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Abstract. We introduce a new version of discrete holomorphic observables

for the critical planar Ising model. These observables are holomorphic spinors
defined on double covers of the original multiply connected domain. We com-

pute their scaling limits, and show their relation to the ratios of spin correla-

tions, thus providing a rigorous proof to a number of formulae for those ratios
predicted by CFT arguments.

1. Introduction

1.1. The critical Ising model and Smirnov’s holomorphic observables.
The two-dimensional Ising model is one of the most well-studied models in statistical
mechanics. Given a discrete planar domain Ωδ (a bounded subset of the square
grid), the Ising model in Ωδ can be viewed either as a random assignment of spins
to the faces of Ωδ, or a random collection of edges of Ωδ, with an edge drawn
between each pair of faces having different spins. The partition function of the
model is given by∑

σ:F(Ωδ)→{−1;1}

exp

[
1

T

∑
f∼f ′

σ(f)σ(f ′)

]
or

∑
S∈Conf(Ωδ)

x|S|,

respectively, where F(Ωδ) denotes the set of faces of Ωδ and Conf(Ωδ) is the set
of subgraphs S of Ωδ such that all vertices of Ωδ have even degrees in S. We
refer the reader to Section 2 for a more detailed discussion and notation. We
will be interested in the properties of the model at the critical temperature T =
2 log−1(

√
2 + 1), which corresponds to x =

√
2 − 1. This value of x will be fixed

throughout the paper.
Discrete holomorphic observables, also called holomorphic fermions or fermionic

observables, were proposed by Smirnov in [Smi06] as a tool to study the critical Ising
model, although similar objects appeared earlier in [KC71] and [Mer01] without
discussing corresponding boundary value problems. Since then, these observables
proved to be very useful for a rigorous analysis of the planar Ising model at criticality
in the scaling limit when Ωδ approximates some continuous domain Ω as the lattice
mesh δ tends to zero.
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Recall that Smirnov’s fermionic observable is defined as

F (a, z) := (−ina)−1/2
∑

S∈Confa,z

x|S|e−iw(γ)/2, (1.1)

where Confa,z is the set of edge subsets S, such that S can be decomposed into a
disjoint collection of loops and a simple lattice path γ connecting a boundary edge
a to the midpoint z = ze of an inner edge e; w(γ) is the winding number of γ; and
na ∈ {±1,±i} denotes the orientation of the outgoing boundary edge a. With this
definition, the observable has been shown to be discrete holomorphic and satisfy
Riemann-type boundary conditions

F (a, z)
√
inz ∈ R, z ∈ ∂Ωδ\{a}. (1.2)

This led to a proof of its convergence to a conformally covariant scaling limit [CS12].
This result has been the main ingredient of the recent progress in rigorous under-

standing of conformal invariance in the critical two-dimensional Ising model. The
martingale property of F (a, z) (see further details in [CS12]) allows one to prove
convergence of the Ising interfaces to the chordal Schramm’s SLE3 curves. Using a
slightly different version of this observable, Hongler and Smirnov [HS10] were able
to compute the scaling limit of the energy density in the critical Ising model on
the square grid, including the lattice dependent constant before the conformally
covariant factor. This result was later extended to all correlations of the energy
density field and certain boundary spin correlations [Hon10].

At the same time, similar observables proved to be very useful in the analy-
sis of the random cluster (Fortuin-Kasteleyn) representation of the critical Ising
model [Smi06, RC06, Smi10, CS12, DHN11]. In particular, it was shown by Beffara
and Duminil-Copin [BD10] that they can be used to give a short proof of criticality
of the Ising model at the self-dual point.

Many of these results generalize beyond the case of square grid approximations.
Thus, convergence of fermionic observables has been proven for isoradial lattices
[CS12], which reappeared in the connection with the critical Ising model in the
paper of Mercat [Mer01]. This proved the universality phenomenon, i.e., the fact
that a microscopic structure of the lattice does not affect macroscopic properties
of the scaling limit. Moreover, discrete complex analysis technique developed in
[CS11] and [CS12] provides a general framework for such universal proofs.

On the other hand, one of the most natural questions about the Ising model –
the rigorous proof of conformal covariance of spin correlations in the scaling limit
– remained out of reach until recently. The goal of the present work is to introduce
a new tool – spinor holomorphic observables – that allows to attack this problem.
In particular, we prove convergence of ratios of spin correlations corresponding to
different boundary conditions to conformally invariant limits. In a subsequent joint
paper with Clément Hongler [CHI12], using a more elaborate version of the spinor
observables, we prove conformal covariance of spin correlations themselves.

1.2. Spinor holomorphic observables and ratios of spin correlations. In
this paper we extend the study of fermionic observables to the case of multiply

connected domains. Given a double cover $ : Ω̃δ → Ωδ of such a domain, we define

the observable F$(a, ·) : Ω̃δ → C by

F$(a, z) := (−ina)−1/2
∑

S∈Conf$(a),$(z)

x|S|e−iw(γ)/2(−1)l(S)+1γ:a→z , (1.3)
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where a, z ∈ Ω̃δ, but the sum is taken over the same set of configurations as before;

l(s) is the number of loops in S that do not lift as closed loops to Ω̃δ, and 1γ:a→z

is the indicator of the event that γ lifts to Ω̃δ as a path running from a to z (and
not to the other sheet), see Section 3 for detailed discussion. In other words, we
plug into (1.1) an additional sign that depends on homology class of S modulo two.
It is worth to mention that our observables should be closely related to the vector
bundle Laplacian technique applied to uniform spanning trees and double dimers
by Kenyon [Ken10, Ken11], although at the moment we do not know any exact
correspondence of that sort.

Our main observation is that F$(a, z) are discrete holomorphic and satisfy the
boundary conditions (1.2), just like Smirnov’s observable F (a, z). The definition
implies that F$(a, z) = −F$(a, z∗), if z 6= z∗ belong to a fiber of the same point;
hence, we call F$ holomorphic spinors.

To describe the scaling limits of F$(a, ·), we will introduce the continuous holo-
morphic spinors f$(a, ·). Roughly speaking, these are fundamental solutions to the

continuous Riemann boundary value problem (1.2) on the double-cover Ω̃, with a
singularity at a and the property f$(z) ≡ −f$(z∗). Postponing precise definitions
until Section 3, we now state our first main result (see Theorem 3.13):

Theorem A. Suppose that Ωδ is a sequence of discrete domains of mesh size
δ approximating (in the sense of Carathéodory) a continuous finitely connected
domain Ω, and that aδ ∈ ∂Ωδ tends to a ∈ ∂Ω as δ → 0. Then there is a sequence
of normalizing factors β(δ) = β(δ; Ωδ, aδ, $) such that

β(δ)F$(aδ, ·)→ f$(a, ·), δ → 0

uniformly on compact subsets of Ω.

This convergence also holds true up to the “nice” parts of the boundary; more-
over, considering ratios of observables corresponding to different $’s, one can get
rid of normalization issues. We work this out in Theorem 3.16.

A striking feature of our new observables is their direct relation to spin correla-
tions. Let Ωδ be a simply connected domain with m punctures, that is, m single
faces f1, . . . , fm removed, and let $ be the cover that branches around each of these

punctures. Then, it turns out that F$(a, b), b ∈ ∂Ω̃δ, is (up to a fixed complex
factor, see Proposition 3.6) equal to

ZabEab[σ(f1) . . . σ(fm)],

where Zab and Eab stand for the partition function and the expectation for the Ising
model with Dobrushin boundary conditions: “−” on the (ab) boundary arc and
“+” on (ba). This, together with convergence results for the observables, gives the
following corollary (with the notation “E+” referring to “+” boundary conditions
everywhere on ∂Ωδ):

Corollary B. Let (Ωδ, aδ, bδ) approximate (Ω, a, b) as δ → 0. Then

Eaδbδ [σ(zδ1) . . . σ(zδm) ]

E+[σ(zδ1) . . . σ(zδm) ]
→
δ→0

ϑ(φ(z1), . . . , φ(zm)), (1.4)

where ϑ = ϑ
C+

∞,0 are explicit functions and φ is a conformal map from Ω onto the
upper half-plane C+ sending a to ∞ and b to 0.
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In Section 6 we give explicit formulae for ϑ in C+, and hence, by conformal
invariance, for all simply connected domains. For example,

ϑΩ
ab(z) = cos [πhmΩ(z, (ab))] ,

where hmΩ(z, (ab)) stands for the harmonic measure of the arc (ab) in Ω as viewed
from z. These formulae for m = 1, 2 were previously conjectured by means of Con-
formal Field Theory, see [BG93] and earlier papers. To the best of our knowledge,
the explicit formulae for m ≥ 3 are new.

Corollary B admits a number of generalizations. Let Ωδ approximate a finitely
connected domain Ω with k inner boundary components γ1, . . . , γk (possibly macro-
scopic). Then, for any m ≤ k, one has

Eaδbδ [σ(γδ1) . . . σ(γδm) ]

E+[σ(γδ1) . . . σ(γδm) ]
→
δ→0

ϑΩ
ab(γ1, . . . , γm) , (1.5)

where the functions ϑΩ
ab(γ1, . . . , γm) are conformally invariant, the expectations Eab,

E+ are taken for the Ising model with Dobrushin (respectively, “+”) boundary con-
ditions on the outer boundary component and monochromatic on inner components
γj , meaning that we constrain the spins to be the same along each component, but
do not specify a priory whether it is plus of minus. In this case, σ(γδj ) denotes the
(random) spin of the component γj .

Further, closely following the route proposed by Hongler in [Hon10], we prove a
Pfaffian formula which generalizes (1.5) to the case of 2n boundary change operators
(in other words, “+/−/ . . . /+/−” boundary conditions with 2n marked boundary
points, see Section 5). For m = 1, 2 this Pfaffian formula (along with the expressions
for ϑ) was previously derived by means of Conformal Field Theory [BG93], whereas
we give it a rigorous proof for general m both in discrete, and, thanks to the
convergence theorem, in continuous settings.

Another application of our new observables [Izy11] is the proof of convergence
of (multiple) Ising interfaces to SLE curves in multiply connected domains. In that
context, a proper choice of the observable F$ (i.e., the corresponding double cover
$) guarantees its martingale property with respect to the growing interface. To
prove that property, it is important to relate the values of F$ to the partitions
function of the model with relevant boundary conditions. In Section 5, we show
how to do it in the most general case, see Proposition 5.6. The simplest example of
an SLE process treated in this way (for which the use of a non-trivial double cover
is essential) is a radial Ising interface converging to radial SLE3.

For simplicity, in the present paper we work on the square grid, but all our
proofs remain valid for the self-dual Ising model defined on isoradial graphs (e.g.,
see [CS12]). We refer the reader interested in a detailed presentation of the basic
notions of discrete complex analysis on those graphs to the paper [CS11] and the
reader interested in the history of the Ising model to the paper [CS12] and references
therein.

