Геометрия пространств де Бранжа Ю.С. Белов

1. Модельные функции с почти предписанным модулем Пространство де Бранжа целых функций – естественный аналитический объект, играющий важную роль в анализе и его приложениях к математической физике. Описание поведения модулей целых функций из пространств де Бранжа на вещественной прямой – трудная аналитическая задача. Даже более простая на первый взгляд постановка - описать положительные мажоранты ω , для которых верна теорема единственности

$$f \in H(E)$$
 и $|f(x)| \le \omega(x), x \in \mathbb{R} \Rightarrow f \equiv 0$,

требует довольно глубокой аналитической техники. Например, для пространства Пэли-Винера PW_{π} один из результатов подобного рода — теорема Берлинга-Мальявена о мультипликаторе. Мажоранты ω , для которых не верна теорема единственности, мы будем называть допустимыми для данного пространства целых функций. Допустимые мажоранты исследовались в работах В.П. Хавина, А.Д. Баранова, А.А. Боричева.

Одним из естественных способов переформулировать нашу задачу является ее перенос в модельное подпространство K_{Θ} пространства Харди $H^2(\mathbb{C}^+)$ в верхней полуплоскости, $K_{\Theta} = H^2 \ominus \Theta H^2$. Соответствующие внутренние функции Θ всегда имеют мероморфное продолжение в нижнюю полуплоскость. Только такие Θ мы и будем рассматривать в дальнейшем. Для мероморфной внутренней Θ есть естественный способ зафиксировать ветвь ее аргумента: функция $\operatorname{arg} \Theta$ – возрастающая на всей оси функция, удовлетворяющая равенству $e^{i \operatorname{arg} \Theta(x)} = \Theta(x)$. Соответствующее вложение пространства де Бранжа в модельное унитарно, поэтому задачи полностью эквивалентны. В статье [1] рассмотрена более трудная задача изучения строго допустимых мажорант.

Определение. Функцию ω мы называем строго Θ -допустимой, если найдется функция $f \in K_{\Theta}$ и такие положительные константы $C_1, C_2,$ что $C_1\omega(x) \leq |f(x)| \leq C_2\omega(x), x \in \mathbb{R}.$

Функция f из неравенства вместо нереалистичной задачи построения модельной функции с предписанным модулем $|f| = \omega$ решает ослабленную задачу поиска функции f с почти предписанным модулем. Основной результат статьи [1] описывает довольно широкое подмножество строго Θ -допустимых мажорант для широкого класса мероморфных внутренних функций Θ . Для формулировки результата нам понадобятся некоторые вспомогательные построения:

1. Определим преобразование Гильберта функции $\Omega \in L^1\left(\frac{dt}{t^2+1}\right)$ как

$$\widetilde{\Omega}(x) = \frac{1}{\pi}(p.v.) \int_{\mathbb{R}} \Omega(t) \left(\frac{1}{x-t} + \frac{t}{t^2+1} \right) dt.$$

2. Назовем разбиение вещественной прямой на интервалы $J_k = [d_k, d_{k+1}]$ регулярным, если выполнено условие

$$\sup_{k} \sum_{|k-l|>1} \frac{|J_l|}{dist^2(J_k, J_l)} < +\infty.$$

3. Назовем возрастающую функцию Ф регулярной, если существует такая последовательность чисел $\{d_k\}_{k\in\mathbb{Z}}$, что $\Phi(d_k)=2\pi k$, разбиение $J_k=[d_k,d_{k+1}]$ регулярно и $\sup_{|\Phi(x)-\Phi(y)|<1} \frac{\Phi'(x)}{\Phi'(y)}<+\infty$.

Теорема. Пусть мероморфная внутренняя функция Θ и положительная функция $\omega \in L^2(\mathbb{R})$ таковы, что

- a) $\log \omega \in L^1(dx/(1+x^2)),$
- b) $\widetilde{\log \omega} \in C^2(\mathbb{R}),$
- c) функция $\arg\Theta 2\log\omega$ регулярна .

Тогда функция ω строго Θ -допустима.

Условие а) является к тому же и необходимым.

2. Дискретное преобразование Гильберта на редких последовательностях. В работе [2] изучается ограниченность и обратимость дискретного преобразования Гильберта $H:\{a_n\}\mapsto \sum_n \frac{a_nv_n}{z-\gamma_n}$. Описание ограниченных преобразований дает полную информацию о бесселевых последовательностях из воспроизводящих ядер в пространствах де Бранжа, а обратимость – описание базисов Рисса из воспроизводящих ядер. Для простоты будем полагать, что γ_n стремится к бесконечности. Для того, чтобы преобразование Гильберта было корректно определено для любой последовательности $\{a_n\}\in l_v^2$, необходимо, чтобы $\sum_n \frac{v_n}{1+|\gamma_n|^2}<+\infty$. Только такие пары (Γ,v) мы и будем рассматривать.

