6 Lemma. Let A, B be two rings, A°, B® be their subrings, f°: A® — B°
be a ring homomorphism, f: A — B be a map of sets satisfying the following
conditions:

o f(a)f(B) equals either f(af) or 0 for all o, f € A;
o f%a) equals f(a) if f(a) € B® or 0 otherwise;

e ker f9 consists of nilpotent elements.



Let p1 and py be two idempotents in AC )1y and 1y be elements in A such
that P12 A%y C A%, o1 A%y C A, f(ho1) f(¢12) = fe1), [(¥12) f (1) =
f(902)-

Then there exist elements V19 € ©aA%n2A%01 and 99 € 1A%y Ay
such that ¥a1the = 1, 12091 = 2, f(the) = f(p2) f(12) = f(r2) f(e1),
f(1921) = f(@l)f(l/)m) = f(7/121)f(<P2)-

Proof. Since ker f° consists of nilpotents, f° sends non-zero idempotents in
A° to non-zero idempotents in BY; in particular, f(¢1) = f°(p1) # 0, f(p2) =
f%(p2) # 0. Observe that

f(1/112)f(901) = f(1/112)f(1/)21)f(¢12) = f(902)f(¢12)

and, similarly, f(¢21)f(p2) = f(@1)f(¢21). Changing 112 to @oth12¢; and
P91 t0 119102 We may assume that s € pyAp; and Y9 € 1 Aps. We
have

Fo(2) = flp2) = f(thr2) f(¥21) = f(thrathar) = fO(¢hr12tan).

Therefore o = 119191 — o € A® is nilpotent, say o™ = 0. Note that goar =
a=apy. Set ¥ =py —a+...+ (=1)"ta" ! € A% then aa¥ = vy — aV,
w0’ = ¥ = a¥py and f(p2) = fp2) = fP(a¥) = f(aY). Therefore
setting Ug1 = 10" we have 091 € 01 AP, V19021 = o and f(V21) = f(121).
This also implies that 921112 is an idempotent.

We have

Fo(er) = fle1) = f(021) f (Yr12) = f(Pa1th12) = [P (921bn2);

therefore 8 = ¥911015 — 1 € A° is nilpotent. Note that Sp; = 8 = ¢, 5. Now
o1+ 8= (o1 +B)* = + 268+ % and therefore 3(1+ ) = 0. But 1+ 3 is
invertible and hence we have f = 0. It means that 9,115 = ¢; and we can
set Y19 = Y19. O

2.7 Corollary. The map End*(M(X;Z/p")) — End*(M(X;Z/p)) is strictly
decomposition (cf. [EKM, Corollary 95.3]) and strictly isomorphism preserv-
mng.

Proof. Apply Proposition 2.5 to the case A* = End*(M(X;Z/p")), B* =
End*(M(X;Z/p)) and the reduction map f: A* — B*. O



2.8 Lemma. Let m = mymsy be a product of two coprime integers. Then the
map End*(M(X;Z/m)) — End*(M(X;Z/m,)) x End*(M(X; Z/ms)) is an

1somorphism.

Proof. Apply Chinese Remainder Theorem. O

2.9 Corollary. The map End*(M(Xg;A)) — End*(M(Xg; A)) is strictly
decomposition and strictly isomorphism preserving for any field extension

EJF.

Proof. Apply Proposition 2.5 to the homomorphism res;: A* — B* between
the graded rings A* = End*(M(Xg;A)) and B* = End"(M(Xg; A)). O

2.10 Definition. We say that a field extension E/F' is rank preserving with
respect to X if the restriction map resp/p: CH(X) — CH(Xy) becomes an
isomorphism after tensoring with Q.

2.11 Lemma. Assume X has a splitting field. Then for any rank preserving
finite field extension E/F we have [E : F]- CH(Xg) C CH(X).

Proof. Let L be a splitting field containing F. Let v be any element in
CH(Xg). By definition there exists & € CH(X) such that v = resy;p(c).
Since resg/r ® Q is an isomorphism, there exists an element 3 € CH(X) and
a non-zero integer n such that resy,p(3) = na. By the projection formula

n - coresy p(a) = coresy p(resp/p(B)) = (£ : F| - f.

Applying resy g to the both sides of the identity we obtain

n(resy p(coresg/p(a))) = n[E : F]- 1.
Therefore, res; p(coresp/p(a)) = [E : F] - 7. O

2.12 Corollary. Assume X has a splitting field, E/F is a field extension
of degree coprime with m, which is rank preserving with respect to X x X.
Then the map End*(M(X;Z/m)) — End*(M(Xg;Z/m)) is decomposition
and isomorphism preserving.

Proof. By Lemma 2.11 we have End*(M(Xg;Z/m)) = End*(M(X;Z/m)

Now apply Corollary 2.9 and 2.4(i) with A* = End*(M(X;%Z/m)), B*
End*(M(Xg;Z/m)) and C* = End*(M(Xg;Z/m)).

~—
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2.13 Lemma. The map SL,;(Z) — SL|(Z/m) induced by the reduction mod-
ulo m is surjective.

Proof. Since Z/m is a semi-local ring, the group SL;(Z/m) is generated by
elementary matrices (see [HOM, Theorem 4.3.9]). O

Given a free graded Z-module V* set End~(V*), d € Z, to be the group
of endomorphisms of V* decreasing the degree by d.

2.14 Proposition. Consider a free graded Z-module V* of finite rank and the
reduction map f: End*(V*) — End*(V* ®z Z/m). Assume that the graded
components of the respective im ¢; (see Definition 2.3) are free Z/m-modules.
Then f is strictly decomposition preserving. Moreover, if (Z/m)* = {£1},
then f 1is strictly isomorphism preserving.

Proof. We are given a decomposition V¥ ®7 Z/m = @&;WF, where W} is the

k-graded component of im ¢;. Present V* as a direct sum V* = @, V;¥ of

free Z-modules such that rky V;* = rky/, WF. Fix a Z-basis {vf;}; of V}F.
k

For each W} choose a basis {wy;}; such that the linear transformation D* of

V¥ ®g Z/m sending each vj; ® 1 to w}; has determinant 1. By Lemma 2.13
there is a lifting D* of D* over Z. So we obtain V¥ = @, Wk, where
Wk = D*(VF) satisfies Wk @z Z/m = WF. Tt remains to define ¢; on each
V¥ to be the projection onto W¥.