1.3. Organization of the paper. In Section 2, we fix the notations and conven-
tions regarding discrete domains and the Ising model. In Section 3, we give the
definition of the spinor observable and discuss its properties (in particular, discrete
holomorphicity and boundary conditions), as well as the connections to spin corre-
lations. We then define the continuous counterparts of the observables and briefly
discuss their properties. Section 4 is devoted to the proof of main convergence
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results for spinor observables: Theorem 3.13 (convergence in the bulk) and The-
orem 3.16 (convergence on the boundary). We generalize our results to the case
of multiple boundary change operators in Section 5. Finally, in Section 6 we give
explicit formulae for the continuous observables f$ in the punctured half-plane and

for the scaling limits ϑ
C+

∞,0 appearing in Corollary B.
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2. Notation and conventions

2.1. Graph notation. By (bounded) discrete domain (of mesh δ) Ωδ we mean a
(bounded) connected subset of the square lattice δZ2 (an example of a discrete
domain is given on Fig. 1). More precisely, a discrete domain is specified by three
sets V(Ωδ) (vertices), F(Ωδ) (faces) and E(Ωδ) = Ein(Ωδ) ∪ Ebd(Ωδ) (interior edges
and boundary half-edges, respectively), with the following requirements:

• all four edges and vertices incident to any face f ∈ F(Ωδ) belong to E(Ωδ);
• every vertex in V(Ωδ) is incident to four edges or half-edges in E(Ωδ);
• every vertex that is incident to at least one edge or half-edge e ∈ E(Ωδ)

belongs to V(Ωδ);
• at least one of two faces incident to any edge e ∈ Ein(Ωδ) belongs to F(Ωδ).

For an interior edge e ∈ Ein(Ωδ) we denote by ze its midpoint. For a boundary
half-edge e ∈ Ebd(Ωδ) we denote by ze its endpoint which is not a vertex of Ωδ.
When no confusion arises we will identify an edge (or half-edge) e with a point ze.

By the boundary ∂Ωδ of Ωδ we will mean the set of all its boundary half-edges
Ebd(Ωδ) or, if no confusion arises, the set of corresponding endpoints ze.

A double cover of a discrete domain Ωδ is a graph Ω̃δ with a two-to-one local

graph isomorphism $ : Ω̃δ → Ωδ. Given a marked boundary half-edge a ∈ ∂Ωδ,
one can describe points z on a double cover by lattice paths γ running from a to z
in Ωδ, modulo homotopy and modulo an appropriate subgroup of the fundamental
group. If Ωδ is (k+1)-connected, that is, has k holes, then there are 2k double
covers, including the trivial one. Namely, to define a cover, for each hole one has to
specify whether a loop surrounding this hole lifts to a loop in the double-cover, or
to a path connecting points on different sheets. In the latter case we will say that

$ branches around that hole. If z is a point on a double cover Ω̃δ, we let z∗ ∈ Ω̃δ

be defined by $(z∗) = $(z) and z∗ 6= z. We will also use the obvious notation

V(Ω̃δ), E(Ω̃δ) etc.
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2.2. Ising model notation. We will work with the low-temperature contour rep-
resentation of the critical Ising model in Ωδ (see [Pal07]). We call a subset S of
edges and half-edges in Ωδ (see Fig. 1, note that we admit inner half-edges in S) a
generalized configuration or a generalized interfaces picture for this model, if

• each vertex in Ωδ is incident to 0, 2 or 4 edges and half-edges in S;
• if an edge e = e′∪ e′′ consists of two halves e′, e′′, then at most one of those

three belongs to S.

We will denote the set of all generalized configurations in Ωδ by Confgen(Ωδ). By
the boundary ∂S of S ∈ Confgen(Ωδ) we will mean the set of all half-edges e ∈ S
or corresponding points ze, if no confusion arises. The partition function of the
critical Ising model is given by

Z(Ωδ) =
∑

S∈Conf(Ωδ)

x|S|, x = xcrit =
√

2− 1 (2.1)

(the value x = xcrit will be fixed throughout the paper). Here and below |S| is the
total number of edges and half-edges in S, and

Conf(Ωδ) := {S ∈ Confgen(Ωδ) : ∂S ⊂ ∂Ωδ}.

The formula (2.1) endows the set Conf(Ωδ) of configurations, which corresponds
to free boundary conditions in the spin representation, with a probability measure,
the probability of a particular configuration S being x|S|/Z(Ωδ).

We will mostly work with subsets of Conf(Ωδ), and restrictions of the probability
measure to those subsets. Thus, we denote

Conf+(Ωδ) := {S ∈ Conf(Ωδ) : ∂S = ∅},

Confe1,...,en(Ωδ) := {S ∈ Conf(Ωδ) : ∂S = {ze1 , . . . zen} mod 2},
(2.2)

where “mod 2” means that if some of e1, . . . , en appear several times in the sub-
script (it will be useful for us to allow this), we keep in ∂S only those appearing an
odd number of times. In the spin representation, the subset Conf+(Ωδ) corresponds
to locally monochromatic boundary conditions, that is, along each boundary com-
ponent the spins are required to be the same (although they may be different on
different components). If a1, . . . , a2n ∈ ∂Ωδ, then Confa1,...,a2n(Ωδ) corresponds to
the configurations where the spins change from “+” to “−” at the boundary points
(half-edges) a1, . . . , a2n.

Remark 2.1. To simplify the notation, we will write Confe1,...,en(Ωδ) instead of

Conf$(e1),...,$(en)(Ω
δ) when e1, . . . , en ∈ Ω̃δ. One should remember that we always

consider Ising configurations or generalized interfaces pictures in the planar domain

Ωδ itself, even though we will define observables on double covers Ω̃δ.

3. Spinor holomorphic observables and their limits

3.1. Discrete holomophic spinor observables. In this subsection we will con-
struct spinor observables and prove their discrete holomorphicity. These observables
should be considered as natural generalizations of fermionic observables introduced
by Smirnov [Smi06, CS12] to the multiply connected setup. A discrete domain Ωδ,

its double cover $ : Ω̃δ → Ωδ, and a boundary half-edge a ∈ ∂Ω̃δ will be fixed
throughout this subsection. In order to give a consistent definition for all discrete
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Figure 1. An example of four-connected discrete domain Ωδ

and two generalized interfaces pictures SA,B ∈ Confa,z(Ω
δ), each

decomposed into a collection of loops and a simple lattice path
γA,B : a  z, as required in Definition 3.1. For a double cover

Ω̃δ, branching, say, around two small holes but not around the
big central one, one has l(SA) = 0, l(SB) = 2, and s(z, γA) =

−s(z, γB) as, being lifted on Ω̃δ, γA and γB end on different sheets.

domains, we need the following (technical) notation. The half-edge a, oriented from
an inner vertex to za, can be thought of as a complex number. Then we set

ηa := e−
i
2 (arg(a)+ 1

2π) = (ia/|a|)− 1
2 (3.1)

for some fixed choice of the sign. Note that, if a is south-directed, then ηa = ±1.

Given a point z = ze (i.e., the midpoint of an edge or the endpoint of a bound-

ary half-edge e ∈ E(Ω̃δ)) and a configuration S ∈ Confa,e(Ω
δ), we introduce the

complex phase of S with respect to z. First, we decompose S into a collection of
loops and a path γ running from $(a) to $(e) so that there are no transversal
intersections or self-intersections (see Fig. 1). A loop in such a decomposition will
be called non-trivial if it does not lift to a closed loop on the double cover (that
is, if it lifts to a path between points on different sheets). We denote by l(S) the
number of non-trivial loops in S. We also introduce a sign s(z, γ) := +1, if γ lifts

to a path from a to z on Ω̃δ, and s(z, γ) := −1, if it lifts to a path from a to z∗.

Definition 3.1. The complex phase of a configuration S ∈ Confa,z(Ω
δ) with respect

to a point z lying on a double cover $ : Ω̃δ → Ωδ is defined as

W$(z, S) := e−
i
2 w(γ) · (−1)l(S) · s(z, γ), (3.2)

where w(γ) denotes the winding (i.e., the increment of the argument of the tangent

vector) along γ. Then, we define a spinor observable on the double cover Ω̃δ as

F$(a, z) := iηa ·
∑

S∈Confa,z(Ωδ)

W$(z, S)x|S|. (3.3)

Remark 3.2. (i) W$(z, S) does not depend on the way one chooses the decomposi-
tion of a given configuration S into loops and the path γ. The proof is elementary,
and we leave it to the reader. Note that it is sufficient to check that the second
factor (−1)l(S)s(z, γ) is independent of a decomposition, as the rest is well known
(e.g., see [HS10, Lemma 7]).
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(ii) By definition, F$(a, z∗) ≡ −F$(a, z), thus we call F$(a, z) a spinor.

(iii) If $ is the trivial cover, then Definition 3.1 reproduces the original construction
due to Smirnov (e.g., see [CS12, eq. (2.10)]). We denote this observable by F0(a, z)
and the corresponding complex phase by W0(z, S).

The most important “discrete” properties of the observable (3.3) are revealed
in Theorem 3.3 below, which states its s-holomorphicity (see [Smi10, Section 3] or
[CS12, Definition 3.1]) and describes the boundary conditions. We introduce the
following notation: given a vertex v ∈ V(Ωδ), we consider four nearby corners of

faces incident to v, and identify them with the points vk := v+ eiπ(2k+1)/4 · δ/2
√

2,

k = 0, 1, 2, 3. We denote sets of all corners of Ωδ and its double cover Ω̃δ by Υ(Ωδ)

and Υ(Ω̃δ), respectively. Similarly to (3.1), for a corner c = vk ∈ Υ(Ω̃δ) we set

ηc := (i(c−v)/|c−v|)− 1
2 := e−iπ(2k+1)/8

(again, the particular choice of square root signs is unimportant, so we fix it once
forever for each of four possible orientations of c−v). We denote by

Prηc(F ) := Re(ηc F ) ηc = 1
2 (F + η2

c F )

the orthogonal projection of a complex number F ∈ C onto the line ηcR.

Theorem 3.3. For any corner c ∈ Υ(Ω̃δ) formed by edges or half-edges z′, z′′ ∈
E(Ω̃δ), one has

Prηc(F$(a, z′)) = Prηc(F$(a, z′′)). (3.4)

Moreover, if b ∈ ∂Ω̃δ \ {a, a∗} is a boundary half-edge, then F$(a, b) ‖ ηb, i.e.,

Priηb(F$(a, b)) = 0. (3.5)

Remark 3.4. Since our observables satisfy F$(a, z∗) ≡ −F$(a, z), the identities
(3.4) at two corners c, c∗ such that $(c) = $(c∗) are equivalent. The same is
fulfilled for the boundary condition (3.5).

Proof. Let v denotes the vertex incident to both z′ and z′′. There exists a natural
bijection Π : Confa,z′(Ω

δ) → Confa,z′′(Ω
δ), provided by taking “xor” of a gen-

eralized configuration S with two half-edges $(vz′) and $(vz′′). The well known
proof of the theorem for the trivial cover (e.g., see [CS12, Proposition 2.5] or [HS10,
Lemma 45]) assures that, for any S ∈ Confa,z′(Ω

δ),

Prηc(W0(z′, S)x|S|) = Prηc(W0(z′′,Π(S))x|Π(S)|).

Clearly, the same holds true with W0 replaced by W$, unless Π changes the number
of non-trivial loops l(S) or s(z′, γS) 6= s(z′′, γΠ(S)). However, it is easy to see that

Π always preserves the factor (−1)l · s: for instance, if there was a non-trivial loop
in S that disappeared in Π(S), then this loop has become a part of the path γΠ(S),
leading to the simultaneous change of the sign s.

