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A HIGHER LIMIT APPROACH TO HOMOLOGY THEORIES

SERGEI O. IVANOV AND ROMAN MIKHAILOV

Abstract. A lot of well-known functors such as group homology, cyclic homology of algebras
can be described as limits of certain simply defined functors over categories of presentations.
In this paper, we develop technique for the description of the higher limits over categories of
presentations and show that certain homological functors can be described in this way. In
particular, we give a description of Hochschild homology and the derived functors of tensor,
symmetric and exterior powers in the sense of Dold and Puppe as higher limits.

1. Introduction

Let k be a ring, Mod(k) the category of k-modules and let C be a category such that for any
two objects c and c′ there exists a morphism f : c → c′. Then for a functor F : C → Mod(k)
the limit lim

←−
F is the largest constant subfunctor in F . Therefore, one can perceive lim

←−
F as

the largest part of F(c) which does not dependent on c.
Let A be an “algebraic object” (group, abelian group, associative algebra, ...). We denote

by Pres(A) the category of presentations of A as a quotient of a free object F ։ A. This
category satisfies the condition above and a lot of interesting “homology theories of A” can be
described as limits of simple functors Pres(A)→ Mod(k) without use of homological algebra.
D. Quillen in [12] proved that if A is an algebra over a field of characteristic zero, then even
cyclic homology can be described as the limit

(1.1) HC2n(A) = lim
←−

F/(In+1 + [F, F ]).

The limit is taken over the category of presentations I  F ։ A, where F is a free algebra.
In other words, HC2n(A) is the largest part of F/(I

n+[F, F ]) independent of the presentation
I  F ։ A. He also proved the similar formula for the odd reduced cyclic homology:

(1.2) HC2n+1(A) = lim
←−

In+1/[I, In].

I. Emmanouil and R. Mikhailov [4] proved the similar formulas for the case of group homology:

(1.3) H2n(G,M) = lim
←−

R⊗n
ab ⊗Z[G] M.

The limit is taken over the category of presentations R  F ։ G, where F is a free group and
Rab is the relation module. Further R. Mikhailov and I. B. S. Passi [10] described the highest
nonzero Dold-Puppe derived functors of symmetric, exterior and tensor powers as limits in
the category of free presentations of an abelian group. In this article we prove the following
formula for even Hochschild homology of an algebra A over a field of any characteristic:

(1.4) H2n(A,M) = lim
←−

(In/In+1)⊗Ae M,
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where Ae = A⊗ Aop.
The most exiting thing in this approach is the fact that a lot of homology theories can be

described without any recourse to homological algebra but using only presentations. Moreover,
thanks to the interpretation of a limit as the largest part independent of presentation this
description is very intuitive. On the other hand, this approach shows that homologies can be
useful in work with an algebraic object by means of its presentation. The additional advantage
of this approach is that it gives a way to observe different maps between homology theories.
If we denote M♮ = M/[F,M ] = H0(F,M), then the formulas (1.1) and (1.4) imply

(1.5) HC2n(A) = lim
←−

(F/In+1)♮ HH2n(A) = lim
←−

(In/In+1)♮

for algebras over a field of characteristic zero. Therefore, the short exact sequence In/In+1


F/In+1
։ F/In gives a sequence of homomorphisms HH2n(A)→ HC2n(A)→ HC2n−2(A).

However, this approach has some disadvantage. The main of them is that the homologies
are described as limits only for a part of indexes. Another disadvantage is impossibility to
obtain long exact sequences for these homologies using this language.

In this work we improve these drawbacks using the higher limits. A representation of
a category C over a commutative ring k is a functor F : C → Mod(k). The category of
representations of C is denoted by Mod(k)C. Then the limit of a representation is a left exact
functor between abelian categories lim

←−
: Mod(k)C → Mod(k). Its derived functors are called

higher limits and denoted by lim
←−

i := Ri lim
←−

. The main aim of the article is to generalise the

formulas (1.3)-(1.4) to the following formulas (see theorems 5.1 and 7.6)

(1.6) H2n−i(G,M) = lim
←−

i R⊗n
ab ⊗Z[G] M, for i < n,

(1.7) H2n−i(A,M) = lim
←−

i (In/In+1)⊗Ae M, for i < n,

and give the following description of the derived functors of symmetric, exterior and tensor
powers (see theorem 8.1)

(1.8) Ln−iS
n(A) = lim

←−
i Λn(H),

(1.9) Ln−iΛ
n(A) = lim

←−
i Γn(H),

(1.10) Ln−i ⊗
n (A) = lim

←−
i ⊗n(H).

The limits are taken over the category of presentations H  F ։ A, where F is a free abelian
group. The formulas (1.1), (1.2) are generalised for the case of augmented algebras over a
field of characteristic zero to the folowing formulas (see theorem 7.11)

(1.11) HC2n−i(A) = lim
←−

i F/(In+1 + [F, F ]), for i ∈ {0, 1},

(1.12) HC2n+1−i(A) = lim
←−

i In+1/[I, In], for i ∈ {0, 1}.

These formulas describe the homology theories for all indexes. It should be noted that any
commutative algebra A of finite type over the field C has an augmentation A→ C. Thus the
formulas (1.11) and (1.12) hold for all coordinate algebras of affine complex varieties.

Further, we give another point of view on group homology through the higher limits. Let

R →֒ F
π
։ G be a presentation of a group G. Denote by Fn(π) the nth fibred power
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F ×G · · · ×G F. Then there are recurrence relations, which express higher homologies through
the first homologies (see theorem 5.3)

(1.13) H2n−2(G,M) = lim
←−

Hn−1(Fn(π),M) for n ≥ 2,

(1.14) H2n−3(G,M) = lim
←−

1 Hn−1(Fn(π),M) for n ≥ 3.

Furthermore, we compute limits of some higher relation modules. For example, if G is a
2-torsion-free group then

(1.15) lim
←−

[R,R]/[R,R, F ] = H4(G,Z/2),

(1.16) lim
←−

1 [R,R]/[R,R, F ] = H3(G,Z/2).

The paper is organized as follows. In section 2 we recall the theory of representations of
categories [16], [6], [14]. In section 3 we develop technique of computing of higher limits of
representations of categories with pairwise coproducts. The main result in this section is
proposition 3.1 which allows to compute the higher limits for so-called monoadditive functors.
Section 4 is devoted to 4-term exact sequences of the form H∗(A)  F1 → F2 ։ H∗−1(A)
where Fi are representations of Pres(A) and H∗(A) is a one of the homology theories of an
algebraic object A (considered as a constant functor). These sequences are very useful for
computing of higher limits. Sections 5, 7, 8 are devoted to higher limit formulas of homology
theories for groups, algebras and abelian groups respectively, and in section 6 we compute
higher limits for some higher relation modules over groups.

2. Representations of categories and higher limits.

In this section we recall several facts about representations of categories and higher limits
and colimits which the reader can find in [16], [6], [14] with more details and proofs (see also
[11]).

2.1. Representations of categories. Let k be a commutative ring and C be a category.
Using considerations of Grothendieck universes we assume that all categories are small for an
appropriate universe. By definition, a representation of C (over k) is a functor F : C → Mod(k).
The category of representations Mod(k)C is an abelian category with enough projectives and
injectives, and a sequence in this category is exact if and only if it is exact objectwise. Denote
by kC the category algebra of C i.e. the algebra with the basis Mor(C) whose multiplication
is induced by the composition and vanishes for non-composable morphisms. This algebra has
an identity element if and only if C has finitely many objects. The category of representations
is naturally embedded into the category of (left) kC-modules as an abelian subcategory:

Mod(k)C →֒ Mod(kC), F 7→
⊕

c∈C

F(c),

and its image consists of kC-modules M such that M =
⊕

c∈C idc · M . We will identify
a representation of C and the corresponding kC-module. All these definitions extend the
corresponding notions for groups considered as a category with one object and for quivers
which are replaced by the associated free categories.
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2.2. Higher limits and cohomology. Consider the diagonal functor Mod(k) → Mod(k)C

which sends a k-module M to a constant functor C → Mod(k) sending all objects to M and
all morphisms to idM . We denote this constant representation by the same symbol M : C →
Mod(k). Then the limit and colimit functors lim

←−
, lim
−→

: Mod(k)C → Mod(k) are defined as the
right and the left adjoint functors to the diagonal functor. Therefore, we have the natural
isomorphisms:

(2.1) HomkC(M,F) ∼= Homk(M, lim
←−
F), HomkC(F ,M) ∼= Homk( lim−→

F ,M),

for any representation F and any k-module M. Since lim
←−

is a right adjoint functor, it is a left
exact additive functor. Hence it has right derived functors, and similarly lim

−→
has left derived

functors.