Now let 1, @9 be two idempotents in End*(V*). Denote by V the k-
graded component of im ;. An isomorphism 65 between ¢; ® 1 and ¢, ® 1
of degree d can be identified with a family of isomorphisms 0%,: VF®Z/m —
VF®7Z/m. In the case (Z/m)* = {#1} all these isomorphisms are given by
matrices with determinants {41} and, hence, can be lifted to isomorphisms
W% VP — VF¢ by Lemma 2.13. O

Now we are ready to formulate and prove the main result of this section.

2.15 Theorem. Assume X has a splitting field of degree m which is rank
preserving with respect to X x X. Then the map

End*(M(X)) — End*(M(X;Z/m))

preserves decompositions having the property that all imres(¢;) (see Defini-
tion 2.3) are free Z/m-modules, where

res: End*(M(X;Z/m)) — End*(M(X;Z/m))

11



is the restriction map. If additionally (Z/m)* = {£1} then this map is
1somorphism preserving.

Proof. Consider the diagram

End*(M(X)) —L> End*(M(X; Z/m))

i

End*(M (X)) L. End*(M(X;Z/m))

End*(M(X)) L End*(M

L Z/m)).

Note that using Poincaré duality (see 1.5) we can identify End™%(M (X))
with the group of endomorphisms of CH*(X) which decrease the grading by
d. Applying Proposition 2.14 to the case V* = CH*(X) we obtain that the
map f' is strictly decomposition preserving. Moreover, if (Z/m)* = {£1}
then f’ is strictly isomorphism preserving.

By Lemma 2.11 ker f* C im4 and, therefore, applying 2.4(ii) we obtain
that f is strictly decomposition preserving and, moreover, f is strictly iso-
morphism preserving if (Z/m)* = {£1}.

Now by Corollary 2.9 the vertical arrows of the top square are strictly

decomposition and strictly isomorphism preserving. It remains to apply
2.4(i). O

3 Motives of fibered spaces

3.1 Definition. Let X be a smooth projective variety over a field F. We
say a smooth projective morphism f: Y — X is a cellular fibration if it is

a locally trivial fibration whose fiber F is cellular, i.e., has a decomposition
into affine cells (see [EKM, §67]).

3.2 Lemma. Let f: Y — X be a cellular fibration. Then M(Y') is isomor-
phic to M(X) @ M(F).

Proof. We follow the proof of [EG97, Proposition 1]. Define the morphism

p: @ M(X)(codim B;) - M(Y)

1€T
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to be the direct sum ¢ = €P,_; i, where each ¢; is given by the cycle
[pry-(B;)-T'f] € CH(X xY) produced from the graph cycle I'y and the chosen
(non-canonical) basis {B;};ez of CH(Y) over CH(X). The realization of ¢
coincides exactly with the isomorphism of abelian groups CH(X)®CH(F) —
CH(Y") constructed in [EG97, Proposition 1]. Then by Manin’s identity
principle (see [Ma68, §3]) ¢ is an isomorphism. O

3.3 Lemma. Let G be a linear algebraic group over a field F', X be a pro-
jective homogeneous G-variety and Y be a G-variety. Let f:Y — X be a
G -equivariant projective morphism. Assume that the fiber of f over F(X) is
isomorphic to Fp(x) for some variety F over F. Then f is a locally trivial
fibration with the fiber F.

Proof. By the assumptions, we have Y X ySpec F/(X) ~ (Fx X)X xSpec F(X)
as schemes over F'(X). Since F(X) is a direct limit of O(U) taken over all
non-empty affine open subsets U of X, by [EGA IV, Corollaire 8.8.2.5] there
exists U such that f~'(U) = Y x x U is isomorphic to (F x X) xx U ~ F xU
as a scheme over U. Since G acts transitively on X and f is G-equivariant,
the map f is a locally trivial fibration. O

3.4 Corollary. Let X be a projective G-homogeneous variety, Y be a projec-
twe variety such that Yrxy ~ Fr(x) for some variety F. Then the projection
map X XY — X s a locally trivial fibration with the fiber F. Moreover, if
F is cellular, then M(X xY) ~ M(X) @ M(F).

Proof. Apply Lemma 3.3 to the projection map X x Y — X and use
Lemma 3.2. ]

3.5. Let G be a simple (connected) linear algebraic group over a field F'; X
be a projective homogeneous G-variety. Denote by D the Dynkin diagram of
G. According to [Ti66] one can always choose a quasi-split group Gy over F
with the same Dynkin diagram, a parabolic subgroup P of Gy and a cocycle
¢ € H'(F,Gy) such that G is isogenic to (G and X is isomorphic to ¢(Go/P).
We will use the following standard notation: If G is split, then G is called
a group of inner type over F.

3.6 Lemma. Let G be a semisimple linear algebraic group over F', X andY
be projective homogeneous G-varieties corresponding to parabolic subgroups P
and @Q of Gy, Q C P. Denote by f: Y — X the map induced by the quotient
map Go/Q — Go/P. If G splits over F(X) then f is a cellular fibration with
the fiber F = P/Q.

13



Proof. Since G splits over F'(X), the fiber of f over F'(X) is isomorphic to
(P/Q)r(x) = Fr(x)- Now apply Lemma 3.3 and note that F is cellular. O

3.7 Example. Let P = Pg be the standard parabolic subgroup of a split
group Gy, corresponding to a subset © of the respective Dynkin diagram D
(enumeration of roots follows Bourbaki). In this notation the Borel subgroup
corresponds to the empty set. Let & be a cocycle in H(F, Gy). Set G = (G,
and X = ¢(G/P). Denote by ¢ the degree of a splitting field of Gy and by
d the index of associated Tits algebra (see [Ti66, Table II]). For groups of
type D,,, we set d to be the index of Tits algebra associated with the vector
representation. Analyzing Tits indices of G we see that G becomes split over
F(X) and, therefore, X is generically split over F if the subset D\ © contains
one of the following vertices k (cf. [KR94, §7]):

G’0 lAn ‘Bn ‘Cn ‘an
k|| ged(k,d) =1 | k=n; kisodd; | k=n—1;
any k in the k=nif2{nord=1,
Pfister case any k in the Pfister case
Go | Go | Fy | 'Eq | Er | Es
k any | k=1,2,3; | k=3,5; k=2,5; k=23,4,5;
any k if k=24ifd =1, k=3,4ifd=1; | any k if
qg=3 k=1,6ifqgisodd | k#T7ifqg=3 qg=>5

(here by the Pfister case we mean the case when the cocycle £ corresponds
to a Pfister form or its maximal neighbor)

Case-by-case arguments of paper [CPSZ] show that under certain condi-
tions the Chow motive of a twisted flag variety X can be expressed in terms
of the motive of a minimal flag. These conditions cover almost all twisted
flag varieties corresponding to groups of types A,, and B,, together with some
examples of types C,, G and F,4. Using the following theorem we provide a
uniform proof of these results as well as extend it to some other types.