To derive the boundary condition (3.5), it is sufficient to note that the winding
of any curve γ running from a to b is equal to (arg b− (arg a+π)) modulo 2π. �

The next proposition relates the boundary values of F$(a, ·) to spin correlations

in the Ising model. For a given double cover $ : Ω̃δ → Ωδ of a (k+1)-connected
domain Ωδ, let us fix the enumeration of inner boundary components γ1, . . . , γk so
that

$ branches around each of γ1, . . . , γm but not around γm+1, . . . , γk.
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For simplicity, below we assume that two marked boundary points a, b belong to

the outer boundary of Ω̃δ. We denote by Zab and Eab the partition function and the
expectation in the Ising model with “−” boundary conditions on the counterclock-
wise boundary arc ($(a)$(b)) ⊂ ∂Ωδ, “+” on the complementary arc ($(b)$(a)),
and monochromatic on all inner boundary components γ1, . . . , γk. Recall that these
boundary conditions require the spin to be constant along each γj . We denote this
(random) spin by σ(γj).

Remark 3.5. If some hole γj is a single face, then we do not impose any boundary
condition there and σ(γj) is just a spin assigned to this face.

Proposition 3.6. If a, b ∈ ∂Ω̃δ belong to the outer boundary and $(a) 6= $(b),
then

F$(a, b) = ±ηb · ZabEab[σ(γ1)σ(γ2) . . . σ(γm) ] (3.6)

(the choice of sign is explained in Remark 3.7). In particular, F0(a, b) = ±ηb · Zab.
Moreover,

F$(a, a) = iηa · Z+E+[σ(γ1)σ(γ2) . . . σ(γm) ]. (3.7)

Remark 3.7. The sign ± in (3.6) depends on particular choices of ηa, ηb and the

sheets of a, b on Ω̃δ. One way to fix it is as follows: let b be such that the counter-

clockwise boundary arc ($(a)$(b)) ⊂ ∂Ωδ lifts to (ab) ⊂ ∂Ω̃δ (otherwise, consider

F$(a, b∗) = −F$(a, b)). Then, one can replace ±ηb in (3.6) by −ηae−
i
2 wab , where

wab denotes the winding of the arc ($(a)$(b)).

Proof. The second identity is clear from the definition (3.3), since each configuration
S ∈ Confa,a(Ωδ) = Conf+(Ωδ) contributes the same amount iηa(−1)l(S)x|S| to both

sides of (3.7). To prove (3.6), note that each S ∈ Confa,b(Ω
δ) contributes ±ηbx|S|

to both sides, thus we only need to check that all the signs are the same. Given a
configuration S, decompose it into a path γ : $(a) $(b) and a collection of loops.

A loop contributes to l(S) (i.e., changes the sheet in Ω̃δ) if and only if it has an
odd number of components γ1, . . . , γm inside. Hence, removing all those loops from
the configuration results in the same sign change (−1)l(S) for both sides. Removing
the other loops (having an even number of those γj ’s inside) does not change the
signs. After removing all loops, moving γ across any of γj will change σ(γj) and the
sheet on which the lifting of γ ends (i.e., the sign s(b, γ)), again resulting in (−1)
factor at both sides. If finally γ goes along the counterclockwise arc ($(a)$(b)),
then S contributes x|S| to ZabEab[σ(γ1)σ(γ2) . . . σ(γm)], while its contribution to

the left-hand side is equal to iηae
− i

2 (wab−π)x|S| = −ηae−
i
2 wabx|S| = ±ηbx|S|, if γ

lifted to the double cover ends at b, and ηae
− i

2 wabx|S|, if it ends at b∗. �

3.2. Continuous spinors and convergence results. In this section we intro-
duce continuous counterparts of the discrete holomorphic spinor observables, which
we will later prove to be scaling limits thereof. For a moment, let us assume that Ω is
a bounded finitely connected domain whose boundary components are single points
γ1 = {w1}, . . . , γs = {ws} and smooth curves γ0, γs+1, . . . , γk. Given a double cover

$ : Ω̃ → Ω and a point a ∈ ∂Ω̃\{w1, . . . , ws}, we denote by fΩ
$(a, ·) : Ω̃ → C (or

just f$ for shortness) an analytic function which does not vanish identically and
satisfies the following properties:

(a◦) f$(a, z) ≡ −f$(a, z∗) everywhere in Ω̃;
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(b◦) f$(a, ·) is continuous up to ∂Ω̃ except, possibly, at the single-point bound-
ary components and at a, and satisfies Riemann boundary conditions

f$(a, z)
√
inz ∈ R, z ∈ ∂Ω̃ \ {a,w1, . . . , ws},

where nz denotes the outer normal to Ω at z;
(c◦) for each single-point boundary component {wj} the following is fulfilled:

if $ branches around wj , then there exists a real constant cj such that

f$(a, z) =

√
i cj√

z − wj
+O(1) as z → wj ;

otherwise f$ is bounded near wj , and thus has a removable singularity
there;

(d◦) in a vicinity of the point a, one has

f$(a, z) =

√
ina c

a

z − a
+O(1) as z → a

for a real constant ca.

The properties (b◦)–(d◦) should be thought of as natural continuous analogues
of those satisfied by F$(a, ·) on the discrete level. Namely, (b◦) corresponds to
the boundary condition (3.5); (c◦) turns out to be the correct formulation of this
boundary condition for microscopic holes; and (d◦) states that f$ has the simplest
possible behaviour near a, which roughly resembles the fact that F$(a, ·) fails to
satisfy (3.5) at one boundary edge only.

Remark 3.8. Lemma 3.10 below shows that properties (a◦)–(d◦) define the function
f$ uniquely up to multiplication by a real constant; moreover, ca 6= 0 unless f$
vanishes identically. Sometimes it is convenient to fix this constant so that

ca = 1. (3.8)

However, below we also work with non-smooth domains, for which ca is not well-
defined; therefore, we prefer to keep the multiplicative normalization of f$ unfixed.

The boundary value problem (a◦)–(d◦) is not easy to analyse directly. However,
the following trick relates it to a much simpler Dirichlet-type problem: given a
spinor f$, denote

h$(z) := Im

∫ z

(f$(ζ))2dζ, z ∈ Ω.

Note that the function (f$(ζ))2 = (f$(ζ∗))2 is analytic in Ω, so h$ is locally
well-defined and harmonic.

Lemma 3.9. A holomorphic spinor f$ satisfies the conditions (b◦)–(d◦) if and
only if h$ is a single-valued harmonic function satisfying the following properties:

(b◦h) h$ is continuous up to ∂Ω \ {a,w1, . . . ws}; moreover, h$ ≡ const and
∂nh$ ≤ 0 on all macroscopic inner boundary components γs+1, . . . , γk and
the outer boundary of Ω, where ∂n stands for the outer normal derivative;

(c◦h) h$ is bounded from above near single-point boundary components {wj};
(d◦h) h$ is bounded from below near the point a.

Proof. Let f$ be a holomorphic spinor such that (b◦)–(d◦) are fulfilled. On the
smooth boundary ∂Ω\{a,w1, . . . , ws}, one can reformulate the boundary condition
(b◦) as (f$(z))2 ·inz ≥ 0, which is equivalent to say that ∂inh$ ≡ 0 and ∂nh ≤ 0, as
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stated by (b◦h). Further, (c◦) is equivalent to say that h(z) = c2j log |z −wj |+O(1)
as z → wj , hence (c◦h) holds true. In particular, h$ is single-valued in Ω as it
is single-valued near each of wj and constant along each of macroscopic boundary
components. Similarly, (d◦) can be rewritten as h(z) = −(ca)2 Re na

z−a + O(1) as

z → a, which is equivalent to (d◦h).
Vice versa, if h$ satisfies Dirichlet boundary conditions on smooth macro-

scopic boundary components, then f$ = [∂yh$ + i∂xh$]1/2 is continuous up to

∂Ω̃ \ {a,w1, . . . , ws}. Then, one can easily apply the similar arguments as above to
deduce (b◦)–(d◦) from (b◦h)–(d◦h). �

Lemma 3.10. The holomorphic spinor fΩ
$(a, ·) with the properties (a◦)–(d◦) above,

if exists, is unique up to multiplication by a positive constant. Moreover, if φ : Ω→
Ω′ is a conformal map, then, again up to multiplicative constants,

fΩ
$(a, ·) = (φ′(z))

1
2 fΩ′

$′(φ(a), φ(·)) (3.9)

and hΩ
$(a, ·) = hΩ′

$′(φ(a), φ(·)), with $′ being the pushforward of $ by φ.

Proof. Suppose that f1, f2 both satisfy (a◦)–(d◦). Then, one can compose a lin-
ear combination f := ca2f1 − ca1f2 with non-zero coefficients, such that f satisfies
(a◦)–(c◦) and is bounded in a neighborhood of a. As above, define a harmonic func-
tion h(z) := Im

∫ z
(f(ζ))2dζ, and note that it is continous up to ∂Ω \ {w1, . . . , ws}.

As (b◦) implies ∂nh ≤ 0 everywhere on macroscopic boundary components, the
function h cannot attain its maximum there. Also, (c◦) says that h is bounded from
above in a neighborhood of each wj . Then, the maximum principle gives h ≡ const
and f ≡ 0 everywhere in Ω, i.e., f1 and f2 are proportional to each other.

For the second claim, it is sufficient to check the properties (a◦)–(d◦) for the
right-hand side of (3.9) and apply uniqueness, which we leave to the reader. �

The existence of a non-trivial solution f$ to the above boundary value problem
will follow from Theorem 3.13; we also refer the reader to [HP12] for a purely
analytic techniques developed for boundary problems of this kind.

The conformal covariance property (3.9) immediately allows one to extend the
definition of fΩ

$ to non-smooth of unbounded domains:

Definition 3.11. If Ω is a finitely connected bounded domain, such that ∂Ω con-
sists of smooth arcs and single points, we define fΩ

$(a, ·) as the unique, up to a
multiplicative constant, non-zero solution to the boundary value problem (a◦)–(d◦).
Otherwise we define it by (3.9), where Ω′ is any smooth bounded domain.

Further, we choose a harmonic function hΩ
$(a, z) :=

∫ z
(fΩ
$(a, ζ))2dζ so that

hΩ
$(a, ·) ≡ 0 on the boundary component of Ω containing the point a, thus hΩ

$ is
defined up to a multiplicative constant as well.

Remark 3.12. An equivalent definition of hΩ
$(a, ·) for non-smooth domains would be

to impose the conditions (b◦h)–(d◦h) given in Lemma 3.9 and the condition that f$ :=

[∂yh$ + i∂xh$]1/2 is a spinor on Ω̃. Indeed, the only condition in in Lemma 3.9
that relies on smoothness of ∂Ω is ∂nh$ ≤ 0 which can be reformulated in the
following conformally invariant way:

there is no b ∈ ∂Ω \ {a,w1, . . . , ws} such that h$(·) < h$(b) near b. (3.10)

For our convergence results, we assume that discrete domains Ωδ approximate
Ω in the Carathéodory topology, see [Pom92] or [CS11, Section 3.2]. The reader
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unfamiliar with that notion can think of the (stronger) Hausdorff convergence. To
simplify notation, we also assume that Ωδ has the same topology as Ω. The first
theorem says that discrete spinors defined in Section 3.1 (with respect to a fixed
double cover $ of the refining domains Ωδ) are uniformly close to their continuous
counterparts in the bulk of Ω.

