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P. Ivanisvili∗ N. N. Osipov†‡§¶ D. M. Stolyarov†‖§ V. I. Vasyunin∗∗

P. B. Zatitskiy†‖††‡‡

December 16, 2014

Abstract

We unify several Bellman function problems treated in [1, 2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18,
19, 20, 21, 22, 23, 24] into one setting. For that purpose we define a class of functions that have,
in a sense, small mean oscillation (this class depends on two convex sets in R

2). We show how the
unit ball in the BMO space, or a Muckenhoupt class, or a Gehring class can be described in such a
fashion. Finally, we consider a Bellman function problem on these classes, discuss its solution and
related questions.

Since Slavin [12] and Vasyunin [18] proved the sharp form of the John–Nirenberg inequality (see [15]),
there have been many papers where similar principles are used to prove sharp estimates of this kind.
However, there is no theory or even a unifying approach; moreover, the class of problems to which the
method can be applied has not been described yet. There is a portion of heuristics in the folklore that is
each time applied to a new problem in a very similar manner. The first attempt to build a theory (at least
for BMO) was made in [16], then the theory was developed in the paper [4] (see the short report [5] also).
We would also like to draw the reader’s attention to the forthcoming paper [6], which can be considered
as a description of the theory for the BMO space in a sufficient generality. Problems of this kind were
considered not only in BMO, but in Muckenhoupt classes, Gehring classes, etc (see [1, 2, 11, 13, 19, 20]).
In this short note, we define a class of functions and an extremal problem on it that includes all the
problems discussed above. We believe that the unification we offer gives a strong basis for a theory that
will distinguish a certain class of problems to which the method is applicable in a direct way. In Section 1
we state the problem and discuss related questions. Section 2 contains a detailed explanation how our
classes of functions include the unit ball in BMO as well as the “unit balls” in Muckenhoupt classes and
Gehring classes. Finally, in Section 3 we give hints to the solution of the problem (as the reader may
expect looking at previous papers, it is rather lengthy and technical, so we omit a description of the
solution, but concentrate on an analogy with the case of BMO considered in [4, 6, 22]).
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1 Setting

Let Ω0 be a non-empty open strictly convex subset of R
2 and let Ω1 be open strictly convex subset

of Ω0. We define the domain Ω as cl(Ω0 \Ω1) (the word “domain” comes from “domain of a function”; the
symbol cl denotes the closure) and the class AΩ of summable R

2-valued functions on an interval I ⊂ R

as follows:

AΩ =
{

ϕ ∈ L1(I,R2) | ϕ(I) ⊂ ∂Ω0 and ∀ subinterval J ⊂ I 〈ϕ〉
J
/∈ Ω1

}

. (1.1)

Here 〈ϕ〉
J
= 1

|J|

∫

J
ϕ(s) ds is the average of ϕ over J . In Section 2 we show how the unit ball in BMO

as well as the “unit balls” in Muckenhoupt and Gehring classes can be represented in the form (1.1).
Let f : ∂Ω0 → R be a bounded from below Borel measurable locally bounded function. We are interested
in sharp bounds for the expressions of the form 〈f(ϕ)〉

I
, where ϕ ∈ AΩ.

Again, in Section 2 we explain how the John–Nirenberg inequality or other inequalities of harmonic
analysis can be rewritten as estimations of such an expression. The said estimates are delivered by the
corresponding Bellman function

BΩ,f (x) = sup
{

〈f(ϕ)〉
I

∣

∣ 〈ϕ〉
I
= x, ϕ ∈ AΩ

}

. (1.2)

Problem 1.1. Given a domain Ω and a function f , calculate the function BΩ,f .

As it has been said in the abstract, the particular cases of this problem were treated in the papers [1,
2, 4, 5, 6, 9, 10, 11, 12, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24] (see Section 2 for a detailed explanation).
The main reason for Problem 1.1 to be solvable (and it has been heavily used in all the preceeding work)
is that the function B enjoys good properties.

Definition 1.2. Let ω be a subset of Rd. We call a function G : w → R ∪ {+∞} locally concave on ω if

for every segment ℓ ⊂ ω the restriction G
∣

∣

ℓ
is concave.

