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Abstract: We give mathematical proofs to a number of statements which appeared in
the series of papers by Simmons et al. (Phys Rev E 76(4):041106, 2007; J Stat Mech
Theory Exp 2009(2):P02067, 33, 2009) where they computed the probabilities of several
percolation events.

1. Introduction

Two-dimensional critical percolation has been extensively studied in the last two decades,
both from a Conformal Field Theory point of view and by means of Schramm-Loewner
evolution. The first approach provides a way to obtain explicit formulas for correlation
functions (connection probabilities), whereas the second one, in particular, gives a key
to rigorous proof of such results. The proof of Cardy’s formula was the major step in
Smirnov’s proof of conformal invariance of percolation on the triangular lattice [12].
Lawler, Schramm and Werner [6] proved an asymptotical formula for the probability
of an interval on the boundary of the domain to be connected to a small neighborhood
of a bulk point. Later, Watts’ formula for the simultaneous occurrence of up-down and
left-right crossing in a rectangle was proven [2,9]. A formula for the expected number
of clusters separating two sides of a rectangle was established in [3], although the proof
did not involve SLE techniques. We refer the reader to [4] for the introduction to the
SLE topic.

In [11] Simmons et al. computed the density of the probability that there is a perco-
lation cluster which connects a boundary interval with a boundary point and an interior
point. In the present paper we provide a precise formulation and a proof of this result. This
also leads to a rigorous proof of the exact factorization formula for a certain four-point
correlation function proposed by the same authors.

Throughout the paper by percolation we mean the scaling limit of the critical perco-
lation on the triangular lattice. We work only with percolation interfaces (boundaries of
clusters) which by [12] have the law of SL E(6). We remark here that this is only proven
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for the site percolation on triangular lattice, but is conjectured to be true for other lattices
as well.

Let u1 < u2 < u3 be three points on the real line and w be a point in the upper half-
plane H. We are going to compute the asymptotic behavior of the probability that the
percolation cluster attached to a boundary interval [u1, u2] approaches the small neigh-
borhood of u3 and w. We will understand those neighborhoods in the following sense
which is well-suited for SLE computations. Let K be the percolation cluster attached
to [u1, u2], by r(w) we denote the conformal radius of the component of H \ K which
contains w as seen from w. For a boundary point u3, we set r(u3) := dist (K ∩ R, u3).

Denote by ˜F(u1, u2, u3, w, s1, s2) the probability that r(w) < e−s1 and r(u3) <

e−s2 . We can write

˜F(u1, u2, u3, w, s1, s2) = C(u1, u2, u3, s2)F(u1, u2, u3, w, s1, s2),

where C(u1, u2, u3, s2) is the probability that r(u3) < e−s2 and F(u1, u2, u3, w, s1, s2)

is the conditional probability that r(w) < e−s1 given that r(u3) < e−s2 . We also
introduce the following notation:

C(u1, u2, u3) := lim
s→∞ e

1
3 sC(u1, u2, u3, s), (1)

F(u1, u2, u3, w, s1) := lim
s2→∞ F(u1, u2, u3, w, s1, s2), (2)

F(u1, u2, u3, w) := lim
s1→∞ e

5
48 s1 F(u1, u2, u3, w, s1). (3)

The existence of these limits will be clear from what follows. Denote S = {0 <

Re z < ∞, 0 < Im z < 1}. The main result of this paper is the following:

Theorem 1.1. One has

F(u1, u2, u3, w) = K5|ψ ′
u1,u2,u3

(w)|5/48G(Reψu1,u2,u3(w), Imψu1,u2,u3(w)), (4)

whereψu1,u2,u3 is the conformal map that transforms {H, u1, u2, u3} to {S, i, 0,∞}, K5
is a constant given by (19) and G is an explicit function given by (14)

We emphasize that the function ˜F(u1, u2, u3, w, s1, s2) is a probability in continuous
percolation, that is, the scaling limit of corresponding probability for percolation on the
triangular lattice. Hence F(u1, u2, u3, w) is a double limit: we first take the mesh size
to zero for fixed values of s1, s2, and then take those to zero. A more natural formulation
would concern the scaling behaviour of probabilities that a particular boundary site,
interiour site and a boundary segment are touched by the same cluster. We believe the
result to be true in this formulation as well, but technical difficulties seem insuperable.