(2.2) lim
←−

i = Ri lim
←−

, lim
−→i = Li lim−→

.

The nth homology and cohomology group of C with coefficients in a representation F are
defined as follows:

(2.3) Hn(C,F) = TorkCn (k,F), Hn(C,F) = ExtnkC(k,F).

For any n ≥ 0 there are isomorphisms

(2.4) lim
←−

n F ∼= Hn(C,F), lim
−→

n F ∼= Hn(C,F).

2.3. Preserving of higher limits. Recall that the nerve of a category C is a simplicial
set NC : ∆op → Sets given by the formula NC = Cat(−, C) (here we consider ∆ as a full
subcategory of Cat where [n] is a free category generated by the graph 0→ 1→ · · · → n), and
the classifying space of the category C is the geometrical realization of its nerve BC = |NC|.
A functor Φ : C → D induces a morphism of simplicial sets NΦ : NC → ND and a continuous
map BΦ : BC → BD. Moreover, a natural transformation α : Φ1 → Φ2 induces a homotopy
Bα between BΦ1 and BΦ2 [11, §1 proposition 2]. (One could say that B is a strict 2-functor.)

For a k-module M the (co)homology groups of C with coefficients in the constant represen-
tation M are isomorphic to (co)homology groups of the classifying space BC with coefficients
in M :

(2.5) Hn(C,M) = Hn(BC,M), Hn(C,M) = Hn(BC,M).

A category C is said to be contractible if its classifying space BC is contractible and it is said
to be k-acyclic if the reduced homology groups H̃∗(BC, k) vanish. Of course, a contractible
category is k-acyclic.

Let Φ : C → D be a functor. For an object d ∈ D we denote by Φ↓d the comma category
(see [9]) consisting of objects (c, α), where c ∈ C and α ∈ D(Φ(c), d). A morphism in the
comma category from (c, α) to (c′, α′) is given by f : c → c′, which satisfies αΦ(f) = α′. If
C = D and Φ = IdD, the corresponding comma category is denoted by D↓d.

Proposition 2.1. (see [6, 5.4]). Let Φ : C → D be a functor satisfying the condition that Φ↓d
is k-acyclic for any d ∈ D. Then for any representation F of D there is an isomorphism

(2.6) θΦ : lim
←−

nF
∼=
−→ lim

←−
n(FΦ),

which is natural by F and Φ.
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Remark 2.2. In the previous proposition by the naturalness by Φ we mean that for a natural
transformation α : Φ1 → Φ2 of functors satisfying the condition of the proposition we have
α∗θΦ1 = θΦ2 , where α∗ : lim←−

n(FΦ1)→ lim
←−

n(FΦ2) is the map induced by α. In [6] the fact that
the isomorphism is natural did not state, but it follows easily from the proof and the fact that
the obvious map θ0Φ : lim

←−
F → lim

←−
(FΦ) is natural by F and Φ.

Corollary 2.3. Let Φ1,Φ2 : C → D be functors satisfying the condition of proposition 2.1
and α : Φ1 → Φ2 is a natural transformation. The induced homomorphism α∗ : lim←−

n(FΦ1)→
lim
←−

n(FΦ2) is an isomorphism.

Proof. Since the isomorphism in proposition 2.1 is natural by Φ, there is a commutative
diagram

lim
←−

nF
θΦ1

∼=vv❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

θΦ2

∼= ((❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

lim
←−

n(FΦ1)
α∗ // lim

←−
n(FΦ2).

Hence, α∗ is an isomorphism. �

Lemma 2.4. Left adjoint functors satisfy the condition of proposition 2.1. In particular,
if Φ : C → D is a left adjoint functor and F is a representation of D, then there is an
isomorphism lim

←−
nF ∼= lim

←−
n(FΦ) for any n ≥ 0.

Proof. Let Ψ : D → C be a right adjoint functor to Φ. Then the comma category Φ↓d has a
terminal object which is given by the the pair (Ψ(d), εd), where εd : ΦΨ(d)→ d is the counit
of adjunction ([9, IV.1]). Thus the category Φ↓d is contractible ([11, §1 Corollary 2]). �

2.4. Spectral sequence of higher limits.

Proposition 2.5. Let Φ : A → B be a left exact functor between abelian categories with enough
injectives and a• ∈ Com+(A) be a bounded below complex with Φ-acyclic cohomologies. Then
there exists a cohomological spectral sequence E of objects of B so that

(2.7) E ⇒ Φ(Hn(a•)) and Epq
1 = RqΦ(ap).

Proof. Consider an injective Cartan-Eilenberg resolution I•• of a• with an injection a•  I•,0

and differentials dpqI : Ipq → Ip+1,q and dpqII : Ipq → Ip,q+1. Then there are two spectral
sequences IE and IIE associated with the bicomplex B•• = Φ(I••) which converge to the
cohomology of the totalisation Hn(Tot(B••)) so that IE

pq
1 = Hq

II(B
p•), IE

pq
2 = Hp

I (H
q
II(B

••))
and IIE

pq
1 = Hp

I (B
•,q), IIE

pq
2 = Hq

II(H
p
I (B

••)). Since I•• is a Cartan-Eilenberg resolution,
the complex I•,q is homotopy equivalent to the complex of its cohomologies H∗

I (I
•,q) with

zero differentials, and hence Hp
I (B

•,q) = Φ(Hp
I (I

•,q)). The complex Hp
I (I

••) is an injective
resolution of Hp(a•). It follows that Hq

II(H
p
I (B

••)) = RqΦ(Hp(a•)). Using the fact that the
objects Hp(a•) are Φ-acyclic, we obtain

(2.8) IIE
pq
2 =

{
0, q 6= 0
Φ(Hp(a•)), q = 0.

Hence we get Hn(Tot(B••)) = Φ(Hn(a•)). Therefore the spectral sequence E := IE converges
to Φ(Hn(a•)), and since Ip,• is an injective resolution of ap, we have Epq

1 = Hq
II(Φ(I

p,•)) =
RqΦ(a•). �
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Corollary 2.6. Let F• be a bounded below complex of representations of a category C with
lim
←−

-acyclic cohomologies. Then there exists a cohomological spectral sequence E such that

(2.9) E ⇒ lim
←−

Hn(F•) and Epq
1 = lim

←−
qFp.

3. Representations of categories with pairwise coproducts.

3.1. Shifting of higher limits. Let C be a category with pairwise coproducts i.e. for any

objects c1, c2 ∈ C there exists the coproduct c1
i1−→ c1 ⊔ c2

i2←− c2 in C (C is not necessary has
an initial object). For any representation F of C there is a natural transformation

(3.1) TF ,c : F(c)⊕ F(c) −→ F(c ⊔ c),

given by TF ,c = (F(i1),F(i2)). A representation F of C is said to be additive (resp. monoad-
ditive, epiadditive) if TF is an isomorphism (resp. monomorphism, epimorphism). If we put
Fsq(c) = F(c ⊔ c), we can write the previous natural transformation as TF : F2 −→ Fsq.
By a representation F we construct the representation ΣF := coker(TF), and by recursion
Σn+1F = Σ(ΣnF). Then a representation F is monoadditive if and only if the following
sequence is exact

(3.2) 0 −→ F2 TF−→ Fsq −→ ΣF −→ 0

Proposition 3.1. Let C be a category with pairwise coproducts and F be a monoadditive
representation of C. Then there is an isomorphism

(3.3) lim
←−

n F ∼= lim
←−

n−1 ΣF

for any n ≥ 0.

Corollary 3.2. If F is a monoadditive representation of a category with pairwise coproducts,
then lim

←−
F = 0.

Corollary 3.3. If F is a representation of a category with pairwise coproducts such that the
functor ΣnF is monoadditive for 0 ≤ n < l, then

(3.4) lim
←−

n F = lim
←−

n−l ΣlF

for any n ≥ 0. In particular, lim
←−

nF = 0 for 0 ≤ n < l.

Corollary 3.4. If F is an additive representation of a category with pairwise coproducts, then
lim
←−

nF = 0 for any n ≥ 0.

In order to prove proposition 3.1, we need to prove two lemmas. The following lemma seems
to be well-known, but we provide a proof for completeness.

Lemma 3.5. A category C with pairwise coproducts is contractible.

Proof. Chose an object c0 ∈ C and consider the functor Φ : C → C given by the formula
Φ(−) = −⊔c0. By definition of coproduct, we obtain natural transformations from the identity
functor IdC → Φ and from the constant functor Constc0 → Φ. Using the fact that a natural
transformation of two functors induces a homotopy between the corresponding continuous
maps on the classifying spaces, we obtain that the identity map of the classifying space idBC
is homotopic to BΦ : BC → BC, and the map BΦ is homotopic to the constant map constc0.
Therefore, idBC ∼ constc0, and hence, C is contractible. �
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Lemma 3.6. Let F be a representation of a category with coproducts. Then the morphisms
i1, i2 : c→ c ⊔ c induce isomorphsms

(3.5) (ik)∗ : lim←−
n F(c)

∼=
−→ lim

←−
n F(c ⊔ c).

