
Markov Processes Relat. Fields 12, 767–790 (2006)
Markov MPRF&��

��
Processes
and
Related Fields
c©Polymat, Moscow 2006

A Functional Limit Theorem for the

Position of a Particle in a Lorentz Type

Model

V. Vysotsky

Department of Probability Theory and Mathematical Statistics, Faculty of Mathematics
and Mechanics, St.-Petersburg State University, Bibliotechnaya pl., 2, 198504, Stariy
Peterhof, Russia. E-mail: vysotsky@vv9034.spb.edu

Received November 25, 2005, revised January 28, 2006

Abstract. Consider a particle moving through a random medium, which con-
sists of spherical obstacles, randomly distributed in R3. The particle is acceler-
ated by a constant external field; when colliding with an obstacle, the particle
inelastically reflects. We study the asymptotics of X(t), which denotes the posi-
tion of the particle at time t, as t → ∞. The result is a functional limit theorem
for X(t).
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1. The Lorentz model and the problem

1.1. The motivation

Consider a spherical particle moving in a random medium. The medium
consists of immobile spherical obstacles of equal radii, randomly distributed in
R3. The particle is accelerated by an external field providing constant accel-
eration a. At a collision with an obstacle, the speed v of the particle changes
to

v − (1 + α)(v, ν)ν,

where 0 ≤ α ≤ 1 is the restitution coefficient and ν is the inner unit normal to
the obstacle at the point of collision.
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v

ν

v − (1 + α)(v, ν)ν
an obstacle

the particle

This mapping changes only the normal component of v, i.e., (v, ν)ν, which is
multiplied by −α.

This model is often named after Hendrik Lorentz who introduced it (see [8])
in order to describe conductivity in metals. Lorentz studied the case of elastic
collisions, with α = 1; the generalization for non-elastic collisions could be
found, e.g., in [15].

In physics the Lorentz model is used to describe the motion of a particle
in a medium if the mass of the particle is negligible with respect to masses of
the medium particles (obstacles). Indeed, in this case we can assume that the
obstacles have infinite masses and thus they remain immobile at collisions. For
example, the model in question describes well the motion of electrons in helium,
see [16].

In case of elastic collisions, the Lorentz model is a billiard type model. Recall
that a billiard is the following model of motion of a particle in an arbitrary region
with smooth boundary: at a collision with the boundary, the particle elastically
reflects. Indeed, we can consider the region whose boundary consists of the
obstacles’ boundaries. The case when the obstacles are located periodically, is
especially interesting (see [4,12]); such billiards are called Lorentz periodic gases.
The main tool for studying billiards is ergodic theory; the basic results of this
theory and their applications for the Lorentz model could be found in [5]. For a
detailed review of problems and methods of the billiard theory, see [5] and [13].

Another interesting interpretation of the Lorentz model could be found
in [15] (also, see the references therein): a particle percolates through an im-
mobile medium under the constant gravity. Considering a big number of such
percolating particles and neglecting interactions between them, we get a model
of mixing of two dry substances, for example, powders.

There are many physical papers on the Lorentz model. Usually their main
goal is to study the Boltzmann equation (that is the equation for density p(v, t)
of probability that at time t the speed of the particle is v; this equation could be
derived from the law of conservation of matter); see [1,3], and [9]. For instance,
the purpose of [9] is to prove the existence of the stationary, i.e., independent
of t, solution of the Boltzmann equation in case α < 1. It is typical that in [9]
the convergence of p(v, t) to the stationary solution, as t → ∞, is not discussed.
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1.2. The model

Since the Lorentz model is extremely complicated to analyze, we replace it
with a simpler one. In doing so, we follow multiple papers on the Lorentz model,
for example, [1, 3, 9, 15]. For the case of elastic collisions, our simplified model
coincides with one introduced in [11]; in this paper the authors only consider
α = 1 and formulate their model in a rather different way. We also note that
the present simplified model was implicitly used in [9]. However, in [9] and [11]
the authors do not discuss how the simpler model is derived from the original
one. In Section 2 we give such explanation.

Let us formulate the simplified model. Denote by Vn the speed of the particle
just before the nth collision and denote by τn the random time between the nth
and the (n + 1)st collisions. Let {σn}n≥1 ⊂ S2 ⊂ R3 be uniformly distributed
unit vectors; let {ηn}n≥0 be exponential random variables with mean λ; and
let {σn}n≥1, {ηn}n≥0 be independent. Here λ > 0 is a parameter signifying the
mean free path of the particle. We assume that

Vn+1 = Vn − 1 + α

2

(
Vn + |Vn|σn

)
+ aτn; (1.1)

τn = F
(
Vn − 1 + α

2

(
Vn + |Vn|σn

)
, ηn

)
, (1.2)

where F : R3 × R+ → R is a deterministic function defined as the solution of
the equation

F (v,t)∫

0

|v + as| ds = t.

In addition, we suppose that at time zero the speed of the particle is nonrandom
and equals some v0 ∈ R3. Therefore V1 = v0 + aτ0, where τ0 = F (v0, η0) is the
random moment of the first collision. We stress that Vn form a Markov chain,
and the motion of the particle is completely defined by this chain.

Let us briefly compare the new model and the original one. In the new
model, at the nth collision the speed Vn changes to Vn−((1+α)/2)(Vn+|Vn|σn).
This corresponds to the collision with an obstacle, whose inner normal νn di-
rected along the bisectrix of the angle between σn and Vn (in fact, (Vn, νn)νn =
(1/2)(Vn + |Vn|σn)). Further, since for every v the function F (v, ·) is monotone,

we have F
(
v,
∫ t

0
|v +as|ds

)
= t. Substituting v := Vn − ((1+α)/2)(Vn + |Vn|σn)

and t := τn, and comparing the resulting equality with (1.2), we get

ηn =

τn∫

0

∣∣∣Vn − 1 + α

2
(Vn + |Vn|σn) + as

∣∣∣ ds.

Thus ηn is the length of the path passed by the particle between the nth and
the (n + 1)st collisions. As the mean free path is λ, it is quite natural that ηn
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are exponential random variables with mean λ. If we know the length of the
path ηn and the initial speed Vn − ((1 + α)/2)(Vn + |Vn|σn), we can find the
time τn; this argument explains (1.2).

However, there are quite significant disparities between the models. In the
new model, if the particle collides with an obstacle at some point of space, then
the particle does not necessarily collide again while coming back to the same
point. In other words, after a collision the obstacle instantly “disappears”. This
happens because of the postulated independence of all σn, ηn. Thus the medium
“changes” in a rather specific way. See more about the disparities in Section 2.

