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NORMALIZER OF THE CHEVALLEY GROUP OF TYPE E6

N. A. VAVILOV AND A. YU. LUZGAREV

Dedicated to the centenary of the birth of Dmitrĭı Konstantinovich Faddeev

Abstract. The simply connected Chevalley group G(E6, R) of type E6 in a 27-
dimensional representation is considered. The main goal is to establish that the

following four groups coincide: the normalizer of the Chevally group G(E6, R) it-
self, the normaliser of its elementary subgroup E(E6, R), the transporter of E(E6, R)

in G(E6, R), and the extended Chevalley group Ḡ(E6, R). This is true over an arbi-
trary commutative ring R, all normalizers and transporters being taken in GL(27, R).
Moreover, Ḡ(E6, R) is characterised as the stabilizer of a system of quadrics. This

result is classically known over algebraically closed fileds; in the paper it is estab-
lished that the corresponding scheme over Z is smooth, which implies that the above
characterization is valid over an arbitrary commutative ring. As an application of

these results, equations are listed a matrix g ∈ GL(27, R) must satisfy in order to
belong to Ḡ(E6, R). These results are instrumental in a subsequent paper of the

authors, where overgroups of exceptional groups in minimal representations will be

studied.

The easiest way to define the general orthogonal group is to realize it as the stabilizer
of a quadric. In the present paper we prove a similar characteristic free geometric char-
acterization of the normalizer of the simply connected Chevalley group Gsc(E6, R) as the
stabilizer of the intersection of 27 quadrics in the 27-dimensional space, and prove that
it coincides with the normalizer of the elementary group Esc(E6, R).

§1. Introduction

In [17], the second author initiated a generalization of the results by the first author
and Viktor Petrov [13, 14, 58] on overgroups of classical groups, to the overgroup of
the exceptional groups E(E6, R) and E(E7, R) in minimal representations. It turned out
that one of the first steps necessary to implement the localization proof in the spirit
of the above papers, is an explicit calculation of the normalizer of these groups in the
corresponding general linear group GL(27, R) or GL(56, R). In the present paper we
completely solve this problem for the group E(E6, R). Unfortunately, for the group E7

we could only get the corresponding result under an additional assumption 2 ∈ R∗.
More precisely, in §§2 and 3, in the ring of integer polynomials Z[x1, . . . , x27], we

explicitly construct an ideal I generated by 27 quadratic forms f1, . . . , f27, which has the
following property. Let FixR(I) denote the set of R-linear transformations preserving
the ideal I, see §5 for the precise definitions. Our first main goal in the present paper is
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the proof of the following result. Here we denote by G the affine group scheme such that
G(R) = FixR(I).

Theorem 1. We have isomorphism G ∼= Ḡsc(E6,−) of affine group schemes over Z.

This result can be viewed as an explicit description of equations defining the extended
simply connected Chevalley–Demazure group scheme Ḡsc(Φ,−) of type Φ = E6. This
scheme was constructed in [36], see also [5, 6, 8] and §1 below. For Φ = E6, the easiest
way to visualize the scheme Ḡsc(Φ,−) is to think of it as the Levi factor of the parabolic
subscheme of type P7 in Gsc(E7,−), where Gsc(Φ,−) is the usual simply connected
Chevalley–Demazure group scheme of type Φ. See [57] for the scheme-theoretic definition
of parabolic subgroups and their Levi factors, and [8] for the above identification itself.

Our results are closely related to the description of Gsc(E6, R) as the stabilizer of a
cubic form f on V = V ($1). The system of quadratic forms under study is precisely the
set of all first order partial derivatives of the form f , parametrized by the weights of the
dual module V ∗ = V ($6).

Let E,F be two subgroups of a group G. Recall that the transporter of E to F is the
group

TranG(E,F ) = {g ∈ G | Eg ≤ F}.
Actually, we mostly use this notation in the case where E ≤ F , and then

TranG(E,F ) = {g ∈ G | [g,E] ≤ F}.

Now we are all set to state the main result of the present paper. Observe that all
normalizers and transporters here are taken in the general linear group GL(27, R).

Theorem 2. Let R be any commutative ring. Then

N(E(E6, R)) = N(G(E6, R)) = Tran(E(E6, R), G(E6, R)) = G(R).

Observe that Eiichi Abe and James Hurley [27] established that the corresponding
centralizers coincide, but that is a much easier result. Theorem 2 is proved by roughly
the same method as Theorem 3 in [13], as a combination of the following three ingredi-
ents: normality of the elementary subgroup E(E6, R) in the Chevalley group G(E6, R),
established by Giovanni Taddei, Theorem 1, and explicit matrix calculations in the 27-
dimensional representation, similar to the calculations of levels and centralizers carried
out in [17] and [9]. On the other hand, the proof of Theorem 1 discussed in the present
paper follows the outline proposed in [78], [79], which is now standard in the theory of
affine group schemes, and consists of the following three stages.
• Verification of the fact that G = Fix(I) is an affine group scheme defined over Z.
• Verification of the fact that GK coincides with the normalizer of Gsc(E6,K) for an

algebraically closed field K.
• Verification of the fact that GK is smooth, or, in other words, calculation of the

dimension of the Lie algebra of GK , viewed as an affine group scheme over K.
The second item is nontrivial, but, essentially , well known. There are several possible

approaches to the proof of this coincidence.
•On one hand, it is possible to directly use the classification of simple algebraic groups,

or a characterization of an algebraic group in terms of its building. These approaches
were employed by Michael Aschbacher in [29–31] and by Bruce Cooperstein in the paper
[42] devoted to the case where Φ = E7.
• On the other hand, the coincidence in question follows immediately from the de-

scription of the maximal connected subgroups in classical groups, obtained by Eugene
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Dynkin (in characteristic 0) and by Gary Seitz and others (in the general setting). A
proof in this style was reproduced in [15].
• Finally, in [73] for the case of E6 we sketched an elemenatary proof, which does not

involve anything beyond the elementary multilinear algebra. This proof is very similar
in spirit to the proof of the Ree–Dieudonné identification theorem for classical Chevalley
groups, as presented in [52]. However, due to the lack of space, many details were omitted
in [73], in particular the modifications necessary to cover characteristics 2 and 3, as well
as a proof that GK is smooth.

The remaining items are essentially exercises in the theory of affine group schemes;
see, e.g., [77]. As a matter of fact, the third item requires rather serious computations.
But these calculations are quite standard and closely follow the proofs of Theorems 3.4,
5.5 and 6.5 in the paper [79] by William Waterhouse.

The paper is organized as follows. In §2 we recall the basic definitions pertaining to
Chevalley groups. In §3 we construct an invariant cubic form and a system of quadrics,
and in §4 we prove that this form is indeed invariant. The core of the paper are §§5–
8, which are devoted directly to the proof of Theorems 1 and 2. After that, in §9 we
explicitly list the equations satisfied by a matrix in Ḡsc(E6, R).