Theorem 3.13. Suppose that Ωδ is a sequence of discrete domains of mesh size
δ approximating (in the sense of Carathéodory) a continuous finitely connected

domain Ω, and that aδ ∈ ∂Ω̃δ tends to some a ∈ ∂Ω̃ which is not a single-point
boundary component. Then, there exists a sequence of normalizing factors β(δ) =
β(δ; Ωδ, aδ, $) such that

β(δ)F$(aδ, ·)→ fΩ
$(a, ·), δ → 0,

uniformly on compact subsets of Ω.

Proof. See Section 4. �

When extending this convergence to the boundary, we will impose additional
regularity assumptions:

Definition 3.14. We say that a sequence of discrete domains Ωδ with marked
boundary points bδ approximating a planar domain Ω with a marked boundary point
b is regular at b, if

• near b, the boundary ∂Ω locally coincide with a horizontal or vertical line;
• there exist s, t > 0, such that, for any δ, V (Ωδ) contains a discrete rectangle

Rδ(s, t) := {δ · (k + i(l+ 1
2 )) : −s ≤ kδ ≤ s, 0 ≤ lδ ≤ t},

shifted and rotated so that bδ is the midpoint of its boundary side, and ∂Ωδ

coincides with that side in the s-neighborhood of bδ.

Remark 3.15. In fact, all our results can be directly extended to the case of a
straight, but not necessarily vertical or horizontal boundary (cf. [CS12, Theo-
rem 5.6]). Some additional technicalities are required to prove this result in the
full generality: note that fΩ

$ is not even continuous or bounded on the non-smooth
boundary, so one is forced to work with ratios, as, e.g., in Theorem 3.16 below.

Theorem 3.16. Let $1, $2 be two double covers of a bounded finitely connected
domain Ω with two marked points a, b on the outer boundary component, and let
Ωδ converge to Ω in the Carathéodory sense, aδ, bδ be boundary points converging
to a, b as δ → 0, and this convergence is regular at a and b. Then,

F$1
(aδ, bδ)F$2

(aδ, aδ)

F$1
(aδ, aδ)F$2

(aδ, bδ)
→ f$1

(a, b)

f$2
(a, b)

(3.11)

where both f$1
and f$2

are normalized by (3.8).

Remark 3.17. Formally, above we should have used different notation aδ1, a
δ
2 etc, to

denote points lying on different double covers, with $1(aδ1) = $2(aδ2). We prefer
to keep a simpler notation for the shortness.

Proof. See Section 4. �

In the next corollary, let $ be a fixed double cover of Ω, and γ1, . . . , γm be
those inner components of ∂Ω for which $ branches around γj . Denote by γδj the

corresponding components of ∂Ωδ.
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Corollary 3.18. Under the conditions of Theorem 3.16, as δ → 0, one has

Eaδbδ [σ(γδ1) . . . σ(γδm) ]

E+[σ(γδ1) . . . σ(γδm) ]
→ fΩ

$(a, b)

fΩ
0 (a, b)

=: ϑΩ
ab(γ1, . . . , γm) , (3.12)

where both fΩ
$ and fΩ

0 are normalized by (3.8). The limit ϑΩ
ab(γ1, . . . , γm) is a

conformal invariant of (Ω; a, b).

Proof. Denote σ(Γ) := σ(γδ1)σ(γδ2) . . . σ(γδm). Due to Proposition 3.6, one has

Eaδbδ [σ(Γ)]

E+[σ(Γ)]
=

ZaδbδEaδbδ [σ(Γ)]

Z+E+[σ(Γ)]
· Z+

Zaδbδ
=
F$(aδ, bδ)

F$(aδ, aδ)
· F0(aδ, aδ)

F0(aδ, bδ)
.

Thus, (3.12) immediately follows from Theorem 3.16. The limit is conformally
invariant due to the same conformal covariance property (3.9) of both fΩ

$ and fΩ
0

(observe also that the coefficients ca$, c
a
0 for both f$ and f0 change by the same

factor |φ′(a)|−1/2 when applying (3.9)). �

Remark 3.19. (i) Corollary 5.10 gives a generalization of this result for the case of
2n+2 marked boundary points and “+/− / . . . /+ /−” boundary conditions.

(ii) Let a third point d be marked on the outer boundary of Ω and the convergence
of Ωδ to Ω is regular at d as well. Then,

Zaδbδ

Zaδdδ
=
|F0(aδ, bδ)|
|F0(aδ, dδ)|

→ |f0(a, b)|
|f0(a, d)|

, (3.13)

and this limit is a conformal covariant of the multiply connected domain (Ω; a, b, d)
(namely, it is multiplied by the factor |φ′(b)|1/2|φ′(d)|−1/2 when applying a confor-
mal map φ). For simply connected Ω’s, this is given by [CS12, Corollary 5.7], and
we give a proof for multiply connected domains in the end of Section 4.

4. Proof of the main convergence theorems

In this section we prove Theorems 3.13 and 3.16 following the scheme developed
in [CS12] for simply connected domains. First of all, in order to transform the
boundary conditions (3.5) to the Dirichlet ones, we consider a discrete integral
Hδ := Im

∫
(F δ$(z))2dδz. Further, we observe that, under a proper normalization,

the functions Hδ and F δ$ have non-trivial subsequential limits on compact subsets
of Ω as δ → 0. We then show that any such subsequential limit is a solution to
the boundary value problem (a◦)–(d◦), and Lemma 3.10 guarantees that all those
limits are the same, concluding the proof of Theorem 3.13. Finally, we treat the
behaviour of F δ$ near the boundary points b and a to prove Theorem 3.16.

For technical purposes, we extend our domain slightly: denote by ∂F(Ωδ) and
∂V(Ωδ) the subsets of faces and vertices that are adjacent but do not belong to
F(Ωδ) and V(Ωδ), respectively. More precisely, ∂V(Ωδ) can be identified with the
set Ebd(Ωδ) of boundary half-edges and should be formally considered as a set of
pairs {(v; e) : e = (vintv), v 6∈ V(Ωδ), vint ∈ V(Ωδ)} (e.g., see [CS11, Section 2.1]),
and ∂F(Ωδ) should be treated in the same way. We set

V(Ωδ) := V(Ωδ) ∪ ∂V(Ωδ) and F(Ωδ) := F(Ωδ) ∪ ∂F(Ωδ).

We work with the discrete spinor F (z) = F$(a; z) defined on a double cover

Ω̃δ of a discrete multiply connected domain Ωδ, which we do not include in the
notation unless needed. Recall that it is s-holomorphic (i.e., satisfies (3.4)) and
obeys the boundary conditions (3.5) at all boundary half-edges e, except for one
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edge a on the boundary. We denote the corresponding vertex of ∂V(Ωδ) by va.
Observe also that F$ is not identically zero, since the positivity of spin correlations
and Proposition 3.6 yield (iηa)−1F$(a; a) > 0. These are the only properties of
F$(a; ·) that we will use in this section.

Recall that, in the continuous case, it was proved to be useful to transform the
boundary value problem (a◦)–(d◦) into a Dirichlet-type one by integrating f2

$. The
extension of this construction to the discrete setting is delicate, because the square
of discrete analytic function need not be discrete analytic. Fortunately, the tools
to treate this issue have already been developed in [Smi10, CS12]. Proposition 4.1
below summarizes these tools. Namely, properties (1)–(3) thereof show that one
can define the discrete analog of Im

∫
f2
$ as a pair of functions H• and H◦, one

of which is subharmonic and another superharmonic; properties (4)–(6) handle the
boundary conditions, and properties (7),(8) show that these two functions cannot
be too far from each other. This allows one to work with a pair H•, H◦ as if it was
a single harmonic function. Essentially, our analysis is based on a priori bounds for
H derived from simple harmonic measure estimates combined with the uniqueness
of solution to the boundary value problem (a◦)–(d◦).

We define two functions H• and H◦ on V(Ωδ) and F(Ωδ), respectively, by the
following rule: if c ∈ Υ(Ωδ) and e ∈ E(Ωδ), v ∈ V(Ωδ), f ∈ F(Ωδ) are all incident
to c, then

H•(v)−H◦(f) :=
√

2δ · |Prηc(F ($−1(e)))|2. (4.1)

Thanks to the square, this definition does not depend on the choice of the sheet,
and thanks to the basic definition (3.4) of s-holomorphicity, it does not depend on
the choice of e between the two edges (or boundary half-edges) adjacent to c.

Proposition 4.1. The functions H• and H◦ obey the following properties:

(1) they are well-defined up to an additive constant;
(2) if e ∈ E(Ωδ) is incident to f, f ′ ∈ F(Ωδ) and v, v′ ∈ V(Ωδ), then:

H•(v)−H•(v′) = Im[(F ($−1(e))2(v − v′)];
H◦(f)−H◦(f ′) = Im[(F ($−1(e))2(f − f ′)];

(3) ∆H◦(v) ≤ 0 and ∆H•(f) ≥ 0 for all v ∈ V(Ωδ), f ∈ F(Ωδ), where ∆
stands for the discrete Laplacian

(∆H)(x) :=
1

4δ2

∑
xk∼x

(H(xk)−H(x));

(4) if v ∈ ∂V(Ωδ) \ {va}, then H•(vint)−H•(v) ≥ 0;
(5) H◦ ≡ const =: Cj along each component of ∂F(Ωδ) (then we fix an additive

constant in the definition of H so that H◦ ≡ 0 on the boundary component
that contains a);

(6) one can modify the discrete Laplacian at all vertices vint ∈ V(Ωδ) incident
to v ∈ ∂V(Ωδ) \ {va} and set values of H• on ∂V(Ωδ) \ {va} to be equal
to the corresponding Cj, so that (3) and (4) will still hold (moreover, this
modification do not destroy any estimates or convergence results for discrete
harmonic functions defined on V(Ωδ));

(7) if v1, v2, v3, v4 ∈ V(Ωδ) and f1, f2, f3, f4 ∈ F(Ωδ) are adjacent to some
inner face f ∈ F(Ωδ) and m := minH◦(fj), then, for all j = 1, 2, 3, 4,

H•(vj)−H◦(f) ≤ const · (H◦(f)−m)
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with some universal constant;
(8) if f1, f2, f3, f4 ∈ F(Ωδ) and v1, v2, v3, v4 ∈ V(Ωδ) are adjacent to some

inner vertex v ∈ V(Ωδ) and M = maxH•(vj), then, for all j = 1, 2, 3, 4,

H•(v)−H◦(fj) ≤ const · (M −H•(v))

with some universal constant.

Proof. All these properties are known in the simply connected case (e.g., see [CS12,
Section 3]). Since (2), (3), (7) and (8) are local consequences of s-holomorphicity
(3.4), they extend immediately to the multiply connected setup. Properties (4) and
(5) follow from the boundary condition (3.5) using (2). The property (6) is also a
local property of s-holomorphic function satisfying the boundary condition (3.5),
see [CS12, Section 3.6] or [DHN11, Proof of Proposition 8]. So we only need to check
(1), i.e. that the summation of (4.1) along any loop gives zero. For homotopically
trivial loops this follows from the local consistency of the definition (4.1) exactly as
in the simply connected case, and extends to loops running around holes by (5). �

Remark 4.2. Note that we have an immediate corollary of properties (1)–(4): if F
is an s-holomorphic spinor satisfying the boundary condition (3.5) everywhere on
∂Ωδ including the point a, then F ≡ 0. Indeed, (3) implies that the corresponding
function H• attains its maximal value on the boundary, and then H• ≡ const due
to the property (4) which now holds true everywhere on ∂Ωδ. Moreover, similar
arguments show that a solution to the discrete boundary value problem (3.4), (3.5)
is unique up to a multiplicative constant (the proof mimics [CS12, Remark 5.1]).