Proof. We denote by sq a functor C → C given by c 7→ c ⊔ c. Then Fsq = F ◦ sq. An object
of the comma category sq ↓ c0 is a pair (c, α : c ⊔ c → c0). An arrow α : c ⊔ c → c0 is defined
by the pair of arrows α1 = α ◦ i1 : c → c0 and α2 = α ◦ i2 : c → c0. Thus the category
sq ↓ c0 is isomorphic to the category, whose objects are triples (c, α1 : c → c0, α2 : c → c0)
and morphisms f : (c, α1, α2)→ (c′, α′

1, α
′
2) are morphisms f : c→ c′ such that α′

1f = α1 and
α′
2f = α2. It is easy to see that the object (c⊔ c′, α1 +α′

1, α2+α′
2) is the coproduct of objects

(c, α1, α2) and (c′, α′
1, α

′
2) in this category. Hence the category sq ↓ c0 has coproducts and by

lemma 3.5 it is contractible. Therefore, the functor sq satisfies the condition of proposition
2.1. Finally, applying corollary 2.3 to the natural transformation ik : IdC → sq, we obtain the
claimed isomorphism. �

Proof of proposition 3.1. Consider the long exact sequence of higher limits assotiated with the
short exact sequence 0 −→ F ⊕ F −→ Fsq −→ F

′ −→ 0. Using lemma 3.6, we obtain that
the homomorphism ((i1)∗, (i2)∗) : lim←−

nF ⊕ lim
←−

nF −→ lim
←−

nFsq is an epimorphism, and hence
the map lim

←−
nFsq −→ lim

←−
n F ′ vanishes. Therefore we get the short exact sequences

(3.6) 0 −→ lim
←−

n F ′ −→ lim
←−

n+1 F ⊕ lim
←−

n+1 F −→ lim
←−

n+1 Fsq −→ 0,

which are the totalisations of the bicartesian squares

lim
←−

n F ′ s1 //

s2

��

lim
←−

n+1 F

(i1)∗∼=
��

lim
←−

n+1 F
(i2)∗

∼=
// lim
←−

n+1Fsq.

By lemma 3.6 (i1)∗ and (i2)∗ are isomorphisms, and hence s1 and s2 are isomorphisms. �

3.2. Relative additivity and vanishing of higher limits. We denote byMod the category
of modules over k-algebras. Its objects are pairs (A,M) where A is an algebra, M is an A-
module and a morphism (A,M)→ (B,N) is a pair (ϕ, f) where ϕ : A→ B is a morphism of
algebras and f : M → N is a linear map such that f(am) = ϕ(a)f(m). If M is an A-module,
N is a B-module and ϕ : A→ B is a homomorphism of algebras, we will denote by N↓ϕ the
reduced A-module, and by M↑ϕ= B ⊗A M the induced B-module. If f is obvious we denote
N↓A:= N↓ϕ and M↑B:= M↑ϕ . Then for a morphism (ϕ, f) : (A,M) → (B,N), the map f
can be considered as an A-homomorphism f : M → N↓ϕ. Since the functor ↑ϕ is left adjoint
to ↓ϕ, a homomorphism f : M → N ↓ϕ induces a homomorphism f# : M ↑ϕ→ N given by
f#(b⊗m) = b · f(m).
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Let C be a category with coproducts and O : C → Alg be a functor to the category of
k-algebras. O-representation is a functor F : C → Mod such that the diagram

Mod

��
C

F

77♣♣♣♣♣♣♣♣♣♣♣♣♣ O // Alg

is commutative, where the right-hand functor is given by (A,M) 7→ A. Hence F(c) could be
written as (O(c),F

m
(c)), where F

m
(c) is a O(c)-module. We will usually consider F(c) not

as a pair but as the vector space F
m
(c) with the fixed structure of O(c)-module.

For an algebra A we denote by Aop the opposite algebra with multiplication a∗b = ba. Sim-
ilarly for a functor O : C → Alg we denote by Oop the functor given by Oop(c) = O(c)op. If F
is an O-representation and H is an Oop-representation, then one can define the representation
H⊗O F : C → Mod(k) given by (H⊗O F)(c) = H(c)⊗O(c) F(c).

Let C be a category with pairwise coproducts. An O-representation F is said to be additive
if the morphism

(3.7) TF : F(c)↑i1 ⊕ F(c)↑i2−→ F(c ⊔ c)

is an isomorphism of O(c ⊔ c)-modules, where TF = (F(i1)
#,F(i2)

#).

Proposition 3.7. Let C be a category with pairwise coproducts, O : C → Alg be a functor, F
be an additive O-representation and H be an Oop-representation. Then

(3.8) lim
←−

i H⊗O F = 0 for any i ≥ 0.

Proof. We put tl,c := H(il) : H(c) → H(c ⊔ c)↓il and σlH := coker(tl) for l ∈ {1, 2}. Since
(idc, idc) ◦ il = idc, the morphism tl,c is a O(c)-split monomorphism, and hence H(c ⊔ c) ↓il

∼=
H(c)⊕ σlH(c). Consider a commutative diagram

⊕
l∈{1,2}

H(c ⊔ c)↓il ⊗O(c)F(c) ∼=

id⊗TF // H(c ⊔ c)⊗O(c⊔c) F(c ⊔ c)

⊕
l∈{1,2}

H(c)⊗O(c) F(c)
TH⊗OF ,c

@@

(t1⊗idF(c))⊕(t2⊗idF (c))
OO

Since tl is a O(c)-split monomorphism, the left-hand morphism is a split monomorphism, and
hence H ⊗O F is monoadditive. Moreover, we obtain Σ(H ⊗O F) =

⊕
l∈{1,2} σlH ⊗O F =

(σ1H⊕σ2H)⊗OF . Using the fact that Σ(H⊗OF) has the same form asH⊗OF and induction,
we get that Σn(H⊗O F) is monoadditive for all n, and thus, lim

←−
n (H⊗O F) = 0.

�

4. 4-term exact sequences

A natural way to get different presentations of homology groups as derived limits is to use
certain homological 4-term exact sequences of the form

Homology(object) →֒ Functor1(presentation)→ Functor2(presentation) ։ Homology(object)
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Generally such sequences appear from homological spectral sequences. Here we give the
examples of 4-term sequences and related computations of lim

←−
, lim
←−

1-functors in two cases: 1)
group homology, 2) cyclic homology of algebras.

4.1. Relation modules and group homology. For a group G, consider a free presentation
of G:

(4.1) 1→ R→ F
π
→ G→ 1,

where F is a free group with a generating set S. The augmentation ideal ∆(F ) = ker{Z[F ]→
Z} of F is the free Z[F ]-module on the set {s − 1 : s ∈ S}. There is an exact sequence of
ZG-modules

(4.2) 0 −→ Rab
µ
−→ ZG⊗Z[F ] ∆(F )

σ
−→ ∆(G) −→ 0,

where µ maps r[R,R] onto 1⊗ (r− 1) for all r ∈ R, σ maps the basis element 1⊗ (s− 1) onto
π(s)− 1 for all s ∈ S and ∆(G) is the augmentation ideal in the group ring Z[G]. The map
µ is called the Magnus embedding of the relation module Rab.

Let M be a Z[G]-module. The module M can be viewed as a module over R and F where
the action of R is trivial and the action of F is induced by the action of G. Consider the
homology spectral sequence for the extension (4.1) with the coefficients M :

E2
pq = Hp(G,Hq(R,M))⇒ Hp+q(F,M).

Since all homology groups of R and F are zero in dimensions ≥ 2, this spectral sequence gives
the natural isomorphisms:

(4.3) E2
p,0 = Hp(G,M)

d2p0
−→ E2

p−2,1 = Hp−2(G,Rab ⊗M), p ≥ 3

and the following 4-term exact sequence:

(4.4) 0→ H2(G,M)→ H0(G,Rab ⊗M)→ H1(F,M)→ H1(G,M)→ 0.

For n ≥ 1, take the module R⊗n
ab ⊗M as coefficients in homology. The sequence (4.4) and

isomorphism (4.3) induce the following 4-term exact sequence:

(4.5) 0→ H2n(G,M)→ H0(G,R⊗n
ab ⊗M)→ H1(F,R

⊗n−1
ab ⊗M)→ H2n−1(G,M)→ 0.