§2. Extended Chevalley group of type E6

The present paper in wrapped into a certain context. It is impossible to recall here
all the necessary notions, and we do not try to do this.
• All definitions pertaining to root systems, Weyl groups, weights, and representations

can be found in [3, 4, 22]. Weight diagrams are discussed thoroughly in [69, 60, 73, 74,
7], where many further references can be found.
• We list some classical general references on Chevalley groups and their representa-

tions [2, 20, 38], on algebraic groups [19, 21], on linear groups [49], and on affine group
schemes [77].
• All necessary definitions and specific facts pertaining to Chevalley groups over rings

can be found, e.g., in [1, 7, 9–12, 24–28, 50, 57, 60, 68, 69, 72–76].
• Extended Chevalley groups were introduced by Claude Chevalley himself [23] in

the adjoint case and by Berman and Moody [36] in the simply connected case. Vari-
ous constructions of extended groups, and complete proofs of all facts concerning the
interrelation of extended and usual Chevalley groups can be found in [5, 6, 8].
• Invariant tensors for Chevalley groups of types E6 and E7 in minimal representations

are discussed thoroughly in [11, 16, 29–32, 39–42, 44–48, 63–67, 73, 74], and we often
turn to these papers for a hint.
In the above papers one can also find many further references. Below we briefly recall
some basic notation to be used in the sequel.

Let Φ be a reduced irreducible root system of rank l (in the main body of the paper
we assume that Φ = E6), and let P be a lattice intermediate between the root lattice
Q(Φ) and the weight lattice P (Φ). We fix an order on Φ and denote by Π = {α1, . . . , αl},
Φ+, and Φ− the corresponding sets of fundamental, positive, and negative roots. Our
numbering of roots follows [3]. By δ we denote the maximal root of the system Φ with
respect to this ordering. For example, for Φ = E6 we have δ = 12321

2 . Denote by
P (Φ)++ the set of dominant weights with respect to this order. Recall that it consists of
all nonnegative integral linear combinations of the fundamental weights $1, . . . , $l. We
denote by W = W (Φ) the Weyl group of the root system Φ.

Next, let R be a commutative ring with 1. It is classical that, starting with this data,
one can construct the Chevalley group G = GP (Φ, R), which is the group of R-points of
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an affine group scheme G = GP (Φ,−) known as the Chevalley–Demazure scheme. For
the type of problems in question, it suffices to limit ourselves to the simply connected
(alias, universal) groups, for which P = P (Φ). For the simply connected groups we
usually omit any reference to P and simply write G(Φ, R) or, when we wish to stress
that the group in question is simply connected, Gsc(Φ, R). The adjoint group, for which
P = Q(Φ), is denoted by Gad(Φ, R).

Fix a split maximal torus T (Φ, R) in G(Φ, R) and a parametrization of the unipotent
root subgroups Xα, α ∈ Φ, elementary with respect to this torus. Let xα(ξ) be the
elementary root unipotent corresponding to α ∈ Φ and ξ ∈ R in this parametrization.
The group Xα = {xα(ξ), ξ ∈ R} is called simply an (elementary) root subgroup, and the
group E(Φ, R) = 〈Xα, α ∈ Φ〉 generated by all elementary root subgroups is called the
(absolute) elementary subgroup of the Chevalley group G(Φ, R).

As a matter of fact, apart from the usual Chevalley group we also consider extended
Chevalley groups Ḡ(Φ, R), which play the same role with respect to G(Φ, R) as the
general linear group GL(n, R) plays with respect to the special linear group SL(n, R).
Adjoint extended groups were constructed in the original paper [23] by Chevalley. It is
somewhat harder to construct simply connected extended groups, because here one must
increase the dimension of the maximal torus. A unified construction was proposed only
by Berman and Moody in [36]. However, for the case of the group of type E6 we are busy
with, it is natural to interpret the group Ḡsc(E7,K) as a subgroup of the usual Chevalley
group Gsc(E7,K),

Ḡsc(E6,K) = Gsc(E6,K) · Tsc(E7,K).

A priori, the elementary Chevalley group E(Φ, R) depends on the choice of a maximal
torus T (Φ, R). However, the main result of the paper [71] by Giovanni Taddei, which
plays a crucial role in the proof of our Theorem 2, asserts that for rk(Φ) ≥ 2 this is not
the case. For classical groups, similar results had been proved earlier by Andrei Suslin
and Viacheslav Kopeiko, see [33, 34, 51, 70, 73] for the history of this result, other proofs
and generalizations.

Lemma 1. For rk(Φ) ≥ 2, the elementary subgroup E(Φ, R) is normal in the extended
Chevalley group Ḡ(Φ, R) for any commutative ring R.

Formally, [71] establishes only the normality of the elementary subgroup in the usual
Chevalley group G(Φ, R), but normality in Ḡ(Φ, R) can be proved easily by the same
method. Moreover, in the papers [72] by Leonid Vaserstein and [51] by Roozbeh Hazrat
and the first author [51], the following stronger results can be found, each implying in
particular , Lemma 1 in the above form.

Lemma 2. For rk(Φ) ≥ 2, the elementary subgroup E(Φ, R) is characteristic in the
Chevalley group G(Φ, R) for any commutative ring R.

Lemma 3. Let rk(Φ) ≥ 2, and if Φ = B2,G2, then assume additionally that R does not
have a residue field F2 of two elements. Then the group E(Φ, R) can be characterized as
the largest perfect subgroup of G(Φ, R).

In majority of existing constructions, the Chevalley group G = G(Φ, R) arises together
with an action on a Weyl module V = V (ω), for a dominant weight ω. Denote by
Λ = Λ(ω) the multiset of weights of the module V = V (ω) with multiplicity . In the
present paper we consider the group G(E6, R) in the minimal representation with the
highest weight $1. This is a microweight representation, so that the multiplicities of all
weights equal 1. Fix an admissible base vλ, λ ∈ Λ, of the module V . We conceive a
vector a ∈ V , a =

∑
vλaλ, as a column of coordinates a = (aλ), λ ∈ Λ.
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In Figure 1 we reproduce the weight diagram of the representation (E6, $1), together
with the natural numbering of weights, used in the sequel. In this numbering, the weights
are listed in accordance with the order determined by the fundamental root system Π.
We refer the reader to [11] for a list of weights in the Dynkin form and in the hyperbolic
form, as well as for other common numberings.

Figure 1. (E6, $1).

Recall that, in a weight diagram, two weights are joined by an edge if their difference is
a fundamental root. A weight graph is constructed in precisely the same way, but now
two weights are joined by an edge if their difference is a positive root. In the sequel we
denote by d(λ, µ) the distance between weights λ and µ in the weight graph. In other
words, d(λ, µ) = 0 if λ = µ; d(λ, µ) = 1 if λ − µ ∈ Φ; and finally, d(λ, µ) = 2 if λ 6= µ
and λ− µ 6∈ Φ.

In [69, 61, 73, 74, 7], many further details can be found as to how the action of
root unipotents xξ, wα(ε), hα(ε), the signs of structure constants, the shape and signs
of equations, etc. can be read off this diagram. Formally, all these things are not at
all necessary to understand the proofs expounded in the present paper. Actually, in
developing the proofs presented in §§3, 4, 7–9, we made essential use of weight diagrams.

Over a field, or in general, over a semilocal ring, the extended Chevalley group
Ḡ(E6, R) is generated by the usual Chevalley group G(E6, R) and weight elements h$1(ε),
ε ∈ R∗. In the natural numbering of weights, the element h$1(ε

−1) acts on the module
V ($1) as follows:

h$1(ε
−1) = diag(ε−1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ε, 1, 1, ε, 1, ε, 1, ε, 1, ε, ε, ε, ε, ε, ε).

Observe that the exponent of ε increases by 1 each time when we cross an edge marked α1.

