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ON BOUSFIELD PROBLEM FOR THE CLASS OF METABELIAN

GROUPS

SERGEI O. IVANOV AND ROMAN MIKHAILOV

Abstract. The homological properties of localizations and completions of metabelian
groups are studied. It is shown that, for R = Q or R = Z/n and a finitely presented
metabelian group G, the natural map from G to its R-completion induces an epimorphism
of homology groups H2(−,R). This answers a problem of A.K. Bousfield for the class of
metabelian groups.

1. Introduction

The subject of investigation of this paper is the relation between inverse limits of groups
and the second homology H2(−,K) for certain coefficients K. One of the results of the
paper is the following. Let G be a finitely presented metabelian group, {γi(G)}i≥0 its lower
central series, then, for any n > 0, there is a natural isomorphism

H2( lim←Ð
G/γi(G),Z/n) ≃ lim

←Ð
H2(G/γi(G),Z/n).

That is, in this particular case, the inverse limit commutes with the second homology
functor.

The problem of relation between inverse limit and second homology of groups appears
in different areas of algebra and topology. Recall two related open problems, one from [6],
the second from [11]. A.K. Bousfield posed the following question in [6], Problem 4.10:

Problem. (Bousfield) Is ERX → X̂R iso when X is a finitely presented group when
R = Q or R = Z/n?

In the above problem, ER is the HR-localization functor defined in [6] and X̂R is the
R-completion of the group X. It follows immediately from the construction of ER, that,
for a finitely presented group X, the map ERX → X̂R is isomorphism if and only if the
completion map X → X̂R induces an epimorphism H2(X;R) → H2(X̂R,R). In this paper
we prove the following (see Corollary 9.2)

Theorem. For a finitely presented metabelian group X, the natural map ERX → X̂R is
an isomorphism for R = Q or R = Z/n.
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Observe that, the above result can not be generalized to the case R = Z as the following
simple example shows. For the Klein bottle group G = ⟨a, b ∣ a−1bab = 1⟩, the second

homology H2(Ĝ,Z) is isomorphic to the exterior square of the 2-adic integers and therefore
is uncountable (see [6]).

The second problem of a similar type is the question of comparison between discrete and
continuous homology of pro-p-groups. For any pro-p-group P , one can look at homology of
P in two different ways: as homology of a discrete group and as homology of a topological
group. There are natural comparison maps between these homology groups (see [11] for
detailed discussion):

φn ∶Hdiscrete
n (P,Z/p) →Hcont

n (P,Z/p)

Analogously, there are maps between cohomology groups φn ∶ Hn
cont(P,Z/p) →

Hn
discrete(P,Z/p). In [11], G.A. Fernandez-Alcober, I.V. Kazachkov, V.N. Remeslen-

nikov, and P. Symonds asked the following question.

Problem. Does there exist a finitely presented pro-p group P for which
φ2 ∶ H2

cont(P,Z/p) →H2
discrete(P,Z/p) is not an isomorphism?

See [20] for background on the continuous cohomology of pro-p groups. It is shown in
[11] that, for a finitely presented pro-p-group P , the following two conditions are equivalent:

(1) the map φ2 ∶ H2
cont(P,Z/p) →H2

discrete(P,Z/p) is an isomorphism;

(2) the map φ2 ∶ Hdiscrete
2 (P,Z/p) → Hcont

2 (P,Z/p) is an isomorphism.
Our contribution to this problem is the following: for a finitely presented metabelian

group G, there is a natural isomorphism (see Corollary 8.2)

Hdiscrete
2 (Ĝp,Z/p)

≃
→Hcont

2 (Ĝp,Z/p)

Observe that, it is not possible to extend the above results to the class of all finitely
generated metabelian groups. For example, one can consider the p-Lamplighter group

Lp ∶= Z/p ≀Z = ⟨a, b ∣ ap = [a, abi] = 1, i ∈ Z⟩
It is easy to check that the second homology of the pro-p-completion H2(L̂p,Z/p) is an un-
countable Z/p-vector space. Despite the fact that all finitely generated metabelian groups
are subgroups of finitely presented metabelian groups (see [1] and [19]), the finite pre-
sentability is a crucial point in the results like Corollary 8.2 and Corollary 9.2.

Let G be a finitely generated metabelian group with a metabelian decomposition M ↣
G ↠ A. The group G is finitely presented if and only if the Z[A]-module M is tame in
the sense of Bieri-Strebel [4]. Tame modules are characterized via geometric properties (see
section 7) and certain group-theoretic properties of finitely generated metabelian groups
can be formulated in the language of commutative algebra. In this paper, the properties of
tame modules are used for investigation of homological behavior of R-completions.

The paper is organized as follows. In section 2 we recall the general properties of inverse
limits of groups as well as the properties of their derived functors. In section 3 we recall the
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definitions and properties of I-adic completions of modules and describe the structure of a
twisted exterior square of a completed and localized module. The structure of the twisted
exterior square plays a central role in the study of the second homology of the completed
and localized metabelian groups. Section 4 is about R-completions of finitely generated
metabelian groups, where R is either a subring of rationals or a finite ring Z/n. A natural
way to compare homology of a metabelian group with homology of its R-completion it to
consider the standard homology spectral sequences for corresponding metabelian decompo-
sitions. Sections 5,6 contain technical properties of functors which appear in these spectral
sequences. Section 7 is a technical section, where the finite presentability appears. The
properties of exterior squares of tame modules in the sense of Bieri-Strebel play a key role
in the whole picture (see Proposition 7.2). The main results of the paper are essentially
based on the fact that one can control the E2

0,2-term of the standard homology spectral
sequence for a metabelian decomposition of R-completions.

The main results of the paper are theorems 8.1 and 9.1. These theorems are proved
in sections 8 and 9. Theorem 8.1 is formulated as follows. Let G be a finitely presented
metabelian group, R = Z[J−1] or R = Z/n and K be an Artinian quotient ring of R. Then
the R-lower central quotient maps induce the isomorphisms

H2(ĜR,K) ≅ lim
←Ð

H2(G/γRi (G),K).

As a simple corollary of this theorem, we get the natural isomorphism between discrete and
continuous homology groups of pro-p-completions of finitely presented groups, which gives
an answer to a particular case of the problem from [11] mentioned above. Theorem 9.1 is
the following. Assuming that G, R and K are as in theorem 8.1, for i >> 0, there is a short
exact sequence

0Ð→ ΦR
i H2(G,K) Ð→H2(G,K) Ð→ H2(ĜR,K)Ð→ 0,

where the epimorphism is induced by the homomorphism G → ĜR. Here ΦR
i H2(G,K) is

the ith term of an R-analog of the Dwyer filtration of H2(G,K). That is, the kernel of the
map of H2(−,K) induced by R-completion, is described.

In the final section 10 we consider the second homology with finite coefficients of the
Telescope functor (see [2] for properties and applications of the Telescope). We prove
that, for a finitely presented metabelian group G, the inclusion of the Telescope of G into
pronilpotent completion Ḡ↪ Ĝ induces a natural isomorphism H2(Ḡ,Z/n) ≅H2(Ĝ,Z/n).

Recall that, for a free group F of rank 2, the second homology H2(F̂ ,Z) is uncountable
[6]. The proof is based on the construction of a free simplicial resolution of the Klein bottle
group and uses the homology spectral sequence for a bisimplicial group. Observe that, the
results of this paper show that the same type of proof can not be used for homology with
finite coefficients. This motivates the following:

Problem. Is it true that, for every n ≥ 1 and a free group F , H2(F̂ ,Z/n) = 0?
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2. Inverse limits of abelian groups and modules.

Denote by ω the category, whose objects are natural numbers and

ω(n,m) = { {(n,m)}, if n ≤m
∅, if n >m.

Then an inverse sequence of abelian groups

A0 ←Ð A1 ←Ð A2 ←Ð . . .

can be considered as a functor A ∶ ωop → Ab. Consider the functor category Abω
op

. Since,
the category ωop is a free category generated by a graph, the global dimension of the abelian
category Abω

op

is equal to 1. The functor

lim
←Ð
∶ Abω

op

→ Ab

is left exact and its derived functors we denote by lim
←Ð

i =Ri lim
←Ð

. Since the global dimension

is equal to 1, we get lim
←Ð

i = 0 for i ≥ 2. Moreover, if the Mittag-Leffler condition holds for

the inverse sequence {Ai}, we have lim
←Ð

1Ai = 0. For example, the Mittag-Leffler condition

holds if the homomorphisms Ai+1 → Ai are epimorphisms.
Let C●i be an inverse sequence of (not necessarily bounded) complexes of abelian groups:

C●0 ←Ð C●1 ←Ð C●2 ←Ð . . . .

It can be considered as a complex C● in the abelian category Abω
op

. Let I●● be a right
Cartan-Eilenberg resolution of C● in Abω

op

. Since the global dimension is 1, we can chose
I●● so that I●i = 0 for i ≥ 2. It follows that the totalisations are equal Tot⊕(I●●) = Tot∏(I●●)
and we denote it by Tot(I●●). Then we have

Ri lim
←Ð
(C●) =H i( lim

←Ð
Tot(I●●)) =H i(Tot( lim

←Ð
I●●)),

where Ri lim
←Ð

is the right hyper derived functor of lim
←Ð

(see [21, 5.7.9]).

Lemma 2.1. There are two spectral sequences E and ′E such that

E
pq
2 =H

p(lim
←Ð
i

q C●i ) ⇒ Rp+q lim←Ð(C●),
′E

pq
2 = lim←Ð

i

p Hq(C●i ) ⇒ Rp+q lim←Ð(C●),
and E

pq
1 = lim←Ðq C

p
i .

Proof. The double complex lim←Ð I●● has only two nonzero rows, and hence the canonical

filtrations of lim←ÐTot(I●●) are bounded. It follows that the both sequences of a double

complex E and ′E converge to Rp+q lim←Ð(C●). Further, as in [21, 5.7.9], we get Epq
1 = lim←Ðq C

p
i ,

E
pq
2 =H

p(lim←Ðq C●i ) and ′Epq
2 = lim←Ð p Hq(C●i ). �

Remark 2.2. The difference between the general statement in [21, 5.7.9] and Lemma 2.1
is that in our case all the spectral sequences converge in the strict sense. This lemma can
be proved for any left exact functor from an abelian category of finite global dimension.
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Corollary 2.3. If morphisms C●i+1 → C●i satisfy the Mittag-Leffler condition, then there is
a short exact sequence

0Ð→ lim
←Ð
i

1 Hq−1(C●i )Ð→Hq(lim
←Ð
i

C●i )Ð→ lim
←Ð
i

Hq(C●i )Ð→ 0.

Proposition 2.4. Let {Ai} be an inverse sequence of abelian groups and B a finitely gen-
erated abelian group. Then the natural morphisms are isomorphisms

lim
←Ð

Tor(Ai,B) ≅ Tor(lim←ÐAi,B), (lim
←Ð

1Ai)⊗B ≅ lim
←Ð

1(Ai ⊗B)
and for the natural morphisms

α ∶ (lim
←Ð

Ai)⊗B → lim
←Ð
(Ai ⊗B), β ∶ lim

←Ð
1 Tor(Ai,B)→ Tor(lim

←Ð
1Ai,B)

there are natural isomorphisms

Ker(α) ≅ Ker(β), Coker(α) ≅ Coker(β).
Proof. Let 0 → P1 → P0 → B → 0 be a free presentation of B, where P0, P1 are finitely
generated free abelian groups. Consider the acyclic complex

C● = (⋅ ⋅ ⋅ → 0→ Tor(Ai,B)→ Ai ⊗P1 → Ai ⊗ P0 → Ai ⊗B → 0→ . . . ).
Then by Lemma 2.1 we get a spectral sequence E that converges to zero and E

pq
1 = lim←Ð

qC
p
i .