1.3. The problem and the results

We study the asymptotics of X(t), which denotes the position of the particle
at time t, as t → ∞. The case α = 1 was investigated in [11], where the authors
proved that after a proper normalization the trajectories of X(t) weakly converge
to a certain diffusion process.

Let us mention a very similar model of motion in R1: at a collision, the
speed v of the particle always changes to −αv. If there is no external field and
α = 1, then the times between collisions are i.i.d. exponential random variables,
thus X(t) is a well known telegraph process. This simplest model of motion is
studied in detail in [7].

In the current paper, we consider the motion in R3, with an external field,
and assume that α ∈ (0, 1). The purpose of this paper is to prove a functional
limit theorem for X(t), and thus to sharpen the results of the previous work [14].
We also note that the model in question could be easily generalized to obtain
the model of motion in Rd.

Without loss of generality we assume that X(0) = 0. Consider an orthonor-
mal basis of R3 such that for the acceleration a it is true that a = (0, 0, |a|)>.

Our main result is the following

Theorem 1.1. Suppose 0 < α < 1 and |a| 6= 0; then there exist constants

c1 > 0 and c2, c3 ≥ 0 such that for any initial speed v0 ∈ R3, in the space

C
(
[0, 1],R3

)

Yt(s) :=
X(st) − c1ast√

t

d−→ Y (·) :=




c2W1(·)
c2W2(·)
c3W3(·)


 , t → ∞,

where W1, W2, and W3 are independent Wiener processes.

Remark 1.1. The constants c1, c2, and c3 depend on the parameters a, α, and λ.
The author failed to find these constants in an explicit form.
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Remark 1.2. We can easily extend the model defined by the relations (1.1) and
(1.2) to get the model of motion in random medium in Rd. Indeed, let σn be
uniformly distributed on Sd−1 ⊂ Rd, let a ∈ Rd, and let F : Rd × R+ →
R be defined as above. For this model in Rd, Theorem 1.1 also holds; the
proof is almost the same as for R3. For the limit process, it is true that Y =
( c2W1, . . . , c2Wd−1, c3Wd)>, where Wi are independent Wiener processes.

Moreover, for the motion in R1, Theorem 1.1 is valid for the similar model,
in which at a collision the speed v of the particle always changes to −αv.

A nonrigorous explanation of our result can be found in [15].
Proving this theorem, we reduce the problem to some statements about a

certain Markov chain. The most difficult one is that for this chain the functional
central limit theorem (FCLT) holds. The difficulties arise because the chain has
uncountable and noncompact state space; moreover, the chain does not satisfy
the Doeblin condition, thus the classical results (for instance, from [6]) are
not applicable. We solve the problem using quite recent results (see [10] and
references therein), based on stochastic analogues of Lyapunov functions.

Therefore, our methods differ significantly from those of [11]. Nevertheless,
some similarities could be found on a deep level. Indeed, the proof from [11] is
based on martingale theory, while the presented one follows from the FCLT for
Markov chains. Recall that the FCLT is proved by martingale theory arguments.

2. The deduction of the simplified Lorentz model

In this section we consider the original Lorentz model, described in Subsec-
tion 1.1. For this model, we find the distribution of the time before the fist
collision τ0 and the distribution of the random normal ν1, which describes the
first collision. Then we use these results to derive the simplified model, defined
by (1.1) and (1.2).

Since the medium is assumed to be isotropic, it is natural to suppose that
the obstacles’ centers form a Poisson point process, with the control measure
proportional to Lebesgue measure λ3. The only shortcoming of this assumption
is that obstacles can intersect. We denote this Poisson process by Π and write
its control measure in the form (πλr2)−1λ3, where r is the sum of radii of the
particle and an obstacle; λ > 0 is a parameter. We will see that λ signifies the
mean free path of the particle.

In addition, we assume that for the initial speed v0 the following condition
holds:

|v⊥0 |2 > r|a|, (2.1)

where v⊥0 is the projection of v0 on the orthogonal complement of a.
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2.1. The distribution of τ0

We start with the following notations: for a v ∈ R3, define the unit semi-
sphere

Sv :=
{
u ∈ R3 : |u| = 1, (u, v) ≥ 0

}
;

for any 0 ≤ t1 < t2, define the set

At1,t2 :=
{
v0s +

as2

2
+ rSv0+as, s ∈ [t1, t2)

}
.

Let us fix a t > 0. The inequality τ0 > t is equivalent to the absence of
obstacles’ centers in the set A0,t, whence

P
{
τ0 > t

}
= P

{
Π(A0,t) = 0

}
= exp

{
−(πλr2)−1λ3(A0,t)

}
.

We claim that for volume of the set A0,t, which has the form of a curved “cylin-
der”,

λ3(A0,t) = πr2

t∫

0

|v0 + as| ds. (2.2)

(The naive explanation is that the factor of the integral is the area of the “cylin-
der’s” cross-section, and the integral is the “cylinder’s” length.) Then, for the
distribution function of τ0,

P
{
τ0 > t

}
= exp

{
−λ−1

t∫

0

|v0 + as|ds

}
. (2.3)

Also, P
{
τ0 ≤ dt

}
= λ−1|v0|dt+o(dt), as dt → 0, thus we see that the parameter

λ signifies the mean free path of the particle.
Let us prove (2.2). Without loss of generality, assume that v⊥

0 = (0, |v⊥0 |, 0)>;
since a = (0, 0, |a|)>, the first coordinate of the trajectory of the curve s 7→
v0s+as2/2 is zero. Denote the length of this curve by L(t), L(t) :=

∫ t

0 |v0+as|ds,

and let s 7→ (0, γ2(s), γ3(s))
> be the natural parametrization of the curve (that

is a parametrization such that γ̇2(s)
2 + γ̇3(s)

2 = 1 for any s). Then we can
represent A0,t in the form

A0,t =
{
(0, γ2(s), γ3(s))

> + rS(0,γ̇2(s),γ̇3(s))> , s ∈ [0, L(t))
}

,

and, finally, introducing the function

Q(s, ϕ, θ) :=




0
γ2(s)
γ3(s)


+ r




1 0 0
0 γ̇2(s) −γ̇3(s)
0 γ̇3(s) γ̇2(s)






sin θ cosϕ
cos θ

sin θ sin ϕ


 ,
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we have
A0,t = Q

(
[0, L(t)), [0, 2π), [0, π/2]

)
.