Thanks to conformal invariance of critical percolation, Theorem 1.1 has the follow-
ing corollary: if � is a simply-connected domain with marked points u1, u2, u3 on the
boundary, w inside, and ∂� is smooth near u3, then

F�(u1, u2, u3, w) = |ϕ′(u3)|1/3|ϕ′(w)|5/48 F(ϕ(u1), ϕ(u2), ϕ(u3), ϕ(w)),

where ϕ is a conformal map from� to H and F� is the probability for the percolation in
� that u3 is connected to (u1, u2) and w, defined by the same limiting procedure as F .

To prove Theorem 1.1, we proceed as follows. In Sect. 2, we recall the formulae for
three- and four-point functions for percolation. In Sect. 3, we prove that SL E(6) started
from u2 and conditioned to hit u3 and not to swallow u1 has the law of SL E(6, 2,−2).
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Based on this, we write down certain PDE’s for F(u1, u2, u3, w) and FC , the latter being
the same as obtained in [11]. Finally, we prove that these PDE’s together with boundary
conditions determine F uniquely. In Sect. 4 we use our result to prove a factorization
formula (20) that expresses the probability density of two points on the boundary of the
domain to be connected to a bulk point in terms of pairwise connection probabilities.

For the next two sections, we will assume that all functions are sufficiently smooth, so
that the forthcoming Itô calculus is legal. Surpassing this assumption is quite standard:
after getting an explicit answer, which turns out to be a smooth function, one plugs that
answer into the previous computations to prove that it is indeed a martingale, and then
applies the optional stopping theorem. This is explained in detail for the function F in
Sect. 3.

2. Three- and Four-Point Functions

The function C(u1, u2, u3, s) is the probability that there is a percolation crossing con-
necting [u1, u2] with [u3 − e−s, u3 + e−s], or, in terms of interfaces, the probability
that the SL E(6) curve started from u2 touches the interval [u3 − e−s, u3 + e−s] before
swallowing u1. Hence C(u1, u2, u3, s) is given by Cardy’s formula. Taking the limit as
s → ∞, one gets the following result:

Lemma 2.1. As s → ∞, one has

C(u1, u2, u3, s) ∼ K3e−s/3
(

u2 − u1

(u3 − u2)(u3 − u1)

)1/3

, where

K3 =
√
π

�( 1
3 )�(

7
6 )
.

Hereinafter the notation A ∼ B means that the ratio of the two sides tends to one.

Proof. Theorem 3.2 in [5] proves this lemma when u1, u2, u3, e−s = 1,∞, x/2, x/2.
The statement of the lemma is obtained by conformal mapping to this case. �	
Remark 1. The rate of decay e−s/3 of C is consistent with the value 1/3 of the boundary
one-arm exponent. Note that our event is similar to the one-arm event, the difference is
that we condition the cluster to hit the interval [u1, u2].
Remark 2. One can check by direct computation that the function C(u1, u2, u3) from
Lemma 2.1 satisfies the following equation:

(

2

u1 − u2
∂u1 +

2

u3 − u2
∂u3 + 3∂2

u2
− 2

3(u3 − u2)2

)

C = 0. (5)

This equation means that C is a martingale which is conformally 1/3-covariant at u3 and
invariant at u1 and u2, that is, |g′

t (u3)|1/3C(gt (u1), B6t , gt (u3)) is a martingale, where
gt is the Loewner map driven by the Brownian motion B6t started from u2.

Now we would like to prove an analog of this lemma when the point u3 is inside the
domain. Let F(u1, u2, w, s) be the probability that r(w) < e−s .
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Lemma 2.2. As s → ∞, one has

F(u1, u2, w, s) ∼ K4e− 5
48 s |φ′(w)|5/48 (sin(πω/2))1/3 , (6)

where ω is the harmonic measure of (u1, u2) seen from w; φ is a conformal map from
H to the unit disc, φ(w) = 0, and

K4 = 18

5π
.

Proof. Lawler, Schramm and Werner [6] proved a slightly weaker statement. Here we
refine their result using spectral theory techniques.

