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In the article we use abstract convexity theory in order to unify and generalize
many different concepts of nonsmooth analysis. We introduce the concepts of
abstract codifferentiability, abstract quasidifferentiability and abstract convex
(concave) approximations of a nonsmooth function mapping a topological vector
space to an order complete topological vector lattice. We study basic properties
of these notions, construct elaborate calculus of abstract codifferentiable func-
tions and discuss continuity of abstract codifferential. We demonstrate that many
classical concepts of nonsmooth analysis, such as subdifferentiability and quasid-
ifferentiability, are particular cases of the concepts of abstract codifferentiability
and abstract quasidifferentiability. We also show that abstract convex and abstract
concave approximations are a very convenient tool for the study of nonsmooth
extremum problems. We use these approximations in order to obtain various
necessary optimality conditions for nonsmooth nonconvex optimization problems
with the abstract codifferentiable or abstract quasidifferentiable objective function
and constraints. Then, we demonstrate how these conditions can be transformed
into simpler and more constructive conditions in some particular cases.

Keywords: nonsmooth analysis; abstract codifferentiability; abstract quasidiffer-
entiability; abstract convex approximation

AMS Subject Classifications: 49K27; 90C30; 90C48

1. Introduction

One of the first ideas in the study of the local behaviour of a function was to approximate
the function under consideration in a neighbourhood of a point by a very simple function,
namely linear function, and to use this linear function in order to study some properties of
the initial function. This simple idea gave rise to the concept of derivative and eventually
led to the development of classical differential calculus. In the twentieth century, various
generalizations of the derivative were proposed in nonsmooth analysis. Most of these
generalizations are just modifications of the directional derivative or the subgradient and
the subdifferential of a convex function (see, e.g. [1–5]). Although these generalizations are
effective tools for solving various nonsmooth problems, they are discontinuous, as well as
the subdifferential of a convex function in the nonsmooth case. A lack of continuity causes
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2 M.V. Dolgopolik

a lot of complications and makes the construction of effective and convenient numerical
methods very difficult.

However, there is a different way of a generalization of the classical derivative. In order
to study a more broad class of functions than the class of differentiable functions, one should
simply approximate a function in a neighbourhood of a point by more broad (and inevitably
more complicated) set of functions than the set of linear functions. From the point of view of
optimization, a natural candidate on the role of the set of approximating functions is the set
of convex (concave or the sum of convex and concave) functions, since the class of convex
functions is the simplest and the most profoundly studied class of functions in optimization.
For a long time this simple idea had not been fulfilled in nonsmooth analysis, until in 1988
Demyanov introduced the concept of codifferentiable function [6] (that implicitly carried out
this idea) in order to construct a continuous approximation of a nonsmooth function. Since
usually a continuous approximation of a nonsmooth function must be nonhomogeneous, (see
the introduction in [7]), then we naturally come to the following definition of codifferentiable
function, which is a generalization of the concept of quasidifferentiable function.[7] Let
� ⊂ Rd be an open set. A function f : � → R is called codifferentiable at a point x ∈ �,
if there exist convex compact sets d f (x), d f (x) ⊂ Rd+1 such that for any admissible
�x ∈ Rd (i.e. such that co{x, x +�x} ⊂ �) one has

f (x +�x)− f (x) = max
(a,v)∈d f (x)

(a + 〈v,�x〉)+ min
(b,w)∈d f (x)

(b + 〈w,�x〉)+ o(�x, x),

where o(α�x, x)/α → 0 as α → +0, and 〈·, ·〉 is the inner product in Rd . In actuality,
the previous definition is equivalent to the following one (cf. Example 3.10 below): a
function f : � → R is said to be codifferentiable at a point x ∈ � if there exist a finite
convex function � : Rd → R and a finite concave function � : Rd → R such that for any
admissible �x ∈ Rd

f (x +�x)− f (x) = �(�x)+�(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α → +0. The concept of codifferentiability appeared to be
amazingly effective tool for solving various optimization problems.[7–10] Let us mention
here the marvellous ability of the method of codifferential descent [7] to ‘jump over’ some
points of local minimum.[10]