3.8 Theorem. Let Y and X be taken as in Lemma 3.6. Then the Chow
motive M(Y') of Y is isomorphic to a direct sum of twisted copies of the
motive M(X), i.e.,

M(Y) = @ M(X)(5)*,

i>0

where Y c;it' = P(CH,(Y),t)/P(CH.(X), t).
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Proof. Apply Lemmas 3.6 and 3.2. O

3.9 Remark. The explicit formula for P(CH,(X),t) involves degrees of the
basic polynomial invariants of Gy and is provided in [Hi82, Ch. IV, Cor. 4.5].

4 Varieties of complete flags

4.1. Let Gy be a split simple linear algebraic group with a split maximal torus
T and a Borel subgroup B containing T'. Let G' = (G be a twisted form of
Gy given by a cocycle & € HY(F, Gy) and X = ¢(Go/B) be the corresponding
variety of complete flags. Observe that the group G splits over any field
K over which X has a rational point, in particular, over the function field
F(X). According to [De74] the Chow ring CH(X) can be expressed in purely
combinatorial terms and, therefore, depends only on the type of G' but not
on the base field F'.

4.2. Let p be a prime integer. To simplify the notation we denote by Ch(X)
the Chow ring of X = ((Gy/B) with Z/p-coefficients and by Ch(X) the
image of the restriction map CH(X;Z/p) — CH(X;Z/p). Let T denote the
group of characters of T and S(7') be the symmetric algebra. By R we denote
the image of the characteristic map ¢: S(T) — Ch(X) (see [Gr58, (4.1)]).
According to [KM06, Thm.6.4] there is an embedding

R C Ch(X), (1)

where the equality holds if the cocycle & corresponds to a generic torsor.

4.3. Let Ch(G) denote the Chow ring with Z/p-coefficients of the group Gp.
Consider the pull-back induced by the quotient map

m: Ch(X) — Ch(G)

According to [Grb8, Rem. 2°| 7 is surjective with the kernel generated by
R™, where R stands for the subgroup of the non-constant elements of R.

The explicit presentation of Ch(G) is known for all types of G and all
torsion primes p of G (see [Gr58, Definition 3]). Namely, by [Kc85, The-
orem 3| it is a quotient of the polynomial ring in r variables xy,...,z, of
codimensions d; < dy < ... < d, coprime to p, modulo an ideal generated by
certain p-powers xf’l’kl, P (k> 0,i=1,...,7)

Ky

Ch*(G) = (Z/p)[x1, ..., z,] /(" ", ..., 2""). (2)
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In the case p is not a torsion prime of G we have Ch*(G) = Z/p, i.e., r = 0.

Note that the complete list of numbers {dipki}izlmr called p-exceptional
degrees of Gy was provided in [Kc85, Table II]. Taking the p-primary and
p-coprimary parts of each p-exceptional degree one immediately restores the
respective k; and d;.

4.4. We introduce two orders on the set of additive generators of Ch(G),
i.e., on the monomials z{" ...z™". To simplify the notation, we will de-
note the monomial " ...2™ by 2™, where M is an r-tuple of integers
(my,...,m;). The codimension of z will be denoted by |M|. Observe that

|M| =0, dim.

e Given two r-tuples M = (my,...,m,) and N = (nq,...,n,) we say
oM 5 2V (or equivalently M < N) if m; < n; for all 4. This gives a

partial ordering on the set of all monomials (r-tuples).

e Given two r-tuples M = (my,...,m,) and N = (nq,...,n,) we say
oM < 2V (or equivalently M < N) if either |M| < |N|, or |M| = |N|
and m; < n; for the greatest ¢ such that m; # n;. This gives a well-
ordering on the set of all monomials (r-tuples) known also as DegLex
order.

Now we are ready to give the main definition of the present paper.

4.5 Definition. Let X = ((Go/B) be the twisted form of the variety of
complete flags by means of a cocycle £ € H'(F,Gy). Let Ch(G) denote the
image of the composite

Ch(X) ™ Ch(X) & Ch(G)

Since both maps are ring homomorphisms, Ch(G) is a subring of Ch(G).
For each 1 <7 < r set j; to be the smallest non-negative integer such
that the subring Ch(G) contains an element a with the greatest monomial

2?" with respect to the DegLex order on Ch(G), i.e., of the form

)

a:xﬁ-’ji+ Z cur™, ey € Z/p.

Ji
M <Ll
=%

The r-tuple of integers (ji, ..., J,) will be called the J-invariant of G modulo
p and will be denoted by J,(G).
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4.6 Example. From presentation (2) we have j; < k; for all i = 1,...,r.
According to (1) the J-invariant takes its maximal value J,(G) = (ky, ..., k)
if the cocycle £ corresponds to a generic torsor. Later on (see Corollary 6.10)
it will be shown that the J-invariant takes its minimal possible value J,(G) =
(0,...,0) if and only if the group G splits by a finite field extension of degree
coprime to p.

4.7 Example. If the Chow ring Ch(G) has only one generator, i.e., r = 1,
then the J-invariant is equal to the smallest non-negative integer j; such that

2" € Ch(@).
The next example explains the terminology ‘.J-invariant’.

4.8 Example. Let ¢ be a quadratic form with trivial discriminant. In [Vi05,
Definition 5.11] A. Vishik introduced the notion of J-invariant of ¢, a tuple
of integers which describes the subgroup of rational cycles on the respective
maximal orthogonal Grassmannian. This invariant provides an important
tool for study of algebraic cycles on quadrics. In particular, it was one of the
main ingredients used by A. Vishik in the solution of Kaplansky’s Problem.
More precisely, in the notation of paper [Vi06] it corresponds to the upper row
of the elementary discrete invariant of a quadric (see [Vi06, Definition 2.2]).

An equivalent but ‘dual’ (in terms of non-rationality of cycles) definition
of J(¢) was provided in [EKM, § 88]. Using Theorem 3.8 one can show
that J(¢) introduced in [EKM] can be expressed in terms of J(O*(¢)) =
(415 .-+, Jr) as follows:

J(o)=1{2d;|i=1,...,m,0<1<j —1}.
Since all d; are odd, Jo(O™(¢)) is uniquely determined by .J(¢).