By simple, but tedious calculations, it follows from (2.1) that for any l > 0
the mapping Q : [0, l) × [0, 2π) × [0, π/2] → R3 is bijective. Further, using
the equalities γ̇2(s)

2 + γ̇3(s)
2 = 1 and γ̇2(s)γ̈2(s) + γ̇3(s)γ̈3(s) = 0 (the second

equality is the derivative of the first one), the reader can easily prove that for
the Jacobian of Q it is true that JacQ(s, ϕ, θ) = r2 sin θ cos θ. We finish the
proof of (2.2) integrating the Jacobian over the set [0, L(t))× [0, 2π)× [0, π/2].

There exists a very convenient representation of τ0. Let η be an exponential
random variable with mean λ; recall that F : R3 × R+ → R is defined as the
solution of the equation

F (v,t)∫

0

|v + as| ds = t.

Since F (v, ·) is monotone and F
(
v,
∫ t

0
|v + as| ds

)
= t, we have

τ0
d
= F (v0, η). (2.4)

2.2. The distribution of ν1

Recall that at a collision the speed V1 = v0 + aτ0 of the particle changes to
V1 − (1 + α)(V1 · ν1)ν1, where ν1 is the inner unit normal to the first obstacle
at the point of collision. To simplify the notations, let us write ν instead of ν1.
As in the previous subsection, we assume that v⊥

0 = (0, |v⊥0 |, 0)>.
At first notice that ν ∈ SV1 ; this vector could be defined by its spherical

coordinates (ϕν , θV1
ν ), where the longitude ϕν ∈ [0, 2π) is the angle between

(1, 0, 0)> and ν, and the latitude θV1
ν ∈ [0, π/2] is the angle between V1 and ν1.

For any 0 ≤ t1 < t2, ϕ ∈ [0, 2π], and θ ∈ [0, π/2], define

At1,t2,ϕ,θ :=
{

v0s +
as2

2
+ r
{
u ∈ Sv0+as : ϕu < ϕ, θv0+as

u < θ
}
, s ∈ [t1, t2)

}

⊂ At1,t2 .

Then

P
{
ϕν < ϕ, θV1

ν < θ | τ0 ∈ [t, t + dt)
}

=
P
{
ϕν < ϕ, θV1

ν < θ, τ0 ∈ [t, t + dt)
}

P
{
τ0 ∈ [t, t + dt)

}

=
P
{
Π(A0,t) = 0, Π(At,t+dt,ϕ,θ) = 1

}

P
{
Π(A0,t) = 0, Π(At,t+dt) = 1

}

+ o(1), dt → 0
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(since λ3(At,t+dt) = O(dt), we have P{Π(At,t+dt) ≥ 2} = o(dt) and thus the
term o(1) appears). The mapping Q from the previous subsection is bijective,
therefore the sets A0,t and At,t+dt are disjoint. Consequently,

P
{
ϕν < ϕ, θV1

ν < θ | τ0 = t
}

= lim
dt→0

P
{
Π(At,t+dt,ϕ,θ) = 1

}

P
{
Π(At,t+dt) = 1

}

= lim
dt→0

λ3(At,t+dt,ϕ,θ)

λ3(At,t+dt)
;

but the numerator is the integral of |JacQ| over [L(t), L(t+ dt))× [0, ϕ)× [0, θ],
the denominator is the integral of |JacQ| over [L(t), L(t+dt))× [0, 2π)× [0, π/2],
and we get

P
{
ϕν < ϕ, θV1

ν < θ | τ0 = t
}

=
ϕ sin2 θ

2π
.

We see that the distribution of ν1 is invariant under rotations around V1,
and

P
{
θV1

ν1
< θ
}

= sin2 θ;

moreover, θV1
ν1

and τ0 are independent.

Let us find a suitable representation of ν1. Suppose that σ is uniformly
distributed on the unit sphere S2 and is independent of V1 (and of τ0); let ν̃ be
the unit vector directed along the bisectrix of the angle between σ and V1. Then,
for any fixed V1, the conditional distributions of ν1 and ν̃ coincide. Indeed, both
of them are invariant under rotations around V1, and P

{
θV1

ν̃ < θ
}

= P
{
θV1

σ <

2θ
}

= (1 − cos 2θ)/2 = sin2 θ. Finally, from (V1, ν̃)ν̃ = (1/2)(V1 + |V1|σ) it
follows that

V1 − (1 + α)(V1 · ν1)ν1
d
= V1 −

1 + α

2

(
V1 + |V1|σ

)
.

2.3. The simplified model

We simplify the model by stating that we can apply the results of two pre-
vious subsections to describe the motion of the particle after each collision (i.e.,
we can simply replace v0 by the speed after the collision). Thus we obtain the
model defined by (1.1) and (1.2).

The main disparity between the models was discussed in Subsection 1.2. In
addition, the models differ, because the distributions of τ0 and ν1 were derived
under the technical condition (2.1); clearly, the variables Vn − (1 + α/2)(Vn +
|Vn|σn) and v0 do not have to satisfy it.

However, our simplifications look quite natural. Indeed, the “disappearance”
of obstacles after collisions in a sense means that the particle never returns to
already met obstacles. This is reasonable if the obstacles are rare, because
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there is a drift in the direction of a. It is also sensible to neglect (2.1) if r or
|a| is small; note that since distribution of Vn converges to πV , the variables(
Vn − (1 + α/2)(Vn + |Vn|σn)

)⊥
converge to a nondegenerate limit.

3. Starting the proof of Theorem 1.1

3.1. The position of the particle at the nth collision

In this subsection we shall find a suitable representation for Xn := X(tn),

where tn :=
∑n−1

i=0 τi is the moment of the nth collision; additionally, put t0 := 0.
Consider a new Markov chain

Φn :=

(
Vn

σn

)
, n ∈ N; Φ0 :=

(
v0

−v0/|v0|

)
.

It will be obvious later that the current initial condition describes the particle
with initial speed v0 (at time zero happens the dummy collision, which does not
change the speed). Note that Vn and σn are independent. Further, introducing
the notation

x̂ := v − 1 + α

2

(
v + |v|σ

)
, x =

( v

σ

)
∈ X := R3 × S2,

we rewrite (1.1) and (1.2) as

Vn+1 = Φ̂n + aF (Φ̂n, ηn).