Using locality of SLE(6), we reformulate the problem in terms of radial SLE(6). Let
h(θ, s) denote the probability that the conformal radius of the complement of percolation
cluster in the unit disc attached to a boundary arc of length θ is less than e−s . Then it is
proven in [6] that

c1(sin(θ/4))1/3e−5/48s ≤ h(θ, s) ≤ c2(sin(θ/4))1/3e−5/48s, (7)

and that the function h satisfies the PDE:

∂sh = (3∂θθ + cot(θ/2)∂θ )h (8)

with boundary conditions h(θ, 0) ≡ 1, h(0, s) ≡ 0, and (a weak form of) the Neumann
boundary condition “∂θh(θ, s) ≡ 0” at θ = 2π . Write f (θ, s) := (sin(θ/2))1/3 h(θ, s).
Then (8) implies

∂s f = (3∂θθ + 3V ) f, (9)

where V (θ) = 1
12 + 1

18 cot2( θ2 ). Our goal is to define a self-adjoint operator correspond-
ing to the right-hand side of (9) and to prove that it has a discrete spectrum, hence the
function f for large s behaves like the leading eigenfunction. The proof below (and
perhaps the result itself) is very standard in spectral theory. First of all, we consider
the operator ∂θθ + V acting on smooth functions with support inside (0, 2π) and write
explicitly the domain D(�0) of the L2-closure of this operator. Self-adjoint extensions
of this closure are obtained by adding two-dimensional subspaces to D(�0). Differ-
ent extensions correspond to different boundary conditions, and we consider two such
extensions: � (which corresponds to the boundary conditions we are interested in) and
�1 (which corresponds to Dirichlet boundary conditions for h on both sides of (0, 2π)).
It is a well-known fact that the spectral properties of� and�1 are similar, so it is suffi-
cient to prove that�1 has a discrete spectrum. We reformulate this property in terms of
quadratic forms, and then use Hardy’s inequality to prove that the form corresponding
to �1 is comparable to the form corresponding to ∂θθ , which is well-known to have a
discrete spectrum.

Set �0 := (∂θθ + V ) with

D(�0) :=
= { f ∈ AC1([0, 2π ]) : �0 f ∈ L2(0, 2π), f (0) = f (2π) = f ′(0) = f ′(2π) = 0}
= { f ∈ AC1([0, 2π ]) : f ′′ ∈ L2(0, 2π), f (0) = f (2π) = f ′(0) = f ′(2π) = 0}.
The operator �0 is closed in L2. Let ξ be a smooth decreasing function with ξ ≡ 1

on [0, π/3) and ξ ≡ 0 on (5π/3, 2π ]. We define the functions

w1(x) := (2π−x)1/3ξ(2π−x); w2(x) := x2/3ξ(x); w3(x) := (2π−x)2/3ξ(2π−x)
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and the extensions �,�1 of �0 with

D(�) = D(�0) + 〈w1〉 + 〈w2〉; D(�1) = D(�0) + 〈w2〉 + 〈w3〉.
By Theorems 2 and 4, §18 of [7],� and�1 are self-adjoint extensions of�0. Note that
�1 corresponds to Dirichlet boundary conditions for the initial PDE, whereas � corre-
sponds to the Dirichlet boundary condition at 0 and the Neumann boundary condition
at 2π .

We now prove that �1 has discrete spectrum. It is sufficient to show that for any
A ∈ R, any subspace L ⊂ D(�1) such that all g ∈ L obey the inequality

A(g, g) < (�1g; g) (10)

is finitely dimensional. The potential V (θ) has singularities at 0, 2π of order 2
9θ

−2 and
2
9 (2π − θ)−2 correspondingly. By Hardy’s inequality, for any α > 8

9 there exists a
constant B such that

(V g, g) ≤ α(g′, g′) + B(g, g), (11)

for any g ∈ W 1
2 ((0, 2π)) such that g(0) = g(2π) = 0, and hence for any g ∈ D(�1).

Therefore (10) implies

A − B

1 − α
(g, g) ≤ −(g′, g′).