The first page E1 looks as follows

lim
←Ð

1Tor(Ai,B) lim
←Ð

1(Ai ⊗ P1) lim
←Ð

1(Ai ⊗ P0) lim
←Ð

1(Ai ⊗B)

lim
←Ð

Tor(Ai,B) lim
←Ð
(Ai ⊗P1) lim

←Ð
(Ai ⊗P0) lim

←Ð
(Ai ⊗B).

f1

f0

Since Pj is a finitely generated abelian group and lim
←Ð

q is an additive functor, we get lim
←Ð

q(Ai⊗
Pj) ≅ (lim←Ðq Ai)⊗Pj . It follows that Ker(f q) = Tor(lim

←Ð
q Ai,B) and Coker(f q) = (lim

←Ð
qAi)⊗B.

We can replace the middle four terms in the spectral sequence with the kernels and cokernels
of f q so that the new spectral sequence still converges to zero:

lim
←Ð

1Tor(Ai,B) Tor(lim
←Ð

1Ai,B) (lim
←Ð

1Ai)⊗B lim
←Ð

1(Ai ⊗B)

lim
←Ð

Tor(Ai,B) Tor(lim
←Ð

Ai,B) (lim
←Ð

Ai)⊗B lim
←Ð
(Ai ⊗B).

β 0

0 α

Analysing the second page of this spectral sequence we obtain the required isomorphisms.
�

Corollary 2.5. Let {Ai} be an inverse sequence of abelian groups that satisfies the Mittag-
Leffler condition. Then there is the following short exact sequence

0Ð→ lim
←Ð

1Tor(Ai,B) Ð→ (lim←Ð Ai)⊗B
α
Ð→ lim

←Ð
(Ai ⊗B)Ð→ 0.
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The following proposition is a generalisation of the previous corollary.

Proposition 2.6. Let Λ be an associative right Notherian ring, M a finitely generated right
Λ-module and {Ni} an inverse sequence of left Λ-modules that satisfies the Mittag-Leffler
condition. Then, for m ≥ 0, there is the following short exact sequence

0Ð→ lim
←Ð

1TorΛm+1(M,Ni)Ð→ TorΛm(M, lim
←Ð

Ni)Ð→ lim
←Ð

TorΛm(M,Ni)Ð→ 0.

Proof. Since, Λ is right Notherian and M is finitely generated, there exists a projective
resolution P● of M that consists of finitely generated projective modules. Let C●i be the
complex P● ⊗Λ Ni. The Mittag-Leffler condition for Ni implies the Mittag-Leffler condition
for P● ⊗Λ Ni. Then by Corollary 2.3 we get the short exact sequence

0Ð→ lim
←Ð

1TorΛm+1(M,Ni)Ð→Hm(lim←Ð (P● ⊗Λ Ni)) Ð→ lim
←Ð

TorΛm(M,Ni)Ð→ 0.

Since P● consists of finitely generated projective modules, we get the isomorphism

lim
←Ð
(P● ⊗Λ Ni) ≅ P● ⊗Λ (lim←Ð Ni).

Thus the middle term is isomorphic to TorΛm(M, lim
←Ð

Ni) �

3. Completion and localization of rings and modules.

First we remind main concepts concerned to I-adic topology [22, VIII], [5, III]. Through-
out the section all rings are assumed to be Noetherian and commutative. Let I be an ideal
of a Noetherian commutative ring Λ. A (right) Λ-module we endow by the I-adic topology
i.e. the topology such that the submodules {MIn} form a fundamental system of neigh-
bourhoods of zero. In particular, the ring Λ is endowed by the I-adic topology. The closure
of a submodule N ≤ M is given by cl(N) = ⋂(N +MIn). The submodule N is open if
and only if N ⊇ MIn for some n. We put MI∞ ∶= ⋂MIi = cl(0). The module M is said
to be nilpotent if MIi = 0 for i >> 0. The module M is said to be residually nilpotent if
MI∞ = 0. The module is residually nilpotent if and only if it is Hausdorff in the I-adic
topology. The ideal I has the Artin-Rees property i.e. for a finitely generated module M

and its submodule N the I-adic topology on the N coincides with the induced topology. In
particular,

(3.1) MI∞ ⋅ I =MI∞.

We put

Mrn ∶=M/MI∞.

Then the projection M → Mrn is the universal homomorphism from M to a residually
nilpotent module.

The R-completion of M is the inverse limit M̂ = M̂I = lim
←Ð

M/MIi with the natural

structure of Λ̂ = lim
←Ð

Λ/Ii-module and the natural Λ-homomorphism ϕM ∶ M → M̂. The

ring Λ̂ is still Noetherian, the morphism ϕ ∶ Λ → Λ̂ is flat and for a finitely generated Λ-
module M there is an isomorphism M̂ ≅M ⊗Λ Λ̂. The ideal Î = Ker(Λ̂ → Λ/I) is equal to

Λ̂ ⋅ ϕ(I), and there are isomorphisms Λ/In ≅ Λ̂/În.
The notion of the I-adic completion is related to the notion of localization by the mul-

tiplicative set 1 + I. We put Λℓ = Λℓ
I = Λ[(1 + I)−1] and M ℓ = M ℓ

I = M[(1 + I)−1]. It is
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well-known that the morphism Λ → Λℓ is flat and M ℓ = M ⊗Λ Λℓ. Moreover, if we de-
note Iℓ = I[(1 + I)−1], then Λ/In ≅ Λℓ/(Iℓ)n. Since every element of 1 + Î is invertible

((1 + x)−1 = ∑∞i=0(−1)ixi), the morphism ϕ ∶ Λ → Λ̂ lifts to the morphism Λℓ → Λ̂.
The ring Λ is said to be Zariski ring with respect to the ideal I if one of the following

equivalent properties holds (see [22, VII §4]):

● every submodule of every finitely generated Λ-module is closed;
● every finitely generated Λ-module M is residually nilpotent;
● every ideal of Λ is closed;
● every element of 1 + I is invertible.

For any ring Λ and an ideal I◁Λ there are two constructions that give examples of Zariski
rings: the I-adic completion Λ̂ and the localization Λℓ by the set 1 + I. We are interested
in both of these situations, so we work in the following general case.

Consider a ring homomorphism ϕ ∶ Λ→ Λ̃ that satisfies the following conditions:

1) Λ̃ is a Zariski ring with respect to the ideal Ĩ = ϕ(I) ⋅ Λ̃;
2) ϕ is flat i.e. Λ̃ is a flat Λ-module;

3) ϕ induces the isomorphism Λ/In ≅ Λ̃/Ĩn for n ≥ 0.
(3.2)

We assume that Λ̃ is endowed by the Ĩ-adic topology. It is easy to see that ϕ is continuous,
ϕ(Λ) is dense in Λ̃ and Ĩn = ϕ(In)Λ̃. For a Λ-module M we set M̃ = M˜ = M ⊗Λ Λ̃ and

ϕM = 1⊗ ϕ ∶M → M̃. Then the functor ˜(−) ∶ Mod(Λ) → Mod(Λ̃) is exact. The sequence of
isomorphisms

M̃/M̃ Ĩn ≅ M̃ ⊗Λ̃ Λ̃/Ĩn ≅M ⊗Λ Λ̃⊗Λ̃ Λ̃/Ĩn ≅M ⊗Λ Λ̃/Ĩn ≅M ⊗Λ Λ/In ≅M/MIn

together with M̃In = M̃ ⋅ ϕ(In) = M̃ ⋅ Λ̃ ⋅ ϕ(In) = M̃ Ĩn give isomorphisms

(3.3) M/MIn ≅ M̃/M̃ Ĩn ≅ M̃/M̃In

for any Λ-module M and n ≥ 0. It follows that M̃ = ϕM(M) + M̃ Ĩn. Since, every finitely

generated Λ̃-module is residually nilpotent, we get an isomorphism

(Mrn)∼ ≅M∼.

It follows that the morphism ϕM ∶M → M̃ is the composition of morphisms M →Mrn → M̃.

Lemma 3.1. Let f ∶ Γ→ Λ be a ring homomorphism, M,N be Λ-modules, X be a Γ-module
and i, j ≥ 0. Then there are the following isomorphisms.

(1) TorΓi (M̃,X) ≅ TorΓi (M,X)∼.
(2) TorΛi (M̃ ,N) ≅ TorΛi (M,Ñ) ≅ TorΛi (M,N)∼.
(3) The morphisms M →Mrn → M̃ induce isomorphisms

TorΛi (Λ/I,TorΓj (M,X)) ≅ TorΛi (Λ/I,TorΓj (Mrn,X)) ≅ TorΛi (Λ/I,TorΓj (M̃,X))
Proof. (1) Let P● be a finitely generated Γ-projective resolution of X. Then we have

TorΓ∗(M̃,X) =H∗(M̃ ⊗Γ P●) ≅H∗(Λ̃⊗Λ M ⊗Γ P●) ≅
Λ̃⊗Λ H∗(M ⊗Γ P●) ≅ TorΓ∗(M,X)∼.

(2) It follows from the previous formula and the isomorphism Tor∗(M,N) ≅ Tor∗(N,M).
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(3) Using the previous isomorphisms and (Λ/I)∼ ≅ Λ/I, we get

TorΛi (Λ/I,TorΓj (M̃,X)) ≅ TorΛi (Λ/I,TorΓj (M,X)∼) ≅
TorΛi ((Λ/I)∼,TorΓj (M,X)) ≅ TorΛi (Λ/I,TorΓj (M,X))

and similarly

TorΛi (Λ/I,TorΓj ((Mrn)∼,X)) ≅ TorΛi (Λ/I,TorΓj (Mrn,X)).
Using that (Mrn)∼ ≅ M̃, we obtain the required isomorphisms. �

Since Λ̃ is a Zariski ring, the annihilator Ann
Λ̃
M̃ is a closed ideal of Λ̃ and hence

(3.4) cl(AnnΛ M) ⊆ AnnΛ M̃.

Lemma 3.2. If cl(AnnΛ M) ⊇ In then MIn =MIn+1 and there is the short exact sequence

0Ð→MIn Ð→M
ϕM
Ð→ M̃ Ð→ 0.

In particular, M̃ ≅M/MIn.

Proof. The inclusion cl(AnnΛM) = ⋂(AnnΛM+Ii) ⊇ In implies AnnΛM+In = AnnΛM+In+1

and hence
MIn =M(AnnΛ M + In) =M(AnnΛ M + In+1) =MIn+1.

Using (3.4), we get the inclusion Ĩn ⊆ Ann
Λ̃
M̃. Therefore, we obtain M̃ = M̃/M̃ Ĩn ≅M/MIn.

It is easy to see that the composition of 1 ⊗ ϕ with this isomorphism is the canonical
projection. �

Proposition 3.3. Let ϕ ∶ Λ → Λ̃ be a ring homomorphism satisfying (3.2), and M and N

be Λ-modules such that cl(AnnΛM +AnnΛN) ⊇ In. Then (M ⊗ΛN)In = (M ⊗ΛN)In+1 and
the obvious morphisms induce isomorphisms

M̃ ⊗Λ Ñ ≅ M̃ ⊗Λ̃ Ñ ≅ (M ⊗Λ N )̃ ≅ (M ⊗Λ N)/(M ⊗Λ N)In ≅ (M/MIn)⊗Λ (N/NIn).
Proof. Endow M̃ ⊗Λ Ñ by the structure of a Λ̃-module as follows: (m⊗n)a =m⊗ (na) for
a ∈ Λ̃, m ∈ M̃, n ∈ Ñ . Then the induced action of Λ on M̃ ⊗Λ Ñ coincides with the standard
action. Hence, AnnΛ(M̃ ⊗Λ Ñ) = ϕ−1(AnnΛ̃(M̃ ⊗Λ Ñ)). Since all ideals in Λ̃ are closed and

ϕ ∶ Λ → Λ̃ is continuous, AnnΛ(M̃ ⊗Λ Ñ) is a closed ideal. Thus, AnnΛ(M̃ ⊗Λ Ñ) ⊇ In and

AnnΛ̃(M̃ ⊗Λ Ñ) ⊇ Ĩn.
Now we prove that for any b ∈ Ĩn and m ∈ M̃,n ∈ Ñ the elements m ⊗ nb and mb ⊗ n

are equal to zero in M̃ ⊗Λ Ñ . The first equality is obvious because b ∈ AnnΛ̃(M̃ ⊗Λ Ñ)
and m ⊗ nb = (m ⊗ n)b = 0. The ring Λ is Noetherian and hence the ideal In is finitely

generated In = (λ1, . . . , λs). Then Ĩn = (ϕ(λ1), . . . , ϕ(λs)). Consider b = ∑s
i=1 aiϕ(λi) ∈ Ĩn,

where ai ∈ Λ̃. Since ϕ(λi) annihilates M̃ ⊗Λ Ñ , we get

mb⊗ n =
s

∑
i=1

maiϕ(λi)⊗ n =
s

∑
i=1

(mai ⊗ n)ϕ(λi) = 0.
Therefore, we have that the image of (M̃ ⊗Λ Ñ Ĩn) ⊕ (M̃ Ĩn ⊗Λ Ñ) in M̃ ⊗Λ Ñ vanishes.