Now we are ready to formulate and prove the main result of this section.
4.9 Theorem. Given G and p with J,(G) = (j1,...,Jr) the motive of X is
1somorphic to the direct sum

M(X;Z/p) ~ @ 'R EBcl
i>0

where the motive R,(G) is indecomposable, its Poincaré polynomial over a
splitting field is equal to

PR, = [ Sl )

=1
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and the integers c; are the coefficients of the polynomial

Y et = P(Ch*(X), 1)/ P(R,(G), 1).

>0

Fix preimages e; of x; in Ch(X). For an t ple M = (my,...,m,) set
eM =TI;_, e™. Set K = (kl,... k), N=pK —1= (" —1,... pF —1)
and d = dim X — |N| = deg(P(R*,1)).

4.10 Lemma. The Chow ring Ch(X) is a free R-module with a basis {e™},
M < N.

Proof. Note that R' is a nilpotent ideal in R. Applying the Nakayama
Lemma we obtain that {eM} generate Ch(X). By [Kc85, (2)] Ch(X) is a
free R-module, hence, for the Poincaré polynomials we have

P(Ch*(X),t) = P(Ch*(G),t) - P(R", ).
Substituting ¢ = 1 we obtain that
rk Ch(X) =tk Ch(G) - rk R.

To finish the proof observe that rk Ch(G) coincides with the number of gen-
erators {eM}. O

4.11 Proposition. The pairing R x R — Z/p given by («, B) — deg(e™ af3)
1s non-degenerated, i.e., for any element o € R there exists [ such that

deg(eNaf) # 0.

Proof. Choose a homogeneous basis of Ch(X). Let a” be the Poincaré dual
of a with respect to this basis. By Lemma 4.10 Ch(X) is a free R-module
with the basis {eM}, hence, expanding o we obtain

= Z eM By, where By € R.

M<N

Note that if M # N then codim a3y, > d, therefore, afy; = 0. So we can
set = Bn. O

;From now on we fix a homogeneous Z/p-basis {a;} of R and the dual
basis {a] } with respect to the pairing introduced in Proposition 4.11.
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4.12 Corollary. For |M| < |N| we have

1, M =N andi=7;
deg(eMaia#) :{ ’ anet=Js

0, otherwise.

Proof. If M = N, then it follows from the definition of the dual basis. As-
sume |M| < |N|. If deg(e foYe! ) # 0, then codim(a;a #) > d, a contradic-
tion with the fact that aiozj € R. Hence, we reduced to the case M # N and
|M| = |N|. Since |M| = |N|, codim(aia;#) = d and, hence, R o;q] # =

On the other hand there exists i such that m; > p¥ and #" € Ch(X ) R*.

Hence, eMo;a #* — 0. O

4.13 Definition. Given two pairs (L, [) and (M, m), where L, M are r-tuples
and [, m are integers, we say (L,l) < (M, m) if either L < M, or in the case
L = M we have [ < m. We introduce a filtration on the ring Ch(X) as
follows:

The (M, m)-th term Ch(X)ys,, of the filtration is the subring
generated by the elements e/ with I < M, o € R, codima < m.

Define the associated graded ring as follows:

A= @AM where AV = Ch(X)urw/ ) Ch(X)w

(M,m) (LD £(M,m)

By Lemma 4.10 if M < N the graded component AM™ consists of the classes
of elements e a with & € R and codima = m. In particular, rk AM™ =
rk R™. Comparing the ranks we see that AM™ is trivial when M £ N.
Consider the subring Ch(X) of rational cycles with the induced filtration.
The associated graded subring will be denoted by A7,.
Similarly, we introduce the filtration on the ring Ch(X x X) as follows:

The (M, m)-th term of the filtration is the subring generated by
the elements e’ x e 8 with I+ L < M, o, B € R and codim o +
codim 8 < m.

The associated graded ring will be denoted by B**. By definition B** is
isomorphic to the tensor product of graded rings A** ®y,, A**. The graded
subring associated to Ch(X x X) will be denoted by B*.
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4.14. The key observation is that due to Corollary 4.12 we have
Ch(y X Y)M,m o Ch(y X Y)L,l C Ch(y X Y)M+L7N,m+l7d and
(Ch(X % X)ar)o(Ch(X) 1) € Ch(X)arswamti—

and, therefore, we have the correctly defined composition law

o: BM,m % BL,Z SN BM-I—L—N,m-H—d

and the realization map (see 1.5)

*: BM,m % AL,l _>AM+L—N,m+l—d

In particular, BNT*%* can be viewed as a graded ring with respect to the
composition and (« o ), = a4 o f,. Note also that both operations preserve
rationality of cycles.

The proof of the following result is based on the fact that the variety X
is generically split.

* ok
rat-*

4.15 Lemma. The elementse; x 1 —1xe;, 1 =1,...,r, belong to B

Proof. Fix an i. Since X splits over F'(X), by Lemma 1.6 there exists a cycle
in Ch% (X x X) of the form

fzeix1+2usx1/s+lxu,

S

where codim p, codimv; < d;. Then the cycle

pris(&) — prag(§) = (e, x 1 —1 x ;) X 1+Z(“5 X1 —1X pus) X vs

S

belongs to Ch(X x X x X), where pr;; denotes the projection on the product of
the ¢-th and j-th factors. Applying Corollary 3.4 to the projection pry5: X x
X x X — X x X we conclude that the pull-back prj,: Ch(X x X) —
Ch(X x X x X) has a (non-canonical) section, say, . Since the construction
of this section preserves base change, it preserves rationality of cycles. Hence,
passing to a splitting field we obtain a rational cycle

O(pris() — prag(€) =e; x 1= 1x e+ Y (s x L= 1% ,)6(1 x 1 x v)

S

whose image in B, ise; @1 — 1 ® e;. O
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We will write (e x 1 —1x e)™ for the product [],_,(e; x 1 —1xe;)™. and
(AL/[ ) for the product of binomial coefficients [];_, (T’) In the computations
we will extensively use the following two formulae (the first follows directly

from Corollary 4.12 and the second one is a well-known binomial identity).

4.16. Let a be an element of R* and o be its dual with respect to the
non-degenerate pairing from 4.11, i.e., deg(eNaa®) = 1. Then we have

(e x 1 —1xe)M(a# x1)),(e"a) = <M +J\g_ N) (—1)MALNMFL=N,

4.17 (Lucas’ Theorem). The following identity holds

(1) =TI () o

where k =Y. kip' and n = >, n;p" are the base p presentations of £ and
n.

Set for brevity J = J,(G) = (j1,- - ., jr) and recall that K = (ky,..., k).