Since the spectrum of g �→ g′′ defined on g ∈ W 1
2 ((0, 2π)), g(0) = g(2π) = 0 is

discrete and negative, this cone can only contain finitely dimensional subspaces.
By Theorem 2, §19 of [7], this implies that the spectrum of � is also discrete. Stan-

dard arguments now imply that all eigenvalues of � are simple, and that the positive
eigenfunction ψ0 := (sin(θ/2) sin(θ/4))1/3 of � corresponds to the largest eigenvalue
−5/144. It has been shown in [6] that for ε = 1 and any s > 0,

hε(θ, s) :=
∫ ε

0
h(θ, s + s′)ds′

satisfies the Neumann boundary condition (∂θhε(2π, s) = 0) at 2π and the Dirichlet
boundary conditions at 0. First, we observe that the same is true (and with the same proof)
for any ε > 0. Second, the functions hε are monotone decreasing in s and increasing
in θ . Hence (8) implies that hε(·, s) is concave for any s. By some elementary calcu-
lus, one deduces from this and (7) that ∂θhε ≤ Cθ−2/3 as θ → 0. Observe that also
limθ→2π ∂θh = 0.

We now consider f ε(θ, s) = (sin(θ/2))1/3hε(θ, s) and write

f ε(·, s) =
∑

ck(s)ψk(·),
where ψk are eigenfunctions of � and the equality holds in the sense of L2. By multi-
plying (9) by ψk and integrating by parts, taking into account the boundary conditions
for h derived above, we obtain

∂t ck(s) = λkck(s),

and hence

f ε(·, s)e5/48s L2−→ Cεψ0 as s → ∞,

Since the functions hε(·, s) are concave for all s, this actually implies uniform conver-
gence. The corresponding result for h is obtained by taking ε → 0, and the constant K4
is computed by projecting the initial conditions h(·, 0) ≡ 1 to the main eigenspace. �	
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3. Five-Point Function

To compute F we have to consider the law of SLE(6) curve started from u2 and con-
ditioned on the event Es that r(u3) < e−s . Recall that in terms of interfaces, the event
Es means that the curve hits (u3 − e−s; u3 + e−s) before swallowing u1, and P[Es] =
C(u1, u2, u3, s). Let u1(t), u2(t), u3(t) and r(u3) be defined on a filtered probability
space (�,Ft ,P), u2(t) = B6t and u1,3(t) = gt (u1,3), where B is a standard Brownian
motion under P started from u2 and gt is the Loewner map driven by u2(t). Let ˜P be the
measure P conditioned on Es . We study the law of the driving force with respect to ˜P.
We have

d˜P

dP
|t = C(u1(t), u2(t), u3(t), s(t))1t≤T (u3) + 1t>T (u3),r(u3)<e−s

C(u1, u2, u3, s)
= Dt ,

where T (u3) is the swallowing time for u3. By Girsanov’s theorem, ˜Bt is a standard
Brownian motion under ˜P if

d ˜Bt = d Bt − 〈Bt , Dt 〉
Dt

.

Standard argument now shows that Dt is a martingale, and

d Dt = ∂u2C(u1(t), u2(t), u3(t), s(t))

C(u1(t), u2(t), u3(t), s(t))

√
6d Bt ,

which implies that

d Bt = d ˜Bt +
√

6
∂u2C(u1(t), u2(t), u3(t), s(t))

C(u1(t), u2(t), u3(t), s(t))
dt.

This proves that under condition r(u3) < e−s the driving force of the Loewner evolution
becomes

du2(t) = √
6d ˜Bt + 6

∂u2 C(u1(t), u2(t), u3(t), s(t))

C(u1(t), u2(t), u3(t), s(t))
dt.

The direct computation shows that in the limit, as s → ∞, one has

du2 = √
6˜Bt +

( −2

u2 − u3
+

2

u2 − u1

)

dt,

which is the driving force of SLE(6, 2,−2) (see [1], where these processes were intro-
duced) started from u2, u1 and u3. We would like to point out that the force point with
ρ = 2 = 6 − 4 conditions SLE(6) not to swallow the force point and ρ = −2 = 6 − 8
conditions SLE(6) to hit the force point.