Thus for the new chain it is true that

Φn+1 =

(
Φ̂n + aF (Φ̂n, ηn)

σn+1

)
, n ≥ 0.

Let us agree to write coordinates of vectors of R3 using superscripts; recall

that a3 = |a|. From the trivial equalities V 1
n+1 = Φ̂n

1
, V 2

n+1 = Φ̂n

2
, and

V 3
n+1 = Φ̂n

3
+ |a|τn it follows that

Xn+1 = Xn +




Φ̂n

1
τn

Φ̂n

2
τn

((V 3
n+1)

2 − (Φ̂n

3
)2)/(2|a|)




= Xn +
1

|a|




V 1
n+1V

3
n+1 − Φ̂n

1
Φ̂n

3

V 2
n+1V

3
n+1 − Φ̂n

2
Φ̂n

3

((V 3
n+1)

2 − (Φ̂n

3
)2)/2


 ,
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whence

Xn+1 =
1

|a|




Φ̂n+1

1
Φ̂n+1

3
− Φ̂0

1
Φ̂0

3

Φ̂n+1

2
Φ̂n+1

3
− Φ̂0

2
Φ̂0

3

((Φ̂n+1

3
)2 − (Φ̂0

3
)2)/2


+

1

|a|

n+1∑

i=1




V 1
i V 3

i − Φ̂i

1
Φ̂i

3

V 2
i V 3

i − Φ̂i

2
Φ̂i

3

((V 3
i )2 − (Φ̂i

3
)2)/2


 .

(3.1)
Besides,

tn+1 =

n∑

i=0

τi =
1

|a|

n∑

i=0

V 3
i+1−Φ̂i

3
=

1

|a|
(
Φ̂n+1

3
−Φ̂0

3)
+

1

|a|

n+1∑

i=1

V 3
i −Φ̂i

3
. (3.2)

Finally, denoting

f(x) :=
1

|a|




v1v3 − x̂1x̂3

v2v3 − x̂2x̂3

((v3)2 − (x̂3)2)/2


 , h(x) :=




0
0

v3 − x̂3


 , x =

( v

σ

)
∈ X,

from (3.1) and (3.2) we get

Xn−c1atn =
1

|a|




Φ̂n

1
Φ̂n

3
− Φ̂0

1
Φ̂0

3

Φ̂n

2
Φ̂n

3
− Φ̂0

2
Φ̂0

3

((Φ̂n

3
)2 − (Φ̂0

3
)2)/2


− c1

|a|a
(
Φ̂n

3
−Φ̂0

3)
+

n∑

i=1

[f−c1h](Φi).

(3.3)
By definition, put g := f − c1h (the value of c1 will be defined later).

3.2. The problem in terms of the Markov chain Φn

Between collisions the particle moves with constant acceleration, thus the
process X(t) is defined by its values Xn at the points tn. In fact, we can find
the values of X1(t) and X2(t) by linear interpolation and the values of X3(t)
by quadratic interpolation with the leading coefficient |a|/2. Analogously, the
process Yt(s) is defined by its values at the points tn/t, but for Y 3

t (s) we shall
use quadratic interpolation with the leading coefficient |a|t3/2/2.

Let Ỹt(s) be the following process: at the points tn/t put

Ỹt

( tn
t

)
:= Yt

( tn
t

)
=

Xn − c1atn√
t

, n ≥ 0,

and define the values at other points via linear interpolation. The only differ-
ence between Yt(s) and Ỹt(s) is in the method of interpolation for the third

coordinate. It is easy to see that Y 3
t (s)− Ỹ 3

t (s) = |a|t3/2(s− tn)(s− tn+1)/2 for
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s ∈ [tn, tn+1]. Thus, denoting by n(t) the (random) number of collisions by the
time t, for the norm ‖ · ‖C of the space C[0, 1] = C

(
[0, 1],R3

)
we have

‖Yt(·) − Ỹt(·)‖C ≤ max
0≤k≤n(t)

sup
tk≤s≤tk+1

|Yt(s) − Ỹt(s)| =
|a|
8
√

t
max

0≤k≤n(t)
τ2
k . (3.4)

Then, we introduce the process Zt(s) by

Zt

( tn
t

)
:=

1√
t

n∑

i=1

g(Φi), n ≥ 0, (3.5)

and defining the values at other points via linear interpolation. Trajectories of
Zt(s) and Ỹt(s) are piecewise linear and their points of interpolation have the
same x-coordinates (namely, tn/t), therefore from (3.3) we have

‖Zt(·) − Ỹt(·)‖C ≤ 1√
t

max
1≤k≤n(t)+1

{
2.5

|a|
(
|Φ̂k|2 + |Φ̂0|2

)
+ c1

(
|Φ̂k| + |Φ̂0|

)}
.

(3.6)
From (3.4) and (3.6) we see that for proving Theorem 1.1 it is sufficient to

check that for all initial conditions Φ0 = x ∈ X , it is true that

1√
t

max
0≤k≤n(t)

τ2
k

Px−→ 0,
1√
t

max
1≤k≤n(t)+1

|Φ̂k|2 Px−→ 0, t → ∞, (3.7)

and there exist constants c1 > 0 and c2, c3 ≥ 0 such that in the space C[0, 1]

Zt(·) d−→ Y (·), t → ∞. (3.8)

Thus we must study the properties of the Markov chain Φn in detail. The
necessary facts from the Markov chain theory are stated in Section 4. In Sec-
tion 5 we prove that the chain Φn possess some useful properties. These prop-
erties are used in Section 6 for proving (3.7) and (3.8). The assertion (3.8) is
the most difficult; we prove it applying the FCLT to the sequence g(Φn).

The problem is reduced to studying properties of the Markov chain Φn.

4. Basic facts on Markov chains

The purpose of this section is to describe conditions under which a Markov
chain satisfies the law of large numbers (LLN) and the FCLT. We also give a
simple method for checking this conditions. All the statements and definitions
are taken from [10]; in this section multiple references to this source are omitted.

We begin with several notations. Consider a Markov chain Φn, with an ar-
bitrary state space X equipped with a locally compact, separable, metrizable
topology and Borel σ-field B(X). Let P (x, ·) be the transition function of Φn,
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let P n(x, ·) be the n-step transition function, and let π be the invariant mea-
sure of the chain (in the considered situations, there exists a unique invariant
probability measure). Calculating expectations and probabilities, we indicate
the initial distribution of the chain, i.e., L(Φ0), with subscripts. For example,
Px

{
Φn ∈ A

}
imply that L(Φ0) = δx and Eπ Φn imply that L(Φ0) = π. All

the considered functions are assumed to be measurable. Finally, by P denote
the transition operator; recall that by definition (Pf)(x) =

∫
X f(y)P (x, dy), for

any functional f : X → R.