Observe that, for n ≥ 2,

(4.6) lim
←−

H1(F,R
⊗n−1
ab ⊗M) = lim

←−
1H1(F,R

⊗n−1
ab ⊗M) = 0.

For the proof see the proof of theorem 5.3. The exact sequence (4.5) and triviality of limits
(4.6) implies that, for n ≥ 2,

lim
←−

H0(G,R⊗n
ab ⊗M) = H2n(G,M)

lim
←−

1H0(G,R⊗n
ab ⊗M) = H2n−1(G,M).

In the next section we will show how to extend this result to the higher limits.
Now we will consider the similar 4-term sequence, where the homology group is presented

not as a kernel, but as a cokernel.

Proposition 4.1. The sequence (4.2) induces the following 4-term exact sequence

0→ H1(F,Rab ⊗M)→ H1(F,Z[G]⊗Z[F ] ∆(F )⊗M)→ H1(F,∆(G)⊗M)→ H2(G,M)→ 0
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Proof. Applying the functor H∗(F,−) to the Magnus embedding, we get three left terms of
the needed sequence. It remains to show that the image of the boundary map

H1(F,∆(G)⊗M)→ H0(F,Rab ⊗M)

is exactly H2(G,M). This follows from the natural commutative diagram

H1(F,∆(G)⊗M)

����

// H0(F,Rab ⊗M)

H1(G,∆(G)⊗M) // H0(G,Rab ⊗M)

and the isomorphism H1(G,∆(G)⊗M) = H2(G,M). �

Corollary 4.2. For n ≥ 1, there is the following exact 4-term sequence

(4.7) 0→ H1(F,R
⊗n
ab ⊗M)→ H1(F,R

⊗n−1
ab ⊗ Z[G]⊗Z[F ] ∆(F )⊗M)→

H1(F,R
⊗n−1
ab ⊗∆(G)⊗M)→ H2n(G,M)→ 0

4.2. Quillen sequences. Let k be a field of characteristic zero, E an associative k-algebra,
I a two-sided ideal of E and M an E-bimodule. Let B(E) be the free bimodule resolution of
E: B(E)n = E⊗n+2, (n+ 2)-fold tensor product over k, n ≥ 0, with differential b′ given by

b′(x0 ⊗ . . .⊗ xn+1) =

n∑

j=0

(−1)j(x0 ⊗ . . .⊗ xjxj+1 ⊗ . . .⊗ xn+1), xi ∈ E.

Following [12], denote by M⊗E the Hochschild homology group H0(E,M); set

M⊗!
E = M ⊗E B(E)⊗E , (M⊗!

E)
n = M ⊗E B(E)⊗E . . .M ⊗E B(E)⊗E (n times)

and denote by (M⊗!
E)

n
Z/n its quotient under the the action the cyclic group Z/n.

Recall from [12] (Theorem 5.5) that there exists the following spectral sequence

E1
pq = Hq−p((E⊗

!
E)

p+1
Z/p+1/(I⊗

!
E)

p+1
Z/p+1)⇒ HCp+q(E/I).

In the case E is free, the spectral sequence collapses to the exact sequence (for n ≥ 1)

HC2n(E/I) // // E1
nn

d1nn // E1
n−1,n

// // HC2n−1(E/I)

HC0(E/In+1) H1(E,E/In)σ

Since, for n ≥ 1, HC0(E/In+1) = E/(In+1 + [E,E]), where [E,E] is the k-submodule of R
generated by rs− sr, r, s ∈ E, one has the following 4-term sequence:

(4.8) 0→ HC2n(E/I)→ E/(In+1 + [E,E])→ H1(E,E/In)σ → HC2n−1(E/I)→ 0
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The similar spectral sequence argument is used in [12] (Theorem 5.11) for an analogous 4-term
spectral sequence for the odd dimensional reduced cyclic homology (for n ≥ 0):

(4.9) 0→ HC2n+1(E/I)→ In+1/[I, In]→ H1(E, In)→ HC2n(E/I)→ 0

Note that, by definition, H1((E/In)⊗!
E) = H1(E,E/In).

5. Group homology as higher limits

5.1. Group homology. In this section, we will consider the category Pres(G) of free presen-
tations of a group G. The objects of Pres(G) are surjective homomorphisms π : F ։ G where
F is a free group and morphisms f : (π1 : F1 ։ G) → (π2 : F2 ։ G) are homomorphisms
f : F1 → F2 such that π1 = π2f . The category Pres(G) has coproducts given by

(π1 : F1 ։ G) ⊔ (π2 : F2 ։ G) = (π1 + π2 : F1 ∗ F2 ։ G),

and hence it is contractible. In particular, for any abelian group A higher limits lim
←−

iA vanish
for i > 0. We will always denote by R the kernel of an epimorphism π : F ։ G. Therefore an
object of Pres(G) defines a short exact sequence of groups

1 −→ R −→ F
π
−→ G −→ 1,

and R can be considered as a functor R : Pres(G) → Gr. All the limits considered bellow in
this section are taken over the category Pres(G).

Theorem 5.1. For a group G and a Z[G]-module M , for n ≥ 1, there are natural isomor-
phisms

(5.1) lim
←−

i H0(G,R⊗n
ab ⊗M) =

{
H2n−i(G,M) for i < n,

0 for i > n

For i = n, there is a natural short exact sequence

0→ Hn(G,M)→ lim
←−

nH0(G,R⊗n
ab ⊗M)→ (∆(G)⊗n−1 ⊗M)∆(G)→ 0

Corollary 5.2. For any group G and n ≥ 1, there are natural isomorphisms

H2n−i(G) = lim
←−

i (R⊗n
ab )G for i < n.

Proof. First lets prove the theorem for n = 1. Observe that the representation H1(F,M) is
monoadditive and

ΣH1(F,M) = M∆(G).

Hence, by proposition 3.1,

lim
←−

iH1(F,M) =

{
M∆(G) for i = 1

0, i 6= 1

The needed isomorphisms follow now from the sequence (4.4) and corollary 2.6 applied to the
complex

H0(G,Rab ⊗M)→ H1(F,M)

whose zeroth homology is H1(G,M) and the first homology is H2(G,M). For i = n = 1, the
spectral sequence 2.6 implies that there is following natural short exact sequence

0→ H1(G,M)→ lim
←−

1H0(G,Rab ⊗M)→M∆(G)→ 0.
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In particular, for a trivial Z[G]-module M , there is an isomorphism

H1(G,M) = lim
←−

1H0(G,Rab ⊗M).

Now assume that the isomorphisms (5.1) are proved for a given n. Consider the next step.
Since the category Pres(G) is acyclic, the 4-term sequence (4.5) implies that there is a natural
isomorphism

lim
←−

iH0(G,R⊗n+1
ab ⊗M) = lim

←−
iH1(F,R

⊗n
ab ⊗M), i ≥ 2.

For any Z[G]-module N (which may depend on F and R),

lim
←−

iH1(F,Z[G]⊗Z[F ] ∆(F )⊗N) = 0, i ≥ 0

Now the sequence (4.7) implies that

lim
←−

iH1(F,R
⊗n
ab ⊗M) = lim

←−
i−1Wn(F,R), n ≥ 1

for all i ≥ 0, where Wn(F,R) is the part of the following short exact sequence

0→Wn(F,R)→ H1(F,R
⊗n−1
ab ⊗∆(G)⊗M)→ H2n(G,M)→ 0.

First consider the case i = 2. For n ≥ 2,

lim
←−

iH1(F,R
⊗n−1
ab ⊗∆(G)⊗M) = 0, i = 0, 1.

Therefore, there is a natural isomorphism

H2n(G,M) = lim
←−

1 Wn(F,R) = lim
←−

2H1(F,R
⊗n
ab ⊗M) = lim

←−
2 H0(F,R

⊗n+1
ab ⊗M)

and (5.1) follows for i = 2. In the case n = i = 2, we get the natural exact sequence

0→ H2(G,M)→ lim
←−

2H0(F,R
⊗2
ab ⊗M)→ (∆(G)⊗M)∆(G)→ 0,

where the last term comes from the isomorphism

lim
←−

1H1(F,∆(G)⊗M) = (∆(G)⊗M)∆(G).

For i ≥ 3, there is a natural isomorphism

lim
←−

iH1(F,R
⊗n
ab ⊗M) ≃ lim

←−
i−1H1(F,R

⊗n−1
ab ⊗∆(G)⊗M).