It follows that M̃ ⊗Λ Ñ ≅ (M̃/M̃ Ĩn) ⊗Λ (Ñ/Ñ Ĩn). Using (3.3), we get the isomorphism

M̃ ⊗Λ Ñ ≅ (M/MIn)⊗Λ (N/NIn).
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The isomorphisms

M̃ ⊗Λ̃ Ñ ≅ (M ⊗Λ N )̃ ≅ (M ⊗Λ N)/(M ⊗Λ N)In
and the equality (M ⊗Λ N)In = (M ⊗Λ N)In+1 follow from lemma 3.2 and the inclusion

cl(AnnΛ(M ⊗Λ N)) ⊇ cl(AnnΛ M + AnnΛ N) ⊇ In.
Then we only need to prove the isomorphism M̃ ⊗Λ Ñ ≅ M̃ ⊗Λ̃ Ñ . It is sufficient to prove

that for any a ∈ Λ̃ and m ∈ M̃,n ∈ Ñ the equality ma ⊗ n = m ⊗ na holds in M̃ ⊗Λ Ñ .

Since Λ̃ = ϕ(Λ) + Ĩn, a can be presented as follows a = ϕ(λ) + b, where λ ∈ Λ and b ∈ Ĩn.
Then the equality ma⊗ n = m ⊗ na follows from the equalities mb⊗ n = 0, m ⊗ nb = 0 and
mλ⊗ n =m⊗ nλ. �

Let σ ∶ Λ → Λ be an automorphism such that σ(I) = I and σ2 = id. In particular, σ
is continuous in the I-adic topology. For a Λ-module M we denote by Mσ the Λ-module
with the same underlying abelian group and the following action m∗λ =mσ(λ). Define the
twisted exterior square ∧2σM as the quotient Λ-module

∧2σM =
M ⊗Λ Mσ⟨{m⊗m ∣m ∈M}⟩Λ ,

where ⟨X⟩Λ means the Λ-submodule generated by X.

Corollary 3.4. Let M be a Λ-module such that cl(AnnΛM + σ(AnnΛM)) ⊇ In. Then(∧2σM)In = (∧2σM)In+1 and the obvious morphisms induce isomorphisms

∧2σM̃ ≅ (∧2σM )̃ ≅ (∧2σM)/(∧2σM)In ≅ ∧2σ(M/MIn).
Proof. For an Λ-module N we set

D(N) ∶= ⟨{n ⊗ n ∣ n ∈ N}⟩Λ ≤ N ⊗Λ Nσ.

It is sufficient to prove the isomorphisms

M̃ ⊗Λ M̃σ ≅ (M ⊗Λ Mσ )̃ ≅ (M/MIn)⊗Λ (M/MIn)σ
induce isomorphisms D(M̃) ≅D(M )̃ ≅D(M/MIn). First we prove that the isomorphism

M̃ ⊗Λ M̃σ ≅ (M/MIn)⊗Λ (M/MIn)σ
induces the isomorphism D(M̃) ≅ D(M/MIn). It is easy to see that the functor D takes

epimorphisms to epimorphisms. Hence the epimorphism M̃ ↠M/MIn induces the epimor-

phism D(M̃) → D(M/MIn). From the other hand D(M̃) → D(M/MIn) is a monomor-
phism because

M̃ ⊗Λ M̃σ → (M/MIn)⊗Λ (M/MIn)σ
is an isomorphism.

Then we only need to prove that the isomorphism (M ⊗Λ Mσ )̃ ≅ M̃ ⊗Λ M̃σ induces

the isomorphism D(M )̃ ≅ D(M̃). The image of D(M )̃ in M̃ ⊗Λ M̃σ is generated by

ϕM(m) ⊗ ϕM (m) for m ∈M and hence D(M̃) includes the image. We need to prove that

for any x ∈ M̃ the element x⊗ x lies in the image of D(M )̃ . Since M̃ = ϕM(M) + M̃ Ĩn, we

get x = ϕM(m) + y, for some m ∈M,y ∈ M̃ Ĩn. Isomorphisms

M̃ ⊗Λ M̃σ ≅ (M/MIn)⊗Λ (M/MIn)σ ≅ (M̃/M̃ Ĩn)⊗Λ (M̃/M̃ Ĩn)σ
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imply that the elements y ⊗ ϕM(m), ϕM (m) ⊗ y, y ⊗ y vanish in M̃ ⊗Λ M̃σ and hence
x⊗ x = ϕM(m)⊗ϕM (m) lies in the image of D(M )̃ . �

Corollary 3.5. Let Λ be a commutative Noetherian ring, I be an ideal of Λ and M be a
finitely generated Λ-module such that cl(AnnΛM +σ(AnnΛM)) ⊇ In. Then there are isomor-
phisms

∧2σ M̂ ≅ ∧2σ M
ℓ ≅ (∧2σM)/(∧2σM)In ≅ ∧2σ(M/MIn),

where M̂ is the I-adic completion and M ℓ is the localization M ℓ =M[(1 + I)−1].
Proof. It follows from corollary 3.4, the isomorphisms M̂ ≅M ⊗Λ Λ̂, M ℓ ≅M ⊗ΛΛℓ and the
fact that the morphisms Λ→ Λ̂ and Λ→ Λℓ satisfy (3.2). �

4. R-completion of a metabelian group.

Let G be a metabelian group and

(4.1) 0Ð→M Ð→ G
π
Ð→ A Ð→ 1

is a short exact sequence of groups, where A is an abelian group and M is a right A-module
with the action defined by conjugation. We assume that M = ker(π) ⊆ G. We use the
multiplicative notation for A and G but for M we use both the multiplicative and the
additive notations. We use ∗ for the action of Z[G] and Z[A] on M in order to separate
it from the multiplication in the group. Therefore, for m,m1,m2 ∈ M, g, g1, . . . , gl ∈ G

and k1, . . . , kl ∈ Z we have (mk1)g1 . . . (mkl)gl = m ∗ (∑l
i=1 kigi) = m ∗ π(∑l

i=1 kigi) and
m

g
1m

g
2 = (m1 +m2) ∗ g = (m1 +m2) ∗ π(g).

There is a notion of R-completion of a group for subrings of Q and for R = Z/n (see [7]).
All subrings of Q have the form R = Z[J−1], where J is a set of prime numbers. We are

going to describe the R-completion ĜR of the metabelian group G in terms of A and M

in these two cases separately. For the case R = Z[J−1] we need some information about
Malcev R-completion.

4.1. Malcev R-completion. In this subsection by R we denote the ring Z[J−1] ⊆ Q.

Recall the notion of Malcev R-completion [13], [14], [18]. A group G is said to be J-local or
uniquely J-divisible if the map g ↦ gp is a bijection for p ∈ J. The embedding of the category
of all J-local nilpotent groups to the category of all nilpotent groups NilJ ↪ Nil has the left
adjoint functor called Malcev R-completion

− ⊗R ∶ Nil→ NilJ .

Thus, if H is a nilpotent group and H ′ is J-local nilpotent group, there is a natural iso-
morphism Hom(H,H ′) ≅ Hom(H ⊗R,H ′), and the unit of the adjunction ηH ∶H → H ⊗R

is the universal homomorphism from H to a J-local nilpotent group. If H is abelian, then
H ⊗R is the ordinary tensor product. The functor − ⊗R preserves short exact sequences.

Let K denote an Artinian quotient ring of R. In other words,

K = { Q, if R = Q
Z/n, if R = Z[J−1] ≠ Q ,

where n is a natural number such that the prime divisors do not lie in J.
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Lemma 4.1. Let H ′ ↣ H ↠ H ′′ be a short exact sequence of finitely generated nilpotent
groups. If N is a nilpotent K[H]-module finitely generated over K, then the homology group
Hi(H ′,N) is a nilpotent K[H ′′]-module finitely generated over K.

Proof. Since H ′,H,H ′′ are finitely generated nilpotent groups, then the group rings
K[H ′],K[H],K[H ′′] are Noetherian [9]. It follows that there exists a free resolution P● of
the trivial K[H ′]-module K that consists of finitely generated free K[H ′]-modules. Since
N is a nilpotent K[H]-module finitely generated over K, the module Pi ⊗KH′ N has this
property too. The homology group Hi(H ′,N) is a subquotient of Pi ⊗K[H′] N, and hence
it has this property too. �

Proposition 4.2. Let H be a nilpotent finitely generated group and N be a nilpotent K[H⊗
R]-module that is finitely generated over K, then the homomorphism H → H ⊗R induces
the isomorphism

H∗(H,N) ≅H∗(H ⊗R,N).
Proof. Let R = Z[J−1] ≠ Q, and hence K = Z/n. First we prove the proposition for an
abelian group H and N = Z/p, where p is a prime divisor of n. Homology H∗(X,Z/p) of an
abelian group X is isomorphic to ⋀∗(X/p) ⊗ Γ∗(pX) (see [8, V, 6.6]). Then we only need
to note that H/p ≅ (H ⊗R)/p and pH ≅ p(H ⊗R).

Let now H is abelian and N is a finite nilpotent K[H]-module. All nilpotent K[H ⊗R]-
modules finitely generated over Z/n can be obtained by a sequence of extensions from the
trivial modules Z/p, where p is a prime divisor of n. Then we need to prove that the class of
K[H⊗R]-modules with the property H∗(H,N) ≅H∗(H⊗R,N) is closed under extensions.
It follows easily from the homology long exact sequence and the five lemma.

Prove the general case. We need to prove that the class of groups with this property is
closed under extensions. Let H ′ ↣ H ↠ H ′′ is a short exact sequence of finitely generated
nilpotent groups such that the proposition holds for H ′ and H ′′. We prove it for H. Let N
be a nilpotent KH-module finitely generated over K. Consider the morphism of the short
exact sequences

1 H ′ H H ′′ 1

1 H ′ ⊗R H ⊗R H ′′ ⊗R 1.

It induces the the morphism of the corresponding Lyndon-Hochschild-Serre spectral se-
quences E → ER. It is sufficient to prove that the morphism E → ER is an isomorphism.
By induction hypothesis we know Hq(H ′,N) ≅ Hq(H ′ ⊗R,N). By Lemma 4.1 the KH ′′-
module Hq(H ′,N) is finite and nilpotent. Then again by induction hypothesis we have

Hp(H ′′,Hq(H ′,N)) ≅ Hp(H ′′ ⊗R,Hq(H ′ ⊗R,N)). It follows that the morphism E → ER

is an isomorphism.
The case of R =K = Q can be proved similarly, using the formula H∗(X,Q) ≅ ⋀∗(X⊗Q)

for an abelian group X. �

4.2. Z[J−1]-completion of a metabelian group. In this section we assume R = Z[J−1].
For α ∈ R we denote (α

n
) ∶= α(α − 1) . . . (α − n + 1)/n!.
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Lemma 4.3. If α ∈ Z[J−1] then (α
n
) ∈ Z[J−1].