4.18 Proposition. Let {«;} be a homogeneous Z/p-basis of R. Then the set
of elements B = {e?’ oy | L < pX 7 — 1} forms a Z/p-basis of A%,

rat-

Proof. According to Lemma 4.10 the elements from B are linearly indepen-
dent. Assume B does not generate A*%. Choose an element w € AM™ of
the smallest index (M, m) which is not in the linear span of B. By definition
of AM™ (see Definition 4.13) w can be written as w = eMa, where M < N,
a € R™ and M can not be presented as M = p’ L’ for an r-tuple L'. The lat-
ter means that in the decomposition of M into p-primary and p-coprimary
components M = p°L, where S = (s1,...,5,), L = (Iy,...,l,) and p { Iy
for k = 1,...,r, we have J £ S. Choose an i such that s; < j;. Denote
M; =(0,...,0,m;,0,...,0) and S; = (0,...,0,s;0,...,0), where m; and s;
stand at the i-th place.

Set "= N — M + M;. By Lemma 4.15 and 4.16 together with observa-
tion 4.14 the element

(e x 1=1x ) (a¥ x 1)), (") = (p e

my;
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belongs to AM°. By 4.17 we have p1t (pk;;l) and, therefore, this element is
non trivial. Moreover, since s; < j;, this element is not in the span of B. Since
(M, m) was chosen to be the smallest index and (M;,0) < (M, m) we obtain
that (M, m) = (M;,0). Repeating the same arguments for T = N — M; + p”i
we obtain that M; = p%, i.e., [; = 1.

Now let 7 be a representative of w = e?"* in Ch(X). Then its image 7(7)
in Ch(G) has the leading term 2*” Wlth s; < ji;. This contradicts to the

definition of the J-invariant. O

4.19 Corollary. The elements
{lex1—1xe)%( "oy x epJ(pKfJ_l_M)af) | L,M xp"7—1, S<xp’ -1}

orm a Z p- baszs 0 B In particular, they orm a basis of B .d 1 and only
rat- rat
’Lf S p —1 and L=M.

Proof. According to Lemma 4.10 these elements are linearly independent
and their number is p/?!=7I(rk R)2. They are rational by Definition 4.13 and
Lemma 4.15. Applying Corollary 3.4 we obtain that

rk B)7; = rk Ch(X x X) = rk Ch(X) - rk Ch(X),

rat —

where the latter coincides with rk A" -p/%Irk R = pl?=7l(rk R)? by Lemma 4.10

rat

and Proposition 4.18. O

4.20 Lemma. The elements

Doy = (6% 1— 1 x P’ (e Py x /& A M0#) [0 < p 7 1,

belong to By, and satisfy the relations 0 ari i © O arirj0 = Onn0ij O air j-
Proof. Follows from Corollary 4.12. O

Proof of Theorem 4.9. Consider the projection map
f%: Ch(X X X)nq — BN,

By Lemma 4.20 the elements 67 1 ;; form a family of pairwise-orthogonal
idempotents whose sum is the identity. The kernel of f° is nilpotent and,
therefore, by Proposition 2.5 there exist pair-wise orthogonal idempotents
Ppin Ch(X x X) which are mapped to 01.1.;; and whose sum is the identity.
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Recall that (see 1.1) given two correspondences ¢ and ¢ in Ch(X x X)
of degrees ¢ and ¢ respectively its composite ¢ o ¢ has degree ¢ + ¢’. Using
this fact we conclude that the homogeneous components of ¢y ; of codimen-
sion dim X are pair-wise orthogonal idempotents whose sum is the identity.
Hence, we may assume that ¢y ; belong to Ch4™* (X x X).

Now we show that ¢ ; are indecomposable. By Corollary 4.19 and
Lemma 4.20 the ring (BN o) can be identified with a product of matrix
rings over Z/p

d
B~ T End((Z/p)"" "' ).

s=0

By means of this identification 0y, 1 ;;: e”JMaj — 5L7M5i,je”JLaz- is an idem-
potent of rank 1 and, therefore, is indecomposable. Since the kernel of £ is
nilpotent, ¢ ; are indecomposable as well.
Next we show that ¢y ; is isomorphic to ¢y ;. In the ring B;;; mutually
inverse isomorphisms between them are given by 6, s, ; and 0y ;. Let
f: Ch(X x X) — B}
be the leading term map; it means that for any 7 € Ch(X x X) we find the
smallest degree (I, s) such that v belongs to Ch(X x X);, and set f(v) to be

the image of  in B

ot Note that f is not a homomorphism but satisfies the
condition that f(&)of(n) equals either f(£on) or 0. Choose preimages v, ar,i,;
and Y15 of Op i and Oy p 5, by means of f. Applying Lemma 2.6 we
obtain mutually inverse isomorphisms 97 ar;; and U1, between ¢r ; and
¢um,j- By the definition of f it remains to take their homogeneous components
of the appropriate degrees.

Now applying Lemma 1.7 and Corollary 2.9 to the restriction map
resp: End(M(X;Z/p)) — End(M(X;Z/p))

and the family of idempotents ¢, ; we obtain the family of pair-wise orthog-
onal idempotents ¢ ; € End(M(X;Z/p)) such that

Ax =) ori
L

Since resp, /r is isomorphism preserving, for the respective motives we have
(X, ¢1.:) ~ (X, ¢o0)(|L| + codim «;) for all L and ¢ (see Example 2.2). The
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twists |L| 4+ codim «; can be easily recovered from the explicit formula for
0.1 (see Lemma 4.20). Denoting R,(G) = (X, ¢op) we obtain the desired
motivic decomposition. O

As a direct consequence of the proof we obtain

4.21 Corollary. Any direct summand of M(X;Z/p) is isomorphic to a di-
rect sum of twisted copies of R,(G).

Proof. Indeed, in the ring B%’td any idempotent is isomorphic to a sum of
idempotents 07 r.;;, and the map f° preserves isomorphisms. O

4.22 Remark. Note that Corollary 4.21 can be viewed as a particular case
of the Krull-Schmidt Theorem proven by V. Chernousov and A. Merkurjev
(see [CMO06, Corollary 9.7]).

5 Motivic decompositions

In the present section we prove the main result of this paper.

5.1 Theorem. Let G be a simple linear algebraic group of inner type over a
field F and p be a prime integer. Let X be a generically split projective homo-
geneous G-variety. Then the motive of X with Z/p-coefficients is isomorphic

to the direct sum
X Z/p @ R @az

>0

where R, (G) is an indecomposable motive, whose Poincaré polynomial P(R,(G), 1)
is given by (3) and, hence, depends only on the J-invariant of G, and the
a;’s are the coefficients of the quotient polynomial

Y ait' = P(CH'(X),)/P(R,(G), t).