Define the class of functions on Ω:

ΛΩ,f =
{

G : Ω → R ∪ {+∞}
∣

∣

∣
G is locally concave on Ω, ∀x ∈ ∂Ω0 G(x) > f(x)

}

. (1.3)

The function BΩ,f is given as follows:

BΩ,f (x) = inf
G∈ΛΩ,f

G(x). (1.4)

Conjecture 1.3. BΩ,f = BΩ,f .

In particular, the conjecture states that the Bellman function is locally concave (because the func-
tion BΩ,f is).

Problem 1.4. Prove Conjecture 1.3 in adequate generality.

Though it may seem that one should solve Problem 1.4 before turning to Problem 1.1, it is not really
the case. All the preceeding papers used Conjecture 1.3 as an assumption that allowed the authors to
guess B, then prove that this function was the Bellman function indeed, and only then verify Conjec-
ture 1.3 for Ω and f chosen. However, to treat Problem 1.4 in itself, one has to invent a different approach,
see Section 3.

We note that one should impose some additional conditions on Ω and f to provide a solution to the
problems. We postpone the detailed discussion of this to Section 3 and pass to examples.
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2 Examples

From now on, we follow the agreement: if g : R → R
2 is some fixed parametrization of ∂Ω0, then the

function f(g) : R → R is denoted by f̃ .

The BMO space. We consider the BMO space with the quadratic seminorm. Let ε be a positive
number. Set Ω0 = {x ∈ R

2 | x21 < x2} and Ω1 = {x ∈ R
2 | x21 + ε2 < x2}. A function

ϕ = (ϕ1, ϕ2) : I → ∂Ω0

belongs to the class AΩ if and only if its first coordinate ϕ1 belongs to BMOε (the ball of radius ε
in BMO). Indeed, for any t ∈ I we have ϕ2(t) = ϕ2

1(t), therefore, the condition 〈ϕ〉
J
/∈ Ω1 can be

rewritten as
〈ϕ2

1〉J 6 〈ϕ1〉
2
J
+ ε2,

which is the same as
〈
(

ϕ1 − 〈ϕ1〉J
)2
〉
J
6 ε2. (2.1)

Now we see that the class AΩ corresponds to BMOε. The Bellman function (1.2) estimates the func-
tional 〈f̃(ϕ1)〉I . The solution of Problem 1.1 with f̃(t) = eλt leads to the John–Nirenberg inequality in
its integral form, the case f̃(t) = χ(−∞,−λ]∪[λ,∞)(t) corresponds to the weak form of the John–Nirenberg
inequality, and the case f(t) = |t|p leads to equivalent defintions of BMO. We address the reader to the
paper [4] for a detailed discussion. This case is the subject of study for the papers [4, 6, 9, 10, 15, 16, 21, 22].

Classes Ap1,p2
. Let p1 and p2, p1 > p2, be real numbers and let Q > 1. Suppose

Ω0 = {x ∈ R
2 | x1, x2 > 0, x

1

p2

2 < x
1

p1

1 } and Ω1 = {x ∈ R
2 | x1, x2 > 0, Qx

1

p2

2 < x
1

p1

1 }.

If a function ϕ belongs to the class AΩ, then its first coordinate ϕ1 belongs to the so-called Ap1,p2
class.

The “norm” in this class is defined as

[ψ]Ap1,p2
= sup

J⊂I

〈ψp1〉
1

p1
J 〈ψp2〉

− 1

p2
J , (2.2)

where the supremum is taken over all subintervals of I. These classes were introduced in [20]. If p ∈ (1,∞),
then A1,− 1

p−1

= Ap, where Ap stands for the classical Muckenhoupt class. The limiting cases A1 and A∞

also fit into this definition (with Hruschev’s “norm” on A∞). When p2 = 1 and p1 > 1, the class Ap1,p2

coincides with the so-called Gehring class (see [7] or [8]). One can see that the functions in the Gehring
class are exactly those that satisfy the reverse Hölder inequality. Sometimes, the Gehring class is called
the reverse-Hölder class. Estimates of integral functionals as provided by the Bellman function (1.2)
lead to various sharp forms of the reverse Hölder inequality, see [20]. These cases were treated in the
papers [1, 2, 11, 19, 20].