Remark 3. For general κ , the above argument does not work: Es is now a five-point event
and its probability is not expressed in terms of Cardy’s four-point formula. By condi-
tioning first on hitting u3, and then on not swallowing u1, it is still possible to compute
the drift in the limit s → ∞; this leads to

du2 = √
κ˜Bt +

(

κ − 8

u2 − u3
+

κG ′( u2−u1
u3−u1

)

(u3 − u1)G(
u2−u1
u3−u1

)

)

dt,

where G(x) = ∫ x
0 θ

− 4
κ (1 − θ)

2(6−κ)
κ dθ . Hence for κ �= 6 conditioning on both events is

not the same as adding corresponding force points.



A Proof of Factorization Formula For Critical Percolation 617

Let τ be the stopping time which is the minimum of T (w) – the swallowing time
for w and T (u3) – the swallowing time for u3. By � we denote the component of the
complement of the SLE trace up to time τ which contains the point w.

For a particular realization γ ([0, τ ]) of conditioned SLE interface, the probability F
is the probability that the conformal radius of� in the complement of the cluster which
is attached to the union of the left side of γ and [u1, u2] is at most e−s . Let E be the
intersection of the left side of γ and [u1, u2] with the boundary of �, and let φ be the
conformal map from � onto the unit disc which maps w to the origin. By conformal
invariance, the probability of our event is the same as the probability that in the unit disc
the conformal radius about the origin of the complement of the percolation cluster which
is attached to φ(E) is at most e−s |φ′(w)|. By Lemma 2.2, this probability behaves as

K4e−s 5
48 |φ′(w)|5/48 (sin(πω/2))1/3 ,

where ω is the harmonic measure of E seen from w. This proves that after factoring out
e−s5/48 and passing to the limit we have

F(u1, u2, u3, w) = K4E

[

|φ′(w)|5/48 (sin(πω/2))1/3
]

,

where the expectation is taken with respect to the law of γ ([0, τ ]).
Lemma 3.1. The function F is a solution of the following PDE:

�F F = 5

96

−2

(w − u2)2
F +

5

96

−2

(w̄ − u2)2
F +

2

u1 − u2
∂u1 F +

2

u3 − u2
∂u3 F

+3∂u2
2 F + 6

∂u2 C

C
∂u2 F +

2

w − u2
∂wF +

2

w̄ − u2
∂w̄F = 0. (12)

Proof. As we proved before, γ has a law of SLE(6;−2, 2) trace. The driving function
of this SLE is given by the solution of the SDEs

du2(t) = √
6d ˜Bt +

( −2

u2(t)− u3(t)
+

2

u2(t)− u1(t)

)

dt = √
6d ˜Bt + 6

∂u2 C

C
dt,

du1(t) = 2dt

u1(t)− u2(t)
,

du3(t) = 2dt

u3(t)− u2(t)
.

The domain Markov property implies that

|g′
t (w)|5/48 F(u1(t), u2(t), u3(t), w(t))

is equal to K4E[|φ′(w)|5/48 (sin(πω/2))1/3 |Ft ] and hence is a martingale (herew(t) =
gt (w) is the image of w under the SLE map gt ). It is more convenient to write Itô’s
formula with respect to w and w̄ instead of Rew and Imw. In these terms

g′
t (w)

5/96g′
t (w̄)

5/96 F(u1(t), u2(t), u3(t), w(t), w̄(t))

is a martingale. By Itô’s formula the drift is equal to zero, which is equivalent to Eq. (12).
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Theorem 3.2. The product of two functions F and C is annihilated by the following
operator:

� = − 5

48

1

(w − u2)2
− 5

48

1

(w̄ − u2)2
− 2

3

1

u3 − u2
+

2

u1 − u2
∂u1

+
2

u3 − u2
∂u3 + 3∂u2

2 +
2

w − u2
∂w +

2

w̄ − u2
∂w̄. (13)

Proof. If we apply � to FC then the result will be

(�F)C + F

(

2

u1 − u2
∂u1C +

2

u3 − u2
∂u3C + 3∂u2

2C

)

+ 6∂u2 F∂u2C.