>0

Proof. The variety X is generically split means that the group G becomes
split over F'(X). Let Y be the variety of complete G-flags. According to
Theorem 3.8 the motive of Y is isomorphic to a direct sum of twisted copies
of the motive of X. To finish the proof we apply Theorem 4.9 and Corol-
lary 4.21. O
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5.2 Lemma. Let G be a group of inner type, X be a projective homogeneous
G-variety. Then any field extension E/F is rank preserving with respect to
X and X x X.

Proof. By [Pa94, Theorem 2.2 and 4.2] the restriction map Ky(X) — Ko(Xg)
becomes an isomorphism after tensoring with Q. Now the Chern character
ch: Ko(X)®Q — CH*(X) ® Q is an isomorphism and respects pull-backs,
hence F is rank preserving with respect to X. It remains to note that X x X
is G X G-homogeneous variety. O

Now we provide several properties of R,(G) which will be extensively
used in the applications:

5.3 Proposition. Let G and G’ be two simple algebraic groups of inner type,
X and X' be the corresponding varieties of complete flags.

e (base change) For any field extension E/F we have

Ry(G)r = D Ry(Gr) ()

where Y a;t' = P(R,(G),t)/P(R,(GEg),1).

e (transfer argument) If E/F is a field extension of degree coprime
to p then J,(Gg) = J,(G) and R,(Gg) = R,(G)r. Moreover, if
R,y(GE) ~ R, (GY) then R,(G) ~ R, (G").

e (comparison lemma) If G splits over F(X') and G' splits over F/(X)
then R,(G) ~ R,(G").

Proof. The first claim follows from Theorem 4.9 and Corollary 4.21. To
prove the second claim note that E is rank preserving with respect to X
and X x X by Lemma 5.2. Now J,(Gg) = J,(G) by Lemma 2.11, and
hence R,(Gr) = R,(G)g by the first claim. The remaining part of the claim
follows from Corollary 2.12 applied to the variety X [] X".

Now we prove the last claim. The variety X x X' is the variety of complete
G x G'-flags. By Corollary 3.4 applied to the projection morphisms X x X' —
X and X x X" — X’ we can express M (X x X';Z/p) in terms of M(X;Z/p)
and M(X';Z/p). The latter motives can be expressed in terms of R,(G)
and R,(G"). Now the claim follows from the Krull-Schmidt theorem (see
Corollary 4.21). O
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5.4 Corollary. We have R,(G) ~ R,(Gan), where Gy, is the anisotropic
kernel of GG.

Let m be a positive integer. We say a polynomial g(t) is m-positive, if
g #0, P(R,(G),t) | g(t) and the quotient polynomial ¢(t)/P(R,(G),t) has
the non-negative coefficients for all primes p dividing m.

5.5 Proposition. Let G be a simple linear algebraic group of inner type
over a field F' and X be a generically split projective homogeneous G-variety.
Assume that X splits by a field extension of degree m. Let f(t) be an m-
positive polynomial dividing P(M(X),t) which can not be presented as a sum
of two m-positive polynomials. Then the motive of X with integer coefficients
splits as a direct sum

M(X)~ P Ri(e)), €L,

where R; are indecomposable and P(R;,t) = f(t) for all i. Moreover, if
m = 2,3,4 or 6, then all motives R; are isomorphic up to twists.

Proof. First, we apply Corollary 2.7 and Lemma 2.8 to obtain a decompo-
sition with Z/m-coefficients. By Lemma 5.2 our field extension is rank pre-
serving so we can apply Theorem 2.15 to lift the decomposition over Z. [

6 Properties of J-invariant

6.1. Recall (see [Br03]) that if the characteristic of the base field F is different
from p then one can construct Steenrod p-th power operations

S': Ch*(X) — Ch*He=Y(x),  1>0

such that S° = id, the restriction Sl|Chl(X) coincides with taking to the p-th
power, Sl|Chi(X) = 0 for [ > i, and the total operation S®* = >,.,S' is a
homomorphism of Z/p-algebras compatible with pull-backs. In particular,
Steenrod operations preserve rationality of cycles.

In the case of projective homogeneous varieties over the field of com-
plex numbers S' is compatible with its topological counterparts: the reduced
power operation P! if p # 2 and the Steenrod square S¢* if p = 2 (over
complex numbers Ch*(X) can be viewed as a subring of H%, (X,Z/p)).

sing
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Moreover, Ch*(G) may be identified with the image of the pull-back map

H,, (X, Z/p) — H3,,(G,Z/p). An explicit description of this image and
formulae describing the action of P! and S¢* on Hy;, (G, Z/p) can be found

in [MT91] for exceptional groups and in [EKM] for classical groups.

When the group G over a field F' is split, the action of the Steenrod
operations on Ch*(X), where X is the variety of complete G-flags, and on
Ch(G) can be described in purely combinatorial terms (see [DZ07]) and,
hence, doesn’t depend on the choice of a base field F'.

The following lemma provides an important technical tool for computing
possible values of the .J-invariant of G.

6.2 Lemma. Assume that in Ch*(G) we have S'(x;) = 2P, and S'(zy) < 2P,
if i < m with respect to the Deglex order. Then j,, < j; + S.

Proof. By definition there exists a cycle o € Ch(X) such that the leading
term of 7(a) is 7. For the total operation we have

S(a) = S(a)?" = 5%(a)?" + SM ()P 4.+ 5% ()P
In particular, S (27"') = S!(x;)P". Applying S" to a we obtain a rational
cycle whose image under 7 has the leading term 2?7/ O

6.3. We summarize information about restrictions on the .J-invariant which
can be obtained using Lemma 6.2 into the following table (numbers r, d; and
k; are taken from [Kc85, Table II]). Recall that r is the number of generators

of Ch*(G), d; are their codimensions and k; define the p-power relations.
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Gy P r d; ki Ji

SLy, /tm, m | n | p|m |1 1 p*n | any

PGSp,, 2 |n |2 1 1 2k || n any '

S0, 2 ][] |20 -1 flogy 2241 | i > Jivr i 2 (),
Ji < Jpica+1

Spin,, 2 (23] | 20+ 1 [log, ;erll] Ji = Jivr if 21 (),
Ji<ju+1l

PGOyy, n>1 |2 [222] ] 1,6 =1 2k || n ji > g if 24 (%%,

20—3,i>2 | [logy 53] | ji < joia+1
Sson, 2 | 1 2 3 Li=1 2 |Gz g if 21 ()
20— 1,1 >2 | [logy 5] | ji < joicr +1

Gy, Fy, Eg 2 1 3 1

Fy, B, B, 3 1 4 1

Egd 3 2 1,4 2,1

Es° 2 3 3,5,9 11,1 J1 2 J2 2 J3

Ead 2 4 1,359 |1,1,1L,1 |j>j>50

Eq 2 4 3,5,9,15 |3,2,1,1 |ji1>j2>7s
J1<Jje+1p<5+1

Esg 3 2 4, 10 1,1 J1 > Jo

Es ) 1 6

We give some applications of the J-invariant. First, as a by-product of
the proof of Theorem 4.9 we obtain the following expression for the canonical
p-dimension cd, (X)) of the variety of complete flags (cf. [EKM, Theorem 90.3]
for the case of quadrics).