Reverse Jensen classes. These classes were introduced in [7]. Let Φ: R+ → R+ be a convex function.
Let Q > 1. Consider the class of functions ψ : I → R+ such that

∀J ⊂ I 〈Φ(ψ)〉
J
6 QΦ(〈ψ〉

J
).

Surely, both a Muckenhoupt class and a Gehring class can be described as certain Reverse Jensen classes.
The corresponding domain is {x ∈ R

2 | x1, x2 > 0, Φ(x1) 6 x2 6 QΦ(x1)}. Consult a very recent
paper [13], where the Bellman function on the domain {x ∈ R

2 | ex1 6 x2 6 Cex1}, C > 1, provides sharp
constants in the John–Nirenberg inequality for the BMO space equipped with the Lp-type seminorm.
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3 Hints to solutions

First, we note that strict convexity of Ω0 implies the fact that B(x) = f(x) for x ∈ ∂Ω0. Second, we
need Ω to fulfill several assumptions that all the domains listed in Section 2 do satisfy.

1. The domains Ω0 and Ω1 are unbounded. (3.1)

2. The boundary of Ω1 is C2-smooth. (3.2)

3. Every ray inside Ω0 can be translated to belong to Ω1 entirely. (3.3)

The first two conditions are technical in a sense, the third one is essential, since (under assumption (3.1))
it is equivalent to the fact that for any x ∈ Ω there exists a function ϕ ∈ AΩ such that 〈ϕ〉

I
= x (i.e.

the supremum in formula (1.2) is taken over a non-empty set). Now we are ready to present a solution
of Problem 1.4.

Theorem 3.1. Let the domain Ω satisfy the conditions (3.1), (3.2), (3.3). If the function f is bounded

from below, then BΩ,f = BΩ,f .

The condition that f is bounded from below is not necessary. However, we note that without this
condition the extremal problem in formula (1.2) is not well posed (the integral of f(ϕ) may be not well
defined). In [17] the reader can find the proof of Theorem 3.1 for the case clΩ1 ⊂ Ω0 as well as its analog
where f can be unbounded from below.

To solve Problem 1.1, we need to consider even more restrictive conditions, we introduce some notation
for that purpose. Choose g = (g1, g2) : R → R

2 to be a continuous parametrization of ∂Ω0; let the
domain Ω lie on the left of this oriented curve. For any number u ∈ R we draw two tangents from the
point g(u) to the set Ω1; by a tangent we mean not a line, but a segment connecting g(u) with the tangency
point. We denote the lenghts of the left and the right tangents by ℓL(u) and ℓR(u) correspondingly (the
left tangent lies between the right one and g′, see [4] for explanations about this notation).

1. The boundaries ∂Ω0 and ∂Ω1 are C3-smooth curves, the function f is C3-smooth. (3.4)

2. The curve γ(t) =
(

g1(t), g2(t), f̃(t)
)

⊂ R
3 changes the sign of its torsion only a finite number of times.

(3.5)

3. The integrals
∫ 0

−∞
1
ℓR

and
∫ +∞

0
1
ℓL

diverge. (3.6)

In Condition (3.6) the integration is with respect to the natural parametrization of the curve ∂Ω1, where
the functions ℓR and ℓL are considered as the functions of their tangency points lying on ∂Ω1. For the
case where g(t) = (t, t2) treated in [4], Condition (3.5) turns into “the function f̃ ′′′ changes its sign only
a finite number of times”; this is exactly the regularity condition we used in [6]. The last Condition (3.6)
is more mysterious, we believe that our considerations may work without it.