§3. Construction of a system of quadrics

In the present section we construct the ideal I. It is generated by 27 quadrics in 27
variables, which will be constructed as the first partial derivatives of a G-invariant cubic
form on V . Here are some of the basic references for this section: [29–31, 37, 39–42, 44,
48, 50, 63–67]. Further details and references can be found in [11, 60, 73, 74].

Let V = V ($1) be the 27-dimensional module for the Chevalley group G = Gsc(Φ, R)
of type E6. Then there exists a trilinear form F : V × V × V −→ R such that G is the
full isometry group of F , or in other words, G coincides with the group of all g ∈ GL(V )
such that F (gu, gv, gw) = F (u, v, w) for all u, v, w ∈ V . The similarities of the form
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F , i.e., the transformations g such that F (gu, gv, gw) = λF (u, v, w) for an appropriate
scalar λ ∈ R∗, constitute the extended Chevalley group Ḡ = Ḡ(E6, R).

This form was discovered by Leonard Dickson in 1901 (!), was used by Elie Cartan in
his geometric analysis of the real Lie group, and was studied by Claude Chevalley and
Schaeffer in 1950–51. A particularly elementary and elegant construction of this form was
proposed by Hans Freudenthal in 1952. As a matter of fact, Freudenthal’s construction
gives not the trilinear form F itself, but rather the associated cubic form Q. Clearly, V
can be identified with the 27-dimensional R-module M(3, R)3. Now we define the value
of the cubic form Q at an element (a, b, c) ∈ M(3, R)3 as follows:

Q((a, b, c)) = det(a) + det(b) + det(c)− tr(abc).

It can be proved (see [29, 30]) that over a field the (well-defined) isometry group of the
cubic form Q coincides with the isometry group of its complete polarization F . In fact,
Aschbacher used a different construction of the form, not in terms of 3 A2 as above,
but rather in terms of A5 (the spirit of this construction is expressed by the partition
27 = 6 + 15 + 6), but the resulting forms are equivalent. This result does not depend on
the characteristic and can be extended to all commutative rings (see [73, §6]).

Remark. Should the form Q be nondegenerate, equality of the isometry groups would
break in characteristics 2 and 3. But the form Q has a rather strong degeneration. The
fact that Q must be degenerate is clear because the semisimple part of the isometry
group of a nondegenerate cubic form over a field of characteristic 0 is finite. To be more
precise, Aschbacher considered 3-forms that are triples consisting of a cubic form Q, its
partial polarization T linear in the first argument and quadratic in the second argument,
and its complete polarisation F , see [29–31]. To get a genuine theory over rings, the
notion of a 3-form must be generalized in the spirit of Bak’s theory of quadratic forms
over rings, see the references in [49, 34, 58]. This was done in 2001 in the paper [35],
which, unfortunately, is still unpublished.

The cubic form Q can be interpreted also as the norm form of an exceptional 27-
dimensional Jordan algebra, see [44]. As such it was studied by Hans Freudenthal, Tonny
Springer, Ferdinand Veldkamp, Nathan Jacobson, and others. This interpretation is
closely related to the realization of the Chevalley group of type E6 as the structure group
of the split exceptional Jordan algebra. Over fields, see the paper [67] where this result
was stated in a slightly different, but essentially equivalent language of J-systems. Over
rings, to be able to work also in the case where 2 6∈ R∗, one should consider quadratic
Jordan algebras instead.

Recall the construction of the cubic form from [73, 74, 11], where the rule of signs can
also be found. It is known that the monomials of the form correspond to the triads of
weights and constitute a single Weyl orbit. Namely, a triple of distinct weights (λ, µ, ν)
is called a triad provided the pairwise differences λ − µ, λ − ν, µ − ν are not roots. In
other words, the pairwise distances between these weights in the weight graph are all
equal to 2. In the realization of the weights of the representation (E6, $1) inside E7, this
means precisely that the roots λ, µ, ν are pairwise orthogonal. In the terminology of [29],
a triple (λ, µ, ν) of weights is a triad if and only if vλ, vµ, and vν generate a special plane.

Clearly, a triad is completely determined by any two of its elements. In other words,
for any two weights λ, µ at distance 2 in the weight graph, there exists a unique weight
ν = λ ◦ µ such that (λ, µ, λ ◦ µ) forms a triad.

Let Θ be the set of all triads, |Θ| = 27 · 10. Then the trilinear form F takes the
following values: F (vλ, vµ, vν) = ±1 if (λ, µ, ν) ∈ Θ, and F (vλ, vµ, vν) = 0 otherwise.
The signs are determined by the condition that F is invariant under the action of the
extended Weyl group W̃ . In the realization inside the unipotent radical of P7, the model
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triad has the form
(λ0, µ0, ν0) =

(
234321

2 , 012221
1 , 000001

0

)
,

and we set F (λ0, µ0, ν0) = 1 for this triad. For any other triad (λ, µ, ν) the sum

λ + µ + ν = λ0 + µ0 + ν0 = 246543
3

is orthogonal to all fundamental roots α1, . . . , α6. Thus, for wα ∈ W (E6) we have the
following alternative: • either wα(λ, µ, ν) = (λ, µ, ν), • or exactly two of the weights

λ, µ, ν are moved by wα. In that case they are moved in opposite directions, say

wα(λ) = λ + α, wα(µ) = µ− α, wα(ν) = ν.

Looking at this from the viewpoint of the signed base ±vλ, on which the extended Weyl
group acts, we see that either the triple vλ, vµ, vν remains unchanged under the action
of wα(1), or it is moved to another triple, and this is accompanied by exactly one change
of sign.

This shows how to calculate the sign of F (vλ, vµ, vν). Namely, set

F (vλ, vµ, vν) = sgn(w),

where w is a shortest element of the Weyl group W (E6) such that

w(λ0, µ0, ν0) = (λ, µ, ν).

For actual calculations, either those in the proof of the theorem below or those done with
the help of a computer (see [11]), this definition is more convenient than that reproduced
in [74], where the sign is specified as (−1)h(λ,µ,ν), in terms of distances in the weight
diagram.

Theorem 3. Define a trilinear form on the 27-dimensional module V = V ($1) by the
formula

F (x, y, z) =
∑

sgn(w)xλyµzν ,

where the sum is taken over all triads (λ, µ, ν) ∈ Θ, x, y, z ∈ V , and w ∈ W (E6) is
such that w(λ0, µ0, ν0) = (λ, µ, ν). Then the form F is invariant under the action of the
elementary Chevalley group E(E6, R). Under the action of the weight element h$1(ε)
the form F is multiplied by ε−1.

The cubic form is defined similarly, but to avoid the occurence of the coefficient 6,
which causes problems in characteristics 2 and 3, now we have to sum over the set Θ0

of unordered triads {λ, µ, ν} instead. Clearly, |Θ0| = |Θ|/6 = 45. Now the value of the
form Q at a vector x =

∑
xλvλ is defined by the formula

Q(x) =
∑

sgn(w)xλxµxν ,

where the sum is taken over {λ, µ, ν} ∈ Θ0, while w has the same meaning as above.
We reproduce the resulting cubic form Q as it was given in [11], with respect to the

natural numbering of weights as in Figure 1:

Q(x) = x1x13x27 − x1x16x26 + x1x18x25 − x1x20x24 + x1x22x23

− x2x11x27 + x2x14x26 − x2x17x25 + x2x19x24 − x2x21x23

+ x3x9x27 − x3x12x26 + x3x15x25 − x3x19x22 + x3x20x21

− x4x7x27 + x4x10x26 − x4x15x24 + x4x17x22 − x4x18x21

+ x5x6x27 − x5x8x26 + x5x15x23 − x5x17x20 + x5x18x19

− x6x10x25 + x6x12x24 − x6x14x22 + x6x16x21 + x7x8x25
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− x7x12x23 + x7x14x20 − x7x16x19 − x8x9x24 + x8x11x22

− x8x13x21 + x9x10x23 − x9x14x18 + x9x16x17 − x10x11x20

+ x10x13x19 + x11x12x18 − x11x15x16 − x12x13x17 + x13x14x15.