4.1. Definitions

A Markov chain is called irreducible if there exists a nonzero measure µ on
B(X) such that

µ(A) > 0 =⇒ Px

{
∃n ∈ N : Φn ∈ A

}
> 0, x ∈ X, A ∈ B(X);

any measure satisfying this condition is called irreducible measure of the chain.
An irreducible chain is called aperiodic if there does not exist a d ≥ 2 and

there do not exist disjoint sets E1, . . . , Ed ∈ B(X) such that

1) for all x ∈ Ed, P (x, E1) = 1, and for all x ∈ Ei, P (x, Ei+1) = 1, i =
1, . . . , d − 1;

2) µ
(
X \ ⋃d

i=1 Ei

)
= 0 holds for every irreducible measure µ of the chain

(we modified the definition from [10] using Proposition 4.2.2 and Theo-
rem 5.4.4).

We say that a chain is (weak) Feller if the function P ( · , A) is lower semi-
continuous for any open set A ⊂ X .

Let µ be a signed measure on B(X), and let f : X → [0,∞) be a functional.
We define the f -norm of µ as

‖µ‖f := sup
g:|g|≤f

∫

X

g dµ =

∫

X

f d|µ|

(the inequality |g| ≤ f is pointwise). The 1-norm is called the total variation

norm; the notation ‖µ‖1 is replaced by ‖µ‖.
Let P1 and P2 be Markov transition functions, and let U : X → [1,∞) be a

functional. By definition, put

|||P1 − P2|||U := sup
x∈X

‖P1(x, ·) − P2(x, ·)‖U

U(x)
.

A Markov chain Φn is ergodic if there exists a measure π such that for
any x ∈ X it is true that ‖P n(x, ·) − π‖ → 0, as n → ∞; this yields that
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π is a unique invariant probability measure. A Markov chain is U-uniformly

ergodic if there exists a measure π such that |||P n − π|||U → 0, as n → ∞
(we formally put π(x, ·) := π(·)). Note that if a chain is U -uniformly ergodic,
then it is cU -uniformly ergodic, for any c > 1. For irreducible aperiodic chains
the 1-uniform ergodicity is equivalent to the well-known Doeblin condition (see
Theorem 16.2.3).

Let g : X → R be such that g ∈ L1(π) = L1(X,B(X), π). The functional
equation (in unknown ḡ)

ḡ − P ḡ = g −
∫

X

g dπ (4.1)

is called the Poisson equation.

4.2. Theorems

Theorem 4.1. Let Φn be an ergodic Markov chain, and let g ∈ L1(π). Then

for any initial condition Φ0 = x ∈ X

lim
n→∞

1

n

n∑

i=1

g(Φi) =

∫

X

g dπ, Px -a.s.

Proof. Follows from Theorem 17.0.1. 2

Theorem 4.2. Let Φn be an irreducible, aperiodic, Feller Markov chain, and

let Int (supp µ) 6= ∅ for some irreducible measure µ of Φn. Suppose that the

Foster – Lyapunov condition holds: there exist a functional U : X → [1,∞), a

compact set C ⊂ X , and constants β, b > 0 such that

PU(x) − U(x) ≤ −βU(x) + b1C(x), x ∈ X. (4.2)

Then Φn is U -uniformly ergodic; moreover, U ∈ L1(π).

Proof. In view of Proposition 5.5.3 and Theorem 6.0.1, the first statement fol-
lows from Theorems 15.0.1 and 16.0.1; the last one is proved in Theorem 14.0.1.

2

Theorem 4.3. Let Φn be a U -uniformly ergodic Markov chain, and let a func-

tional g : X → R be such that g2 ≤ U . Then there exists a solution ḡ of the

Poisson equation (4.1); ḡ ∈ L2(π); and the constant

γ2
g :=

∫

X

(
ḡ2 − (P ḡ)2

)
dπ ≥ 0 (4.3)
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is well defined. If
∫

X gdπ = 0, then for any initial condition Φ0 = x ∈ X , in the

space C[0, 1]

St(s) :=

∑[st]
i=1 g(Φi) + (st − [st])g(Φ[st]+1)√

t

d−→
√

γ2
g W (·), t → ∞, (4.4)

where W is a Wiener process.

Proof. The existence of a solution of the Poisson equation easily follows from
Theorem 17.4.2. The well-posedness of the definition of γ2

g (i.e., independence
of the choice of the solution ḡ to the Poisson equation) follows from Proposi-
tion 17.4.1. The Cauchy –Bunyakovskii – Schwarz inequality implies that γ2

g ≥
0. Finally, the last statement is the combination of Theorems 17.4.4 and 17.5.4.
Although in [10] the processes St(s) are defined for positive integer t, in (4.4)
the convergence over t ∈ R simply follows from the convergence over t ∈ N. 2

5. Studying properties of the Markov chain Φn

We shall frequently use the following trivial inequalities: for any x =
(

v
σ

)
∈

X it is true that
α|v| ≤ |x̂| ≤ |v|;

recall that α ∈ (0, 1).

5.1. Irreducibility, aperiodicity, and Feller property

First, let us prove that for any Φ0 = x the values of V2 = Φ̂1+aF (Φ̂1, η1) run

over the whole R3. It is sufficient to prove that Φ̂1 runs through R3\B(0, |x̂|) ={
u ∈ R3 : |u| ≥ |x̂|

}
, because for any fixed Φ̂1 the values of F (Φ̂1, η1) run

through R+. We certainly assume that ηi and σi run over the whole R+ and
S2 respectively.

At a collision, the speed v ∈ R3 changes to ṽ := v − (1 + α)(v, ν)ν (we
temporarily use the old representation). The reader will easily check that the
inverse transformation is v = ṽ − (1 + α−1)(ṽ, ν)ν, where ν is the same as in
the direct transformation. The values of ν run through Sv =

{
u ∈ R3|u| =

1, (v, u) ≥ 0
}
; consequently, we have (ṽ, ν) ≤ 0, that is, ν ∈ S−ṽ. Thus the

speed after a collision could be equal to a v ∈ R3 iff the speed before this collision
is contained in the set v−1 :=

{
u ∈ R3 : u = v − (1 + α−1)(v, ν)ν, ν ∈ S−v

}
.