In what follows, we denote by hmδ
Ωδ(v, γ) the discrete harmonic measure of a set

γ ⊂ V(Ωδ) in the discrete domain Ωδ viewed from a vertex v. Recall that hmδ
Ωδ(v, γ)

is given by the probability of the event that the simple random walk starting at
v hits γ before ∂V(Ωδ) \ γ. We use the same notation hmδ

Ωδ(f, γ) for the discrete
harmonic measure of a set γ ⊂ F(Ωδ) viewed from a face f . Essentially, we will

use only the following elementary properties of hmδ, which also are fulfilled for the
discrete Laplacian modified near the boundary as it is mentioned in Proposition 4.1,
property (6) (see [CS12, Section 3.6] or [DHN11, Proof of Proposition 8]):

• weak Beurling-type estimate: there exist absolute (i.e., independent of δ,
Ωδ and γ) constants C, p > 0 such that the following estimate holds true:

hmδ
Ωδ(z, ∂Ωδ \ γ) ≤ C ·

[
dist(z; γ)

distΩδ(z; ∂Ωδ \ γ)

]p
, (4.2)

where distΩδ(z,K) means the smallest r > 0 such that z and K are con-
nected inside Ωδ ∩Br(z).
• uniform estimates for the exit probabilities in rectangles: if Rδ = Rδ(2s, t)

is a discretization of the rectangle (−2s, 2s)×(0, t) with s ≥ t, γ0, γ1 denote
correspondingly the bottom and the top side of Rδ, then

C1 ·
Imz

t
≤ hmδ

Rδ(z, γ1) ≤ hmδ
Rδ(z, ∂R

δ \ γ0) ≤ C2 ·
Imz

t
(4.3)

for all z ∈ Rδ(s, t), where C1, C2 > 0 are some absolute constants.

Note that (4.2) and (4.3) hold true for arbitrary isoradial graphs (see [CS11]).

Now we proceed to the definition of normalizing factors β(δ) used in Theo-
rem 3.13. Let a sequence of discrete domains Ωδ approximate a finitely connected
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Figure 2. (A) The proof of the estimate β̃δr ≤ const · βδ2r in
Lemma 4.4. If −H◦ is big at f , it is also big at vertices near some
path γ : f  wj . Since the harmonic measure of γ seen from v
is uniformly bounded from below, −H•(v′) has to be big as well.

(B) Similar considerations near a give the estimate βδr ≤ const · β̃δr .

planar domain Ω, whose boundary ∂Ω consists of single-point inner components
γ1 = {w1}, . . . , γs = {ws} and continua γs+1, . . . γk, γk+1, where γk+1 denotes the
outer boundary of Ω. Let r∗ > 0 be chosen sufficiently small so that, for any r ≤ r∗,

Ω(r) := Ω \ [∪sj=1Br(wj) ∪Br,Ω(a)]

has the same topological structure as Ω, where Br,Ω(a) denotes the proper con-
nected component of Br(a)∩Ω. Further, let δ∗ = δ∗(r) > 0 be chosen small enough
so that, for any δ ≤ δ∗, one has |aδ − a| ≤ 1

2r and γδj ⊂ B 1
2 r

(wj) for all j = 1, .., s.

Let F δ = F δ$(aδ, · ) be the spinor observable (3.3) in Ωδ and Hδ
◦ , H

δ
• be the corre-

sponding discrete integrals Im
∫ δ

(F δ(z))2dδz defined by (4.1) and Proposition 4.1.

We introduce normalizing factors βδr > 0 by

(βδr )−1 := maxΩδ(r)

∣∣Hδ
∣∣ , (4.4)

where, similarly to the continuous setup, Ωδ(r) := Ωδ \ [∪sj=1B
δ
r (wj)∪Bδr,Ω(a)] and

Bδr (wj), B
δ
r,Ω(a) stand for discrete r-neighborhoods of wj and a in Ωδ.

Remark 4.3. (i) Note that the right-hand side of (4.4) does not vanish. Indeed, if
it did, F δ(aδ, ·) would also vanish identically.

(ii) Since the limiting function f$ has singularities at a and wj , it is natural to cut
them off when taking a maximum to get a correct normalizing factor.

This choice of βδr guarantees that |βδrHδ| ≤ 1 in Ωδ(r). Our next goal is to show
that, for a fixed r, the functions βδrH

δ are uniformly bounded on any compact
subset of Ω. This is achieved by the following lemma:

Lemma 4.4. For any r ≤ 1
2r∗, the ratio βδ2r/β

δ
r is bounded uniformly in δ ≤ δ∗(r).
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Proof. Denote Ω̃δ(r) := Ωδ(r) \Bδ2r,Ω(a) and

(β̃δr )−1 := maxΩ̃δ(r) |H
δ|.

By definition, Ωδ(2r) ⊂ Ω̃δ(r) ⊂ Ωδ(r), hence βδr ≤ β̃δr ≤ βδ2r . We first show that

βδ2r/β̃
δ
r is uniformly bounded. Recall that Hδ

• is subharmonic, Hδ
◦ is superharmonic,

Hδ
•(v) ≥ Hδ

◦(f) for adjacent v and f , and Hδ ≡ 0 on the boundary component
containing a. Therefore,

(β̃δr )−1 = max
{

max∂Ω̃δ(r)H
δ
• ; −min∂Ω̃δ(r)H

δ
◦

}
. (4.5)

Note that in fact

max∂Ω̃δ(r)H
δ
• ≤ max∂Ωδ(2r)H

δ
• . (4.6)

Indeed, the function Hδ
• is subharmonic in Bδ2r(wj)∩Ωδ, j = 1, . . . , s, and it cannot

attain its maximum on the boundary component γδj ⊂ Bδ2r(wj) because of property

(4) of Proposition 4.1 (and, if γδj consists of one face only, then Hδ
• is subharmonic

everywhere in Bδ2r(wj)).

Thus, either (β̃δr )−1 ≤ (βδ2r)
−1 and then there is nothing to prove, or

(β̃δr )−1 = −Hδ
◦(f) for some f ∈ ∂Bδr (wj).

Since Hδ
◦ is superharmonic, in this case there exists a path of consecutive neighbors

γ = {f = f1 ∼ f2 ∼ . . . } such that −(β̃δr )−1 = Hδ
◦(f1) ≥ Hδ

◦(f2) ≥ . . . . This path
can only end up at γδj , where the superharmonicity of Hδ

◦ fails (see Fig. 2A). Denote
by γ′ the set of vertices adjacent to γ. Then, the property (8) in Proposition 4.1
ensures that

Hδ
• + (β̃δr )−1 ≤ const · ((βδ2r)−1 −Hδ

•) everywhere on γ′,

where we have used the estimate maxBδ2r(wj)H
δ
• ≤ (βδ2r)

−1 which was explained

after (4.6). Hence, for some absolute constant p1 > 0,

Hδ
• ≤ −p1(β̃δr )−1 + (βδ2r)

−1 everywhere on γ′.

Further, there exists a constant p2 > 0 independent of r and δ such that, for
any vertex v ∈ ∂Bδ2r(wj), one has hm(v, γ′) := hmδ

Ωδ(2r)∪Bδ2r(wj)
(v, γ′) ≥ p2 (see

Fig. 2A). By subharmonicity of Hδ
• , this implies

Hδ
•(v) ≤ (−p1(β̃δr )−1+ (βδ2r)

−1) · hm(v, γ′) + (βδ2r)
−1 · (1−hm(v, γ′))

≤ −p1p2(β̃δr )−1 + (βδ2r)
−1.

Since Hδ
•(v) ≥ −(βδ2r)

−1, we infer that βδ2r/β̃
δ
r ≤ 2(p1p2)−1.

It remains to prove that β̃δr/β
δ
r is uniformly bounded, which is done by exactly

the same argument with the roles of Hδ
• and Hδ

◦ interchanged, inequalities reversed,
and a playing the role of wj . Note that the uniform lower bound for the harmonic
measure hm(f, γ′) still holds (this time, γ′ will be the set of faces adjacent to a
vertex path γ which terminates at a, see Fig. 2B), provided that f is chosen, say, to
be the closest face to some fixed z ∈ Ω\B2r,Ω(a) (e.g., see [CS11, Lemma 3.14]). �

Now we are able to claim precompactness of the families {Hδ}, {F δ$} as δ → 0.
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Lemma 4.5. Fix some sufficiently small r > 0. Then, there exists a subse-
quence δ = δk → 0 such that the functions βδrH

δ converge to a harmonic function
H : Ω→ R uniformly on compact subsets of Ω. Moreover, the functions βδr (F δ)2

converge to F 2 := ∂yH + i∂xH uniformly on compact subsets of Ω.

Proof. Definition of βδr and Lemma 4.4 guarantee that βδrH
δ are uniformly bounded

in Ωδ(2−kr) for any k ≥ 0, and hence on all compact subsets of Ω. Due to [CS12,

Theorem 3.12], the functions βδrH
δ and the spinors

√
βδrF

δ are thus equicontinuous
on compact subsets of Ωδ, and the Arzela-Ascoli theorem implies their subsequential
convergence to a continuous function H and a spinor F , respectively. Morera’s theo-
rem, together with the discrete holomorphicity of F δ, implies that F is holomorphic.

Since increments of βδrH
δ are given by discrete integrals Im

∫ δ
[βδr (F δ(z))2dδz], one

has H = Im
∫

(F (z))2dz, so H is a harmonic function defined in Ω. �

The next step is to show that all these subsequential limits solve the correct
boundary value problem. It is convenient to work with the function H. Recall that,
due to Proposition 4.1 (properties (5) and (6)), Hδ ≡ Cδj on each of macroscopic

boundary components γδs+1, . . . , γ
δ
k+1. By definition (4.4) of the normalizing factors

βδr , we have |βδrCδj | ≤ 1. Thus, taking a subsequence once more, we can assume
that

βδrC
δ
j → cj as δ → 0, j = s+1, . . . , k+1, (4.7)

for some constants cj such that |cj | ≤ 1.

Lemma 4.6. For any subsequential limit H from Lemma 4.5 satisfying (4.7), the
conditions (b◦h)–(d◦h) from Lemma 3.9 hold true. Moreover, supΩ(r) |H| = 1.

Remark 4.7. Below we use the equivalent reformulation (3.10) of the boundary
condition ∂nH ≤ 0 which does not rely on the smoothness of ∂Ω.