Now, the symmetric trilinear form F is obtained by polarization.
For further reference, we also reproduce the explicit values of the first order partial

derivatives of this form, with respect to the same weight numbering:

f1(x) = x13x27 − x16x26 + x18x25 − x20x24 + x22x23,

f2(x) = −x11x27 + x14x26 − x17x25 + x19x24 − x21x23,

f3(x) = x9x27 − x12x26 + x15x25 − x19x22 + x20x21,

f4(x) = −x7x27 + x10x26 − x15x24 + x17x22 − x18x21,

f5(x) = x6x27 − x8x26 + x15x23 − x17x20 + x18x19,

f6(x) = x5x27 − x10x25 + x12x24 − x14x22 + x16x21,

f7(x) = −x4x27 + x8x25 − x12x23 + x14x20 − x16x19,

f8(x) = −x5x26 + x7x25 − x9x24 + x11x22 − x13x21,

f9(x) = x3x27 − x8x24 + x10x23 − x14x18 + x16x17,

f10(x) = x4x26 − x6x25 + x9x23 − x11x20 + x13x19,

f11(x) = −x2x27 + x8x22 − x10x20 + x12x18 − x15x16,

f12(x) = −x3x26 + x6x24 − x7x23 + x11x18 − x13x17,

f13(x) = x1x27 − x8x21 + x10x19 − x12x17 + x14x15,

f14(x) = x2x26 − x6x22 + x7x20 − x9x18 + x13x15,

f15(x) = x3x25 − x4x24 + x5x23 − x11x16 + x13x14,

f16(x) = −x1x26 + x6x21 − x7x19 + x9x17 − x11x15,

f17(x) = −x2x25 + x4x22 − x5x20 + x9x16 − x12x13,

f18(x) = x1x25 − x4x21 + x5x19 − x9x14 + x11x12,

f19(x) = x2x24 − x3x22 + x5x18 − x7x16 + x10x13,

f20(x) = −x1x24 + x3x21 − x5x17 + x7x14 − x10x11,

f21(x) = −x2x23 + x3x20 − x4x18 + x6x16 − x8x13,

f22(x) = x1x23 − x3x19 + x4x17 − x6x14 + x8x11,

f23(x) = x1x22 − x2x21 + x5x15 − x7x12 + x9x10,

f24(x) = −x1x20 + x2x19 − x4x15 + x6x12 − x8x9,

f25(x) = x1x18 − x2x17 + x3x15 − x6x10 + x7x8,

f26(x) = −x1x16 + x2x14 − x3x12 + x4x10 − x5x8,

f27(x) = x1x13 − x2x11 + x3x9 − x4x7 + x5x6.

§4. Proof of Theorem 3

We start with two easy lemmas necessary for the proof of Theorem 3.

Lemma 4. The form F is symmetric in all arguments.

Proof. It suffices to verify that the form F is symmetric on the triples vλ, vµ, vν of weight
elements. Since the set Θ of triads is invariant under the action of the symmetric group
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S3, we see that F (vλ, vµ, vν) vanishes (or not) if and only if the same happens after
an arbitrary permutation of the arguments. Thus, it only remains to check that for any
triad (λ, µ, ν) ∈ Θ the sign of F (vλ, vµ, vν) is preserved as well. By the very construction,
the form F is invariant under the action of the extended Weyl group W (E6), which is
transitive on triads. This means that without loss of generality we may assume that
(λ, µ, ν) = (λ0, µ0, ν0). However, from Figure 1 we see that, both under the permutation
of λ0 and µ0 keeping ν0 and under the permutation of µ0 and ν0 keeping λ0, the sign of
F (vλ, vµ, vν) is inverted 8 times, and thus it remains unchanged. �

Remark. In this proof, it would be more natural to work not with the distinguished triad
(λ0, µ0, ν0), but rather with the triad represented by the triple of roots

(λ, µ, ν) =
(
012221

1 , 112211
1 , 122111

1

)
in the realization of V as an internal Chevalley module in E7. For this triple, both under
the permutation of vλ and vµ and under the permutation of vµ and vµ, there are exactly
two changes of the sign.

Lemma 5. Let d(λ, µ) = 2. Then there is no root α ∈ Φ such that λ + α, µ + α ∈ Λ.

Proof. By the transitivity of the Weyl group W (E6) on the pairs of weights at the same
distance in the weight graph, there is no loss of generality in assuming that λ = λ0 is the
highest weight of the module V , whereas µ = ν0 is the lowest weight. But then λ+α ∈ Λ
implies that α ∈ Φ−, while µ + α ∈ Λ implies that α ∈ Φ+. This is impossible, because
Φ+ ∩ Φ− = ∅. �

Proof of Theorem 3. Recall that the form F is invariant with respect to the action of the
extended Weyl group W̃ (E6) and is symmetric, whereas the elementary group E(E6, R)
is generated by the root elements x = xα(ξ), α ∈ ±Π, ξ ∈ R, corresponding to the
fundamental and negative fundamental roots. Thus, to prove Theorem 3 it suffices to
verify that

F (xvλ, xvµ, xvν) = F (vλ, vµ, vν)

for one triple of weights (λ, µ, ν) from any orbit of the group W̃ (E6)×S3 on such triples.
The analysis is naturally split into the following five cases: i) at least two of the weights
λ, µ, ν are equal; ii) all pairwise distances among the weights λ, µ, ν are equal to 1; iii)
d(λ, µ) = 2 while d(λ, ν) = d(µ, ν) = 1; iv) d(λ, µ) = d(λ, ν) = 2 and d(µ, ν) = 1; v)
(λ, µ, ν) ∈ Θ. Out of all these cases, only iv) is not quite straightforward.

Since F is linear in each argument, we get

F (xvλ, xvµ, xvν) = F (vλ, vµ, vν)

+ F (vλ+α, vµ, vν) + F (vλ, vµ+α, vν) + F (vλ, vµ, vν+α)

+ F (vλ+α, vµ+α, vν) + F (vλ+α, vµ, vν+α) + F (vλ, vµ+α, vν+α)

+ F (vλ+α, vµ+α, vν+α),

with the agreement that , whenever a base vector vρ where ρ is not a weight occurs
as an argument, the corresponding summand should be disregarded. (For instance, if
λ + α /∈ Λ, then all the summands where vλ+α occurs are in fact absent.) We must
show that the extra terms on the right-hand side of this formula always sum to 0. In
other words, we must show that all the summands, except the first, are either simply
absent (those corresponding to the indices that are not weights), or are equal to 0 (those
corresponding to the triples of weights other than triads), or finally, they pairwise cancel.
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i) If two of the weights λ, µ, ν are equal, say λ = µ, then all weights λ, µ, λ + α, µ + α
are at pairwise distances at most 1. This means that all summands on the right-hand
side of the formula are equal to 0.

ii) If the pairwise distances among the weights λ, µ, ν are equal to 1, then among any
three of the six weights (or not weights!) λ, µ, ν, λ+α, µ+α, ν +α at least two are taken
from the first or the second triple. Thus, there are no triads among these six weights,
and consequently all summands on the right-hand side are again equal to 0.

iii) If d(λ, µ) = 2 while d(λ, ν) = d(µ, ν) = 1, then both the left-hand side and the
right-hand side are equal to 0. Indeed, by assumption we have

F (xvλ, xvµ, xvν) = F (vλ+α, vµ, vν) = F (vλ, vµ+α, vν) = 0.