Proof. Let q ∉ J be a prime number, v be the q-adic value of n! and l ∈ Z such that lα−1 ∈ Z,
l ⋅ α−1 ≡ 1 (mod qv) and l ≥ n. Consider the epimorphism Z[J−1] ↠ Z/qv. The image of
α coincides with the image of l, and hence the image of α(α − 1) . . . (α − n + 1) coincides
with the image of l(l − 1) . . . (l − n + 1). Since l(l − 1) . . . (l − n + 1) is divisible by n!, we
obtain that the image of α(α − 1) . . . (α − n + 1) vanishes, and hence the q-adic value of
α(α − 1) . . . (α − n + 1) is greater than or equal to v. It follows that the q-adic value of (α

n
)

is non-negative for any q ∉ J. Hence (α
n
) ∈ Z[J−1]. �

Let Λ be a complete Z[J−1]-algebra with respect to an ideal a i.e. ϕ ∶ Λ → Λ̂a is an
isomorphism. For x ∈ 1 + a we denote

(4.2) x[α] =
∞

∑
n=0

(α
n
) (x − 1)n.

Lemma 4.4. For any α,β ∈ Z[J−1], n ∈ N and x ∈ 1 + a the following equalities hold

(x[α])[β] = x[αβ], x[α]x[β] = x[α+β], xn = x[n].

In particular, (xp)[1/p] = x = (x[1/p])p, and x ⋅x[−1] = 1 = x[−1] ⋅x. Therefore, 1+a is a J-local
group. Moreover, γn(1+a) ⊆ 1+an, where {γn(1+a)} is the lower central series of the group
1 + a.

Proof. The equality xn = x[n] follows from the binomial theorem. From the standard course
of mathematical analysis we know that for t > 0 and α ∈ R the equality tα = ∑∞n=0 (αn)(t−1)n
holds. Denote by b the ideal of R[t] generated by the element (t − 1). Then for α,β ∈ R
the equalities (tα)β = tαβ and tα+β = tαtβ imply that in the algebra R̂[t]

b
of ’power series

of (t − 1)’ the corresponding identities hold (t[α])[β] = t[αβ], t[α+β] = t[α]t[β]. Consider the
homomorphism ξ ∶ R[t] → Λ, that takes t to x. Endow R[t] with the b-adic topology.

Then ξ is continuous, and hence it induces a continuous homomorphism ξ̂ ∶ R̂[t]
b
→ Λ.

Since ξ̂ is continuous, we get ξ̂(f [α]) = ξ̂(f)[α] for all f ∈ 1 + b̂. Therefore, the equalities(t[α])[β] = t[αβ], t[α+β] = t[α]t[β] imply (x[α])[β] = x[αβ], x[α+β] = x[α]x[β].
Prove the inclusion γn(1 + a) ⊆ 1 + an by induction on n. For n = 1 it is obvious. Assume

that γn−1(1 + a) ⊆ 1 + an−1. For two elements a, b ∈ 1 + a we write a ≡ b if their images in the
quotient group (1+ a)/(1 + an) are equal. Then for y ∈ a and z ∈ an we have 1+ y + z ≡ 1+ y
because (1 + y)−1(1 + y + z) = 1 + (1 + y)−1z and (1 + y)−1z ∈ an. Chose 1 + x ∈ γn−1(G) and
1 + y ∈ 1 + a. Then x ∈ an−1, y ∈ a and we have

[1 + x,1 + y] = (1 + x)−1(1 + y)−1(1 + x)(1 + y) =
= (∞∑

i=0

(−1)ixi)(∞∑
i=0

(−1)iyi)(1 + x)(1 + y) ≡ (1 − x)(1 − y)(1 + x)(1 + y) ≡
≡ 1 − x − y + x + y = 1.

Therefore [1 + x,1 + y] ∈ 1 + an, and hence γn(1 + a) ⊆ 1 + an.
�
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Corollary 4.5. Let A be an abelian group and R̂[A] be the IR-adic completion of the group

algebra, where IR = IR(A) is the augmentation ideal. Then the homomorphism θ̃ ∶ A⊗R →

1 + ÎR defined by the formula θ̃(a ⊗ α) = a[α] is the unique homomorphism such that the
following diagram is commutative

(4.3)

A

A⊗R 1 + ÎR.

η ι

θ̃

Let G be a metabelian group with a metabelian decomposition M ↣ G ↠ A. G is
nilpotent if and only if M is a nilpotent Z[A]-module (i.e. M ∗ Im = 0 for m >> 0). In this

case (M ⊗R)∧IR =M ⊗R, and hence M ⊗R has the natural structure of R̂[A]-module. The

composition of homomorphisms A⊗R
θ̃
Ð→ 1 + ÎR ↪ R̂[A] we denote by

(4.4) θR ∶ A⊗R Ð→ R̂[A].
Observe that θR(x−1) = σ̂(θR(x)), where σ ∶ R[A]→ R[A] is the antipode.

Lemma 4.6. Let G be a nilpotent metabelian group with a metabelian decomposition
M ↣ G ↠ A. Then the group G ⊗R is a metabelian nilpotent group with the metabelian
decomposition M ⊗R ↣ G ⊗R↠ A⊗R, and the action of A⊗R on M ⊗R is induced by

the structure of R̂[A]-module via the homomorphism θR ∶ A⊗R → R̂[A].
Proof. Since − ⊗ R takes short exact sequences to short exact sequences, and on abelian
groups it is the usual tensor product, we get the metabelian decompositionM⊗R ↣ G⊗R↠
A⊗R. Using the morphism of sequences

0 M G A 1

0 M ⊗R G⊗R A⊗R 1.

π

π ⊗ 1

ηM ηG ηA

we get the identity (m⊗1)∗(a⊗1) = (m∗a)⊗1. An endomorphism of the abelian group M

lifts uniquely to an endomorphism of the abelian group M ⊗R. Hence, (m ⊗ r) ∗ (a⊗ 1) =(m∗ a)⊗ r for all m ∈M,a ∈ A,r ∈ R. Therefore, the action of A⊗R on M ⊗R extends the
induced action of A.

Consider the module M ⊗ R as a filtered R-module, where the filtration is given by
Fi = [M ⊗R,γi(G⊗R)] where {γi(G⊗R)} is the lower central series of G⊗R. Since G⊗R
is nilpotent, the filtration is finite. Observe that Fi is a normal subgroup of G ⊗ R and

equivalently a R̂[A]-submodule of M ⊗R. Consider the R-algebra Λ = EndR−Filt(M ⊗R) of
R-endomorphisms preserving filtration, and the ideal a = {f ∈ Λ ∣ f(Fi) ⊆ Fi+1}. Since am = 0
for m >> 0, the R-algebra Λ is complete with respect to the a-adic topology. By Lemma 4.4,
1+ a is a J-local nilpotent group. Since M is a R[A]-module and {Fi} are submodules, we
obtain the algebra homomorphism R[A]→ Λ. The ideal IR is generated by elements (a−1)
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for a ∈ A. Let g ∈ G such that π(g) = a. Thus, x ∗ (a − 1) = −x + x ∗ a = x−1 ⋅ xg = [x, g]
for x ∈ M ⊗ R, and hence, the image of IR lies in a. Then the obtain the continuous

homomorphism R̂[A]→ Λ that induces the group homomorphism σ ∶ 1+ÎR → 1+a. Similarly,
the action of A⊗R on M ⊗R induces a homomorphism τ ∶ A⊗R → 1 + a. Then we obtain
the following diagram.

A 1 + ÎR

A⊗R 1 + a

ι

η

τ

σ
θ̃

By Corollary 4.5 we have θ̃η = ι. Since the action of A ⊗ R extends the action of A, we
have τη = σι. Thus we have τη = σθ̃η, and using the universal property of η, we get τ = σθ̃.
Therefore, the action of A ⊗R on M ⊗R is induced by the structure of R̂[A]-module via
the homomorphism θR. �

The R-completion of a group G is defined as follows

ĜR ∶= lim
←Ð

(G/γi(G)) ⊗R.

Proposition 4.7. Let R be the ring Z[J−1], G be a metabelian group as in (4.1). Denote
by (M ⊗ R)∧IR the IR-adic completion of the R[A]-module M ⊗ R. Then there is a short
exact sequence

0Ð→ (M ⊗R)∧IR Ð→ ĜR Ð→ A⊗R Ð→ 1,

where the action by conjugation of A ⊗ R on (M ⊗ R)∧IR coincides with the action that

induced by the structure of R̂[A]-module via the homomorphism θR ∶ A⊗R → R̂[A].
Proof. For g ∈ G and m ∈M we have m ∗ (g − 1) = −m +m ∗ g =m−1mg = [m,g]. Thus, we
have M ∗ Ii = [M,G, . . . ,G] and hence

(4.5) M ∗ Ii ⊆ γi(G) ⊆M ∗ Ii−1.
Therefore, we obtain an isomorphism ĜR = lim

←Ð
(G/γi(G))⊗R ≅ lim

←Ð
(G/(M ∗ Ii))⊗R. By

Lemma 4.6 the short exact sequences M/(M ∗ Ii) ↣ G/(M ∗ Ii)↠ A give the short exact
sequences (M/(M∗Ii))⊗R ↣ (G/(M∗Ii))⊗R↠ A⊗R, and the action on (M/(M∗Ii))⊗R
is induced by the structure of R̂[A]-module via the homomorphism θ ∶ A⊗R → R̂[A]. The
inverse sequence (M/(M ∗Ii))⊗R satisfies the Mittag–Leffler condition, and hence we have
the following short exact sequence:

0Ð→ lim
←Ð

(M/(M ∗ Ii))⊗R Ð→ ĜR Ð→ A⊗R Ð→ 1.

Since R is a flat Z-module, we have (M/(M ∗Ii))⊗R ≅ (M⊗R)/((M ⊗R)∗IiR). Therefore,
we get

lim
←Ð

(M/(M ∗ Ii))⊗R ≅ (M ⊗R)∧IR .
The action of A ⊗ R on (M ⊗ R)∧R is induced by θ, because the action of A ⊗ R on the
quotients (M/(M ∗ Ii))⊗R ≅ (M ⊗R)/((M ⊗R) ∗ IiR)
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is induced by θ. �

4.3. Z/n-completion of a metabelian group. In this subsection we denote by R the

ring Z/n. The n-lower central series of a group G is defined as follows: γ
[n]
1 (G) = G and

γ
[n]
i+1(G) = ker(γ[n]i (G) → (γ[n]i (G)/[G,γ

[n]
i (G)]) ⊗ Z/n). Then R-completion of a group G

is
ĜR = lim

←Ð
G/γ[n]i (G).

If p is a prime number and G is a finitely generated group, the Z/p-completion ĜZ/p coincides
with the p-profinite completion Ĝp [7, IV,2.3]

(4.6) ĜZ/p ≅ Ĝp.

Further we will assume that A is a finitely generated abelian group. For a normal subgroup
H of G we denote by pn(H) the normal subgroup generated by the set of powers {hn ∣ h ∈H}
and we set Pn(H) = pn(H) ⋅ [H,G]. It is easy to verify that

γ
[n]
i+1(G) = Pn(γ[n]i (G)).

By In we denote the kernel of the composition of the augmentation map and the canonical
projection

In = ker(Z[A]Ð→ Z/n).
Equivalently we can describe it as follows In = I + (n), where (n) is the ideal of Z[A]
generated by n. It is easy to see that ∑n

i=1 ai ∈ In, for any sequence a1, . . . , an ∈ A.
Since A is finitely generated we can fix a natural number T such that an

T+1

= 1 implies

an
T

= 1 for a ∈ A. In other words,

(4.7) (a ∈ AnT

and an = 1) ⇒ a = 1.