Proof. Property (b◦h). Our first goal is to prove that H satisfies the Dirichlet bound-
ary conditions on all macroscopic boundary components γj , j = s+1, . . . , k+1. Fix
some small r′ > 0, and recall that |βδrHδ| ≤ C(r′) everywhere in Ωδ(r′), where C(r′)
does not depend on δ. Due to superharmonicity of Hδ

◦ , for any face f ∈ Ωδ(r′), one
has

βδrH
δ
◦(f) ≥ βδrCδj · hmδ

Ωδ(r′)(f, γ
δ
j )− C(r′)(1−hmδ

Ωδ(r′)(f, γ
δ
j )) . (4.8)

Similarly, subharmonicity of Hδ
• implies that, for any vertex v ∈ Ωδ(r′), one has

βδrH
δ
•(v) ≤ βδrCδj · hmδ

Ωδ(r′)(v, γ
δ
j ) + C(r′)(1−hmδ

Ωδ(r′)(v, γ
δ
j )) . (4.9)

Now let f and v approximate some point z ∈ Ω(r′) as δ → 0. Since both discrete
harmonic measures converge to the continuous one, and Hδ

◦(f) ≤ Hδ
•(v) for incident

f and v, (4.8) and (4.9) yield

|H(z)− cj hmΩ(r′)(z, γj)| ≤ C(r′)(1−hmΩ(r′)(z, γj)) .

In particular, H(z) → cj as z tends to γj . The boundary condition (4) from
Proposition 4.1 survives in the limit and gives (3.10) due to [CS12, Remark 6.3].

Properties (c◦h) and (d◦h). By subharmonicity of Hδ
• , the inequality βδrH

δ
• ≤ 1

extends from ∂Bδr (wj) ⊂ ∂Ωδ(r) to the whole discrete disc Bδr (wj), thus H ≤ 1 in
a vicinity of wj . Similarly, superharmonicity of Hδ

◦ and the condition Hδ
◦ ≡ 0 on

the boundary component containing a imply H ≥ −1 near a.
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Normalization supΩ(r) |H| = 1. Recall that, similarly to (4.5), |βδrHδ| attains its

maximum maxΩδ(r) |βδrHδ| = 1 on the boundary

∂Ωδ(r) ⊂ ∂Bδr,Ω(a) ∪ ∂Bδr (w1) ∪ · · · ∪ ∂Bδr (ws) ∪ γδs+1 ∪ · · · ∪ γδk+1.

Note that (4.7) and the property (b◦h) yield

maxγδs+1∪···∪γδk+1
|βδrHδ| → maxγs+1∪···∪γk+1

|H|.

Moreover, as βδrH
δ uniformly converge to H on all compact subsets of Ω, one has

max∂Bδr(w1)∪···∪∂Bδr(ws) |β
δ
rH

δ| → max∂Br(w1)∪···∪∂Br(ws) |H|.

Finally, the convergence of βδrH
δ to H inside of Ω also imply

max∂Bδr,Ω(a) |βδrHδ| → max∂Br,Ω(a) |H|,

since the estimates (4.8),(4.9) guarantee that |βδrHδ| are uniformly small near the
boundary component of Ω containing a. �

Proof of Theorem 3.13. We set β(δ) :=
√
βδr for a small fixed r > 0. By

Lemma 4.5, the functions (β(δ))2Hδ and β(δ)F δ have subsequential limits H and F ,
respectively. Lemmas 4.6, 3.9 and 3.10 guarantee that all these possible limits H are
the same. Moreover, this unique limit is nontrivial due to the normalization condi-
tion in Lemma 4.6, and thus coincides with hΩ

$ normalized so that supΩ(r) |hΩ
$| = 1.

Since H(z) = Im
∫ z

(F (ζ))2dζ, we conclude that F = fΩ
$. �

The next lemma shows that the convergence of β(δ)F δ holds true at the boundary
point b (in fact, it follows from our proof that this convergence is uniform up to
straight parts of the boundary ∂Ω). Note that a similar result has been obtained in
[CS12, Theorem 5.6] under milder assumptions. For convenience of the reader, we
give a shorter proof here using our (stronger) regularity assumptions for Ωδ near b.

Lemma 4.8. Suppose that, under the conditions of Theorem 3.13, we are given a
sequence of marked points bδ ∈ ∂Ωδ, bδ → b, and the convergence Ωδ → Ω is regular
at b. Then, β(δ)|F δ(bδ)| → |fΩ

$(b)| as δ → 0.

Proof. Below we assume that Ω and Ωδ are shifted and rotated so that bδ = b = 0,
Ωδ contains a discrete rectangle Rδ(s, t) for some fixed s, t > 0, and ∂Ωδ locally
coincides with the boundary ∂Cδ+ of the discrete upper half-plane Cδ+ (see Defini-

tion 3.14). We also assume that the additive normalization of the functions Hδ is
chosen so that they vanish on the macroscopic boundary component containing b.

Recall that, on compact subsets of Ω, β(δ)F δ and (β(δ))2Hδ converge to the
properly normalized functions f$ and h$, respectively. Moreover, the uniform
estimates (4.8),(4.9) guarantee that the convergence (β(δ))2Hδ → h$ remains true
up to ∂Ω \ {a,w1, . . . , ws}. In particular, the functions (β(δ))2Hδ converge to h$
uniformly in the fixed rectangle R(s, t) around b.

Let

µ := (f$(0))2 = ∂yh$(0)

and {
Hδ◦(f) := Imf, for faces f ∈ Cδ+,
Hδ•(v) := Im v + δ√

2
, for vertices v ∈ Cδ+
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(note that Hδ can be defined by (4.1) starting with the constant s-holomorphic
function Fδ ≡ 1 which satisfies the boundary conditions (3.5) on ∂Cδ+). Then, for
any ε > 0, one can find a small d > 0 such that

|(β(δ))2Hδ − µHδ| ≤ εd everywhere in Rδ := Rδ(2d, d)

for all sufficiently small δ’s. Since both Hδ◦ and Hδ• are discrete harmonic and
satisfy the same Dirichlet boundary conditions as Hδ near bδ, the sub- and super-
harmonicity of Hδ

• and Hδ
◦ implies that

(β(δ))2Hδ
◦ − µHδ◦ ≥ −εd · hmRδ( · , ∂Rδ \ ∂Cδ+),

(β(δ))2Hδ
• − µHδ• ≤ εd · hmRδ( · , ∂Rδ \ ∂Cδ+)

everywhere in Rδ. (4.10)

Let vb := 1
2 iδ be the inner vertex of the boundary half-edge b (see notation on

Fig. 3A). Estimating the discrete harmonic measure hmRδ(vb, ∂R
δ \∂Cδ+) by (4.3),

one obtains
√

2δ · |β(δ)F δ(b) cos π8 |
2 = Hδ

•(vb) ≤ µHδ•(vb) + const · εδ.

Since Hδ•(vb) = δ
2 + δ√

2
= (
√

2 cos2 π
8 )δ, this gives

|β(δ)F δ(b)|2 ≤ µ+ const · ε.

Note that this bound also holds true for the value |β(δ)F δ(b′)|2, where b′ := δ
denotes the neighboring boundary edge and v′b := (1 + 1

2 i)δ is the corresponding

inner vertex (see notation on Fig. 3A). Now let b′′ := ( 1
2 + 1

2 i)δ be the midpoint

of the edge (vbv
′
b), and fb := ( 1

2 + i)δ be an inner face incident to both vb and v′b.

Using (4.10) and estimating hmRδ(fb, ∂R
δ \ ∂Cδ+) by (4.3), one obtains

Re(β(δ)F δ(b′′))2 · δ = Hδ
◦(fb) ≥ µδ − const · εδ.

Note that for any complex number ξ ∈ C one has

Re(ξ2) ≤ [2 cos2 π
8 ]−1 · (|Pre−iπ/8(ξ)|2 + |Preiπ/8(w)|2).

Therefore, we arrive at the inequalities

µ− const · ε ≤ Re(β(δ)F δ(b′′))2

≤ [2 cos2 π
8 ]−1 · (|Pre−iπ/8(β(δ)F δ(b′′))|2 + |Preiπ/8(β(δ)F δ(b′′))|2)

= [2 cos2 π
8 ]−1 · (|Pre−iπ/8(β(δ)F δ(b))|2 + |Preiπ/8(β(δ)F δ(b′))|2)

= 1
2 (|β(δ)F δ(b)|2 + |β(δ)F δ(b′)|2) ≤ µ+ const · ε.

Since ε can be chosen arbitrary small, this yields limδ→0 |β(δ)F δ(b)|2 = µ. �

Finally, we work out the relation of the values of discrete observables F δ at the
points aδ to the growth rate of their limit f$ near a.

Lemma 4.9. Under the conditions of Theorem 3.13, assume also that the con-
vergence Ωδ → Ω is regular at a. For j = 1, 2, let $j be double covers of Ωδ,
βj(δ)F

δ
$j → f$j , and caj denote the corresponding coefficients in the expansions of

f$j near a (see (d◦) in the definition of f$j given in Sect. 3.2). Then,

β1(δ)F δ$1
(aδ)

β2(δ)F δ$2
(aδ)

→ ca1
ca2
. (4.11)
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Figure 3. (A) Notation near bδ used in the proof of Lemma 4.8.
(B) Notation near aδ used in the proof of Lemma 4.9.

Proof. Below we assume that Ω and Ωδ are shifted and rotated so that aδ = a = 0,
Ωδ contains a discrete rectangle Rδ(s, t), and ∂Ωδ locally coincides with ∂Cδ+. We

also write F δ1,2 for F δ$1,2
and f1,2 for f$1,2

. Denote

Kδ :=
β1(δ)F δ1 (aδ)

β2(δ)F δ2 (aδ)
.

Recall that both F δj (a) are positive multiples of some fixed complex number iηa
(see Proposition 3.6), thus Kδ > 0. Taking a subsequence, we may assume that
Kδ → k < +∞ as δ → 0 (if k = +∞, then swap F δ1 and F δ2 and consider the
inverse ratio (Kδ)−1). Note that

β1,2(δ)F δ1,2(z) ⇒
δ→0

f1,2(z) = ica1,2 z
−1+O(1) inside R(s, t).

Therefore, it is sufficient to prove that the function

F δ(z) := Kδ · β2(δ)F δ2 (z)− β1(δ)F δ1 (z),

defined in Rδ(s, t), converges to a limit which remains bounded near a = 0, since
this will immediately give kca2 − ca1 = 0 for any subsequential limit.

Note that, being a real linear combination of F δ1 and F δ2 , the function F δ is s-
holomorphic in the discrete rectangle Rδ(s, t) and satisfies the boundary condition
(3.5) on its bottom side, including the point aδ, where F δ(aδ) = 0. Thus, (4.1)

allows one to define a discrete integral Hδ := Im
∫ δ

(F δ(z))2dδz inside Rδ(s, t) so

that Hδ ≡ 0 everywhere on the bottom side of Rδ(s, t).
We claim that both functions βj(δ)F

δ
j , and hence F δ and Hδ, are uniformly

bounded on the top, left and right sides of the smaller rectangle Rδ( 1
2s, d) (see

Fig. 3B for the notation), where d � s. On the top side, this follows from the
uniform convergence of βj(δ)F

δ
j to a continuous limit. In order to prove a uniform

bound on the left and the right sides, note that, for u ∈ ± 1
2s+R(2d, 2d), the second

terms in (4.8) and (4.9) can be uniformly estimated using (4.3) in the following way:

1− hmΩδ(r′)(u, γ
δ
0) ≤ const (s, t, r′) · Imu.

Therefore, (βj(δ))
2Hδ

j (u) = O(Imu) in neighborhoods of the left and the right sides

of Rδ( 1
2s, d). Hence, βj(δ)F

δ
j = O(1) on those sides due to [CS12, Theorem 3.12].