As above, define σ as a unit vector such that ν is directed along the bisectrix of
the angle between σ and −v. Then σ runs over S2, whence

v−1 =
{
u ∈ R3 : u = v +

1 + α−1

2
(|v|σ − v), σ ∈ S2

}
.
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We shall prove that Φ̂1 runs over R3\B(0, |x̂|); recall that Φ1 =
(

bx+aF (bx,η0)
σ1

)
.

Let us show that for any v ∈ R3 \ B(0, |x̂|) the set v−1 ∩ {x̂ + as, s ≥ 0} is
nonempty. This is equivalent to the existence of s ≥ 0 such that

∣∣∣x̂ + as − 1 − α−1

2
v
∣∣∣ = 1 + α−1

2
|v|.

But the left-hand side continuously depends on s and increases for large s.
Since |v| ≥ |x̂|, the value of the left-hand side at s = 0 is not greater than
(1 + α−1/2)|v|. Therefore the required s exists.

Moreover, the distribution of Φ̂1 has a density, and this density is positive
on R3 \ B(0, |x̂|). This fact is intuitively clear, because F (x̂, η0) has a positive
density on R+ (see (2.3) and (2.4)) and σ1 has a positive density on S2. The
formal proof, whose main part is to calculate the Jacobian of the appropriate
transformation, is omitted.

Now it is obvious that the distribution of V2 = Φ̂1+aF (Φ̂1, η1) has a positive
density on R3. That is why the chain Φn is irreducible and λ3 ⊗ US2 is an
irreducible measure; here λ3 is the Lebesgue measure on R3 and US2 is the

uniform distribution on S2. Indeed, Φ2 =
(

V2

σ2

)
, and the variables V2 and σ2

are independent.

We just proved that for any initial condition Φ0 = x the distribution of Φ2,
i.e., P 2(x, ·), has positive density with respect to λ3⊗US2 . Hence for any x ∈ X
the measures P 2(x, ·) and λ3 ⊗US2 are equivalent. Thus, by simple arguments,
the chain Φn is aperiodic.

To prove that Φn is a Feller chain, it is sufficient to check that for any open
set A ⊂ R3 the function P ( · , A × S2) is lower semicontinuous. From (2.3) it
follows that

P (x, A × S2) =

∞∫

0

1A(x̂ + at)λ−1|x̂ + at| exp

{
−λ−1

t∫

0

|x̂ + as| ds

}
dt,

and applying the Fatou lemma, we obtain lower semicontinuity.

5.2. U-uniform ergodicity

Lemma 5.1. Let η be an exponential random variable with mean λ; then for

any c ∈ R

sup
v∈R3

E ecF (v,η) < ∞.

Corollary 5.1. For any initial condition Φ0 = x ∈ X , the variables τn have

exponential moments of any order. Moreover,

sup
n

Ex exp{cτn} < ∞. (5.1)
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Proof of Corollary 5.1. Since τn = F (Φ̂n, ηn) and Φ̂n is independent of ηn, the
proof is obvious. 2

Proof of Lemma 5.1. We only consider the nontrivial case c > 0. Take an s > 0
and a v ∈ R3. Since

∣∣−a|v|/|a| + as
∣∣ =

∣∣|a|s − |v|
∣∣ ≤ |v + as|, we see that for

any t > 0
t∫

0

∣∣−a|v|/|a|+ as
∣∣ ds ≤

t∫

0

|v + as| ds.

Then, using the definition of F , we have F (v, ·) ≤ F (−a|v|/|a|, ·) and therefore
P
{
F (v, η) > t

}
≤ P

{
F (−a|v|/|a|, η) > t

}
. The right-hand side could be easily

calculated, and

E ecF (v,η) = −
∞∫

0

ect d P{F (v, η) > t}

= c

∞∫

0

ect
P{F (v, η) > t} dt − 1

≤ c

∞∫

0

ect
P{F (−a|v|/|a|, η) > t} dt − 1

= c

∞∫

0

ect exp

{
−λ−1

t∫

0

∣∣ |a|s − |v|
∣∣ ds

}
dt − 1

= c

|v|/|a|∫

0

exp{ct − λ−1(|v|t − |a|t2/2)} dt

+ c

∞∫

|v|/|a|

exp{ct − λ−1(|a|t2/2 − |v|t + |v|2/|a|)} dt − 1.

We now estimate the integrals. For the first one, use the following inequality:
if |v| ≥ 4λc, then ct−λ−1(|v|t− |a|t2/2) ≤ −ct, for all t ∈ [0, |v|/|a|]. Therefore
if |v| ≥ 4λc, then

|v|/|a|∫

0

exp{ct − λ−1(|v|t − |a|t2/2)} dt ≤
|v|/|a|∫

0

e−ctdt <

∞∫

0

e−ctdt < ∞
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and this bound does not depend on v. If |v| < 4λc, then

|v|/|a|∫

0

exp{ct − λ−1(|v|t − |a|t2/2)} dt <

4λc/|a|∫

0

exp{ct + λ−1|a|t2/2} dt < ∞.

To estimate the second integral, note that if |v| ≥ 5λc, then ct−λ−1(|a|t2/2−
|v|t + |v|2/|a|) ≤ −ct. Thus if |v| ≥ 5λc, then

∞∫

|v|/|a|

exp{ct− λ−1(|a|t2/2− |v|t + |v|2/|a|)} dt ≤
∞∫

|v|/|a|

e−ctdt <

∞∫

0

e−ctdt < ∞.

If |v| < 5λc, then we have

∞∫

|v|/|a|

exp{ct−λ−1(|a|t2/2−|v|t+|v|2/|a|)} dt <

∞∫

0

exp{6ct−λ−1|a|t2/2} dt < ∞.

2

To prove the U -uniform ergodicity of Φn, we apply Theorem 4.2. Take a
c > 0 and check that the Foster – Lyapunov condition (4.2) holds for U(x) :=
exp{c|x̂|}.

For the transition operator,

PU(x) = Ex U(Φ1) = Ex exp{c|Φ̂1|} = Ex exp
{
c|V1 −

1 + α

2
(V1 + |V1|σ1)|

}
.