Lemma 4.8. Let G be a metabelian group as in (4.1), N be a submodule of M and H be
a normal subgroup of G. Then the following holds.

(1) N ∗ In = Pn(N);
(2) pn(H ⋅N) ⊆ pn(H) ⋅ (N ∗ In);
(3) if H ∩M ⊆ N then [pn(H),G] ⊆ N ∗ In;
(4) if H ∩M ⊆ N and H ⊆ π−1(AnT ) then pn(pn(H)) ∩M ⊆ N ∗ In;
(5) if H ∩M ⊆ N and H ⊆ π−1(AnT ) then Pn(Pn(H)) ∩M ⊆ N ∗ In;

Proof. (1) It follows from the equalities N ∗ I = [N,G] and N ∗ (n) = pn(N).
(2) It follows from the equality (hm)n = hn ⋅ (∏n−1

i=0 mhi) = hn ⋅ (m ∗ (∑n−1
i=0 hi)) and the

fact that π(∑n−1
i=0 hi) ∈ In.

(3) Using the equalities [x1x2, y] = [x1, y]x2 ⋅ [x2, y] and [xz, y] = [x, yz−1]z−1 we get that
the normal subgroup [pn(H),G] is generated by the elements of the form [hn, g] as a normal
subgroup, where h ∈H and g ∈ G. Moreover, we have

[hn, g] = n−1

∏
i=0

[h, g]hi

= [h, g] ∗ (n−1∑
i=0

hi).
Using the inclusions [G,G] ⊆M and H ∩M ⊆ N we obtain [h, g] ∈ N and hence [hn, g] ∈
N ∗ In.
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(4) Consider an element xn1x
n
2 . . . x

n
l ∈ pn(pn(H)) ∩ M where xi ∈ pn(H). Thus

π(xn1xn2 . . . xnl ) = π(x1 . . . xl)n = 1. Since H ⊆ π−1(Ant), using (4.7) we obtain π(x1 . . . xl) = 1
and hence x1 . . . xl ∈M. Moreover, using the inclusion H ∩M ⊆ N , we obtain x1 . . . xl ∈ N.

From the other hand, we have

xn1 . . . x
n
l (x1 . . . xl)−n ∈ [pn(H),pn(H)] ⊆ [pn(H),G] ⊆ N ∗ In

and (x1 . . . xl)n ∈ N ∗ (n) ⊆ N ∗ In. Therefore, xn1 . . . xnl ∈ N ∗ In.
(5) Since H ∩M ⊆ N and [G,G] ⊆ M, we have [H,G] ⊆ N and hence [Pn(H),G] ⊆ N.

Thus, we obtain

Pn(Pn(H)) ∩M = (pn(Pn(H)) ⋅ [Pn(H),G]) ∩M = (pn(Pn(H)) ∩M) ⋅ [Pn(H),G].
Therefore, we need to prove the inclusions pn(Pn(H))∩M ⊆ N∗In and [Pn(H),G] ⊆ N∗In.
Using the inclusion [H,G] ⊆ N , the inclusion (2), the inclusion N ∗ In ⊆ M, and (4) we
obtain

pn(Pn(H)) ∩M = pn(pn(H) ⋅ [H,G]) ∩M ⊆ pn(pn(H) ⋅N) ∩M ⊆

⊆ (pn(pn(H)) ⋅ (N ∗ In)) ∩M = (pn(pn(H)) ∩M) ⋅ (N ∗ In) ⊆ N ∗ In.
�

Lemma 4.9. The following inclusions hold for i ≥ 0 ∶

M ∗ Iin ⊆ γ
[n]
i+1(G) ∩M, γ

[n]
2i+T+1(G) ∩M ⊆M ∗ Iin.

Proof. The proof is by induction on i. The base is obvious for both cases. Suppose that these
inclusions hold for i = j and prove them for i = j + i. In order to prove the first inclusion we

only need to prove M ∗ Ij+1n ⊆ γ[n]j+2(G). Using lemma 4.8, we get the first required inclusion

M ∗ Ij+1n = Pn(M ∗ Ijn) ⊆ Pn(γ[n]j (G)) = γ[n]j+1(G).
Since γ

[n]
2j+T+1(G) ⊆ γ

[n]
T+1(G) ⊆ π−1(AnT ) and γ

[n]
2j+T+1(G) ∩M ⊆ M ∗ Ijn, we can use (5) of

lemma 4.8 and obtain the second required inclusion

γ
[n]
2j+2+T+1

(G) ∩M = Pn(Pn(γ[n]2j+T+1
(G))) ∩M ⊆ (M ∗ Ijn) ∗ In =M ∗ Ij+1n .

�

Corollary 4.10. M̂In = lim←Ð M/(γ[n]i (G) ∩M).
Corollary 4.11. For any i, n ∈ N we have the following.

(1) Let Z[t, t−1] be the ring of Laurent polynomials. Then

tn
2i+1

≡ 1 mod (n, (t − 1))i.
(2) Let a ∈ A. Then an

2i+1

− 1 ∈ Iin.
(3) Let R be an associative ring whose characteristic divides n, and r be an invertible

element of R. Then the element rn
2i+1

− 1 is divisible by (r − 1)i.
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Proof. It is easy to see that (2) and (3) follow from (1). Prove (1). Let A be the infinite
cyclic group ⟨t⟩. Then Z[A] = Z[t, t−1], and T = 0. Consider the semidirect product H ∶=⟨t⟩ ⋉ Z[t, t−1] and the short exact sequence

Z[A]/(γ[n]2i+1(H) ∩ Z[A]) ↣H/γ[n]
2i+T+1

(H) ↠ A/An2i+T+1

.

Then the action of A on Z[t, t−1] induces an action of A/An2i+T+1

on Z[A]/(γ[n]i (H)∩Z[A]).
We have In = (n, t − 1). By Lemma 4.9 we get the action of A on Z[t, t−1] induces an

action of A/An2i+1

on Z[t, t−1]/Iin. Hence tn
2i+1

acts trivially on Z[t, t−1]/(n, t − 1)i by
multiplication. �

Corollary 4.11 implies that the multiplicative homomorphism A → Z[A] induces a homo-

morphism θ′i ∶ A/An2i+T+1

→ Z[A]/Iin. Then applying the inverse limit we get the continuous
homomorphism

(4.8) θR ∶ Ân → Ẑ[A]In .
Observe that θR(x−1) = σ̂(θR(x)), where σ ∶ Z[A]→ Z[A] is the antipode.

Proposition 4.12. Let R be the ring Z/n, G be a metabelian group as in (4.1), where A is a

finitely generated abelian group. Denote by M̂In the In-adic completion of the Z[A]-module
M. Then there is a short exact sequence

0Ð→ M̂In Ð→ ĜR Ð→ Ân Ð→ 1,

whose morphisms are induced by (4.1), and the action by conjugation of Ân on M̂In coincides

with the action that induced by the structure of Ẑ[A]In-module via the homomorphism θR ∶

Ân → Ẑ[A]In .
Proof. Denote Mi = M/(γ[n]i (G) ∩ M) and consider the short exact sequence Mi ↣

G/γ[n]i (G)↠ A/Ani

. The inverse sequence Mi satisfies Mittag-Leffler condition and hence

we get the short exact sequence lim
←Ð

Mi ↣ ĜR ↠ Ân. Finally, by lemma 4.9 we obtain the

required isomorphism lim
←Ð

Mi ≅ lim
←Ð

M/(M ∗ Iin) = M̂In . Note that Mi ∗ Iin = 0. Then the

module Mi has the natural structure of a Ẑ[A]In-module. In order to prove that the action

of Ân on M is induced by θ′, we only need to prove it for Mi. But it is obvious, because

Ân/Âni

n ≅ A/Ani

. �

Now we give a slight different formulation of Proposition 4.13 that will be convenient
further. Let us set

J = {p ∣ p does not divide n}, S = Z[J−1].
Then we have the isomorphism S/n ≅ Z/n. Consider the ideal

IS = Ker(S[A]↠ Z/n).
Then we have the isomorphism S[A] ≅ (Z[A])[J−1] ≅ S ⊗ Z[A] and the ideal IS corre-
sponds to In[J−1]. Since elements of J are invertible modulo nm, we get the isomorphism

S[A]/ImS ≅ Z[A]/Imn ≅ S ⊗ Z[A]/Imn . It follows that Ŝ[A] ≅ Ẑ[A]In , where Ŝ[A] = Ŝ[A]IS .
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Similarly, we have M̂In ≅ (M ⊗ S)∧IS . Using the isomorphism Ŝ[A] ≅ Ẑ[A]In , we can write
the homomorphism θR as follows

(4.9) θR ∶ Ân Ð→ Ŝ[A].
Then we get the new version of Proposition 4.13:

Proposition 4.13. Let R be the ring Z/n, G be a finitely generated metabelian group as in
(4.1). Then there is a short exact sequence

0Ð→ (M ⊗ S)∧IS Ð→ ĜR Ð→ Ân Ð→ 1,

whose morphisms are induced by (4.1), and the action by conjugation of Ân on (M ⊗ S)∧IS
coincides with the action that induced by the structure of Ŝ[A]-module via the homomor-

phism θR ∶ Ân → Ŝ[A].
Proposition 4.14. Let G be a finitely generated metabelian group, p and q be different
prime numbers and Ĝp be the p-profinite completion of G. Then

H2(Ĝp,Z/q) = 0 and H2(G/γ[ps]m (G),Z/q) = 0,
for any m,s ≥ 1.

Proof. We prove the first equality. The second equality can be proved similarly. By (4.6)

and Proposition 4.13, we get the metabelian decomposition M̂Ip ↣ Ĝp ↠ Âp. Consider
the corresponding Lyndon-Hochschild-Serre spectral sequence E. It is sufficient to prove
that E2

i,j = 0 for (i, j) ∈ {(0,2), (1,1), (2, 0)}. Since E2
0,2 = H0(Âp,H2(M̂Ip ,Z/q)), using the

universal coefficient theorem and the equality H2(M̂Ip) = ∧2M̂Ip , we obtain the following
exact sequence (∧2M̂Ip ⊗ Z/q)

Âp
→ E2

0,2 → Tor(M̂Ip ,Z/q)Âp
→ 0.

The groups M/(M ∗Imp ) are quotients of M/Mpm, and hence they are uniquely q-divisible.

It follows that M̂Ip = lim
←Ð

M/(M ∗ Imp ) is an uniquely q-divisible abelian group. Thus

M̂Ip ⊗ Z/q = 0, (∧2M̂Ip ⊗Z/q)
Âp
= 0 and Tor(M̂Ip ,Z/q) = 0. Therefore, E2

0,2 = 0 and

E2
1,1 =H1(Âp,H1(M̂Ip ,Z/q)) =H1(Âp, M̂Ip ⊗ Z/q) = 0.

Similarly, using the universal coefficient theorem, we get

E2
2,0 =H2(Âp,H0(M̂Ip ,Z/q)) =H2(Âp,Z/q) = 0.

�

5. Homology of an abelian group with coefficients.

In this section K denotes a commutative Notherian ring, A denotes a finitely generated
abelian group and M denotes a finitely generated K[A]-module. Since A is a finitely
generated abelian group, K[A] is a commutative Notherian ring. Denote by I = IK(A) the
augmentation ideal of K[A]. Then by (3.1) we have

(5.1) MI∞ ⋅ I =MI∞

We put Mrn =M/MI∞, M̂ = M̂I = lim
←Ð

M/MIi and M ℓ =M ℓ
I =M[(1 + I)−1].
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Proposition 5.1. Let X be an abelian group. Then the homomorphisms M →Mrn →M ℓ →
M̂ induce isomorphisms

H∗(A,M ⊗X) ≅H∗(A,Mrn ⊗X) ≅H∗(A,M ℓ ⊗X) ≅H∗(A,M̂ ⊗X)
H∗(A,Tor(M,X)) ≅H∗(A,Tor(Mrn,X)) ≅H∗(A,Tor(M ℓ,X)) ≅H∗(A,Tor(M̂,X))

and there is the following short exact sequence:

0Ð→ lim
←Ð

1Hm+1(A,M/MIi)Ð→Hm(A,M) Ð→ lim
←Ð

Hm(A,M/MIi)Ð→ 0,

where the epimorphism is induced by the projections M ↠M/MIi.