Thus, Hδ is uniformly bounded on the top, left and right sides of the rectangle
Rδ( 1

2s, d) and vanishes on its bottom side. Using super-/sub-harmonicity of Hδ
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on faces/vertices, and uniform estimates (4.3), one easily deduces from here that
Hδ(u) = O(Imu) everywhere in Rδ( 1

4s, d). Applying [CS12, Theorem 3.12] once

again, we conclude that F δ = O(1) in Rδ( 1
4s, d). Hence, kca2 − ca1 = 0. �

Proof of Theorem 3.16. One has

F$1(bδ)F$2(aδ)

F$1
(aδ)F$2

(bδ)
=
β2(δ)F$2(aδ)

β1(δ)F$1
(aδ)

· β1(δ)F$1(bδ)

β2(δ)F$2
(bδ)

→
(ca1)−1fΩ

$1
(a, b)

(ca2)−1fΩ
$2

(a, b)
,

where we have applied Lemmas 4.9 and 4.8 to the first and the second factors. �

Proof of Remark 3.19(ii). Let r > 0 be chosen small enough. As above, it is
sufficient to prove (3.13) for any subsequence δ = δk → 0 such that β(δ)F δ0 converge
to some nontrivial continuous limit. But this immediately follows from Lemma 4.8
applied to both boundary points bδ → b and dδ → d, since the properly normalized
observables β(δ)F δ0 (aδ, · ) converge to fΩ

0 (a, · ) at both b and d. �

5. Multiple boundary change operators

In this section, we follow [Hon10] to extend the definition of the spinor observ-
ables to the case of multiple marked points on the boundary. We show that these
observables (we call them multi-source ones) are still s-holomorphic. Moreover, by
analysing boundary value problems they solve, we prove recurrence relations that
eventually allow one to express all these observables in terms of the basic ones
introduced in Section 3.

The reason to introduce the multi-source observables is revealed in Propositions
5.4 and 5.6, where we establish their relation to spin correlations and partition func-
tions, respectively. The latter is especially important in view of two applications.
First, it allows one to prove the discrete martingale property of those observables
with respect to interfaces growing in multiply connected domains, leading to a de-
scription of scaling limits thereof [Izy11]. Second, in the case of 2n microscopic
holes carrying one boundary change operator each, the Kramers-Wannier duality
relates the corresponding partition function to the 2n-points spin-spin correlations
in the critical Ising model with free boundary conditions. This can be used to
prove the conformal covariance of their scaling limits, which would complement the
results of [CHI12] and this paper.

Consider a domain Ωδ with 2n+1 marked points a := a0, a1, . . . , a2n ∈ ∂Ωδ

and an inner edge z. Each configuration S ∈ Confa0,a1,...,a2n,z can be decomposed
into a collection of (mutually disjoint, non-self-intersecting) loops and n+1 curves
connecting ak’s and z in some manner. In order to define the complex phase of S,
we draw n artificial arcs ν1, . . . , νn connecting $(a1) to $(a2), . . . , $(a2n−1) to

$(a2n), respectively, and fix the way how they lift to the double cover Ω̃. Adding
these arcs to a configuration promotes it to a collection of loops and a single curve
γ running from $(a0) to $(z). As we admit intersections of the artificial arcs with
curves constituting S, this time the loops can be self-intersecting, see Figure 4.

Definition 5.1. We define the complex phase W$(z, S) to be e−
i
2 w(γ)(−1)l(S)s(z, γ)

times (−1)I(S), where I(S) is the number of loops in S∪ν1∪· · ·∪νn that have zero
winding modulo 4π, and other factors are as in Definition 3.1. Further, we define
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Figure 4. (A) A doubly connected domain Ωδ and a configura-
tion S ∈ Confa0,a1,...,a6;z(Ω

δ). Adding artificial arcs (dashed lines),
we promote S to a collection of loops and a simple path γ running
from $(a0) to $(z). The loop containing a5 and a6 has winding
0, thus contributing to I(S). (B) A configuration contributing to
f(a0, a1, a2, a3, a4, a5, a6; a3). It also contributes the same value

(up to a complex factor e−
i
2 w(ν2:a4→a3)) to f(a0, a1, a2, a5, a6; a4).

the multi-source observable by the formulae

F$(a0, a1, . . . , a2n; z) := iηa ·
∑

S∈Confa,a1,...a2n,z(Ωδ)

W$(z, S)x|S|. (5.1)

Remark 5.2. In fact, the only data we use concerning each of the artificial arcs νs is

its winding w(νs) modulo 4π and the way how it lifts to Ω̃. The reader may check
that altering the choice of {νs} can only result in a sign change of the observable.

The following straightforward generalization of Theorem 3.3 holds true:

Proposition 5.3. The observables (5.1) are s-holomorphic spinors satisfying the

boundary condition (3.5) everywhere on ∂Ω̃δ \ {a0, . . . , a2n, a
∗
0, . . . , a

∗
2n}.

Proof. The proof is essentially the same as the one of Theorem 3.3. The only differ-
ence is that now the bijection Π between the sets of configurations Confa,a1,...,a2n,z′

and Confa,a1,...,a2n,z′′ can create or destroy a loop which is self-intersecting. If such
a loop has winding 2π modulo 4π, then there is no difference with the case of a

simple loop. If it has winding 0 modulo 4π, then its contribution to e−
i
2 w(γ) after

it becomes a part of γ is minus that of a simple loop, which is compensated by the
simultaneous change of I(S) by one. The boundary conditions follow in the same
way as before. �

We now turn to the relation of the multi-source observables with spin correlations
and partition functions. Let 2n+2 distinct boundary points a = a0, a1, . . . , a2n,

a2n+1 = b be chosen on the outer boundary of Ω̃δ, and let $ be a double cover that
branches around boundary components γ1, . . . , γm and does not branch around the
others. Write also σ(Γ) := σ(γ1) . . . σ(γm), with σ(Γ) = 1 if m = 0.

Proposition 5.4. We have

F$(a,A; b) = ±ηbZa,A,bEa,A,b[σ(Γ) ], (5.2)
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where the subscripts refer to the model with boundary change operators at all the
marked points a, a1, . . . , a2n, b.

Proof. The proof follows from definition of F$(a,A; ·) similarly to (3.6), so we leave
it to the reader. �

Remark 5.5. Let us describe one way to fix the sign in (5.2). Suppose that, starting

at a and tracing the outer boundary of Ω̃δ in the counterclockwise direction, we
find the marked points a, a1, . . . , a2n, b in that order. Let the artificial arcs νs run
outside the domain, following the boundary arcs (a2s−1, a2s). Then, assuming that
the arcs ($(a2s−1)$(a2s)) carry “+” boundary conditions, one can replace ±ηb
in the right-hand side of (5.2) by −ηae−

i
2 wab , where wab is the winding of the

counterclockwise boundary arc ($(a)$(b)), cf. Remark 3.7.

For the next proposition, we allow the marked points a = a0, . . . , a2n+1 = b to be
anywhere on the boundary. Denote by $Z the double cover that branches around
all boundary components of Ωδ carrying an odd number of marked points and does
not branch around the others.

Proposition 5.6. Let Ωδ be a discrete domain. One has

F$Z(a,A; b) = ±ηb · Za,A,b.

Proof. Any configuration S ∈ Confa,A,b contributes the same value ±ηbx|S| to both
sides of the equation, so it is sufficient to check that W (b, S) does not depend on S.
It is convenient to add one more artificial arc ν0 connecting b to a, and to think that
the arcs ν0, . . . , νn are actually drawn on Ωδ as simple, mutually non-intersecting
curves, cf. Remark 5.2.

By definition, an inner boundary component has an odd number of artificial arcs
νs issuing therefrom if and only if $Z branches around that component. Hence,

cutting along, say, the right-hand side of each νs, we get a sheet of Ω̃δ, and Ω̃δ can
be obtained from two copies of that sheet by gluing along the cuts, in such a way
that crossing any cut would change the sheet.

We now want to show that W (b, S) = e−
i
2 w(γ)(−1)l(S)+I(S)s(b, γ) does not de-

pend on S. Adding ν0 to S ∪ ν1 ∪ · · · ∪ νn, we end up with a collection of loops;
denote γ0 := γ ∪ ν0. Observe that a loop has winding 0 modulo 2π (and hence
contributes to I(S)) if and only if it has an odd number of self-intersections, and it
contributes to l(s) if and only if it intersects an odd number of cross-cuts. So, we
can write l(S) + I(S) =

∑
loops γα 6=γ0

r(γα) mod 2, where r(γα) is the number of

intersections of γα \ {ν1, . . . , νn} with other loops (self-intersections contribute to
both l(S) and I(S)). Those intersections can only occur between S and artificial
arcs, and each intersection contributes at most once to the sum.

Further, observe that e−
i
2 w(γ) = e

i
2 w(ν0)e−

i
2 w(γ0). Just as above, −e− i

2 w(γ0)

counts the number of self-intersections of γ0, and s(b, γ) describes the number of
intersections of γ with the other cross-cuts. Therefore,

W (S, b) = −e i2 w(ν0)(−1)r(γ0)+
∑

loops γα 6=γ0
r(γα).

Since the exponent is the total number of intersections between the loops (not
counting self-intersections), it is always even. �

In accordance with our convention “mod 2” in (2.2), Definition 5.1 also gives the
values of F$ at marked boundary points. Denote A := {a1, . . . , a2n}.
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Proposition 5.7. The identity

F$(a0, A; z) =

2n∑
k=0

F$(a0, A; ak)

F$(ak; ak)
F$(ak; z) (5.3)

is fulfilled for any z ∈ Ω̃δ.

Proof. Both sides of (5.3) are discrete s-holomorphic spinors (defined on the same

double cover Ω̃δ) satisfying the boundary condition (3.5) everywhere on ∂Ω̃δ except
the marked points a0, . . . , a2n. Moreover, for any k = 0, . . . , 2n, there is only one
term in the sum (5.3) that fails to satisfy (3.5) at ak. However, its value at ak coin-
cides with the left-hand side value F$(a0, A; ak). Hence, these two s-holomorphic
spinors are equal to each other due to Remark 4.2, since their difference satisfies

the boundary condition (3.5) everywhere on ∂Ω̃δ. �

Note that configurations contributing to F$(a0, A; ak) actually have 2n boundary
points instead of 2n+2. Thus, the right-hand side of (5.3) can be expressed in terms
of the similar observables with smaller number of marked points, and, recursively,
in terms of the basic observables F$(ak; ·). In order to do this in a convenient
way, we need an additional notation. Recall that, for each ak, we fix the complex
number ηk := ηak according to (3.1). Then, we define the real antisymmetric
(2n+1)× (2n+1) matrix G$ = [(G$)j,k] by setting, for 0 ≤ j < k ≤ 2n,

(G$)j,k :=
F$(aj ; ak)

iF$(ak; ak)
= − F$(ak; aj)

iF$(aj ; aj)
=: −(G$)k,j , (5.4)

where we have used that (iηk)2e−iw(γkj) = η2
j for any curve γkj : $(ak) → $(aj)

running in Ωδ. Further, let G$[k1, . . . , ks] denote the sub-matrix of G$ obtained
by removing rows and columns with indices k1, . . . , ks.

Proposition 5.8. We have

F$(a0, A; z) = ±
2n∑
k=0

(−1)k Pf G$[k] · F$(ak; z), (5.5)

with the sign depending on the choices made for ηk and νs. In particular, the sign
is “plus” with conventions described in Remark 5.9 below.