We define the function

γ(|v|) :=

∫

S2

exp
{

c
∣∣∣v − 1 + α

2
(v + |v|ζ)

∣∣∣− c |v|
}

dUS2(ζ), v ∈ R3,

which is obviously monotone and γ(|v|) → 0 as |v| → ∞. Since σ1 is independent
of V1 and of Φ0,

PU(x) = Ex γ(|V1|) exp{c|V1|}
≤ Ex γ(|V1|) exp{c|Φ̂0|} exp{c|a|τ0}

≤ Ex

(
γ(|Φ̂0/2|)1{|a|τ0 ≤ |Φ̂0|/2}+ γ(0)1{|a|τ0 > |Φ̂0|/2}

)

× exp{c|Φ̂0|} exp{c|a|τ0}

≤
(
γ(|x̂/2|) E exp{c|a|F (x̂, η0)} + E exp{c|a|F (x̂, η0)}

×1{|a|F (x̂, η0) > |x̂|/2}
)
exp{c|x̂|}

≤
(
γ(α|v|/2) E exp{c|a|F (x̂, η0)} + E exp{c|a|F (x̂, η0)}
×1{|a|F (x̂, η0) > α|v|/2}

)
U(x),
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where as usual x =
(

v
σ

)
. It follows from Lemma 5.1 that the factor of U(x)

tends to zero as |v| → ∞, whence for any β ∈ (0, 1) there exists an R > 0 such
that

PU(x) − U(x) ≤ −βU(x), x /∈ CR := B(0, R) × S2.

Clearly, for some b > 0

PU(x) − U(x) ≤ −βU(x) + b1{CR}(x), x ∈ X.

Thus the condition (4.2) holds and, consequently, for any c > 0 the Markov
chain Φn is exp{c|x̂|}-uniformly ergodic.

5.3. The invariant measure

By definition of U -uniform ergodicity, there exists a unique invariant measure
π of the chain. Since for every n the measure P n(x, ·) is a product of some
measure on B(R3) and US2 , for the limit we also have

π = πV ⊗ US2 ,

where πV is a probability measure on B(R3). By the reasons of symmetry, πV

is invariant under rotations around the third coordinate axis.
Further, we claim that the measure πV has a density. Indeed, in Subsec-

tion 5.1 we proved that P 2(x, ·) has a density; moreover, it could be shown that
for all n ≥ 2 the measures P n(x, ·) have densities, that is, P n(x, ·) ≺ λ3 ⊗ US2 .
Thus, passing to the limit, π = πV ⊗ US2 ≺ λ3 ⊗ US2 and πV ≺ λ3.

Theorem 4.2 implies that exp{c|x̂|} ∈ L1(π) for any c, and we can prove the
following

Proposition 5.1. For any initial condition Φ0 = x ∈ X , the variables Vn have

exponential moments of any order. Moreover,

sup
n

Ex exp{c|Vn|} < ∞. (5.2)

Proof. We begin with

|Vn| = |Φ̂n−1 + aτn−1| ≤ |Vn−1| + |a|τn−1 ≤ · · · ≤ |x̂| + |a|
n−1∑

i=0

τi.

Then, via the Hölder inequality and Lemma 5.1,

Ex exp{c |Vn|} ≤ exp{c |x̂|}Ex

n−1∏

i=0

exp{c |a|τi} ≤ ec|bx|
n−1∏

i=0

(Ex exp{c |a|nτi})1/n

≤ ec|bx| sup
v∈R3

E exp{c |a|nF (v, η)} < ∞,
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hence the exponential moments exist. To prove (5.2), we combine the trivial

inequality exp{c|u|} ≤ exp{cα−1|ŷ|}, for y =
(

u
ρ

)
∈ X , and the definition of

exp{cα−1|ŷ|}-uniform ergodicity of Φn:

lim
n→∞

Ex ec|Vn| = lim
n→∞

∫

X

ec|u|P n(x, dy) =

∫

X

ec|u|dπ(y) ≤
∫

X

ecα−1|by|dπ(y) < ∞.

2

6. Finishing the proof of Theorem 1.1

Recall that we must prove (3.7) and (3.8). Let us start with the following
lemmas.

Lemma 6.1. For any initial condition Φ0 = x ∈ X ,

τn = O(log n), |Vn| = O(log n), Px -a.s.

Proof. Applying the Chebyshev inequality and then using (5.1), we have

Px

{
τn > 2 log n

}
≤ Ex exp{τn}

n2
≤ 1

n2
sup

n
Ex exp{cτn}.

Thus the first statement immediately follows from the Borel – Cantelli lemma.
Similarly, we prove the second statement via (5.2). 2

Lemma 6.2. There exists a c4 > 0 such that for any initial condition Φ0 = x ∈
X ,

lim
n→∞

tn
n

= c4, Px -a.s.

Proof. Recalling (3.2) and the introduced notations, we see that it is sufficient
to prove

lim
n→∞

Φ̂n

3

n
= 0, Px -a.s.;

the existence of a c4 such that

lim
n→∞

1

n|a|

n∑

i=1

h3(Φi) = c4, Px -a.s.;

and positiveness of c4.
Since |Φ̂n| ≤ |Vn|, from Lemma 6.1 we immediately obtain the first state-

ment. Further, we can apply Theorem 4.1 to prove the second statement, since

|h3(x)| = |v3 − x̂3| ≤ (1 + α−1)|x̂| < (1 + α−1)e|bx| ∈ L1(π)

and thus h3 ∈ L1(π). By definition, put c4 := |a|−1
∫

X
h3dπ. The proof of

positiveness of c4, which is quite simple, can be found in [14]. 2
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6.1. Proof of (3.7)

Let n(t) be the number of collisions by the time t. Then

lim
t→∞

n(t) = ∞, Px -a.s. (6.1)

To prove this, assume the converse. Then we can find a k ≥ 0 such that with
nonzero probability the particle collides with obstacles only k times. Thus the
probability of τk = ∞ is nonzero that contradicts the existence of exponential
moments.

By Lemma 6.2 and (6.1),

lim
t→∞

tn(t)

n(t)
= c4, Px -a.s.,

but since tn(t) ≤ t < tn(t)+1 = tn(t) + τn(t), from Lemma 6.1 we have

lim
t→∞

t

n(t)
= c4, Px -a.s. (6.2)

Applying Lemma 6.1 once again (recall that |Φ̂k| ≤ |Vk|), we prove (3.7) (to be
precise, we prove Px-a.s. convergence, which is much stronger).