Proof. It follows from Lemma 3.1 and Proposition 2.6. �

Corollary 5.2. If M =MI, then H∗(A,M) = 0.
Corollary 5.3. If K is an Artinian commutative ring, then the projections M ↠M/MIi

induce the isomorphism

H∗(A,M) ≅ lim
←Ð

H∗(A,M/MIi).
Proof. The homology groupsHm+1(A,M/MIi) are finitely generatedK-modules, and hence
they are Artinian K-modules. It follows that the Mittag-Leffler condition holds for the
inverse sequence Hm+1(A,M/MIi), and hence lim

←Ð
1Hm+1(A,M/MIi) = 0. �

Lemma 5.4. Let p be a prime number, char(K) = p, M be a nilpotent K[A/Api]-module

such that MIp
m−1 = 0. Then the projection A↠ A/Api induces an isomorphism

H∗(A,M) ≅H∗(A/Api ,M).
Proof. First we prove it for the first homology. Consider the short exact sequence I(A) ↣
K[A]↠K. The associated long exact sequence gives us the four term exact sequence

H1(A,M) ↣M ⊗K[A] I(A) →M ↠MA.

Similarly, we get the same sequence for A/Api . Since, I(A/Api) ⊗
K[A/Api] M =

I(A/Api)⊗K[A]M and MA ≅MA/Api , we obtain the morphism of exact sequences:

H1(A,M) M ⊗K[A] I(A) M MA

H1(A/Apm ,M) M ⊗K[A] I(A/Api) M MA.

It is sufficient to prove that the morphism M ⊗K[A] I(A) → M ⊗K[A] I(A/Api) is an iso-
morphism. Since, the functor M ⊗K[A]− is right exact, it is an epimorphism. The kernel of

this morphism is generated by elements of the form m ⊗ (api − 1). They are equal to zero,

because MIp
i−1 = 0, ap

i

− 1 = (a − 1)pi and m⊗ (a − 1)pi =m(a − 1)pi−1 ⊗ (a − 1) = 0.
Now we generalize it for Hk using induction by k. Assume that Lemma holds for k −

1. We have M ⊗K[A] I(A) ≅ M ⊗K[A] I(A/Api). Then using shift in homology and the
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assumption we get Hk(A,M) ≅ Hk−1(A,M ⊗K[A] I(A)) ≅ Hk−1(A,M ⊗K[A] I(A/Api)) ≅
Hk−1(A/Api ,M ⊗K[A] I(A/Api)) ≅Hk(A/Api ,M). �

6. Notation and unification.

In this section we introduce the notation that we use in the rest of the paper. A denotes
a finitely generated abelian group, M denotes a finitely generated Z[A]-module, R denotes
a fixed ring of the form Z[J−1] or Z/n, R[A] denotes the group algebra of A over R, and
IR denotes the augmentation ideal of R[A]. Moreover, we denote

J = { J, if R = Z[J−1]{p ∣ p ∤ n}, if R = Z/n ,

S = Z[J−1], IS = { IR, if R = Z[J−1]
IS , if R = Z/n ,

M̂R = (M ⊗R)∧IR , M̂S = (M ⊗ S)∧IS .
M ℓ

R = (M ⊗R)[(1 + IR)−1], M ℓ
S = (M ⊗ S)[(1 + IS)−1].

Observe that there is the unique epimorphism S ↠ R. In general IS is not the augmen-
tation ideal of S[A], but the epimorphism S[A] ↠ R[A] takes IS to IR. It follows that

there is a continuous epimorphism of completions Ŝ[A] ↠ R̂[A], and the epimorphism of
localizations S[A]ℓ↠ R[A]ℓ, where

Ŝ[A] ∶= Ŝ[A]IS ,
R̂[A] ∶= R̂[A]IR ,
S[A]ℓ ∶= S[A][(1 + IS)−1],
R[A]ℓ ∶= R[A][(1 + IR)−1].

By ÂR we denote A ⊗ R in the case of R = Z[J−1], and Ân = lim
←Ð

A/Ani

in the case of

R = Z/n.
We denote by σ ∶ S[A] → S[A] the standard antipode i.e. the S-linear map with σ(a) =

a−1 for a ∈ A. In (4.4) and (4.9) we defined the multiplicative homomorphism

θR ∶ ÂR Ð→ Ŝ[A],
such that σ̂(θR(x)) = θR(x−1). Then we can consider M̂S a ZÂR-module. By G we denote
a finitely generated metabelian group with a metabelian decomposition

(6.1) 0Ð→M Ð→ GÐ→ A Ð→ 1

Further, we put

γRi (G) = { γi(G), if R = Z[J−1]
γ
[n]
i (G), if R = Z/n , tRi (G) = { (G/γi(G)) ⊗R, if R = Z[J−1]

G/γ[n]i (G), if R = Z/n
and
(6.2)

tRi (A) = { A⊗R, if R = Z[J−1]
A/Ani

, if R = Z/n , Mi = { (M ⊗R)/(γi(G) ⊗R), if R = Z[J−1]
M/(γ[n]i (G) ∩M), if R = Z/n.
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Then the R-completion of G is defined as follows

ĜR = lim
←Ð

tRi (G),
and there are short exact sequences

(6.3) 0Ð→Mi Ð→ tRi (G) Ð→ tRi (A)Ð→ 1.

Then Propositions 4.7 and 4.13 can be rehash as follows.

Proposition 6.1. There is a short exact sequence

0Ð→ M̂S Ð→ ĜR Ð→ ÂR Ð→ 1,

whose morphisms are induced by the sequence (6.1) and the action by conjugation of ÂR on

M̂S coincides with the action that induced by the structure of Ŝ[A]-module via the homo-

morphism θR ∶ ÂR → Ŝ[A].
By K we denote an Artinian quotient ring of R. In other words,

(1) if R = Q then K = Q;
(2) if R = Z[J−1], then K = Z/n, where all the primes of n do not lie in J ;
(3) if R = Z/n then K = Z/n′, where n′ is a divisor of n.

Then we have epimorphisms

S↠ R↠K.

Denote by IK the augmentation ideal of the group algebra K[A]. Then the epimorphism
R[A] ↠ K[A] takes IR to IK , and hence we have the continuous epimorphisms of com-

pletions Ŝ[A] ↠ R̂[A] ↠ K̂[A] and the epimorphisms of localizations S[A]ℓ ↠ R[A]ℓ ↠
K[A]ℓ. Further, we denote

MK =M ⊗K, M̂K = (MK)∧IK , M ℓ
K =MK[(1 + IK)−1].

Note that, since M is finitely generated, we have the isomorphisms

(6.4) M̂K ≅ M̂S ⊗K, M ℓ
K ≅M

ℓ
S ⊗K.

By N we denote an arbitrary finitely generated K[A]-module. Endow the module N̂ = N̂IK

by the structure of Z[ÂR]-module using the homomorphism θR ∶ ÂR → Ŝ[A] and Ŝ[A]↠
K̂[A]. Then by (3.3) we get

(6.5) NA ≅ N̂A = N̂ÂR
≅ N̂ ⊗

K̂[A]K,

where (−)A =H0(A,−) and (−)ÂR
=H0(ÂR,−).

For K-modules N1,N2 there is an isomorphism N1 ⊗K N2 ≅ N1 ⊗N2, where ⊗ = ⊗Z. The
same holds for S and R. It follows that ∧2σK

N ≅ ∧2σN for an K[A]-module N. From the

other side, it is easy to check that ∧2σM ≅ (∧2M)A. Then we have

(6.6) ∧2σK
N ≅ ∧2σN ≅ (∧2N)A, ∧2σM ≅ (∧2M)A.

For abelian groups M1,M2 there is an isomorphism (M1⊗K)⊗R(M2⊗K) ≅ (M1⊗M2)⊗K.

It implies the isomorphism ∧2σK
MK ≅ (∧2σM)⊗K. Then we get the isomorphism

(6.7) (∧2MK)A ≅ (∧2M)A ⊗K.
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7. Exterior squares and tame modules.

Remind the outcome of [3], [4] concerned with tame modules. A valuation of the group
A is a homomorphism v ∶ A→ R into the additive group of R. The valuation monoid of v is
the submonoid Av = {a ∈ A ∣ v(a) ≥ 0}. The group of valuations Hom(A,R) has the natural
structure of a real vector space and quotient space S(A) = (Hom(A,R) ∖ {0})/R+ is called
the valuation sphere of A.

Let M be a finitely generated Z[A]-module. The Bieri–Strebel invariant of M is the set
Σ(M) ⊆ S(A) consisted of rays [v] such that M is a finitely generated Av-module. The
equality Σ(M) = S(A) holds if and only if M is a finitely generated as an abelian group
[3, theorem 2.1]. The module M is said to be tame if Σ(M) ∪ (−Σ(M)) = S(A). The main
result of the article [3] says that G is finitely presented if and only if M is a tame A-module.
Moreover, it is proved in [3] that

(7.1) Σ(M) = Σ(Z[A]/AnnM)
and that there is an implication

(7.2) AnnM1 ⊆ AnnM2 ⇒ Σ(M1) ⊆ Σ(M2),
where Ann = AnnZ[A]. For finitely generated A-modules M1 and M2 the inclusions
Ann(M1 ⊗Z[A]M2) ⊇ AnnM1 and Ann(M1 ⊗Z[A]M2) ⊇ AnnM2 and the implication (7.2)
imply the inclusion Σ(M1 ⊗Z[A]M2) ⊇ Σ(M1) ∪Σ(M2) and in particular

(7.3) Σ(Z[A]/(a + b)) ⊇ Σ(Z[A]/a) ∪Σ(Z[A]/b)
for any ideals a,b◁Z[A]. The Z[A]-module M is finitely generated over Av if and only if
Mσ is finitely generated over A−v . It follows that

(7.4) Σ(Mσ) = −Σ(M).
Lemma 7.1. If M is a tame Z[A]-module, then

● (∧2M)A is a finitely generated abelian group,
● H2(M,K)A is a finitely generated K-module.

Proof. Since Σ((∧2M)A) = Σ(∧2σM) ⊇ Σ(M) ∪ (−Σ(M)) = S(A), we get that (∧2M)A is
a finitely generated abelian group. Then (∧2MK)A is a finitely generated K-module. The
exact sequence (∧2MK)A → H2(M,K)A → (MK)A → 0 implies that H2(M,K)A is an
extension of finitely generated K-modules, and hence it is finitely generated itself. �

Proposition 7.2. Let R = Z[J−1] or R = Z/n, M be a tame Z[A]-module, K be an Artinian
quotient ring of R. Then for m >> 0 there are isomorphisms

(∧2M̂K)ÂR
= (∧2M̂K)A ≅ (∧2M ℓ

K)A ≅ (∧2(MK/MKImK ))A ≅ (∧2Mm
K)tRm(A),

where Mm
K =M

m ⊗K.

Proof. First we prove that the assumptions of the Proposition 3.3 and Corollary 3.5 for the
ring K[A] the ideal IK and the module MK hold. We need to prove that

cl(AnnK[A]MK + σK(AnnK[A]MK)) ⊇ Im0

K
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for some m0 ∈ N. Denote

aK ∶= AnnK[A]N + σK(AnnK[A]N)
a ∶= AnnM + σ(AnnM).