6.4 Proposition. In the notation of Theorem 4.9 we have
cdp(X) =) di(ph — 1).
i=1

Proof. Follows from Proposition 4.18 and [KM06, Theorem 5.8]. O
Let X be a smooth projective variety which has a splitting field.

6.5 Lemma. For any ¢, € CH*(X x X) one has

deg((pry)«(¢ - ¥')) = tr(($ 0 1).).
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Proof. Choose a homogeneous basis {e;} of CH*(X). Let {e}} be its Poincaré
dual. Since both sides of the relation under proof are bilinear, it suffices to

check the assertion for ¢ = e; X €] and ¢ = e; x ¢/'. In this case the both

sides of the relation are equal to ;0. O

Denote by d(X) the greatest common divisor of the degrees of all zero
cycles on X and by d,(X) its p-primary component.

6.6 Corollary. For any ¢ € CH(X x X;Z/m) we have
ged(d(X),m) | tr(¢y).
Proof. Set ¢ = Ag and apply Lemma 6.5. O
6.7 Corollary. Assume that M(X;Z/p) has a direct summand M. Then
1. dy(X) | P(M,1);
2. if d,(X) = P(M,1) and the kernel of the restriction End(M (X)) —

End(M(X)) consists of nilpotents, then M is indecomposable.

Proof. Set ¢ = d,(X) for brevity. Let M = (X, ¢). By Corollary 2.7 there
exists an idempotent ¢ € End(M(X);Z/q) such that ¢ mod p = ¢. Then
res(¢) € End(M(X);Z/q) is a rational idempotent. Since every projective
module over Z/q is free, we have

tr(res(¢).) = rky q(res(p)s) = rkz p(res(¢),) = P(M,1) mod ¢,

and the first claim follows from Corollary 6.6. The second claim follows from

the first one, since the second assumption implies that for any nontrivial
direct summand M’ of M we have P(M',1) < P(M,1). O

6.8. Let G be a group of inner type. Denote by n(G) the greatest common
divisor of degrees of all finite splitting fields of G and by n,(G) its p-primary
component. Note that n(G) = d(X) and n,(G) = d,(X), where X is the
variety of complete G-flags.

We obtain the following estimate on n,(G) in terms of the J-invariant
(cf. [EKM, Prop. 88.11] in the case of quadrics).

6.9 Proposition. For a group G of inner type with J,(G) = (j1,...,J,) we
have _
np(G) < pZi]i.
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Proof. Follows from Theorem 4.9 and Corollary 6.7. O
6.10 Corollary. The following statements are equivalent:

e J,(G)=1(0,...,0);

o n,(G) =1;

e R,(G)=1Z]/p.

Proof. 1f J,(G) = (0,...,0) then n,(G) = 1 by Proposition 6.9. If n,(G) =1
then there exists a splitting field L of degree m prime to p and, therefore,
R,(G) = Z/p by the transfer argument (see Proposition 5.3). The remaining
implication is obvious. O

Finally, we obtain the following reduction formula (cf. [EKM, Cor. 88.7]
in the case of quadrics).

6.11 Proposition. Let G be a group of inner type, X be the variety of
complete G-flags, Y be a projective variety such that the map CH(Y) —
CHZ(YF(:I;)) is surjective for all x € X and | < n. Then j;(G) = ji(Grw)) for
all © such that dipji(GF(Y)) < n.

Proof. Indeed, by [EKM, Lemma 88.5] the map CH'(X) — CH'(Xg(y)) is
surjective for all [ < n, and therefore j;(G) < 7i(Gpy)). The converse
inequality is obvious. 0

6.12 Corollary. J,(G) = J,(Gr))-

Proof. Take Y = P! and apply Proposition 6.11. O
7 Examples

In the present section we provide examples of motivic decompositions of
projective homogeneous varieties using Theorem 5.1.
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The case r = d; = 1. According to Table 6.3 this corresponds to the case
when G is of type A, or C,,. Let A be a central simple algebra corresponding
to G. We have A = M,,,(D), where D is a division algebra of index d > 1 over
a field F'. Let p be a prime divisor of d. Observe that according to Table 6.3
Jp(G) = (1) for some j; > 0. Let X¢ be the projective homogeneous G-
variety given by a subset © of vertices of the respective Dynkin diagram such
that p 1 j for some j ¢ © (cf. Example 3.7). Then by Theorem 5.1 we obtain

that
M(Xo;Z/p) ~ P Rp(G)(i)*™, (4)
i>0
where R,(G) is indecomposable and
pii-1
Ry(G) = D (Z/p)(0).
i=0

Now we identify R,(G). Using the comparison lemma (see Proposi-
tion 5.3) we conclude that R,(G) depends only on D, so we may assume
m = 1. By Table 6.3 we have p’* | d, but on the other hand by Proposi-
tion 6.9 we have n,(G) < p’*. Therefore, p’* is a p-primary part of d.

We have D ~ D, ®p D', where p/* = ind(D,) and p { ind(D'). Passing
to a splitting field of D" of degree prime to p and using Proposition 5.3 we
conclude that the motives of X¢ and SB(D,) are direct sums of twisted
R,(G). Comparing the Poincaré polynomials we conclude that

7.1 Lemma. M(SB(D,); Z/p) ~ R,(G).

Applying Proposition 5.5 to X = SB(D) and comparing the Poincaré
polynomials of M(X) and R; we obtain that

7.2 Corollary. The motive of SB(D) with integer coefficients is indecom-
posable.

7.3 Remark. Indeed, we provided a uniform proof of the results of paper
[Ka96]. Namely, the decomposition of M(SB(A); Z/p) (see [Ka96, Cor. 1.3.2])
and indecomposability of M(SB(D);Z) (see [Ka96, Thm. 2.2.1]).