Предположим, что наша последовательность γ_n растет не медленнее, чем геометрическая прогрессия, то есть $\inf_n \frac{|\gamma_{n+1}|}{|\gamma_n|} > 1$. В этом случае нам удалось получить полное описание всех ограниченных преобразований из l_v^2 в $L^2(\mu)$. Положим

$$\Omega_n = \{z \in \mathbb{C} : (|\gamma_{n-1}| + |\gamma_n|)/2 \le |z| < (|\gamma_n| + |\gamma_{n+1}|)/2\}.$$

Теорема 2. Предположим, что $\inf_n \frac{|\gamma_{n+1}|}{|\gamma_n|} > 1$ и $\sum_n \frac{v_n}{1+|\gamma_n|^2} < +\infty$. Если μ – мера в комплексной плоскости такая, что $\mu(\Gamma)=0$, то отображение H ограниченно из l_v^2 в $L^2(\mu)$ тогда и только тогда, когда

$$\sup_{n\geq 1} \int_{\Omega_n} \frac{v_n d\mu(z)}{|z - \gamma_n|^2} < \infty \tag{1}$$

u

$$\sup_{n\geq 1} \left(\sum_{l=1}^{n} v_{l} \sum_{m=n+1}^{\infty} \int_{\Omega_{m}} \frac{d\mu(z)}{|z|^{2}} + \sum_{m=1}^{n} \mu(\Omega_{m}) \sum_{l=n+1}^{\infty} \frac{v_{l}}{|\gamma_{l}|^{2}} \right) < \infty.$$
 (2)

Условие (2) — некий вариант классического условия Макенхаупта A_2 . В нашем конкретном случае это условие работает не только для ограниченности одновесового преобразования, но и обеспечивает ограниченность двухвесового преобразования Гильберта. Особый интерес для нас представляет случай, когда $\mu = \sum_j w_j \delta_{\lambda_j}$ — дискретная мера и $w_j = \left[\max_{\|a\|_v=1}|(H_{(\Gamma,v)}a)(\lambda_j)|\right]^{-2} = \left(\sum_{n=1}^\infty \frac{v_n}{|\lambda_j-\gamma_n|^2}\right)^{-1}$. В этом случае оператор действует из пространства последовательностей в пространство последовательностей, и мы можем также рассматривать вопрос о его обратимости. Вес w_j мы будем называть бесселевым весом для последовательности Λ по отношению к Γ и v. Ограниченность H эквивалентна тому, что k_λ — бесселева последовательность для пространства де Бранжа H(E), где $\sum_n v_n^{1/2} \delta_{\gamma_n}$ — спектральная мера функции E. Теорема 2 позволяет получить полное геометрическое описание бесселевых последовательностей в пространствах H(E) таких, что спектральная мера функции E сильно разрежена.

функции
$$E$$
 сильно разрежена. Положим $V_n = \sum_{j=1}^{j=n-1} v_j, \ P_n = \sum_{j=n+1}^{+\infty} \frac{v_j}{|\gamma_j|^2},$

$$\Lambda^{(0)} = \left\{ \lambda \in \Lambda : \text{ если } \lambda \in \Omega_n, \text{ то } \frac{v_n}{|\lambda - \gamma_n|^2} \ge \max\left(\frac{V_n}{|\lambda|^2}, P_n\right) \right\},$$

$$\Lambda^{(V)} = \left\{ \lambda \in \Lambda : \text{ если } \lambda \in \Omega_n, \text{ то } \frac{V_n}{|\lambda|^2} > \max\left(\frac{v_n}{|\lambda - \gamma_n|^2}, P_n\right) \right\},$$

$$\Lambda^{(P)} = \left\{ \lambda \in \Lambda : \text{ если } \lambda \in \Omega_n, \text{ то } P_n > \max\left(\frac{v_n}{|\lambda - \gamma_n|^2}, \frac{V_n}{|\lambda|^2}\right) \right\}.$$

Последовательность Λ будем называть V-лакунарной, если

$$\sup_{n} \# \left(\Lambda \cap \bigcup_{m: \ 2^{n} \le V_{m} \le 2^{n+1}} \Omega_{m} \right) < \infty,$$

и Р-лакунарной, если

$$\sup_{n} \# \left(\Lambda \cap \bigcup_{m: \ 2^{-n-1} \le P_m \le 2^{-n}} \Omega_m \right) < \infty.$$