Since

lim
←−

i−1H1(F,R
⊗n−1
ab ⊗∆(G)⊗M) = lim

←−
i−1H0(G,R⊗n

ab ⊗∆(G)⊗M),

the inductive assumption implies that

lim
←−

iH1(F,R
⊗n
ab ⊗M) =

{
H2n−i+1(G,∆(G)⊗M) = H2n−i+2(G,M) for i < n + 1

0 for i > n+ 1

For i = n + 1, we get the natural exact sequence

0→ Hn+1(G,M)→ lim
←−

n+1H0(G,R⊗n+1
ab ⊗M)→ (∆(G)⊗n ⊗M)∆(G)→ 0

and the inductive step is completed for i ≥ 3. �
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5.2. Fibre products. For n ≥ 2 and an epimorphism p : F → G, consider the fibre product

Fn(π) := F ×G × · · · ×G F︸ ︷︷ ︸
n

= {(x1, . . . , xn) ∈ F×n | π(x1) = · · · = π(xn)}

There is a natural split exact sequence (n ≥ 2):

(5.2) 1→ R→ Fn(π)→ Fn−1(π)→ 1.

For any Z[G]-module M , there is a split exact sequence of homology groups which follows
from the spectral sequence applied to the extension (5.2):

(5.3) 0→ Hi(Fn−1(π), Rab ⊗M)→ Hi+1(Fn(π),M)→ Hi+1(Fn−1(π),M)→ 0.

For i = n− 1, we have a natural isomorphism

(5.4) Hn(Fn(π),M) ≃ H1(F,R
⊗n−1
ab ⊗M).

Theorem 5.3. For any Z[G]-module M , there are natural isomorphisms

lim
←−

Hn−1(Fn(π),M) = H2n−2(G,M) for n ≥ 2(5.5)

lim
←−

1Hn−1(Fn(π),M) = H2n−3(G,M) for n ≥ 3.(5.6)

Proof. We first show that

(5.7) lim
←−

H1(F2(π),M) = H2(G,M).

To see this, consider the short exact sequence

0→ H0(F,Rab ⊗M)→ H1(F2(π),M)→ H1(F,M)→ 0

The representationH1(F,M) is monoadditive, hence lim
←−

H1(F,M) = 0. Now the isomorphism
(5.7) follows from theorem 5.1 for n = 1, i = 0.

Now we can assume that n ≥ 3. We will show that, for any module N (which may depend
on F and R) and k ≥ 1,

(5.8) lim
←−

H1(F,R
⊗k
ab ⊗N) = lim

←−
1H1(F,R

⊗k
ab ⊗N) = 0.

For a presentation F/R = G, consider its free square:

1→ R̃→ F ∗ F → G→ 1,

where R̃ is the kernel of the natural projection F ∗ F ։ G, which sends both copies of F
via p. The representation H1(F,R

⊗k
ab ⊗ N) is monoadditive. The cokernel Cok(F,R) of the

natural map

H1(F,R
⊗k
ab ⊗N)⊕2 →֒ H1(F ∗ F, R̃

⊗n
ab ⊗N)
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can be described with the help of Mayer-Vietoris sequence for group homology of a free product
as follows. There is a natural diagram

H1(F,R
⊗n
ab ⊗N)⊕2

��

��

H1(F,R
⊗n
ab ⊗N)⊕2

��

��

H1(F ∗ F,R
⊗n
ab ⊗N)

����

// // H1(F ∗ F, R̃
⊗n
ab ⊗N) //

����

H1

(
F ∗ F,

R̃⊗n
ab

⊗N

R⊗n
ab

⊗N

)

∆(G)(R⊗n
ab ⊗N) // inj // Cok(F,R) // // Coker(inj)

OO

OO

The triviality of lim
←−

1 in (5.8) now follows from proposition 3.1, since both representations

R⊗n
ab ⊗N and H1

(
F ∗ F,

R̃⊗n
ab

⊗N

R⊗n
ab

⊗N

)
are monoadditive.

The exact sequence (5.3) for i = n− 2, and the isomorphism (5.4) imply that

lim
←−

j Hn−1(Fn(π),M) = lim
←−

j Hn−2(Fn−1(π), Rab ⊗M), for j = 0, 1.

Continuing this process, we get the isomorphisms

lim
←−

jHn−1(Fn(π),M) = lim
←−

jH0(F,R
n−1
ab ⊗M), for j = 0, 1.

The needed statement now follows from theorem 5.1. �

6. Hihger relation modules

For a free presentation of a group G,

(6.1) 1→ R→ F → G→ 1,

the lower central series quotients γn(R)/γn+1(R) are called higher relation modules. Here
{γn(R)}n≥1 is the lower central series of R defined inductively as γ1(R) = R, γn+1(R) =
[γn(R), R]. The action of G on γn(R)/γn+1(R) is defined via conjugation in F . The properties
of functors

(6.2) lim
←−

γn(R)/[γn(R), F ] = lim
←−

H0(G, γn(R)/γn+1(R))

are considered in [4]. These functors are interesting since the map between higher relation
modules and tensor powers of the ordinal relation module

(the nth Lie power of Rab =) γn(R)/γn+1(R)

n
55

// R⊗n
ab

// γn(R)/γn+1(R)

induces, for all 0 ≤ i < n, the natural map between corresponding limits

lim
←−

i γn(R)/[γn+1(R), F ]→ H2n−i(G)→ lim
←−

i γn(R)/[γn+1(R), F ]

by corollary 5.2. Here we describe the functor (6.2) for n = 2.
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Proposition 6.1. There is a natural isomorphism

(6.3) lim
←−

γ2(R)/[γ2(R), F ] = H2(G, S2(∆(G))),

where S2 is the symmetric square functor. If G is a 2-torsion-free group, then

lim
←−

γ2(R)/[γ2(R), F ] = H4(G,Z/2)(6.4)

lim
←−

1 γ2(R)/[γ2(R), F ] = H3(G,Z/2).(6.5)

Proof. Recall that, for a short exact sequence of free abelian groups

(6.6) 0→ A→ B → C → 0,

there exists a natural long exact sequence, called the Koszul complex

0→ Λ2(A)→ A⊗ B → S2(B)→ S2(C)→ 0,

where Λ2 is the exterior square functor. Using the Magnus embedding instead of (6.6), we
obtain the following exact sequence, which is a sequence not only of abelian groups, but also
of Z[G]-modules:

(6.7) 0→ Λ2(Rab)→ Rab ⊗ (Z[G]Z[F ]∆(F ))→ S2(Z[G]⊗Z[F ] ∆(F ))→ S2(∆(G))→ 0

Denote
N(R,F ) := Rab ⊗ (Z[G]⊗Z[F ] ∆(F ))

and the cokernel of the left hand map in the above sequence

Cok(F,R) := coker{Λ2(Rab) →֒ N(F,R)}

After applying the functor H∗(G,−) to the exact sequence of Z[G]-modules

0→ Λ2(Rab)→ N(F,R)→ Cok(F,R)→ 0

we obtain the sequence

(6.8) 0→ H1(G,Cok(F,R))→ γ2(R)/[γ2(R), F ]→

H0(G,N(F,R))→ H0(G,Cok(F,R))→ 0.

Now we observe that H0(F,N(F,R)) is a monoadditive representation and the sequence (6.8)
implies that there is an isomorphism

(6.9) lim
←−

H1(G,Cok(F,R)) = lim
←−

γ2(R)/[γ2(R), F ].

Recall that, for any group G and a free Z[G]-module P , H2k(G, S2(P )) = 0, k ≥ 1 and
Hi(G, S2(P )) = 0 for all i if G is 2-torsion-free. The description of Cok(F,R) as a kernel

(6.10) 0→ Cok(F,R)→ S2(Z[G]⊗Z[F ] ∆(F ))→ S2(∆(G))→ 0

implies that there is the following exact sequence

(6.11) 0→ H2(G, S2(G))→ H1(G,Cok(F,R))→ H1(G, S2(Z[G]⊗Z[F ] ∆(F )))

Again we observe that H1(G, S2(Z[G] ⊗Z[F ] ∆(F ))) is a monoadditive representation. The
sequence (6.11) implies that

lim
←−

H1(G,Cok(F,R)) = lim
←−

H2(G, S2(G)) = H2(G, S2(G))

and (6.3) follows from (6.9).



16 SERGEI O. IVANOV AND ROMAN MIKHAILOV

Now assume thatG is 2-torsion-free. ThenH1(G,Cok(F,R)) = H2(G, S2(G)) = H4(G,Z/2)
(see, for example, [8]) and the isomorphism (6.4) follows. To compute lim

←−
1-term, consider the

sequence (6.8) and observe that lim
←−

iH1(G,Cok(F,R)) = 0, i ≥ 1, hence

lim
←−

1 γ2(R)/[γ2(R), F ] = lim
←−

H0(G,Cok(F,R)).

Applying the homology functor H∗(G,−) to the sequence (6.10) we get the exact sequence

0→ H1(G, S2(∆(G)))→ H0(G,Cok(F,R))→

H0(G, S2(Z[G]⊗Z[F ] ∆(F )))→ H0(G, S2(∆(G)))→ 0.