Remark 5.9. (i) The sign in the left-hand side of (5.5) depends on the choice of
artificial arcs νs, while for the sum in the right-hand side it depends on the sheets
of ak and the signs of ηk, k = 1, . . . , 2n. We will assume that each νs lifts to a path

from a2s−1 to a2s on Ω̃δ, and that the signs of ηk are chosen so that

exp

[
− i

2
w(νs : a2s−1 → a2s)

]
=

η2s

iη2s−1
. (5.6)

(ii) One could also write (5.5) as the Pfaffian of a (2n+2)×(2n+2) matrix, obtained
from G$ by adding the last column with entries F$(ak; z) and a corresponding row.

Proof. We prove the claim by induction in n, starting with the trivial case n = 0
and using (5.3). For k = 1, . . . , 2n, let k′ := k + 1, if k is odd, and k′ := k − 1, if
k is even. By definition, any configuration contributing to F$(a0, A; ak) contains a
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curve running from a0 to ak′ , appended with an artificial arc connecting ak′ to ak.
Removing that arc, and taking into account (5.6), we get the following identity:

F$(a0, A; ak) = (−1)k
ηk
iηk′

F$(a0, A[k, k′]; ak′),

where A[k, k′] := A\{ak, ak′}. Thus, using the induction hypothesis and observing
that η−1

k F (ak, ak) does not depend on k, we get (for k = 1, . . . , 2n)

F$(a0, A; ak)

F$(ak; ak)
= (−1)k

ηk
iηk′

∑
0≤j 6=k,k′≤2n

(−1)j Pf G$[j, k, k′]
F$(aj ; ak′)

F$(ak; ak)

= (−1)k
∑

0≤j 6=k,k′≤2n

(−1)j Pf G$[j, k, k′]
F$(aj ; ak′)

iF$(ak′ ; ak′)

= (−1)k
∑

0≤j 6=k,k′≤2n

(−1)j+1[j>k′] Pf G$[j, k, k′] · (G$)j,k′ .

Due to the standard recursive formula for Pfaffians applied to the matrix G$[k],
this can be written as

F$(a0, A; ak)

F$(ak; ak)
= (−1)k Pf G$[k], k = 1, . . . , 2n. (5.7)

Similarly,

F$(a0, A; a0) =
iη0

η1
F$(a2, A[1, 2]; a1) =

iη0

η1

2n∑
k=3

F$(a2, A[1, 2]; ak)

F$(ak; ak)
F$(ak; a1).

Applying (5.7) and using η−1
0 F$(a0; a0) = η−1

1 F$(a1; a1), one arrives at

F$(a0, A; a0)

F$(a0; a0)
= −

2n∑
k=3

(−1)k Pf G$[0, 1, k] · (G$)k,1 = Pf G$[0].

Plugging this and (5.7) into (5.3), we obtain (5.5). �

Corollary 5.10. With the notation as above and conventions of Remark 5.5, let
Ωδ approximate Ω as δ → 0, regularly at all marked points. Then,

Eaδ0...aδ2n+1
[σ(Γ) ]

E+[σ(Γ) ]
→

Pf [ ζ−1
ajak

ϑΩ
ajak

(γ1, . . . , γm) ] 0≤j<k≤2n+1

Pf [ ζ−1
ajak ] 0≤j<k≤2n+1

, (5.8)

where the conformal invariants ϑΩ
ab are given by (3.12), and ζab = ζΩ

ab := |fΩ
0 (a, b)|−1.

Proof. Below we omit δ for the shortness. Using the relations (5.2) and (3.7) for $
as in Proposition 5.4 and for the trivial cover, and then (5.5), we get

Ea0...a2n+1 [σ(Γ)]

E+[σ(Γ)]
=
F$(a0, A; a2n+1) · F0(a2n+1, a2n+1)

F0(a0, A; a2n+1) · F$(a2n+1, a2n+1)
=

=

∑2n
k=0(−1)k Pf G$[k] · F$(ak; a2n+1) · (iF$(a2n+1; a2n+1))−1∑2n
k=0(−1)k Pf G0[k] · F0(ak; a2n+1) · (iF0(a2n+1; a2n+1))−1

=

∑2n
k=0(−1)k Pf G$[k] · (G$)k,2n+1∑2n
k=0(−1)k Pf G0[k] · (G0)k,2n+1

=
Pf[ (G$)j,k ]0≤j<k≤2n+1

Pf[ (G0)j,k ]0≤j<k≤2n+1
,
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where G$ and G0 are given by (5.4) for corresponding double covers. This can be
further rewritten as

Ea0...a2n+1
[σ(Γ)]

E+[σ(Γ)]
=

Pf

[
(G$)j,k
(G0)j,k

· (G0)j,k
(G0)0,2n+1

]
0≤j<k≤2n+1

Pf

[
(G0)j,k

(G0)0,2n+1

]
0≤j<k≤2n+1

.

Note that definition (5.4) and convergence (3.11) yield

(G$)j,k
(G0)j,k

=
F$(aj ; ak)F0(aj ; aj)

F$(aj ; aj)F0(aj ; ak)
→ fΩ

$(aj , ak)

fΩ
0 (aj , ak)

= ϑΩ
ajak

(γ1, . . . , γm)

as δ → 0. Similarly, (5.4) and (3.13) give

(G0)j,k
(G0)0,2n+1

=
|F0(aj ; ak)|
|F0(a0; a2n+1)|

→ |fΩ
0 (aj , ak)|

|fΩ
0 (a0, a2n+1)|

=
ζa0a2n+1

ζajak
,

and the factors ζa0a2n+1
cancel out in the ratio of Pfaffians. �

Remark 5.11. (i) One may assume that fΩ
0 (a, b) is normalized by (3.8); in this

case one has a conformal covariance rule ζΩ
a,b = ζ

φ(Ω)
φ(a),φ(b)|φ

′(a)|1/2|φ′(b)|1/2. The

linearity of Pfaffians implies that the normalization is not important, and that the
ratio (5.8) is conformally invariant.

(ii) Clearly, fΩ
0 does not change if one adds boundary singletons inside the domain.

In particular, if Ω = C+ \ {w1, . . . , ws} and a, b ∈ R, then one has ζΩ
a,b =

√
π |b− a|

(with the normalization given by (3.8)).

(iii) The formula (5.8) was predicted by means of Conformal Field Theory, see
[BG93, equation (17)].

6. Explicit computations in the half-plane

In this section we explicitly compute the holomorphic spinors f
C+\{w1,...,wm}
$ .

By (3.12), this immediately gives us the quantities

ϑ(w1, . . . , wm) := ϑ
C+\{w1,...,wm}
∞,0 (w1, . . . , wm) (6.1)

and, by conformal invariance of ϑ’s, all the limits

lim
δ→0

Eaδbδ [σ(wδ1) . . . σ(wδm) ]

E+[σ(wδ1) . . . σ(wδm) ]
= ϑ(φ(w1), . . . , φ(wm)) ,

for discrete domains (Ωδ; aδ, bδ) approximating an arbitrary simply connected do-
main (Ω; a, b) and inner faces wδj tending to wj ∈ Ω, where φ : Ω → C+ is a
conformal map such that φ(a) = ∞ and φ(b) = 0. Due to the Pfaffian formula
(5.8), this result easily extends to the case of 2n+2 marked boundary points.

It is convenient to choose a = ∞. Specializing the boundary value problem
(a◦)–(d◦) and (3.8) to the case Ω = C+, a = 0 and using the conformal map

z 7→ −z−1, we get the following conditions for f := f
C+\{w1,...,wm}
$ (∞, ·):

(a◦) f is a spinor in C+ \ {w1, . . . , wm} branching around each of wj ;
(b◦) f(ζ) ∈ R for any ζ ∈ R;
(c◦) (f(z))2 = O(|z − wj |−1) as z → wj and res z=wj (f(z))2 ∈ iR+ for all j;

(d◦) f(z) = 1 +O(z−1) as z →∞.
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Note that for m = 0 (i.e., the trivial cover), we have an obvious solution f0 ≡ 1.

In order to find f , we introduce an auxiliary spinor

fw1,...,wm(z) := Bw1(z) · · · · · Bwm(z) , Bw(z) :=
z − Rew

[(z−w)(z−w)]
1
2

.

Note that it satisfies (a◦), (b◦) and (d◦). Moreover, it has real zeros at tj = Rewj ;
thus, (a◦), (b◦) and (d◦) also hold for the product fw1,...,wm(z) · g(z), where g(z) is
any function of the form

g(z) ≡ 1 +

m∑
j=1

λj
tj−z

, λk ∈ R (6.2)

(and if some tj coinside, we can add higher-order poles, so that g(z) is always
a linear combination of m linearly independent functions). We are looking for
parameters λj such that fw1,...,wm(z) · g(z) satisfy (c◦) as well. Denote

Rk := [−2i resz=wk(fw1,...,wm(z))2]
1
2 .

Then, the condition (c◦) for fw1,...,wm(z) · g(z) can be restated as

Im [Rk · g(wk)] = ImRk +

m∑
j=1

λj · Im
Rk

tj−wk
= 0 for all k = 1, . . . ,m . (6.3)

Note that (6.3) is an m ×m linear system in λj . We argue that this system is
always non-degenerate. Indeed, if λ0

j is a solution to the corresponding homoge-

neous system, then f(z) := [
∑m
j=1 λ

0
j/(tj − z)] · fw1,...,wm(z) is a spinor satisfying

(a◦)–(c◦) and such that f(z) = O(z−1) as z →∞. But it follows from the proof of
Lemma 3.10 that any such spinor is identically zero (after mapping to a bounded
domain, the condition at infinity yields boundedness near a). Thus, λ0

j ≡ 0.
Taking into account that one has explicitly

Rk = (Imwk)
1
2 ·
∏
j 6=k

Bwj (wk) = (Imwk)
1
2 ·
∏
j 6=k

(wk−Rewj)

[(wk−wj)(wk−wj)]
1
2

.

and solving the linear system (6.3), one obtains λj as ratios of certain explicit m×m
determinants (depending of wj ’s), and then the ratio of spin correlations (6.1) is
given by

ϑ(w1, . . . , wm) = f(0) = g(0) ·
m∏
j=1

Bwj (0) =

[
1 +

m∑
j=1

λj
Rewj

]
·
m∏
j=1

Rewj
|wj |

.

Here we have used conventions of Remark 3.7 to determine the sheet of the double
cover of C+ \ {w1, . . . , wn} (that is, signs of the square roots): in order to get
the value f(0), one starts with the value f(∞) = +1 and continuously moves the
boundary point to 0 along the counterclockwise boundary arc (−∞, 0), thus arriving
to Bwj (0) = (−Rewj)/(−|wj |) . The other way to fix the sign is given by taking
all wj close to the boundary arc (0; +∞): this should yield a positive correlation
as that arc carries “+” boundary conditions.

Remark 6.1. In particular, for a single point w ∈ C (i.e., for the case m = 1) one
has t = Rew, R = (Imw)1/2 ∈ R, thus λ = 0 and

ϑ(w) =
Rew

|w|
= cos [πhmC+

(w,R−)] .
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Since harmonic measure is conformally invariant, this implies

Eaδbδ [σ(wδ) ]

E+[σ(wδ) ]
→ cos [πhmΩ(w, (ab))] ,

if (Ωδ; aδ, bδ) approximate (Ω; a, b) and faces wδ tend to an inner point w ∈ Ω.
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