Using that

� = �F − 6
∂u2C

C
∂u2 − 2

3

1

u3 − u2
,

the formula above can be rewritten as

F

(

−2

3

1

u3 − u2
C +

2

u1 − u2
∂u1C +

2

u3 − u2
∂u3C + 3∂u2

2C

)

,

which is equal to zero by (5). �	
Equation (13) is exactly Eq. (A.5) from [11]. Following [11] we can transfer this

equation into the semi-infinite strip (keeping covariance in mind) where after the right
ansatz one can separate variables and find a solution to Eq. (13):

G(x, y) := sinh(πx)−1/3eπx/3
2 F1

(

−1

2
,−1

3
,

7

6
, e−2πx

)

×
(

sinh(πx)2 sin(πy)2

sinh(πx)2 + sin(πy)2

)11/96

, (14)

where x and y are real and imaginary parts of the image of w under the conformal
transformation which maps the half-plane with marked point u1, u2 and u3 onto the
semi infinite strip S = {0 < x < ∞, 0 < y < 1}.

This solution to (13) is not unique. In order to prove that G indeed gives the correct
formula for the right-hand side of (4), we proceed as follows. Let ψu1,u2,u3 (or ψ for
short) be the conformal map that transforms H, u1, u2, u3 to S, i, 0,∞. If we repeat the
above Itô computations with

H(u1, u2, u3, w) := K5|ψ ′
u1,u2,u3

(w)|5/48G(Reψu1,u2,u3(w), Imψu1,u2,u3(w))

instead of F , we find that

|g′
t (w)|5/48 H(u1(t), u2(t), u3(t), w(t))

is a local martingale for the SL E(6, 2,−2) process. We should now check that (for a
right choice of the constant K5) it has a correct value at the stopping time τ , that is

lim
t→τ

|g′
t (w)|5/48 F(u1(t), u2(t), u3(t), w(t))

= lim
t→τ

|g′
t (w)|5/48 H(u1(t), u2(t), u3(t), w(t)). (15)
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Fig. 1. Three possible stopping scenarios for the SLE(6, 2, −2) interface. Case 1: at t = τ the curve cuts the
point w out of the cluster K connected to (u1, u2). Case 2: at t = τ , the whole boundary, as seen from w,
belongs to K . Case 3: only the dashed piece of the boundary is explored to be a part of K

Since H is an explicit smooth function, all the Itô computations are justified. We will
finish the proof by checking uniform integrability and applying the optional stopping
theorem to |g′

t (w)|5/48(H − F) to conclude that it is identically zero.
There are three possible stopping scenarios (see Fig. 1). Consider them separately.

In all cases φt denotes a conformal map from H\γt to the unit disc with φt (w) = 0.

Case 1. The curve swallowsw before hitting u3 (i.e. τ = T (w)) and does that by closing
a clockwise loop. In this case the left-hand side of (15) tends to zero. However, the limit
limt→τ |φ′

t (w)| exists and is finite almost surely. We can write φt =: ht ◦ gt , where
ht (z) = wt −z

z−wt
. It is hence sufficient to show that

|h′
t (w(t))|−5/48 H(u1(t), u2(t), u3(t), w(t))

= (2Imwt )
5/48 H(u1(t), u2(t), u3(t), w(t))

tends to zero asw(t) approaches u2 in such a way that the harmonic measure of (u1, u2)

seen fromw(t) tends to zero. Without loss of generality, we can assume that u1, u2, u3 =
0, 1,∞. Then

(ψ1)
−1 := (ψ0,1,∞)−1 = cosh(π z) + 1

2
, (16)

and we have the following expansion around 1:

|ψ ′
1(z)| = |z − 1|−1/2

π
+ o(|z − 1|−1/2), |z| → 1. (17)

It remains to plug everything into the definition of H , taking into account that
|Reψ(w(t))| � |Imψ(w(t))|, and we are done.