The representation H0(G, S2(Z[G]⊗Z[F ] ∆(F ))) is monoadditive, hence

lim
←−

H0(G,Cok(F,R)) = lim
←−

H1(G, S2(∆(G))) = H1(G, S2(∆(G))) = H3(G,Z/2)

and the isomorphism (6.5) follows. �

One can use the results and methods from [8] and [13] to get the descriptions of limits like
(6.4) and (6.5). For example, consider the next higher relation module. In order to compute
the limit

lim
←−

γ3(R)/[γ3(R), F ]

consider the following exact sequence from [13]:

0→ H1(G,K3
1)→ γ3(R)/[γ3(R), F ]→ H0(G,Z[G]⊗Z[F ] ∆(F )⊗ S2(Rab))→ H0(G,K3

1 )→ 0,

where K3
1 is a Z[G]-module which lives in the following diagram with short exact sequences

Rab ⊗ S2(∆(G))
��

��

K3
1

// // S3(Z[G]⊗Z[F ] ∆(F )) // // S3(Z[G]⊗Z[F ]∆(F ))

K3
1

����

S3(∆(G))

Suppose thatG is a 3-torsion-free group. Then the torsion subgroup of the quotient γ3(R)/[γ3(R), F ]
consists of 3-torsion elements only [13]. The reasoning from the proof of proposition 6.1 leads
to the following:

for a 3-torsion-free group G, lim
←−

γ3(R)/[γ3(R), F ] = H4(G,Z/3).

7. Hochschild and Cyclic homology.

Let k be a field. All algebras in this section are assumed to be associative unital algebras
over k, and ⊗ = ⊗k. If F is an algebra and M is an F -bimodule, we denote by F e = F ⊗ F op

the enveloping algebra of F and following Quillen we denote the space of coinvariants M♮ :=
M/[F,M ] = H0(F,M).
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7.1. Magnus embedding for algebras. Let A1 and A2 be algebras and L and N be
(A1, A2)-bimodules. A bimodule derivation δ : L → N is a k-linear map such that δ(amb) =
δ(am)b−aδ(m)b+aδ(mb). Given a left-right split short exact sequence of (A1, A2)-bimodules

(7.1) 0 −→ N
f
−→ M

g
−→ L −→ 0

one associates to it a bimodule derivation by choosing to it for f a left A1-splitting l : L→M
and a right A2-splitting r : L→M. There is then a unique k-linear map δ : L→ N such that
gδ = l − r and this map is a bimodule derivation.

Let B1 = A1/I1 and B2 = A2/I2 be quotient algebras and M be a (A1, A2)-bimodule. Then
we put M ↑(B1,B2):= M/(I1M + MI2) ∼= B1 ⊗A1 M ⊗A2 B2. It gives a well defined functor
(−)↑(B1,B2): Bimod(A1, A2)→ Bimod(B1, B2). For the sake of simplicity, we put ↑:=↑(B1,B2) .

Lemma 7.1. ([2, proposition 3.2]) As above, let (7.1) be a right-left split sequence of (A1, A2)-
bimodules, let δ : L → N be an associated bimodule derivation and Bi = Ai/Ii be quotient
algebras. Then there is an exact sequence of (B1, B2)-bimodules

I1M ∩MI2
I1MI2

−→
I1L ∩ LI2
I1LI2

δ̃
−→ N↑

f↑
−→M↑

g↑
−→ L↑−→ 0,

where δ̃ is the bimodule homomorphism induced by δ.

We denote by Ω(A) the universal derivation A-bimodule of a k-algebra A. It is defined as
the kernel of the multiplication map Ω(A) = ker(µ : A ⊗ A → A). The universal derivation
δ : A → Ω(A) is given by δ(a) = a ⊗ 1 − 1 ⊗ a, and it is the associated bimodule derivation
to the left-right split short exact sequence

(7.2) 0 −→ Ω(A) −→ A⊗ A
µ
−→ A −→ 0

with splittings l(a) = a⊗1 and r(a) = 1⊗a. Let Ā denote the vector space quotient A/k. Then
there is a well-defined isomorphism of vector spaces A⊗Ā ∼= Ω(A) given by x⊗ȳ 7→ x⊗y−xy⊗1
(see [5, proposition 10.1.3]). The composition of δ with this isomorphism is the map A→ A⊗Ā
given by a 7→ 1⊗ ā. It follows that

(7.3) ker(δ) = k and coker(δ) = Ā⊗2.

Let B = A/I be a quotient algebra, then we denote the enveloping algebra by Be = B⊗Bop

and ↑B
e

=↑(B,B): Bimod(A)→ Bimod(B).

Proposition 7.2. Let A be a k-algebra and B = A/I be its quotient algebra. Then there is
an exact sequence of B-bimodules

0 −→ I/I2
δ̃
−→ Ω(A)↑B

e d
−→ B ⊗ B

µ
−→ B −→ 0,

where µ is the multiplication map, d is induced by inclusion Ω(A) →֒ A⊗ A and δ̃ is induced
by the universal derivation δ : A→ Ω(A).

Proof. It follows from the previous lemma and the equations B = A↑B
e

, B⊗B = (A⊗A)↑B
e

,
I/I2 = (IA ∩ AI)/(IAI) and ((I ⊗ A) ∩ (A⊗ I))/(I ⊗ I) = 0. �
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If F is a (quasi-)free algebra and A ∼= F/I, then A-bimodule I/I2 is said to be relation
bimodule. By the previous proposition we have a short exact sequence of A-bimodules

(7.4) 0 −→ I/I2
δ̃
−→ Ω(F )↑A

e

−→ Ω(A) −→ 0.

Ω(F ) is a projective F -bimodule, and hence, Ω(F ) ↑A
e

is a projective A-bimodule. Since
Ω(A) is left-right projective, the sequence (7.4) left-right splits, and hence I/I2 is left-right

projective. The map δ̃ : I/I2 → Ω(F )↑A
e

is called Magnus embedding of the relation bimodule
I/I2.

7.2. Higher limit formula for Hochschild homology. In this section, we will consider the
category Pres(A) of free presentations of an algebra A. The objects of Pres(A) are surjective
homomorphisms π : F ։ A where F is a free algebra and morphisms f : (π1 : F1 ։ A) →
(π2 : F2 ։ A) are homomorphisms f : F1 → F2 such that π1 = π2f . The category Pres(G) has
coproducts given by (π1 : F1 ։ G) ⊔ (π2 : F2 ։ G) = (π1 + π2 : F1 ∗ F2 ։ G), where F1 ∗ F2

is the free product of algebras. Therefore this category is contractible. In particular, for any
vector space V higher limits lim

←−
iV vanish for i > 0. We will always denote by I the kernel of

an epimorphism π : F ։ A. Hence an object of Pres(G) defines a short exact sequence

(7.5) 1 −→ I −→ F
π
−→ A −→ 1.

and I can be considered as a functor I : Pres(A)→ Mod(A). All the limits considered bellow
in this section are taken over the category Pres(A).

Lemma 7.3. If we consider F e as a functor F e : Pres(A) → Alg, sending (F ։ A) to F e,
then for any F e-representation H of the category Pres(A)

lim
←−

i H⊗F e Ω(F ) = 0

for all i.

Proof. It follows from proposition 3.7 and the fact that Ω(F ) is a F e-additive representation
(see [1, 2.3]). �

Lemma 7.4. Let F be a quasi-free algebra, I its ideal and A = F/I. Then the map induced
by multiplication

(In/In+1)⊗A (Im/Im+1) −→ In+m/In+m+1

is an isomorphism of A-bimodules. In particular, (I/I2)
⊗
A
n ∼= In/In+1.

Proof. It is sufficient to prove that the multiplication map induces an isomorphism (I/I2)
⊗
A
n ∼=

In/In+1. For any two ideals I, J ⊳ F (of any algebra F ) there is a short exact sequence

(7.6) 0 −→ TorF2 (F/I, F/J) −→ I ⊗F J −→ IJ −→ 0

where the right-hand map is the multiplication map. Since F is quasi-free, its global dimension
is less than or equal to 1, and hence I ⊗F J ∼= IJ for any ideals I, J of F. By induction we

obtain I
⊗
F
n ∼= In. Applying the functor − ⊗F A to the last isomorphism, we get I

⊗
F
n−1
⊗F

(I/I2) ∼= In/In+1. Finally, using the isomorphism I ⊗F (I/I2) ∼= (I/I2)⊗A (I/I2), we obtain

(I/I2)
⊗
A
n ∼= In/In+1. �
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Lemma 7.5. For any A-bimodule M the following holds

lim
←−

i (In/In+1)⊗A M =

{
Ωn

nc(A)⊗A M, if i = n
0, if i 6= n

for n ≥ 0, where Ωn
nc(A) = Ω(A)

⊗
A
n
(see [5]).