Теорема 3. Предположим, что $\inf_n \frac{|\gamma_{n+1}|}{|\gamma_n|} > 1$ и $\sum_n \frac{v_n}{1+|\gamma_n|^2} < +\infty$. Пусть w_j – бесселев вес для последовательности Λ по отношению κ Γ и v. Тогда $H_{(\Gamma,v):(\Lambda,w)}$ – ограниченное преобразование тогда и только тогда, когда $\sup_n \#\{\Lambda \cap \Omega_n\} < +\infty$, Λ_V – V-лакунарная последовательность, Λ_P – P-лакунарная последовательность и

$$\sup_{n\geq 1} \left(V_n \sum_{m\geq n} \sum_{\lambda \in \Lambda^{(0)} \cap \Omega_m} \frac{|\lambda - \gamma_m|^2}{v_m |\lambda|^2} + P_n \sum_{m\leq n} \sum_{\lambda \in \Lambda^{(0)} \cap \Omega_m} \frac{|\lambda - \gamma_m|^2}{v_m} \right) < \infty.$$

Например, если $\gamma_n=2^n, v_n=1$, то множество $\Lambda^{(P)}$ пусто, и любая бесселева последовательность из воспроизводящих ядер представляется в виде объединения двух, одна из которых V-лакунарна, а вторая локализуется в дисках $D_n=\{z:2^{-n}|z-2^n|< n^{-1/2}\}$. Такая же локализация имеет место при больших весах v_n . В частности, это дает еще один пример бесконечной бесселевой последовательности из воспроизводящих ядер, которая имеет лишь конечное число общих точек с любым базисом Рисса из воспроизводящих ядер.

Обратимость преобразования Гильберта может быть исследована при помощи теоремы 3, так как обратное преобразование, если оно существует, тоже является дискретным преобразованием Гильберта, но с другим весом. Используя это соображение, нам удалось получить полное описание обратимых операторов при условии $\inf_n \frac{|\gamma_{n+1}|}{|\gamma_n|} > 1$, что дает полное описание базисов Рисса из воспроизводящих ядер в малых пространствах де Бранжа (то есть в пространствах, порожденных целой функцией медленного роста). Опираясь на описание бесселевых последовательностей, мы установили истинность гипотезы Фейхтингера для систем воспроизводящих ядер в малых пространствах де Бранжа.

3. Полнота системы, биортогональной к системе из воспроизводящих ядер. Пусть $\{v_n\}$ – полная минимальная система в сепарабельном гильбертовом пространстве H, а $\{w_m\}$ – ее биортогональная система. Хорошо известно, что система $\{w_m\}$ не обязательно полна. С другой стороны, если H состоит из аналитических функций, а $\{v_n\}$ – система, состоящая из воспроизводящих ядер, то может оказаться, что

биортогональная система всегда полна. Н.К. Никольский поставил следующий вопрос: $\Pi y cmb \ \{k_{\lambda}\}$ – полная минимальная система из воспроизводящих ядер в пространстве де Бранжа H(E). Всегда ли система, биортогональная $\kappa \ \{k_{\lambda}\}$, полна?

В случае $E(z)=e^{-i\pi z}$ положительный ответ на этот вопрос был получен независимо Г.М. Губреевым и Р. Юнгом в 1981 году. В статье [3] нам удалось разрешить вопрос Никольского, указав некоторые классы пространств де Бранжа, для которых биортогональная система не обязательно полна. Пусть $\mu=\sum_n v_n^{1/2} \delta_{t_n}$ – спектральная мера функции E.

Теорема 4. Если $\sum_{n} v_n < +\infty$, то существует полная минимальная система из воспроизводящих ядер такая, что биортогональная система не полна.

С другой стороны, если последовательность v_n не слишком быстро убывает, то биортогональная система всегда полна.

Теорема 5. Пусть существует N>0 такое, что $\sup_n v_m (1+|t_m|)^N>0$. Тогда ортогональное дополнение κ системе, биортогональной κ полной минимальной системе из воспроизводящих ядер имеет конечную размерность. Если κ тому же $\sum_n v_n = +\infty$, то любая биортогональная система полна.

Также мы смогли построить пример биортогональной системы с бесконечной коразмерностью.

В статье [3] установлена связь проблемы биортогональности с проблемой плотности полиномов в пространстве $l^2(T,v)=\{f: T\mapsto \mathbb{C}: \sum_n |f(t_n)|^2 v_n<+\infty\}$. Теоремы 4 и 5 получены и для более широкого класса пространств целых функций, чем пространства де Бранжа.

Литература

- [1] Ю.С. Белов. Модельные функции с почти предписанным модулем, Алгебра и Анализ, **20** (2008), 2, 3-18.
- [2] Yurii Belov, Tesfa Y. Mengestie, Kristian Seip, Discrete Hilbert transforms on sparse sequences, *Proc. London Math. Soc.*, **103** (2011), 3, 73–105.
- [3] A. Baranov, Yu. Belov, Systems of reproducing kernels and their biorthogonal: completeness or incompleteness? *International Mathematics Research Notices* (2011), doi:10.1093/imrn/rnq281.