Using that M is tame, (7.3) and (7.4) we get

Σ(Z[A]/a) ⊇ Σ(Z[A]/AnnM) ∪ (−Σ(Z[A]/AnnM)) = S(A).
Thus Z[A]/a is a finitely generated abelian group. Since the map (Z[A]/a)⊗K ↠K[A]/aK
is an epimorphism, K[A]/aK is a finitely generated K-module. Using that K is an Artinian
ring, we get that K[A]/aK is an Artinian K-module, and hence the sequence aK + ImK
stabilizes. Therefore, cl(aK) ⊇ Im0

K for some m0 ∈ N.
Hence, by Corollary 3.5, for m >> 0, we have the isomorphisms

(∧2M̂K)A ≅ (∧2M ℓ
K)A ≅ (∧2(MK/MKImK ))A.

Using Lemma 4.9 and (4.5) we get epimorphismsMK/MKI
s(m)
K ↠Mt(m)

K ↠MK/MKImK for
some sequences s(m), t(m) that converge to infinity. For a big enough m the epimorphism

MK/MKI
s(m)
K

↠MK/MKImK induces an isomorphism

(∧2(MK/MKI
s(m)
K ))A ≅ (∧2(MK/MKImK ))A.

It follows that the epimorphismMt(m)
K

↠MK/MKImK induces an isomorphism

(∧2Mm
K)A ≅ (∧2(MK/MKImK ))A ≅ (∧2M̂K)A

for m >> 0.
Note that (∧2Mm

K)tRm(A) = (∧2Mm
K)ÂR

. Then we only need to prove that (∧2M̂K)ÂR
=

(∧2M̂K)A. For this it is sufficient to prove that for x ∈ ÂR and m1 ∧ m2 ∈ (∧2M̂K)A
the identity m1x ∧m2x = m1 ∧m2 holds. The abelian group (∧2M̂K)A is a quotient of

M̂K ⊗K[A] (M̂K)σ . By Proposition 3.3 we have M̂K ⊗K[A] (M̂K)σ = M̂K ⊗K̂[A] (M̂K)σ̂ and

by Proposition 6.1 the action of ÂR on M̂K is induced by the structure of Ŝ[A]-module via

the homomorphism θR ∶ ÂR → Ŝ[A] and Ŝ[A]↠ K̂[A]. Hence,
m1x ∧m2x =m1θR(x) ∧m2θR(x) =m1 ∧m2σ̂(θR(x))θR(x) =

=m1 ∧m2θR(x−1)θR(x) =m1 ∧m2.

�

8. The limit formula.

Theorem 8.1. Let G be a finitely presented metabelian group, R = Z[J−1] or R = Z/n
and K be an Artinian quotient ring of R. Then the homomorphisms ĜR → tRi (G) and

G/γRi → tRi (G) induce the isomorphisms

H2(ĜR,K) ≅ lim
←Ð

H2(tRi (G),K) ≅ lim
←Ð

H2(G/γRi (G),K).
Corollary 8.2. Let G be a finitely presented metabelian group, and p is a prime number.
Then

H2(Ĝp,Z/p) ≅Hcont

2 (Ĝp,Z/p).
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Proof. If follows from Theorem 8.1 and the formula Hcont
∗ (Ĝp,Z/p) ≅

lim
←Ð

H∗(G/γ[p]i (G),Z/p) [20]. �

Corollary 8.3. Let R = Z[J−1] ≠ Q and n ∈ N, such that the prime divisors of n do not lie
in J. Then

H2(ĜR,Z/n) ≅H2(ĜZ,Z/n).
Proof of Theorem 8.1. First we note that on the category of finitely generated K-modules
the functor

lim
←Ð
∶ mod(K)ωop

→ mod(K)
is an exact functor, because the Mittag-Leffler condition holds for all inverse sequences.
In the proof we use lim

←Ð
only in this category, and we use the exactness. Further, by

Proposition 4.2 we have H2(tRi (G),K) ≅ H2(G/γRi (G),K). Hence we only need to prove

the isomorphism H2(ĜR,K) ≅ lim
←Ð

H2(tRi (G),K).
We reduce the theorem to a prime n in the case of R = Z/n. Assume that the theorem

holds for the case of R = Z/p, where p is prime. Let now R = Z/n, where n = ps11 ⋅ . . . ⋅ p
sl
l
.

Then we have isomorphisms

ĜZ/n ≅∏ ĜZ/pj and G/γ[n]i (G) ≅∏
j

G/γ[p
sj
j
]

i (G)
[6, 12.3]. Let p be one of the prime divisors. Since Z/p is a field, we have the isomorphism

H2(ĜZ/n,Z/p) ≅ ⊕
i1+⋅⋅⋅+il=2

l

⊗
j=1

Hij(ĜZ/pj ,Z/p).
If pj ≠ p, by Proposition 4.14 we have H2(ĜZ/pi ,Z/p) = 0 and obviously H1(ĜZ/pi ,Z/p) = 0.
Thus H2(ĜZ/n,Z/p) ≅H2(ĜZ/p,Z/p). Similarly we get

H2(G/γ[n]i (G),Z/p) ≅H2(G/γ[ps]i (G),Z/p).
Since γ

[p]
i (G) ⊇ γ

[ps]
i (G) ⊇ γ

[p]
i′ (G) for any i, we get lim

←Ð
H2(G/γ[ps]i (G),Z/p) =

H2(G/γ[p]i (G),Z/p). Then we obtain the isomorphism

H2(ĜZ/n,Z/p) ≅ lim
←Ð

H2(G/γ[n]i (G),Z/p).
Then the theorem holds for R = Z/n and K = Z/p, where p is a divisor of n. Further, using
the short exact sequence Z/pi ↣ Z/pi+1 ↠ Z/p, and the associated long exact sequence of

homology H∗(ĜZ/n,−) and H∗(G/γ[n]i (G),−) by induction we get the theorem for R = Z/n
andK = Z/pm. Finally, forK = Z/n′ =⊕Z/pmi

i , we haveH2(ĜZ/n,K) =⊕H2(ĜZ/n,Z/pmi

i ).
Therefore, the theorem holds in the general case for R = Z/n. Further, we will assume that
in the case of R = Z/n that n = p is prime.

Let E be a first quadrant homological spectral sequence that converges to H∗. If we
are interested only in Hm for 0 ≤ m ≤ 2 it is convenient to cut off the spectral sequence as
follows:

Ẽr
pq ∶= { Er

pq, if q ∈ {0,1} or (p, q) = (0,2)
0, else
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with the obvious differentials. Then Ẽ has a limit H̃∗ such that

H̃m ≅Hm, for 0 ≤m ≤ 2.

Consider the morphism of metabelian decompositions:

(8.1)

0 M̂S ĜR ÂR 1

0 Mi tRi (G) tRi (A) 1.

It induces the morphism of Lyndon-Hochschild-Serre spectral sequences E(ĜR) →
E(tRi (G)) for homology with coefficients in K. If we cut off them we get the morphism

Ẽ(ĜR)→ Ẽ(tRi (G)). We assume that these spectral sequences start from the second page.

We prove that all the terms of the spectral sequence E(tRi (G)) are finitely generated
K-modules. We only need to prove it for the second page. For first two rows it is obvious
and for (p, q) = (0,2) it is the statement of Lemma 7.1.

Therefore lim
←Ð

is exact on the terms of Ẽ(tRi (G)), and hence we can apply it to all the

terms of Ẽ(tRi (G)) and get a new spectral sequence

Ẽlim = lim
←Ð

Ẽ(tRi (G)).
The morphisms Ẽ(ĜR)→ Ẽ(tRi (G)) induce the morphism

Ẽ(ĜR)Ð→ Ẽlim.

In order to finish the prove it is sufficient to prove that the morphism Ẽ(ĜR)→ Ẽlim is an
isomorphism of spectral sequences. It is enough to prove it on the second pages. In other
words we need to prove that the morphisms

(8.2) H∗(ÂR,K)Ð→ lim
←Ð

H∗(tRi (A),K),
(8.3) H∗(ÂR,MK)Ð→ lim

←Ð
H∗(tRi (A),Mi

K),
(8.4) H2(M̂S ,K)ÂR

Ð→ lim
←Ð

H2(Mi,K)tR
i
(A)

are isomorphisms. Note that the homomorphism (8.2) is a special case of (8.3). Then need
to prove that the homomorphism (8.3) and the homomorphism (8.4) are isomorphisms. We
prove it in Propositions 8.8 and 8.9. �

We denote the natural homomorphisms

τA ∶ AÐ→ ÂR, τM ∶M Ð→ M̂S

and

A1 ∶= Ker(τA), A2 ∶= Coker(τA).
By tp(A) we denote the p-power torsion subgroup of A.

Lemma 8.4. (1) A1 =⊕p∈J tp(A).
(2) If R = Z[J−1], then A2 = (Z[J−1]/Z)⊗A
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(3) If R = Z/p, then A2 = (Zp/Z)⊗A. Moreover, if A is finite, then A2 = 0, else A2 ≅ Q⊕c

.

Proof. The only non-obvious thing is the last isomorphism. First, we prove that Zp/Z is a
divisible abelian group. Let q ≠ p be a prime. The group Zp is q-divisible, and hence Zp/Z
is q-divisible. Then we need to prove that Zp/Z is p-divisible. It follows from the following

equality modulo Z: ∑∞i=0αip
i = ∑∞i=1 αip

i = p(∑∞i=1 αip
i−1). Therefore, Zp/Z is a divisible

torsion-free group. Then by description of divisible groups [12, IV] we get Zp/Z ≅ Q⊕c.
Then the required statement follows immediately. �

Lemma 8.5.

(1) If H a finite group such that ∣H ∣−1 ∈ [J−1] and L is an S[H]-module, then
Hk(H,L) = 0 for k > 0.

(2) If L is a S[A1]-module, then Hk(A1,L) = 0 for k > 0.
(3) If L is a residually nilpotent K[A2]-module, then Hk(A2,L) = 0 for k > 0.

Proof. (1) The trivial S[H]-module S is projective because it is isomorphic to the direct
summand of S[H] given by the image of the projector x ↦ (∑h∈H xh)/∣H ∣. Therefore, for
any S[H]-module L we have Hk(H,L) = TorS[H]

k
(S,L) = 0.

(2) It follows from Lemma 8.4 and (1).
(3) Let R = Z[J−1]. Then A2 = (Z[J−1]/Z) ⊗ A. Since Z[J−1]/Z = ⊕q∈J Z/q∞, we get

A2 = (Z[J−1]/Z)d ⊕ B0, where B0 is a finite group such that ∣B0∣−1 ∈ Z[J−1]. The group
Z[J−1]/Z is isomorphic to the direct limit lim

Ð→
Z/ji, where ji runs over natural numbers with

prime divisors in J such that for any natural number j with prime divisors in J we have
j ∣ ji for i >> 0. Therefore, A2 is isomorphic to the direct limit lim

Ð→
Bi, where Bi is a finite

abelian group such that ∣Bi∣−1 ∈ Z[J−1]. Using (1) and the epimorphism S ↠ K we get
Hk(Bi,L) = 0. Finally, using the formula Hk(A2,L) = limÐ→ Hk(Bi,L) we get Hk(A2,L) = 0.

Let R = Z/p. If A2 = 0, the statement is obvious, then we can assume A2 ≅ Q⊕c and
K = Z/p. Hence for an element a of A2 there is an element a1 ∈ A2 such that a = ap1. Using
the equality a−1 = ap1−1 = (a1−1)p mod p we get LIR = LI

p
R
= LI∞R = 0, and hence the action

of A2 on L is trivial. Since A2 is torsion-free, we have Hk(A2) = ∧kA2. Then Hk(A2)⊗L = 0
and Tor(Hk−1(A2),L) = 0, and hence by universal coefficient theorem Hk(A2,L) = 0. �

Lemma 8.6. The homomorphisms τA and τM induce isomorphisms

H∗(A,MK) ≅H∗(A,M̂K) ≅H∗(ÂR, M̂K).
Proof. The first isomorphism we get by Proposition (5.1). Consider, the short exact se-
quence A1 ↣ A ↠ Im(τA), and the corresponding Lyndon-Hochschild-Serre spectral se-

quence Hi(Im(τA),Hj(A1, M̂K)) ⇒ Hi+j(A,M̂K). By Lemma 8.5 we get Hj(A1, M̂K) = 0

for j > 0. Moreover, since M̂K has the natural structure of a ÂR-module that lifts the
structure of A-module, then A1 acts trivially on M̂K , and hence H0(A1, M̂K) = M̂K .