Next, since ν is a unique weight forming a triad together with λ, µ, we have F (vλ, vµ,
vν+α) = 0. On the other hand,

F (vλ+α, vµ, vν+α) = F (vλ, vµ+α, vν+α) = 0.

Indeed, if λ+α, ν+α or µ+α, ν+α are weights, then d(λ+α, ν+α) = d(µ+α, ν+α) = 1.
Finally,

F (vλ+α, vµ+α, vν) = F (vλ+α, vµ+α, vν+α) = 0

because, by Lemma 5, the sums λ + α and µ + α cannot be both weights.

iv) If d(λ, µ) = d(λ, ν) = 2, whereas d(µ, ν) = 1, then F (vλ+α, vµ, vν) = 0. As in the
preceding case, we have

F (vλ+α, vµ+α, vν) = F (vλ+α, vµ, vν+α) = F (vλ+α, vµ+α, vν+α) = 0,

because λ+α and µ+α or, respectively, λ+α and ν+α cannot be both weights. Thus, it
only remains to take care of the summands F (vλ, vµ+α, vν) and F (vλ, vµ, vν+α). These
summands can be nonzero, but since

(vλ, vµ, vν+α) = wα(1)(vλ, vµ+α, vν),

they occur with opposite signs, by the very definition of the form F .

v) Finally, let (λ, µ, ν) ∈ Θ. In this case

d(λ + α, µ) = d(λ, µ + α) = d(λ, ν + α) = 1,

whence
F (vλ+α, vµ, vν) = F (vλ, vµ+α, vν) = F (vλ, vµ, vν+α) = 0.

On the other hand, as in case iii), all other summands on the right-hand side are equal
to 0 by Lemma 5.

To verify the last claim, we observe that, relative to the action of h$1(ε), the following
two types of summands occur in the form F .

• The summands of the form ±x$1xµxν , where µ, ν are at distance 2 from $1. Un-
der the action of h$1(ε), the coordinate x$1 is multiplied by ε, whereas the other two
coordinates are multiplied by ε−1.

• All other summands ±xλxµxν , where λ, µ, ν 6= $1. Since the width of the set of
weights at distance 1 from $1 is equal to 2, exactly one among the weights λ, µ, ν, say
ν, is at distance 2 from $1. This means that under the action of h$1(ε) the coordinate
xν is multiplied by ε−1, and the other two coordinates remain unchanged.

Thus, under the action of h$1(ε) both types of summands are multiplied by ε−1, as
claimed. �
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§5. Proof of Theorem 1: an outline

First, let f1, . . . , fs be arbitrary polynomials in t variables with coefficients in R (in
most real world applications, either R = Z or R = Z[1/2]). We are interested in the linear
changes of variables g ∈ GL(t, R) that preserve the condition that all these polynomials
vanish simultaneously. In other words, we consider all g ∈ GL(t, R) preserving the ideal
A of the ring R[x1, . . . , xt] generated by f1, . . . , fs. This last condition means that for
any polynomial f ∈ A the polynomial f ◦ g obtained from f by the variable change g
is again in A. It is well known (see, e.g., [43, Lemma 1] or [79, Proposition 1.4.1]) that
the set G(R) = FixR(A) = FixR(f1, . . . , fs) of all such linear variable changes g forms a
group. For any R-algebra S with 1 we can view f1, . . . , fs as polynomials with coefficients
in S. Thus, the group G(S) is defined for all R-algebras. It is clear that G(S) depends
functorially on S. It is easy to provide examples showing that S 7→ G(S) may fail to
be an affine group scheme over R. This is due to the fact that G(R) is determined by
congruences, rather than equations, in its matrix entries. However, in [79, Theorem 1.4.3
and further], a simple sufficient condition was found that guarantees that S 7→ G(S) is
an affine group scheme. Denote by R[x1, . . . , xt]r the submodule of polynomials of degree
at most r. For our purposes it suffices to invoke Corollary 1.4.6 of [79], pertaining to the
case where R = Z.

Lemma 6. Let f1, . . . , fs ∈ Z[x1, . . . , xt] be polynomials of degree at most r, and let A be
the ideal they generate. Then for the functor S 7→ FixS(f1, . . . , fs) to be an affine group
scheme, it suffices that the rank of the intersection A∩R[x1, . . . , xt]r do not change under
reduction modulo any prime p ∈ Z.

We apply this lemma to the case of the ideal A = I in Z[xλ], constructed in §2. For
any commutative ring R we set G(R) = FixR(I).

Lemma 7. The functor R 7→ G(R) is an affine group scheme defined over Z.

Proof. For any prime p the relations fω are independent modulo p. Indeed, specializing
xλ appropriately, we can guarantee that one of these relations takes the value 1, while
all other relations vanish. For this, we can set xλ = xµ = 1 for two weights of the
representation π at distance 2 and xν = 0 for all other weights. Now our claim follows
from the fact that the product xλxµ occurs in a unique relation fω and that every
relation fω consists of such products. In fact, the product xλxµ only occurs in the
relation fλ◦µ. �

To prove the main results of the present paper, we need to recall some further known
facts. The following result essentially reduces the verification of isomorphism of affine
group schemes to isomorphism of their groups of points over algebraically closed fields
and the dual numbers over such fields. Recall that the algebra K[δ] of dual numbers
over a field is isomorphic as a K-module to K⊕Kδ, with multiplication given by δ2 = 0.
The following lemma is Theorem 1.6.1 of [79]. We denote by G an affine group scheme
over Z, by G0 its connected component of identity, by G(K) its group of K-poins, by
GK the scheme obtained from G by scalars change, and by Lie(GK) the Lie algebra of
the scheme GK . A certain awkwardness of the statement below is explained by the fact
that, a priori, the schemes G and H are not assumed connected or smooth.

Lemma 8. Let H and G be affine group schemes of finite type over Z, where H is
flat, and let φ : H −→ G be a morphism of group schemes. Assume that the following
conditions are satisfied for any algebraically closed field K:

• dim(HK) ≥ dimK(Lie(GK));
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• φ induces monomorphisms of the groups of points

H(K) −→ G(K) and H(K[δ]) −→ G(K[δ]);

• the normalizer φ(H0
K(K)) in G(K) is contained in φ(G(K)).

Then φ is an isomorphism of group schemes over Z.

Observe that in our case the assumptions initially imposed on the schemes are satisfied
automatically. All schemes we consider are of finite type, being subschemes of GLn.
Flatness follows from the fact that H is irreducible. Thus, we only need to verify the
conditions of the lemma.