Proof. Consider the left-right split exact sequence of Magnus embedding

I/I2  Ω(F )↑A
e

։ Ω(A).

Tensoring by (In−1/In)⊗A M , we obtain the following short exact sequence

0 −→ (In/In+1)⊗A M −→ Ω(F )↑A
e

⊗A(I
n−1/In)⊗A M −→ Ω(A)⊗A (In−1/In)⊗A M −→ 0.

If we denote L := (In−1/In)⊗A M, the middle term can be written as follows

(A⊗F Ω(F )⊗F A
)
⊗A L = A⊗F Ω(F )⊗F L = (L⊗ A)⊗F e Ω(F ).

By lemma 7.3 all the higher limits of the middle term vanish. Then using the long exact
sequence and the fact that Ω(A) is a projective as a left A-module, we obtain

lim
←−

i((In/In+1)⊗AM) = lim
←−

i−1(Ω(A)⊗A(I
n−1/In)⊗AM) = Ω(A)⊗A lim

←−
i−1

(
(In−1/In)⊗AM

)
.

Then by induction we get the claimed statement. �

Theorem 7.6. For an algebra A and an A-bimodule M , for n ≥ 1, there are natural isomor-
phism

H2n−i(A,M) ≃ lim
←−

i (In/In+1)⊗Ae M for i < n.

Corollary 7.7. There is an isomorphism

HH2n−i(A) ≃ lim
←−

i (In/In+1)♮ for i < n.

Proof. If P is a projective A-bimodule andM andN are left-right projective A-bimodules then
P ⊗A M is a projective A-bimodule and M ⊗A N is left-right projective. It follows from the
fact that the functors HomAe(P ⊗A M,−) ∼= HomAe(P,HomA(M,−)), HomA(M ⊗A N,−) ∼=
HomA(M,HomA(N,−)) and HomAop(M ⊗A N,−) ∼= HomAop(N,HomAop(M,−)) are exact.

The Magnus embedding gives the following exact sequence of representations I/I2 

Ω(F )↑A
e

→ Ae
։ A. Then tensoring by In/In+1 we obtain exact sequences

0 −→ In+1/In+2 −→ Ω(F )↑A
e

⊗A(I
n/In+1) −→ Ae ⊗A (In/In+1) −→ In/In+1 −→ 0.

Consider the projective resolution P• of the bimodule A given by the infinite Yoneda product
of these sequences. Then P2n = Ae ⊗A (In/In+1) and P2n+1 = Ω(F )↑A

e

⊗A(I
n/In+1) and

there is an embedding In/In+1
 P2n−1. Since P• is a projective resolution, the homology

of the complex P• ⊗Ae M coincides with Hi(A,M). Let F• be the following cochain complex
concentrated in non-negative degrees:

0 −→ (In/In+1)⊗Ae M −→ P2n−1 ⊗Ae M −→ P2n−2 ⊗Ae M −→ . . . −→ P0 ⊗Ae M −→ 0.

It is easy to see that H i(F•) = H2n−i(A,M) for i ≥ 0. The terms of F• are given by F0 =
(In/In+1)⊗A M and Fp = P2n−p ⊗Ae M for p > 0. Therefore we obtain

F2i = M ⊗A (In−i/In−i+1) and F2i−1 =
(
(In−i/In−i+1)⊗A M

)
⊗F e Ω(F )
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for i > 0. Consider the spectral sequence E from corollary 2.6 associated with the complex F•.
Its first page is Epq

1 = lim
←−

qFp, and E ⇒ H2n−i(A,M). The functor Ω(F ) is an additive O-
representation, where O(F ։ A) = F e (see [1, 2.3]). Using proposition 3.7 and the previous
lemma we get

Epq
1 = lim

←−
qFp =





0, if p 6= 2(n− q) and p 6= 0
lim
←−

q (In/In+1)⊗Ae M, if p = 0
Ωp

nc(A)⊗A M if p = 2(n− q) > 0

Since for any i ≤ n on the diagonal p + q = i on E1 all nonzero terms concentrated in the
column p = 0 and equal to lim

←−
i (In/In+1)⊗Ae M, we obtain the required isomorphisms. �

7.3. Cyclic homology of augmented algebras.

Lemma 7.8. Let A be an algebra. Then the following holds.

(7.7) lim
←−

i F/I2 =





k, i = 0
Ā⊗2, i = 1
0, i > 1.

Proof. Note that Ω(F )↑A
e∼= Ω(F )/(IΩ(F ) + Ω(F )I) and the composition of the universal

derivation and the projection F
δ
→ Ω(F ) ։ Ω(F ) ↑A

e

vanishes on I2. Hence the univer-

sal derivation induces the map δ̂ : F/I2 → Ω(F )↑A
e

so that δ̂|I/I2 coincides with Magnus

embedding δ̃ : I/I2  Ω(F )↑A
e

. Then the commutative triangle

I/I2

||①①
①①
①①
①① δ̃

$$■
■■

■■
■■

■■

F/I2
δ̂ // Ω(F )↑A

e

and short exact sequences I/I2  Ω(F )↑A
e

։ Ω(A), I/I2  F/I2 ։ A give an octahedron

in the derived category D+(Vect
Pres(A)
k ) :

I/I2

��

I/I2

δ̃
��

Ω[0,1](A) // F/I2
δ̂ //

��

Ω(F )↑A
e //

��

Ω[0,1](A)[1]

Ω[0,1](A) // A

��

δ // Ω(A) //

��

Ω[0,1](A)[1]

I/I2[1] I/I2[1],

where Ω[0,1](A) is the complex · · · → 0 → A
δ
→ Ω(A) → 0 → · · · . By lemma 7.3, we have

lim
←−

i Ω(F )↑A
e

= 0, and hence Rlim
←−

Ω(F )↑A
e

= 0. Then, applying the total derived functor

Rlim
←−

to the distinguished triangle Ω[0,1](A) → F/I2 → Ω(F )↑A
e

→ Ω[0,1](A)[1], we obtain the
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isomorphism Rlim
←−

F/I2 ∼= Ω[0,1](A) in the derived category D+(Vectk). Since ker(δ) = k and

Coker(δ) = Ā⊗2 (see (7.3)), we get the claimed statement. �

Lemma 7.9. Let A be an algebra and n ≥ 2. Then the unit homomorphism ηF : k → F
induces an isomorphism

(7.8) lim
←−

F/In ∼= k.

Proof. The proof is by induction on n. The base case us given by the previous lemma. The
inductive step follows from the short exact sequence In/In+1

 F/In+1
։ F/In and the fact

that lim
←−

In/In+1 = 0 = lim
←−

1 In/In+1 for n ≥ 2 (lemma 7.5). �

An augmented algebra is a k-algebra together with an algebra homomorphism εA : A → k
called augmentation map. The augmentation map provides a natural structure of A-module
on k. The augmentation ideal is denoted by ∆(A) := ker(εA). The unit homomorphism ηA :
k → A and the augmentation map εA : A→ k give a natural decomposition A = k⊕∆(A). If
π : F ։ A is a presentation of an augmented algebra, then the free algebra F has a natural
augmentation map εF = εA ◦ π.

Lemma 7.10. Let A be an augmented algebra and n ≥ 1. Then there are isomorphisms

(7.9) lim
←−

i ∆(F ) = 0, lim
←−

i In = lim
←−

i−1 ∆(F )/In

for all i. In particular, lim
←−

In = 0.

Proof. It is easy to see that ∆(F ) ∼= Ω(F ) ⊗F k. Then the isomorphism Ω(F1 ∗ F2) ∼=
Ω(F1)↑

(F1∗F2)e ⊕ Ω(F2)↑
(F1∗F2)e implies ∆(F1 ∗ F2) ∼= ∆(F1)↑

F1∗F2 ⊕ ∆(F2)↑
F1∗F2 . Hence the

representation ∆(F ) is F -additive, and by proposition 3.7 lim
←−

i ∆(F ) = lim
←−

i F ⊗F ∆(F ) = 0.

This equality and the short exact sequence In  ∆(F ) ։ ∆(F )/In imply that lim
←−

i In =

lim
←−

i−1 ∆(F )/In. �

Theorem 7.11. Let A be an augmented algebra over a field k of characteristic 0. Then there
are isomorphisms

(7.10) HC2n(A) ∼= lim
←−

F/(In+1 + [F, F ]),

(7.11) HC2n−1(A) ∼= lim
←−

1 F/(In+1 + [F, F ]),

(7.12) HC2n+1(A) = lim
←−

In+1/[I, In],

(7.13) HC2n(A) = lim
←−

1 In+1/[I, In],

Remark 7.12. The first and the third isomorphism was proved by Quillen but we prove it for
completeness.