Case 2. The curve swallowsw before hitting u3 (i.e. τ = T (w)) and does that by closing
a counterclockwise loop. In this case, the left-hand side of (15) tends to K4|φ′(w)|5/48.
Hence, it is sufficient to prove that

F(u1(t), u2(t), u3(t), w(t)) ∼ H(u1(t), u2(t), u3(t), w(t))

as w(t) approaches u2 in such a way that the harmonic measure of (u1, u2) seen from
w(t) tends to 1 (that is, |Reψ(w(t))| � |Imψ(w(t))|). One has

F(u1(t), u2(t), u3(t), w(t)) ∼ K4|h′
t (w(t))|5/48 ∼ K4(2Imwt )

−5/48.
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Once again, we can assume without loss of generality that u1, u2, u3 = 0, 1,∞. Then,
denoting x(t) = Reψ(w(t)), y(t) = Imψ(w(t)), one has

G(x(t), y(t)) ∼ 2 F1

(

−1

2
,−1

3
,

7

6
, 1

)

(πx(t))−5/48

and

|ψ ′(w(t))| ∼ |w(t)− 1|−1/2

π
∼ 2

π2 |y(t)|−1.

Hence

H(u1(t), u2(t), u3(t), w(t)) ∼ K5 2 F1

(

−1

2
,−1

3
,

7

6
, 1

) (

2

π3x(t)y(t)

)5/48

∼ K5 2 F1

(

−1

2
,−1

3
,

7

6
, 1

) (

2

π

)5/48 1

(2Imw(t))5/48
.

Case 3. The curve hits u3 before swalloing w (i.e. τ = T (u3)). In this case, we should
compare the limits of H and F when u3 → u2. For F , the answer is given by Lemma
2.2

lim
u3→u2

F(u1, u2, u3, w)

= K4|φ′(w)|5/48 (sin(πω/2))1/3 = K4

(2Imw)5/48 (sin(πω/2))1/3 , (18)

where φ is a conformal map from the upper half-plane to the unit disc that maps w to
the origin, and ω is the harmonic measure of (u1, u2) seen from w.

Consider now the limit of H . Note that as u3 → u2, the image ψ(w) tends to i along
some direction. We write ψ = ψ1 ◦ψ2, where ψ2 maps H, u1, u2, u3 to H, 0, 1,∞ and
ψ1 maps H, 0, 1,∞ to S, i, 0,∞. It is convenient to choose r = |ψ2(w)| as a small
parameter. Taking (16) and (17) into account, one gets, as u3 → u2:

ψ2(w) = w − u1

w − u3

u2 − u3

u2 − u1
=: reiθ ,

|ψ ′
2(w)| = r

|u1 − u3|
|w − u1||w − u3| ,

x := Reψ(w) = 2

π
r

1
2 sin

θ

2
+ o(r

1
2 ),

y := Imψ(w) = 1 − 2

π
r

1
2 cos

θ

2
+ o(r

1
2 ),

|ψ ′
1(ψ2(w))| = r− 1

2

π
+ o(r− 1

2 ).

Plugging everything into the definition of H , we find that

lim
u3→u2

H = K5
2−1/3

π5/48 2 F1

(

−1

2
,−1

3
,

7

6
, 1

)

sin(θ/2)−
1
3 sin(θ)11/48

×
( |u1 − u2|

|w − u1||w − u2|
)5/48

.
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Note that 1 − θ/π is actually equal to the harmonic measure of u1, u2 seen from w.
Simple computation now shows that

|u1 − u2|
|w − u1||w − u2| = sin(θ)

Imw
,

hence

lim
u3→u2

H = K5
25/48

π5/48 2 F1

(

−1

2
,−1

3
,

7

6
, 1

)

(cos θ/2)1/3

(2Imw)5/48
.

Combining the results of all three cases, we see that Eq. (15) is satisfied if we choose

K −1
5 = 25/48

K4π5/48 2 F1

(

−1

2
,−1

3
,

7

6
, 1

)

. (19)

The only remaining part is applicability of the optional stopping theorem to the local
martingale |g′

t (w)|5/48(F − H). Note first of all that there exists a constant M such that

|g′
t (w)|5/48 F ≤ M |φ′

t (w)|5/48,

since the right-hand side is proportional to the probability that w is connected to the
boundary of the domain. A direct computation shows the same bound holds for H :

|g′
t (w)|5/48 H ≤ M |φ′

t (w)|5/48.

Hence it is sufficient to prove that |φ′
t (w)|5/48 is uniformly integrable. Since this is

monotone increasing in t , it is sufficient to show that E|φ′
τ (w)|5/48 < ∞. This bound

follows from known estimates on the dimension of SL E6 (see e. g. [8], Lemma 6.3),
concluding the proof of Theorem 1.1.