6.2. Definition of the constants c1, c2, c3

We put

c1 := c−1
4 |a|−1

∫

X

f3dπ;

for the quite tedious proof of positiveness of c1, see [14].
Now we can easily check that for g=f−c1h it is true that

∫
X

gdπ=0. In fact,
for the first and the second coordinates, this follows from simple calculations,
where the representation π = πV ⊗ US2 and symmetry of πV are used. For the
third coordinate, we apply the equality c4 = |a|−1

∫
X

h3dπ.
Let us define c2 and c3. By |g(x)| ≤ 2.5|a|−1(1 + α−1)|x̂|2 + c1(1 + α−1)|x̂|,

there exists a c > 1 such that |g(x)|2 ≤ c exp{|x̂|}. Thus (the chain Φn is
c exp{|x̂|}-uniformly ergodic) the functionals g1, g2, and g3 satisfy the conditions
of Theorem 4.3, and there exist solutions g1, g2, g3 ∈ L2(π) of the Poisson
equations. Define

c2 :=
√

c−1
4 γ2

g2
, c3 :=

√
c−1
4 γ2

g3
,

and ḡ := (g1, g2, g3)>,

K :=

∫

X

(
ḡ ḡ> − (P ḡ)(P ḡ)>

)
dπ.
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In [14] we proved (using the axial symmetry of πV ) that the matrix K is diagonal
and γ2

g1
= γ2

g2
, thus

K = c4




c2
2 0 0
0 c2

2 0
0 0 c2

3


 .

6.3. Proof of (3.8)

In this subsection the following proposition plays the key role.

Proposition 6.1. For the processes St(s), defined in (4.4),

St(·) d−→ √
c4 Y (·), t → ∞.

Proof. It is sufficient to show that for any u ∈ R3

(St(·), u)
d−→ √

c4 (Y (·), u), t → ∞.

On the one hand,

√
c4 (Y (·), u)

d
=
√

c4

(
(c2u1)2 + (c2u2)2 + (c3u3)2

)
W (·) =

√
(Ku, u)W (·).

On the other hand, the functional (g, u) satisfies the conditions of Theorem 4.3,
thus

(St(s), u) =

∑[st]
i=1(g, u)(Φi) + (st − [st])(g, u)(Φ[st]+1)√

t

d−→
√

γ2
(g,u) W (·),

t → ∞.

Since (g, u) = (ḡ, u), from (4.3) we get

γ2
(g,u) =

∫

X

(
(ḡ, u)2 − (P (ḡ, u))2

)
dπ =

∫

X

(
(ḡ, u)2 − (P ḡ, u)2

)
dπ = (Ku, u).

2

Let us put S̃t(s) := St(c
−1
4 s); then St(c

−1
4 s) =

√
c−1
4 Sc−1

4 t(s), and in the

space C[0, 1] (and, moreover, in C[0, l], for every l > 0)

S̃t(·) d−→ Y (·), t → ∞. (6.3)

We will prove (3.8) if we show that

‖Zt(·) − S̃t(·)‖C Px−→ 0, t → ∞. (6.4)
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To this end, introduce the process ut(s), putting at the points tn/t

ut

( tn
t

)
:=

c4n

t
, n ≥ 0,

and defining the values at other points via linear interpolation. Using the def-
initions of Zt(s) and St(s), i.e., (3.5) and (4.4), we have Zt

(
tn/t

)
= St

(
n/t
)
.

But St

(
n/t
)

= S̃t

(
c4n/t

)
= S̃t

(
ut

(
tn/t

))
, whence at the points tn/t the equality

Zt

(
tn/t

)
= S̃t

(
ut

(
tn/t

))
holds. However,

Zt(s) = S̃t(ut(s))

is true for every s! In fact, trajectories of Zt(s) and S̃t(ut(s)) are piecewise
linear (for the last one, as a composition of piecewise linear functions) and their
points of interpolation have the same x-coordinates (namely, tn/t). As we have
seen above, the values at these points coincide.

We see that Zt(s) is obtained from S̃t(s) by the random change of time.
Suppose ‖ut(·)‖C ≤ 2; then

‖Zt(·) − S̃t(·)‖C = ‖S̃t(ut(·)) − S̃t(·)‖C ≤ ω
eSt

∣∣
[0,2]

(
‖ut(·) − id‖C

)
,

where ω is the modulus of continuity, S̃t

∣∣
[0,2]

is the restriction of St(s) to [0, 2].

Hence for any 1 > δ > 0 and ε > 0

Px

{
‖Zt(·) − S̃t(·)‖C ≥ ε

}
≤ Px

{
‖ut(·) − id‖C ≥ δ

}
+ Px

{
ω

eSt

∣∣
[0,2]

(δ) ≥ ε
}

≤ Px

{
‖ut(·) − id‖C ≥ δ

}
+ sup

t>0
Px

{
ω

eSt

∣∣
[0,2]

(δ) ≥ ε
}
.

Let us proceed to the limit as t → ∞ and then proceed to the limit as δ → 0.
Now it is obvious that (6.4) holds if for any 1 > δ > 0

lim
t→∞

Px

{
‖ut(·) − id‖C ≥ δ

}
= 0 (6.5)

and for any ε > 0
lim
δ→0

sup
t>0

Px

{
ω

eSt

∣∣
[0,2]

(δ) ≥ ε
}

= 0. (6.6)

At first we prove (6.5). Writing ut(s) in the explicit form, we have

‖ut(·)− id‖C = sup
0≤s≤1

∣∣∣c4n(st)

t
+

st − tn(st)

τn(st)
· c4

t
− s
∣∣∣ ≤ sup

0≤s≤1

∣∣∣c4n(st) − st

t

∣∣∣+ c4

t
;

thus, by (6.2),
lim

t→∞
‖ut(·) − id‖C = 0, Px -a.s.,
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which is much stronger than (6.5).
It remains to check (6.6) to complete the proof of Theorem 1.1. The family of

probability measures {Px ◦S̃t

∣∣−1

[0,2]
}t>0 on B

(
C[0, 2]

)
is relatively weakly compact.

This follows from (6.3) and from Px-a.s. continuity of ‖S̃t‖C[0,2] in t ∈ [0,∞).
The space C[0, 2] is a Polish space, thus the relatively weakly compact family

{Px ◦S̃t

∣∣−1

[0,2]
}t>0 is tight. By the well-known fact (see [2]) about tight families

of probability measures on B
(
C[0, 2]

)
, for any ε > 0

lim
δ→0

sup
t>0

Px ◦S̃t

∣∣−1

[0,2]

{
p : ωp(δ) ≥ ε

}
= lim

δ→0
sup
t>0

Px

{
ω

eSt

∣∣
[0,2]

(δ) ≥ ε
}

= 0.
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