§6. The case of an algebraically closed field

The following lemma summarizes the well-known properties of the minimal represen-
tations of Chevalley groups of type E6. Since π is a microweight representation, π(G)
is irreducible and tensor indecomposable. Since Λ(π) = P (Φ), the representation π is
faithful.

Lemma 9. Let K be an algebraically closed field. Viewed as a subgroup of GL(27,K),
the algebraic group Ḡsc(E6, R) is irreducible and tensor indecomposable. Moreover, it is
equal to its own normalizer.

Since the representation π of the group G = Ḡsc(E6,K) with the highest weight $1

is faithful, in the sequel we identify G with π(G).
The claim concerning normalizers follows from the description of automorphisms of

Chevalley groups over fields, see [20]. Recall that, in accordance with this description,
every algebraic automorphism of the extended Chevalley group is a product of inner,
central, and graph automorphisms. The usual Chevalley group has diagonal automor-
phisms as well, but in the extended Chevalley group they all become inner — this is
precisely the reason behind the introduction of extended groups. On the other hand, all
nonalgebraic automorphisms are field automorpshims.

The group of type E6 has a unique nontrivial graph automorphism given by the Weyl
involution α 7→ −w0(α), where w0 is the longest element of the Weyl group. Since the
Weyl involution maps $1 to $6, and V ($6) 6∼= V ($1), this automorphism is not realized
in GL(27,K). It is well known to be realized under the embedding

G(E6,K) ↪→ G(E7,K) ↪→ GL(56,K),

where the second embedding is the representation with the highest weight $7.
In a classical 1952 paper, Eugene Dynkin described the maximal connected closed

subgroups of simple algebraic groups over an algebraically closed field of characteristic
0 (or more precisely, reduced their description to the representation theory of simple
algebraic groups). Gary Seitz [62] generalized this description to subgroups of classical
algebraic groups over an arbitrary algebraically closed field (earlier results by Seitz himself
and by Donna Testerman were used). One of the main results of [62] can be stated
as follows. Let V be the vector representation of SL(V ) and X be a simple algebraic
subgroup of SL(V ) such that the restriction V |X of the module V to X is irreducible and
tensor indecomposable. Then either X is maximal among the connected closed subgroups
of SL(V ), Sp(V ), or SO(V ), or else X together with a proper connected closed subgroup
containing it is explicitly listed in Table 1 of [62]. Since V ($1)∗ = V ($6) 6∼= V ($1), the
minimal representation of the group of type E6 is not orthogonal or symplectic. Thus,
[62] immediately implies the following result.

Lemma 10. Theorem 1 is true for any algebraically closed field.
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Proof. It suffices to prove that the connected components of the groups in question
coincide. Since Ḡ(E6,K) coincides with its own normalizer, it follows that the group
G(K) is also connected. The fact that Ḡ(E6,K) stabilizes the requisite system of forms
follows from Theorem 3. The inverse inclusion can be established as follows. In Table 1
of [62] the group of type E6 occurs in the column X three times, but each time in the
embedding E6 < A26 and never in the minimal representation. Formally, this only implies
the maximality of G(E6,K) in SL(27,K), rather than the maximality of Ḡ(E6,K) in
GL(27,K). However, since det(h$1(ε)) = ε9, for every cubic closed field the determinant
of h$1(ε) can be arbitrary. Therefore, any connected closed subgroup that properly
contains Ḡ(E6,K), contains SL(27,K) and matrices of an arbitrary nonzero determinant,
thus coinciding with GL(27,K). �

§7. Dimension of the Lie algebra

In the present section we proceed with the proof of Theorem 1. Namely, here we prove
that the affine group scheme G is smooth. This is one of the very few places where we need
some serious calculation. Namely, we should estimate the dimension of the Lie algebra of
this scheme. It is well known how to calculate the Lie algebra that stabilizes a system of
forms, see, e.g., [54, p. 256–258]. Of course, before the theory of group schemes emerged,
in positive characteristic it had been impossible to extract any imformation concerning
the group stabilizing the same system of forms. Philosophically, our calculation closely
follows the work by William Waterhouse; see, e.g., [79], where almost exactly the same
calculation was performed in Lemmas 3.2, 5.3 and 6.3. A similar calculation for the
polyvector representation of GLn was carried through in [15].

Let K be a field, as above. The Lie algebra Lie(GK) of the affine group scheme
GK is most naturally interpreted as the kernel of the homomorphism G(K[δ]) −→ G(K)
sending δ to 0, see [2, 21, 75]. Let G be a subscheme of GLn. Then Lie(GK) consists of all
matrices of the form e + zδ, where z ∈ M(n, K), satisfying the equations defining G(K).
In the next lemma we specialize this statement in the case where G is the stabilizer of a
system of polynomials.

Lemma 11. Let f1, . . . , fs ∈ K[x1, . . . , xt]. Then a matrix e + zδ, where z ∈ M(t,K),
belongs to Lie(FixK(f1, . . . , fs)) if and only if

∑
1≤i,j≤t

zijxi
∂fh

∂xj
= 0

for all h = 1, . . . , s.

The following result is proved in exactly the same way as Lemma 5.3 in [79]. Clearly,
the dimension that arises here is the dimension of the simple Lie algebra of type E6

increased by 1. From the proof, it can also be seen which of the coefficients zλµ correspond
to roots and which correspond to the Cartan subalgebra. The extra 1 corresponds to the
additional toral summand. The Lie algebra we consider is in fact the Lie algebra of the
extended Chevalley group, whose dimension is larger than that of the Chevalley group
itself. Despite the technical character of this claim we call it a theorem, since obtaining
this bound is one of the main steps in the passage from fields to arbitrary commutative
rings.

Theorem 4. For any field K, the dimension of the Lie algebra Lie(G) does not exceed 79.
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Proof. In our case both the variables and the equations can be indexed by the weight of
the module V . Then the equations take the form∑

λ,µ

zλµxλ
∂fν

∂xµ
= 0, ν ∈ Λ(V ).

For subsequent calculations, we recall that the partial derivative ∂fν

∂xµ
takes the following

values:
∂fν

∂xµ
=

{
±xµ◦ν if d(µ, ν) = 2,

0 otherwise.

Here the sign could easily be specified, but it is not requisite for our purposes.
First, we verify the following claims.
• If d(λ, µ) ≥ 2, then zλµ = 0. Indeed, in this case there exists a polynomial fν such

that ∂fν

∂xµ
= xλ. However, the squares of the variables x2

λ do not occur in the defining
equations. Thus, all the coefficients zλµ corresponding to such pairs (λ, µ) are equal to 0.
• If d(λ, µ) = d(ν, ρ) = 1 and λ − µ = ν − ρ, then zλµ = ±zνρ. Indeed, in this case

λ ◦ ρ = µ ◦ ν = σ, and thus ∂fσ

∂xµ
= ±xν and ∂fσ

∂xρ
= ±xλ. Since d(λ, ν) = 1, the monomial

xλxν does not occur in any of the defining equations. Therefore, the coefficient ±zλµ

must cancel with some other coefficient. Clearly, the only possibility for it is to cancel
with the coefficient ±zνρ, with which the monomial xνxλ occurs in the same equation.
• If d(λ, µ) = d(ν, ρ) = 1 and λ − µ = ν − ρ, then for an appropriate choice of signs

we have zρρ = ±zλλ ± zµµ ± zνν . Indeed, for the same σ as in the preceding item,
the monomial xλxρ = ±xλ

∂fσ

∂xλ
occurs in defining equations, but precisely in one such

equation. Moreover, it occurs with the same coefficient as the monomial xµxν = ±xµ
∂fσ

∂xµ
,

possibly up to the sign. It remains only to calculate the coefficients with which these
monomials occur in the equation indexed by σ. The monomial xλxρ occurs once again,
now in the form xρxλ = ±xρ

∂fσ

∂xρ
, as so does also the monomial xµxν , now in the form

xνxµ = ±xν
∂fσ

∂xν
. Equating the coefficients of these monomials, we see that zλλ ± zρρ =

±zµµ ± zνν .