It follows that the homomorphism A → Im(τA) induce the isomorphism H∗(A,M̂K) ≅
H∗(Im(τA), M̂K).

Consider the short exact sequence Im(τA) ↣ ÂR ↠ A2, and the corresponding Lyndon-

Hochschild-Serre spectral sequence Hi(A2,Hj(Im(τA), M̂K))⇒ Hi+j(ÂR, M̂K). Since MK

is a finitely generated K[A]-module, MK is a finitely generated K[Im(τA)]-module. Using
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the formula (5.1) we get Hj(Im(τA), M̂K) =Hj(Im(τA),MK). Using the formula (6.5) and

the fact the action of A on Hj(Im(τA), M̂K) is trivial, we get

Hj(Im(τA), M̂K) =Hj(Im(τA), M̂K)A =Hj(Im(τA), M̂K)ÂR
.

Thus, Hj(Im(τA), M̂K) is a trivial ÂR-module. Then by Lemma 8.5 we get

Hi(A2,Hj(Im(τA), M̂K)) = 0 for i > 0 and H0(A2,Hj(Im(τA), M̂K)) =Hj(Im(τA), M̂K). It
follows that the homomorphism Im(τA)↣ ÂR induces the isomorphism H∗(Im(τA), M̂K) ≅
H∗(ÂR, M̂K). It follows that the morphism τA induces the isomorphism H∗(A,M̂K) ≅
H∗(ÂR, M̂K). �

Lemma 8.7. If N is a nilpotent K[tRi (A)]-module such that NIi+1 = 0, then the homo-
morphisms A → tri (A) induce the isomorphism:

H∗(A,N) ≅H∗(tRi (A),N).
Proof. If R = Z[J−1], it follows from Lemma 8.6. If R = Z/p, it follows from 5.4. �

Proposition 8.8. The homomorphism (8.3) is an isomorphism.

Proof. Let R = Z[J−1]. Then tRi (A) = ÂR = A⊗R andMi
K =MK/MKIiK . Then by Lemma

8.6 H∗(ÂR, M̂K) ≅ H∗(A,M̂K), by Corollary 2.3 H∗(A,M̂K) ≅ lim
←Ð

H∗(A,Mi
K) and again

by Lemma 8.6, using thatMi
K is nilpotent, we get H∗(A,Mi

K) ≅H∗(tRi (A),Mi
K).

Let R = Z/p. Then by Lemma 5.4 H∗(tRi (A),Mi
K) ≅ H∗(A,Mi

K). Since, the inverse

sequence Mi
K is equivalent to the inverse sequence M/MIi we have lim

←Ð
H∗(A,Mi) ≅

lim
←Ð

H∗(A,M/MIi). By Proposition 5.1 we get lim
←Ð

H∗(A,M/MIi) ≅ H∗(A,M̂K) and by

Lemma 8.6 H∗(A,M̂K) ≅H∗(ÂR, M̂K). �

Proposition 8.9. The homomorphism (8.4) is an isomorphism.

Proof. Consider the morphism of exact sequences
(8.5)

H1(ÂR,Tor(M̂S ,K)) (∧2M̂K)ÂR
H2(M̂S ,K)ÂR

(MK)A 0

H1(tRi (A),Tor(Mi,K)) (∧2Mi
K)tRi (A) H2(Mi,K)tR

i
(A) (Mi

K)tRi (A) 0

f i
1 f i

2 f i f i
3

We need to prove that lim
←Ð

f i is an isomorphism. By Lemma 3.1 we

have H∗(ÂR,Tor(M̂S ,K)) ≅ H∗(ÂR,Tor(MS ,K)∧). By Lemma 8.6 we get

H∗(ÂR,Tor(MS ,K)∧) ≅ H∗(A,Tor(MS ,K)∧) ≅ H∗(A,Tor(M̂S ,K)). By Propositions 2.4

and 2.6 we obtain H∗(A,Tor(M̂S ,K)) ≅H∗(A, lim←Ð Tor(Mi,K)) ≅ lim
←Ð

H∗(A,Tor(Mi,K)),
and by Lemma 8.7 we obtain H∗(A,Tor(Mi,K)) ≅ H∗(tRi (A),Tor(Mi,K)). Then lim

←Ð
f i
1

and lim
←Ð

f i
3 are isomorphisms. By Proposition 7.2 lim

←Ð
f i
2 is an isomorphism. Finally, using

the five lemma, we get that lim
←Ð

f i is an isomorphism. �
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9. Bousfield problem for metabelian groups.

We put ΦR
i H2(G,K) = Ker(H2(G,K) → H2(G/γRi+1(G),K)). Then ΦiH2(G,K) =

ΦZ
i H2(G,K) is the Dwyer filtration on H2(G,K) (see [10]).

Theorem 9.1. Let G be a finitely presented metabelian group, R = Z[J−1] or R = Z/n and
K be an Artinian quotient ring of R. Then for i >> 0 there is a short exact sequence

0Ð→ ΦR
i H2(G,K) Ð→H2(G,K) Ð→H2(ĜR,K)Ð→ 0,

where the epimorphism is induced by the homomorphism G→ ĜR.

The following corollary is the answer on the Bousfield problem for the class of metabelian
groups.

Corollary 9.2. Let G be a finitely presented metabelian group. Then the homomorphisms
G→ ĜQ and G→ ĜZ/n induce the epimorphisms

H2(G,Q)↠ H2(ĜQ,Q), H2(G,Z/n)↠H2(ĜZ/n,Z/n).
Corollary 9.3. Let G be a finitely presented metabelian group and Ĝ be the pronilpotent
completion. Then for m >> 0 there is a short exact sequence

0Ð→ ΦmH2(G,Z/n)Ð→H2(G,Z/n)Ð→H2(Ĝ,Z/n)Ð→ 0,

where the epimorphism is induced by the homomorphism G→ Ĝ.

Proof of Theorem 9.1. For the sake of simplicity we put γRi = γRi (G) Consider the short
exact sequence

1Ð→ γRi Ð→ GÐ→ G/γRi Ð→ 1,

and the associated five term exact sequence

H2(G,K) →H2(G/γRi ,K)→H1(γRi ,K)G →H1(G,K)↠H1(G/γRi ,K).
Note that H1(G,K) ≅ H1(G/γRi ,K) ≅ (G/γR2 ) ⊗ K and the morphism H1(G,K) →
H1(G/γRi ,K) is the isomorphism. Moreover,

H1(γRi ,K)G = (γRi /[γRi ,G]) ⊗K = (γRi /γRi+1)⊗K.

Hence, we get the exact sequence:

0Ð→ ΦR
i−1H2(G,K) Ð→H2(G,K) ξi

Ð→H2(G/γRi ,K)Ð→ (γRi /γRi+1)⊗K Ð→ 0.

The inclusion γRi+1 ↪ γRi induce zero homomorphism (γRi+1/γRi+2) ⊗ K → (γRi /γRi+1) ⊗ K.

Therefore lim
←Ð
(γRi /γRi+1)⊗K = 0. It follows that lim

←Ð
Im(ξi) ≅ lim

←Ð
H2(G/γRi ,K). By Theorem

8.1 we get lim
←Ð

Im(ξi) ≅H2(ĜR,K). Since H2(G,K) is an Artinian K-module, the sequence

ΦR
j H2(G,K) stabilizes and we get lim

←Ð
ΦR
i H2(G,K) = ⋂j Φ

R
j H2(G,K) = ΦR

i H2(G,K) for

i >> 0. It follows that the image Im(ξi) stabilizes. Hence Im(ξi) ≅H2(ĜR,K) for i >> 0 and
we have the short exact sequences.

0Ð→H2(ĜR,K)Ð→H2(G/γRi ,K) Ð→ (γRi /γRi+1)⊗K Ð→ 0

0Ð→ ΦR
i H2(G,K) Ð→H2(G,K) Ð→H2(ĜR,K)Ð→ 0,

for i >> 0. �



ON BOUSFIELD PROBLEM FOR THE CLASS OF METABELIAN GROUPS 29

Remark 9.4. In the proof of Theorem 9.1 we get the short exact sequence

0Ð→H2(ĜR,K)Ð→H2(G/γRi ,K) Ð→ (γRi /γRi+1)⊗K Ð→ 0

for i >> 0. Then informally the group H2(ĜR,K) can be considered as ’the biggest part’ of
H2(G/γRi ,K) independent of i.

Next we give an example of a polycyclic metabelian residually nilpotent group H, such
that the intersection of Dwyer filtration ∩iΦZ

i (H) is nonzero (see [17] for detailed study of
this group and its localizations).

Example 9.5. Let H = ⟨a, b ∣ ab2 = aa3b, [a, ab] = 1⟩. The group H is the semidirect

product (Z ⊕ Z) ⋊ Z, where the cyclic group Z = ⟨b⟩ acts on Z ⊕ Z as the matrix (0 1
1 3

) .
For the group H,

∩iΦ
Z
i (H) =H2(H) = Z/2.

10. The Telescope.

In this section we assume that R = Z and Ĝ = ĜR is the pronilpotent completion of
G. Moreover, we assume that A = Gab and M = [G,G]. In [15] and [16], J.P. Levine
defines closely related groups, his algebraic closure of G, whose image in the pronilpotent
completion has important properties. In the case of metabelian group G this image is called
the Telescope of G and denoted by Ḡ. It was proved in [2] that the metabelian decomposition
M ↣ G↠ A induces the following metabelian decomposition

0Ð→M ℓ Ð→ ḠÐ→ A Ð→ 1,

where M ℓ =M[(1+I)−1] is the localization of M with respect to the multiplicative set 1+I.

Proposition 10.1. Let G be a finitely generated metabelian group and n ≥ 1. Then the
inclusion Ḡ→ Ĝ induces an isomorphism

H2(Ḡ,Z/n) ≅H2(Ĝ,Z/n).
Proof. The morphism of the metabelian decompositions

(10.1)

0 M ℓ Ḡ A 1

0 M̂ Ĝ A 1.

id

gives the morphism of the Lyndon-Hochschild-Serre spectral sequences E(Ḡ)→ E(Ĝ). First,
we note that E2

i,0(Ḡ) = E2
i,0(Ĝ) =Hi(A,Z/n). By Proposition 5.1 we have the isomorphisms

Hi(A,M ⊗Z/n) ≅Hi(A,M ℓ ⊗ Z/n) ≅Hi(A,M̂ ⊗Z/n). Therefore, the morphism E2
ij(Ḡ)→

E2
ij(Ĝ) is an isomorphism for j ∈ {0,1}. Then, it sufficient to prove that the morphism

E2
0,2(Ḡ) =H2(M ℓ,Z/n)A →H2(M̂ ,Z/n)A = E2

0,2(Ĝ) is an isomorphism.
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By Proposition 5.1, we get Hi(A,Tor(M ℓ,Z/n)) ≅ Hi(A,Tor(M̂,Z/n)) and by Proposi-

tion 7.2 we get (∧2M ℓ)A ≅ (∧2M̂)A. Consider the morphism of exact sequences
(10.2)

H1(A,Tor(M ℓ,Z/n)) (∧2M ℓ)A H2(M ℓ,Z/n) Tor(M ℓ,Z/n)A

H1(A,Tor(M̂ ,Z/n)) (∧2M̂)A H2(M̂ ,Z/n) Tor(M̂,Z/n)A.
≅ ≅ ≅

Using the five lemma, we obtain that the morphism H2(M ℓ,Z/n) → H2(M̂ ,Z/n) is an
isomorphism. �
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