4. A Factorization Formula

In this section we prove the factorization formula obtained by Simmons, Kleban and
Ziff in [10]. We introduce the following correlation functions:

P2(u1, u3) := lim
u2→u1

C(u1, u2, u3)

∣

∣

∣

∣

u2 − u1

2

∣

∣

∣

∣

−1/3

,

F(u1, u2, w) := lim
r→∞ F(u1, u2, w, r)e

5/48r ,

P3(u1, w) := lim
u2→u1

F(u1, u2, w)

∣

∣

∣

∣

u2 − u1

2

∣

∣

∣

∣

−1/3

,

P4(u1, u3, w) := lim
u2→u1

C(u1, u2, u3)F(u1, u2, u3, w)

∣

∣

∣

∣

u2 − u1

2

∣

∣

∣

∣

−1/3

.

Proposition 4.1. One has the following factorization formula:

P2
4 (u1, u3, w) = KF P3(u1, w)P3(u2, w)P2(u1, u3), (20)

where

KF = K 2
5 K32 25/24

K 2
4π

5/24
= 2

√
π

2 F2
1

(− 1
2 ,− 1

3 ,
7
6 , 1

)

�( 1
3 )�(

7
6 )

= 27π5

33/2�( 1
3 )

9
.
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Proof. The proposition is proven by direct computation. One gets immediately from
Lemma 2.1 that

P2(u1, u3) = K3
21/3

(u1 − u3)2/3
. (21)

In the notatin of Lemma 2.2, one has

πω ∼ |u1 − u2|Imw

|w − u1|2 , u2 → u1,

and |φ′(w)| = 1
2Imw

, hence

P3(u1, w) = K4

25/48

(Imw)11/48

|u1 − w|2/3 . (22)

It remains to figure out the limit of F(u1, u2, u3, w) as u2 → u1. Note that in this case
the image ψu1,u2,u3(w) of w under the mapping to the strip tends to infinity. We can
write, as before, ψu1,u2,u3 = ψ1 ◦ ψ2, where ψ2 maps H, u1, u2, u3 to H, 0, 1,∞ and

ψ−1
1 (z) = cosh(π z) + 1

2
.

Then we have

ψ2(w) ∼ − (w − u1)(u3 − u1)

(w − u3)|u2 − u1| ,

ψ ′
2(w) ∼ (u3 − u1)

2

(w − u3)2|u1 − u2| .

Writing x = Reψu1,u2,u3(w) and y = Imψu1,u2,u3(w), we obtain

2ψ2(w) ∼ eπx cos(πy) + i sin(πy)

2
,

hence

eπx ∼ |4ψ2(w)| ∼ 4|w − u1|(u3 − u1)

|w − u3||u2 − u1| ,

πy ∼ argψ2(w) = arg
−w + u1

w − u3
= π − ζ,

ψ ′
1(ψ2(w)) ∼ 4

πeπx
∼ |w − u3||u2 − u1|
π |w − u1||u3 − u1| ,

where ζ is the angle at w in the triangle (u1, u3, w). Plugging everything into (4),
we get that

lim
u2→u1

F(u1, u2, u3, w) = K521/3

π5/48
(sin ζ )1/3Imw−5/48. (23)

The proposition now follows from (21), (22) and (23). �	
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Remark 4. The proposition has the following probabilistic interpretation. Let Pε2 (u1, u2),
Pε3 (u, w) and Pε4 (u1, u2, w) be the probabilities that ε-neighborhoods of correspond-
ing points are connected by a percolation cluster (we understand ε-neighborhoods in
the sense of r(ui ) and r(w), as defined in the Introduction). Then (20) holds with Pi
replaced by Pεi and equality replaced by equivalence as ε → 0. Indeed, by definition
Pεi ∼ Piε

σi with an appropriate σi . It is immediate to see that these power factors cancel
out once plugged into (20).

Remark 5. The constants K3, K4, K5 in this paper are non-universal, in particular, they
depend on our definition of neighborhoods of points (and in the lattice formulation they
would depend on the lattice). The constant KF , however, is conjectured to be universal,
as all non-universal parts cancel out.
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