It only remains to summarize what we have established. The first two items show that
the matrix entries zλµ with d(λ, µ) = 2 give no contribution whatesoever to the dimension
of the Lie algebra, whereas the coefficients zλµ with d(λ, µ) = 1 give the contribution
equal to the number of roots of Φ. The third item allows us to express all coefficients zλλ

as linear combinations of coefficients zµµ, µ = µ1, . . . , µt, such that among the pairwise
differences of the weights µi every fundamental root αi occurs at least once. It is easily
seen that the smallest number of such weights λ equals 7, and the following picture shows
how they could be located in the weight diagram.
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As has already been mentioned, the extra 1 corresponds to an additional toric sum-
mand. This gives the upper bound 79 = 72 + 7. �

§8. Proofs of Theorems 1 and 2

Now we are ready to finish the proofs of our main results.

Proof of Theorem 1. Consider the rational representation of algebraic groups π :Ḡ(E6,−)
−→ GL27 with the highest weight $1. This representation is faithful, and since a Cheval-
ley group is generated by the elementary subgroup and torus, by Theorem 3 its image is
contained in the scheme G. We wish to apply Lemma 8 to this morphism π to conclude
that π is in fact an isomorphism of affine group schemes.

Indeed, for an arbitrary ring R the representation π is a monomorphism. This means
that the second condition of Lemma 8 is satisfied. Clearly, dim(Ḡ(E6,K)) = 79, and
Theorem 4 implies that dimK(Lie(GK)) ≤ 79, so that the first condition of Lemma 8
is also fulfilled. Finally, the third condition of Lemma 8 follows from the fact that, by
Lemma 9, the normalizer of Ḡ(E6,K) in GL(27,K) is contained in and in fact coincides
with G(K). This means that we can apply Lemma 8 and conclude that π establishes an
isomorphism of Ḡ(E6,−) and G as affine group schemes over Z. �

Proof of Theorem 2. Clearly, G(E6, R)≤N(G(E6, R)). By Lemma 1 we have G(E6, R)≤
N(E(E6, R)). On the other hand, both N(E(E6, R)) and N(G(E6, R)) are obviously
contained in Tran(E(E6, R), G(E6, R)). Thus, to finish the proof of the theorem, it
suffices to check that Tran(E(E6, R), G(E6, R)) is contained in G(E6, R).

Let g ∈ GL(27, R) belong to Tran(E(E6, R), G(E6, R)). We pick any α ∈ Φ and any
ξ ∈ R. Then h = gxα(1)g−1 lies in G(E6, R), and thus F (hu, hv, hw) = F (u, v, w) for all
u, v, w ∈ V . Substituting (gu, gv, gw) for (u, v, w), we get

F (gxα(1)u, gxα(1)v, gxα(1)w) = F (gu, gv, gw).

Recalling that xα(1) = e + eα and using the linearity of F in all arguments, we see that
this identity expands as follows:

0 =F (gu, gv, geαw) + F (gu, geαv, gw) + F (geαu, gv, gw)

+ F (gu, geαv, geαw) + F (geαu, gv, geαw) + F (geαu, geαv, gw)

+ F (geαu, geαv, geαw)

for all u, v, w ∈ V .
i) Now, let eαu = 0. Applying the above condition to the vectors (u, eαv, eαw) and

using the fact that e2
α = 0, we see that

F (gu, geαv, geαw) = 0 if eαu = 0.

ii) We continue to assume that eαu = 0 and apply the above condition to the triple
(u, v, w), obtaining

F (gu, gv, geαw) + F (gu, geαv, gw) + F (gu, geαv, geαw) = 0.

However, as we have shown above, the third summand also vanishes.
Thus, F (gu, gv, geαw) + F (gu, geαv, gw) = 0 for all v, w ∈ V and all u ∈ V such that

eαu = 0. Substituting eαu for u into this relation, we get

F (geαu, gv, geαw) + F (geαu, geαv, gw) = 0 for all u, v, w ∈ V.

iii) Next, let weights λ, µ ∈ Λ such that d(λ, µ) = 1 and another weight ν ∈ Λ be fixed.
We take α ∈ Φ such that λ−α ∈ Λ, µ−α ∈ Λ, and ν +α /∈ Λ. Such a choice is possible:
indeed, we can assume that λ = λ0 is the highest weight, while µ = λ− δ, where δ ∈ Φ
is the maximal root. Then α = α1 has the required properties for all ν ∈ Λ except those
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for which ν + α1 ∈ Λ. But for these last weights it is easy to indicate a possible choice
of α:

α = 11000
0 for ν = 134321

2 , 011111
1 , 011111

0 ,

α = 11100
0 for ν = 012111

1 ,

α = 11110
0 for ν = 012211

1 ,

α = 11111
0 for ν = 012221

1 .

Take u = vλ−α, v = vν , and w = vµ−α. By our choice of α we have eαvν = 0, and now
ii) amounts to the relation F (geλ, geν , geµ) = 0. Since this is true for all ν ∈ Λ, we see
that

F (gvλ, gv, gvµ) = 0 if d(λ, µ) = 1.

In particular, here we can substitute v = g−1vν , ν ∈ Λ, and get all equations on the pair
of columns g∗λ and g∗µ.

iv) Thus, F (gvλ, gvµ, gvν) = 0 for the weights λ, µ, ν ∈ Λ such that at least one of the
pairwise distances between them equals 1. If at least one of these distances equals 0, for
instance, if λ = µ, then there exists a root α such that λ + α /∈ Λ, ν − α ∈ Λ. Now ii)
implies that F (gu, gv, geαw) + F (gu, geαv, gw) = 0 for all v, w ∈ V and all u ∈ V such
that eαu = 0. Taking u = eλ, v = eµ, and w = eν−α, we see that F (gvλ, gvµ, gvν) is
equal to 0 in this case as well.

v) It only remains to consider the values F (gvλ, gvµ, gvν) for (λ, µ, ν) ∈ Θ. Set k =
F (gvλ0 , gvµ0 , gvν0) and take any root α ∈ Π such that wα does not fix the triad (λ, µ, ν).
We may assume that wα(λ) = λ, and wα(µ) = µ+α, wα(ν) = ν−α. Then λ+ a /∈ Λ by
Lemma 5. Next, we substitute (vλ, vµ, vν−α) in the condition stated immediately before
case 1 and use the result of iii). We obtain F (gvλ, gvµ, gvν) = −F (gvλ, gvµ+α, gvν−α).
By applying such root reflections wα consecutively, we can get any triad starting with the
distinguished triad (λ0, µ0, ν0). It follows that F (gvλ, gvµ, gvν) = (−1)h(λ,µ,ν)k. On the
other hand, the explicit formula for F , reproduced in the satetement of Theorem 3,
implies that F (vλ, vµ, vν) = (−1)h(λ,µ,ν). Thus, F (gvλ, gvµ, gvν) = kF (vλ, vµ, vν).
Thus, we have shown that F (gvλ, gvµ, gvν) = kF (vλ, vµ, vν) = 0 for all weight triples
(λ, µ, ν) /∈ Θ. By the three-linearity of the form F , we obtain F (gu, gv, gw) = kF (u, v, w)
for all u, v, w ∈ V . Replacing g by g−1, we see that k ∈ R∗. We can conclude that g lies
in the similarity group of the form F . �

§9. Equations made explicit

In the present section we give yet another, more explicit form to the equations that
determine whether a matrix g ∈ GL(27, R) belongs to the normalizer of the Chevalley
group G(E6, R). It is precisely in this form that we intend to use these equations in our
subsequent papers on overgroups of exceptional groups. In fact, Theorem 1 characterizes
Ḡ(E6, R) as the largest subgroup in GL(27, R) that consists entirely of matrices whose
columns satisfy a certain system of quadrics. However, this theorem does not answer the
question as to when an individual matrix g ∈ GL(27, R) belongs to Ḡ(E6, R). It is clear
that such equations on a matrix g should involve components of several columns, not
merely one of them.

For this, we introduce the following notation for the polarization of a partial derivative
of the cubic form F :

fλ(x, y) = F (eλ, x, y) =
∑

sgn(w)xµyλ◦µ.
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Here the sum is taken over all weights ν such that d(λ, µ) = 2, and w ∈ W (E6) is
chosen in such a way that w(λ0, µ0, ν0) = (λ, µ, λ ◦ µ). Not to incorporate Weyl group
elements for distinct triples in the proof, in the sequel we use the familiar notation
sgn(w) = (−1)h(λ,µ,λ◦µ).

The next result is an analog of [13, Proposition 4] and [14, Proposition 1]. Observe
that now instead of the entries of the matrix g themselves, in equations we see rather
quadratic forms in these elements. Thus, with respect to the entries of g and g−1 these
equations are not quadratic, as was the case for classical groups, but cubic.

Theorem 5. A matrix g ∈ GL(27, R) belongs to N(G(E6, R)) if and only if its entries
satisfy the following equations.
• Equations on a pair of adjacent columns:

fλ(g∗µ, g∗ν) = 0

for all λ, µ, ν ∈ Λ such that d(µ, ν) ≤ 1.
• Equations on two pairs of nonadjacent columns:

(−1)h(µ◦ν,µ,ν)g′µ◦ν,λfρ(g∗σ, g∗τ ) = (−1)h(σ◦τ,σ,τ)g′σ◦τ,ρfλ(g∗µ, g∗ν)

for all λ, µ, ν, ρ, σ, τ ∈ Λ such that d(µ, ν) = d(σ, τ) = 2.

Proof. First, we verify that any matrix of G(E6, R) satisfies these equations. By the very
definition, g ∈ G(E6, R) if and only if there exists k(g) ∈ R∗ such that F (gu, gv, gw) =
k(g)F (u, v, w). In its turn, this last condition is equivalent to the same condition in which
u, v, w are base vectors vλ, vµ, vν respectively, for all triples of weights λ, µ, ν ∈ Λ. When
d(µ, ν) ≤ 1, our condition becomes F (gvλ, gvµ, gvν) = 0 for all λ ∈ Λ, or, what is the
same, F (u, gvµ, gvν) = 0 for all u ∈ V . This is equivalent to F (vλ, gvµ, gvν) = 0,
but these are precisely the equations on pairs of adjacent columns. If d(µ, ν) = 2, our
condition becomes F (gu, gvµ, gvν) = k(g)F (u, vµ, vν) for all u ∈ V , and this is equivalent
to F (u, gvµ, gvν) = k(g)F (g−1u, vµ, vν) for all u ∈ V . It suffices to impose this equation
only for u = vλ, in other words, F (vλ, gvµ, gvν) = k(g)F (g−1vλ, vµ, vν). We transform
the right-hand side of this equation:

k(g)F (g−1vλ, vµ, vν) = k(g)F (g′∗λ, vµ, vν) = k(g)
∑
κ∈Λ

g′κλF (vκ, vµ, vν)

= k(g)g′µ◦ν,λF (vµ◦ν , vµ, vν) = k(g)g′µ◦ν,λ(−1)h(µ◦ν,µ,ν).

At the same time, the left-hand side equals fλ(g∗µ, g∗ν). To get rid of the factor k(g), we
take another triple of weights ρ, σ, τ ∈ Λ with d(σ, τ) = 2. By eliminating k(g) from the
resulting equations, we get precisely the equations on the pairs of nonadjacent columns.

Now, let H be an affine group scheme over Z defined by the equations imposed in the
statement of the theorem. It suffices to establish the inclusion H(R) ⊆ G(E6, R) for the
case of a local ring R. Let M be the maximal ideal of R. Observe that the equations
on a pair of adjacent columns imply that F (gvλ, gvµ, gvν) = 0 for all λ, µ, ν ∈ Λ with
d(µ, ν) ≤ 1. It remains to find k ∈ R∗ such that fλ(g∗µ, g∗ν) = k(−1)h(µ◦ν,µ,ν)g′µ◦ν,λ for
all λ, µ, ν ∈ Λ with d(µ, ν) = 2.

First, we show that there exist λ, µ, ν ∈ Λ such that d(µ, ν) = 2 and

g′µ◦ν,λfλ(g∗µ, g∗ν) ∈ R∗.

Indeed, suppose that g′µ◦ν,λfλ(g∗µ, g∗ν) ∈ M for all λ, µ, ν ∈ Λ such that d(µ, ν) = 2.
Observe that there exist λ, µ, ν ∈ Λ with d(µ, ν) = 2 and g′µ◦ν,λ ∈ R∗: to see this,
it suffices to fix µ, ν, and to vary λ. Furthermore, there exist ρ, σ, τ ∈ Λ such that
d(σ, τ) = 2 and fρ(g∗σ, g∗τ ) ∈ R∗. Indeed, otherwise, invoking equations on pairs of
adjacent columns, we can conclude that fρ(g∗σ, g∗τ ) ∈ M for any fixed ρ, σ and any
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τ ∈ Λ. But then by linearity it follows that fρ(g∗σ, u) ∈ M for all u ∈ V . This means
that fρ(g∗σ, vκ) = ±gρ◦κ,σ ∈ M for all ρ, κ ∈ Λ such that d(ρ, κ) = 2, and this is clearly
impossible. Thus, g′µ◦ν,λfρ(g∗σ, g∗τ ) ∈ R∗ and g′σ◦τ,ρfλ(g∗µ, g∗ν) ∈ M , which contradicts
the fact that g ∈ H(R). Therefore, there exist λ, µ, ν ∈ Λ with d(µ, ν) = 2 such that
g′µ◦ν,λfλ(g∗µ, g∗ν) ∈ R∗. We set

k = (−1)h(µ◦ν,µ,ν)(g′µ◦ν,λ)−1fλ(g∗µ, g∗ν).

With this notation, the equations on g can be rewritten in the form

fρ(g∗σ, g∗τ ) = k(−1)h(σ◦τ,σ,τ)g′σ◦τ,ρ,

as claimed. �

We are grateful to Ernest Borisovich Vinberg for extremely useful discussions, which
saved us from a serious misconception.
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