Proof. First of all, we prove that lim
←−

i H1(F, F/I
n) = 0 for i = 0, 1. Consider the natural

projection pF : F/In ։ F/(In + [F, F ]) = (F/In)♮. The unit homomorphism ηF : k →
F induces the map η̃ : k → F/In, the augmentation map εF : F → k induces the map
ε̃ : (F/In)♮ ։ k and the equation ε̃ ◦ pF ◦ η̃ = idk holds. Then we obtain the equation
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lim
←−

(ε̃) ◦ lim
←−

(pF ) ◦ lim
←−

(η̃) = idk, and hence lim
←−

(pF ) : lim
←−

F/In ∼= k → lim
←−

(F/In)♮ is a
monomorphism. Divide the exact sequence

(7.14) 0 −→ H1(F, F/I
n) −→ Ω(F )⊗F e (F/In) −→ F/In

pF
−→ (F/In)♮ −→ 0

into two short exact sequences S  F/In ։ (F/In)♮ and H1(F, F/I
n)  Ω(F )⊗F e (F/In) ։

S, where S is some representation of Pres(A). Since lim
←−

pF : lim
←−

F/In → lim
←−

(F/In)♮ is a
monomorphism, the first short exact sequence show that lim

←−
S = 0. By lemma 7.3 we get

lim
←−

i Ω(F )⊗F e (F/In) = 0 for all i. These equalities and the second short exact sequence imply

that lim
←−

i H1(F, F/I
n) = 0 for i = 0, 1.

Consider the Quillen’s exact sequence (4.8)

(7.15) 0 −→ HC2n(A) −→ (F/In+1)♮ −→ H1(F, F/I
n)σ −→ HC2n−1(A) −→ 0

and divide it into two short exact sequences T  H1(F, F/I
n)σ ։ HC2n−1(A) andHC2n(A) 

(F/In+1)♮ ։ T . Since the field k is of characteristic 0, the vector space H1(F, F/I
n)σ

is a functorial direct summand of H1(F, F/I
n). It follows that lim

←−
i H1(F, F/I

n)σ = 0

for i ∈ {0, 1, }, and hence, lim
←−
T = 0 and lim

←−
1 T = HC2n−1(A). Using these isomor-

phisms, the second short exact sequence and the equality lim
←−

1 HC2n(A) = 0, we obtain

HC2n(A) = lim
←−

F/(In+1 + [F, F ]) and HC2n−1(A) = lim
←−

1 F/(In+1 + [F, F ]).
By the similar argument the exact sequence

(7.16) 0 −→ H1(F, I
n) −→ Ω(F )⊗F e In −→ In −→ (In)♮ −→ 0

and isomorphisms lim
←−

In = 0 (lemma 7.10) imply lim
←−

i H1(F, I
n) = 0 for i ∈ {0, 1}. Finally,

using the second Quillen’s sequence (4.9), one can similarly prove the rest two isomorphisms.
�

Corollary 7.13. Let A be a commutative algebra of finite type over C. Then there are iso-
morphisms

(7.17) HC2n(A) = lim
←−

F/(In+1 + [F, F ]),

(7.18) HC2n−1(A) = lim
←−

1 F/(In+1 + [F, F ]).

(7.19) HC2n+1(A) = lim
←−

In+1/[I, In]

(7.20) HC2n(A) = lim
←−

1 In+1/[I, In].

Proof. The isomorphisms (7.17) and (7.19) are proved by Quillen. The others follow from
the previous theorem and the fact that any maximal ideal m ⊳ A gives an augmentation
A ։ A/m ∼= C. �

8. Derived functors in the sense of Dold-Puppe as higher limits

Let T be an endofunctor on the category of abelian groups. The family LiT (−) of derived
functors, in the sense of Dold-Puppe [3], of T are defined by

LiT (A) = πiTN
−1P∗, i ≥ 0, A ∈ abelian groups,
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where P∗ → A is a projective resolution of A, and N−1 is the Dold-Kan transform, which is
the the inverse of the Moore normalization functor

N : S(abelian groups)→ Ch(abelian groups)

from the category of simplicial abelian groups to the category of chain complexes (see, for
example [15], Section 8.4).

We will use the standard notation of the tensor, symmetric, exterior and divided powers:

⊗n, Sn,Λn,Γn : abelian groups→ abelian groups, n ≥ 1

For an abelian group A, we consider the category Pres(A) of presentations H →֒ F ։ A
with a free abelian group F .

Theorem 8.1. For n ≥ 1 and i ≥ 0, there are natural isomorphisms

lim
←−

i Λn(H) = Ln−iS
n(A)(8.1)

lim
←−

i Γn(H) = Ln−iΛ
n(A)(8.2)

lim
←−

i ⊗n (H) = Ln−i ⊗
n (A)(8.3)

where the derived limits are taken over the category Pres(A).

Lemma 8.2. Let F ,G be functors in the category of abelian groups, which can be presented
as tensor products of certain symmetric, exterior and divided powers. Then, for any i ≥ 0,

lim
←−

i (F(H)⊗ G(F )) = 0.

Proof. The functors F(H)⊗G(F ) are monoadditive, therefore, the statement follows for i = 0.
Observe that the cokernel of the natural map

(F(H)⊗ G(F ))2 →֒ F(H ⊕ F )⊗ G(F ⊕ F )

also can be presented as a directs sum of functors of the type considered in lemma. The
statement now follows by induction on i, using proposition 3.1. �

Proof of theorem 8.1. Given an element

0→ H → F → A→ 0

of Ext(A), the Koszul complexes

(8.4) Kos(H → F ) : 0→ Λn(H)→ Λn−1(H)⊗ F → · · · → H ⊗ Sn−1(F )→ Sn(F )

and

(8.5) Kos′(H → F ) : 0→ Γn(H)→ Γn−1(H)⊗ F → · · · → H ⊗ Λn−1(F )→ Λn(F )

represent models of the objects LSn(A) and LΛn(A) in the derived category (see [7], Proposi-
tion 2.4 and Remark 2.7). Here the maps between the terms of Koszul complexes are standard.
In particular, there are natural isomorphism

LiSP
n(A) = Hi(Kos(H → F )), LiΛ

n(A) = Hi(Kos′(H → F )).

Observe that, for any polynomial functor F , such that F(0) = 0, lim
←−

i F(F ) = 0. This follows
by induction on i, using proposition 3.1. The isomorphsims (8.1) and (8.2) follow from lemma
8.2 and corollary 2.6.
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It turns out from the Eilenberg-Zilber theorem that the derived functors of the n-th tensor
power can be described as

Li ⊗
n (A) = Hi(A

L
⊗ · · ·

L
⊗ A︸ ︷︷ ︸

n terms

) = Hi((H → F )⊗n), 0 ≤ i ≤ n− 1.

Now observe that, all terms of the complex (H → F )⊗n in degrees 0 < i < n are direct sums
of the functors from lemma 8.2 and hence

lim
←−

j ((H → F )⊗n)i = 0, j ≥ 0, 0 < i < n.

Applying proposition 3.1, we also get

lim
←−

j ((H → F )⊗n)0 = lim
←−

j ⊗n (F ) = 0, j ≥ 0.

The isomorphism (8.3) follows from corollary 2.6 applied to the complex (H → F )⊗n. �

Recall that, for an abelian group H , there are natural isomorphisms

LnS
n(H, 1) = Λn(H), LnΛ

n(H, 1) = Γn(H), Ln ⊗
n (H, 1) = ⊗n(H).

Therefore, the formulas (8.1)-(8.3) can be written as

(8.6) lim
←−

iLnF (H, 1) = Ln−iF (A)

where F = Sn,Λn,⊗n. It is natural to conjecture that the formulas like (8.6) take place for
more general class of polynomial functors of degree n, for example, for strictly n-polynomial
functors. It is easy to show using the above methods that (8.6) is true for iterated tensor
products of symmetric and exterior powers.
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[8] L. Kovacs, Yu. Kuz’min, R. Stöhr: Homology of free abelianized extensions of groups, Mat. Sb. 182

(1991), 526–542.
[9] S. Mac Lane: Categories for the Working Mathematician, Grad. Texts in Math., vol. 5, Springer-Verlag,

1971.
[10] R. Mikhailov and I. B. S. Passi: Limits over categories of extensions, Ind. J. Pure Appl. Math. 41 (2010),

113–131.
[11] D. Quillen: Higher Algebraic K-theory I, Springer Lect. Notes Math. v.341 (1973), 85–147.
[12] D. Quillen: Cyclic cohomology and algebra extensions. K-Theory 3, (1989), 205–246.
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