The case r =1 and d; > 1. According to Table 6.3 this holds if

p=2: Gy, Fy, Eg or GG is a strongly inner form of type B3, By, Dy, Ds;
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p =3: G is a group of type Fy4, E; or strongly inner form of type Eg;
p =>5: GG is a group of type Es.

We say a group G is strongly inner over a field F' if it is the twisted form by
means of a cocycle from H'(F,Gy), where Gy is the simply-connected split
group over I’ of the same type as G (see 4.1).

Observe that in all these cases J,(G) = (0) or (1). Let X be a generically
split projective homogeneous G-variety (cf. Example 3.7). By Theorem 5.1
we obtain the decomposition

M(X;2/2) ~ P R, (G)(5)*, (5)

1>0
where the motive R,(G) is indecomposable and (cf. [Vo03, (5.4-5.5)])

p—1
Ry(G) = ED(Z/p)(i- (p+1)).
i=1
Now we identify R,(G). Let v be the Rost invariant as defined in [Me03]
and t, denote its restriction to the p-primary closure of F'.

7.4 Lemma. Let G be a simple linear algebraic group over F satisfying r = 1
and dy > 1 and p be its torsion prime. Then t,(G) is trivial iff R,(G) ~ Z/p.

Proof. According to [Ga0l, Theorem 0.5], [Ch94] and [Gi00, Theoreme 10]
the invariant t,(G) is trivial iff the group G splits over the p-primary closure
of F. By Corollary 6.10 the latter is equivalent to the fact that R,(G) ~
Z/p. O

7.5 Lemma. Let G and G' be simple linear algebraic groups over F satisfying
r=1and dy > 1. If t,(G) = v, (G')c for some c € (Z/p)*, then R,(G) ~
R, (G).

Proof. By transfer arguments (see Proposition 5.3) it is enough to prove this
over a p-primary closure of F'. Let X and X' be the respective varieties of
complete flags. Observe that the invariant t,(G) becomes trivial over the
function field F'(X). Since t,(G) = t,(G')c, it becomes trivial over F'(X') as
well. By Lemma 7.4 X splits over F'(X'). Similarly X’ splits over F'(X).
Therefore by Lemma 1.6 there exists a cycle ¢ in Chgip, x (X x X') of the
form ¢ =1 X pt + 3 gima;>0 @ X Bi- Observe that by definition ¢,: ptx —
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ptxr. Similarly, interchanging X and X' we obtain a cycle ¢’ € Chgjpy, x7 (X' X
X) such that ¢ : ptx — ptx. Restricting of ¢ and ¢’ to the direct summands
R,(G) and R,(G") of M(X) and M(X') respectively we obtain the rational
maps ¢r: R,y(G) = R,y(G') and ¢'y: R,(G') — R,(G).

Since the motive R, (G) is indecomposable and rk Ch*(R,,(G)) < 1 for all
i, the ring of rational endomorphisms of R,(G) is generated by the identity
endomorphism A. The same holds for the ring of rational endomorphisms
of R,(G"). Since (@)« © (¢r)«: Ptx + ptx, the composite ¢ o pp = A.
Similarly we obtain ¢r o ¢, = A’. By Rost Nilpotence, since ¢ and ¢/, are
rational, the motives R,(G) and R,(G’) are isomorphic. O

Z-coefficients. Let G be a group of type F, or strongly inner form of type
Eg which doesn’t split by field extensions of degrees 2 and 3. Observe that
such a group splits by an extension of degree 6. Let X be a generically split
projective homogeneous G-variety. Then according to Proposition 5.5 the
Chow motive of X with integer coefficients splits as a direct sum of twisted
copies of an indecomposable motive R(G) such that

RG)@ZI2= P RaAG)i), PR2(G),t) =1+t
R(G)Z/3= P Rs(G)i), P(Rs(G).t)=1+1t"+1
P(W,t)zli—li;fy—i—t2+...+tn.

7.6 Remark. In particular, we provided a uniform proof of the main results
of papers [Bo03] and [NSZ|, where the cases of Gy- and Fy-varieties were
considered.

7.7 Remark. Using Proposition 5.5 one can construct other liftings of the
motivic decompositions of X. Thus, the Krull-Schmidt theorem fails in the
category of Chow motives with Z/6-coefficients.

The case r > 1. According to Table 6.3 this holds for groups G of types
B,, and D,, and exceptional types E;, Eg for p = 2 and E%¢, Eg for p = 3.

Pfister case. Let G = O (¢), where ¢ is a k-fold Pfister form or its maximal
neighbor. Assume J5(G) # (0, ...,0). In view of Corollary 6.10 this holds iff
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ns(G) # 1. By the Springer Theorem the latter holds iff ¢ is not split. By
Theorem 5.1 we obtain the decomposition

M(X;Z/2) ~ @ Ra(G) (i)
i>0

where Ro(G) is indecomposable. Moreover, by Theorem 2.15 the same de-
composition holds with Z-coefficients.

Now we compute J5(G). Let Y be a projective quadric corresponding
to ¢. Then G splits over FI(Y) and Y splits over F(z) for any 2 € X.
It is known that CH'(Y) for [ < 2F-' — 1 is generated by CH'(Y) and,
therefore, is rational. By Proposition 6.11 and Table 6.3 we see that j;(G) =
0 for 0 < 4 < r, where r = 2¥°2, Therefore, Jo(G) = (0,...,0,1) and
P(Ry(G),t) = 1+ t*"'"1. Finally, by Corollary 4.21 the motive Ry(G)
coincides with the motive introduced in [R0o98] which is called a Rost motive.

In this way we obtain the Rost decomposition of the motive of a Pfister
quadric and its maximal neighbor.

Mazimal orthogonal Grassmannian. Let G = O (q), where ¢: V' — F'is an
arbitrary anisotropic regular quadratic form and X is the respective maxi-
mal orthogonal Grassmannian. The variety X is generically split, hence, by
Theorem 5.1 we have the decomposition

M(X;Z/2) ~ @ Ra(G)(5)*™,
>0

where the motive Ry(G) is indecomposable. Comparing the Poincaré poly-
nomials of M(X;Z/2) and Ry(G) we obtain the following particular cases:

e If the group G corresponds to a generic cocycle (see 4.2), the mo-
tive M(X; Z/2) is isomorphic to Ry(G) and, hence, is indecomposable.
This corresponds to the maximal value of the J-invariant.

e [f ¢ is a Pfister form or its maximal neighbor, by the previous example
R2(G) coincides with the Rost motive. This corresponds to the minimal
non-trivial value of the J-invariant.
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