We also need a summability assumption for the function f . Let αR(u) denote the oriented angle
between the right tangent at the point u and the vector (1, 0), let αL(u) denote the oriented angle
between the left tangent at the point u and the vector (1, 0). Then, the summability condition requires
the bulky integral

t
∫

−∞

exp

(

t
∫

τ

g′1
ℓR cos(αR)

)

tan(αR(τ))g
′
1(τ) − g′2(τ)

(g′1(τ)g
′′
2 (τ) − g′2(τ)g

′′
1 (τ))

2

∣

∣

∣

∣

∣

∣

f̃ ′(τ) f̃ ′′(τ) f̃ ′′′(τ)
g′1(τ) g′′1 (τ) g′′′1 (τ)
g′2(τ) g′′2 (τ) g′′′2 (τ)

∣

∣

∣

∣

∣

∣

dτ (3.7)

to converge for any t ∈ R provided γ has negative torsion in a neighborhood of −∞ (and a similar
condition with R replaced by L and with −∞ replaced by +∞ provided γ has positive torsion in a
neighborhood of ∞).
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Claim: under Conditions (3.1), (3.3), (3.4), (3.5), (3.6), and the mentioned convergence

conditions for the integrals (3.7) we can solve Problem 1.1.
As in [4], by “solution” we mean an expression for the function B, which may include roots of implicit

equations, differentiations, and integrations. Though at the first sight, the benefit of such a “solution”
may seem questionable, it occurs to be useful if one has a specific domain Ω and a function f at hand, see
examples in the papers [4, 6], the whole paper [22] that treats the cases of functions f extremely difficult
from an algebraic point of view, and other papers on the subject.

It appears that to solve Problem 1.1, one has to reformulate reasonings from [4] and [6] in geometric
terms and observe that in such terms they work for a more general setting of the problem considered. For
example, the integral (3.7) plays the role of the force function coming from −∞ (see [4] for the definition
in the case of BMO) in the general setting. However, the geometric essence of the matter is even more
revealed in the example of the chordal domain. We remind the reader that a chordal domain is a type of
foliation (see [4] for the definition) that consists of chords, i.e. segments that connect two points of ∂Ω0.
In the case of the parabolic strip g(t) = (t, t2), the chordal domain could match Bf if and only if it
satisfied the cup equation

f̃(b)− f̃(a)

b− a
=
f̃ ′(b) + f̃ ′(a)

2
; (a, a2) and (b, b2) are the endpoints of a chord,

and two special differential inequalities (“inequalities for the differentials”) for each of its chord. In the
general setting of Problem 1.1, the cup equation turns into

∣

∣

∣

∣

∣

∣

g′1(a) g′2(a) f̃ ′(a)

g′1(b) g′2(b) f̃ ′(b)

g1(b)− g1(a) g2(b)− g2(a) f̃(b)− f̃(a)

∣

∣

∣

∣

∣

∣

= 0; g(a) and g(b) are the endpoints of a chord,

which has the following geometrical meaning: the tangent vectors to the curve γ(t) = (g1(t), g2(t), f̃(t))
at the points a and b lie in one two-dimensional plane with the vector γ(a)−γ(b). The special differential
inequalities (the so-called inequalities for the differentials) can also be re-stated in purely geometric terms
(the triple product of γ′(a), γ(b)− γ(a), and the normal to γ at the point a should be negative; the same
should be fulfilled with a and b interchanged) and then generalized to fit Problem 1.1.

In [4] the roots of f̃ ′′′ played the main role. Indeed, the cups sit on the points where f̃ ′′′ changes its
sign from + to −. In the general case, the function f̃ ′′′ should be replaced by the torsion of the curve γ.
One can see the traces of the torsion in formula (3.7). Moreover, now we see that Condition (3.5) is a
straightforward generalization of the regularity condition from [4].

We recall that in [4] the problem was treated not in the full generality (we assumed that the roots
of f̃ ′′′ were well separated). This narrowed the list of local types of foliations. However, without such an
assumption, the collection of figures is wider, see the forthcoming paper [6] for the general theory, and
the example [22], where almost all figures from the general case appear. The latter paper also highlights
the notation that becomes very important when there are lots of different figures (it appeared that a
foliation corresponds to a special weighted graph). We only mention that all the figures are transferred to
the general setting of Problem 1.1, as well as all the monotonicity lemmas for forces and tails (see [4] for
definitions). However, in the general case there are some subtleties concerning different parametrizations
of the curves g and γ. To formulate a right analog of a certian monotonicity lemma, one has to choose
the right parametrization for it: sometimes it is more convenient to work in the natural parametrization
of g, sometimes that of γ, sometimes it is useful to lay g1(t) = t.
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