The aim of this article is to take the next step and to utilize some ideas of abstract
convexity in nonsmooth analysis. Namely, we introduce and study the concepts of abstract
codifferentiability, abstract quasidifferentiability, and abstract convex and abstract concave
approximations of a nonsmooth function mapping a topological vector space to an order
complete topological vector lattice. These concepts are based on the idea of an approxi-
mation of a function in a neighbourhood of a point by an abstract convex function (or an
abstract concave function, or the sum of abstract convex and abstract concave functions).
Actually, many well-known notions of nonsmooth analysis, such as subdifferentiability,
quasidifferentiability, codifferentiability, exhauster and coexhauster, are just a particular
cases of the concepts of abstract quasidifferentiability and abstract codifferentiability. Thus,
the theory presented in the article gives us a new understanding of these notions and allows
one to present many different concepts and results of nonsmooth analysis in a unified
and convenient framework. Moreover, the theory of abstract codifferentiability furnishes
one with a useful approach to the construction and study of continuous approximations of
nonsmooth functions. Therefore, we pay a lot of attention to the problem of continuity of
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Optimization 3

an abstract codifferential and thoroughly develop the calculus of abstract codifferentiable
functions.

In the article, we also derive necessary optimality conditions for various nonsmooth
nonconvex optimization problems with the use of the abstract convex and abstract concave
approximations of a nonsmooth function. The author thinks that the abstract convex and
abstract concave approximations are a very effective tool for the study of various nonsmooth
constrained extremum problems, since they allow one to obtain necessary optimality con-
ditions for these problems in a very simple manner. As applications of the general theory,
we give new characterizations of some classes of nonsmooth functions and obtain new
necessary optimality conditions for these classes of functions.

2. Preliminaries

In this section, we recall some basic notions from abstract convexity, and introduce sev-
eral specific sets and operations on these sets, which will simplify the exposition of the
main results in the article. We assume that the reader is familiar with some basic defini-
tions and facts from the theory of topological vector lattices [11,12] and abstract convex
analysis.[13–15]

2.1. Abstract convexity

We recall some definitions from abstract convexity, that is used in subsequent. Let X be an
arbitrary nonempty set, E be a complete lattice, f : X → E be an arbitrary function, and
let H be a nonvoid set of mappings h : X → E . If h ∈ H and h(x) ≤ f (x) for all x ∈ X ,
then we write h ≤ f (or f ≥ h).

Definition 2.1 The function f is called abstract convex with respect to H (or H -convex)
if there exists a nonempty set U ⊂ H such that f (x) = suph∈U h(x) for all x ∈ X . In this
case one says that the abstract convex function f is generated by U .

The function f is called abstract concave with respect to H (or H -concave) if there
exists a nonempty set V ⊂ H such that f (x) = inf h∈V h(x) for any x ∈ X . In the latter
case, the abstract concave function f is said to be generated by V .

The set supp+( f, H) = {h ∈ H | f ≤ h} is called an upper support set of f with
respect to H and the set supp−( f, H) = {h ∈ H | f ≥ h} is referred to as a lower support
set of f with respect to H . The set ∂H f (x) = {h ∈ supp−( f, H) | h(x) = f (x)} is called
an H -subdifferential of f at x and the set ∂H f (x) = {h ∈ supp+( f, H) | h(x) = f (x)} is
referred to as an H -superdifferential of f at x .

Note an obvious condition for the global minimum (maximum) of the function f via
abstract convex structures. Suppose that the set H contains all constant functions. Then, it
is easy to check that for the function f to have a global minimum (maximum) value at a
point x∗ it is necessary and sufficient that

f (x∗) ∈ ∂H f (x∗) ( f (x∗) ∈ ∂H f (x∗)). (1)

One can suppose that only the constant function h ≡ f (x∗) belongs to H in order to
get (1).
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4 M.V. Dolgopolik

2.2. Special sets

Let X be an arbitrary nonvoid set and E be an order complete vector lattice. We add the
improper elements+∞ and−∞ to the vector lattice E , where, as usual,+∞ is considered as
a greatest element and −∞ is considered as a least element. Denote E = E∪{−∞}∪{+∞}.
It is clear that E endowed with an obvious order relation is a complete lattice. Set

x + (+∞) = (+∞)+ x = +∞, x + (−∞) = (−∞)+ x = −∞,

α(+∞) = +∞, α(−∞) = −∞ if α > 0,

α(+∞) = −∞, α(−∞) = +∞ if α < 0.

We will not consider such expressions as +∞+ (−∞) or 0(+∞). For an arbitrary function
F : X → E denote dom F = {x ∈ X | F(x) 
= −∞, F(x) 
= +∞}. The sum l = p + q
of functions p, q : X → E is said to be well-defined if p−1(e) ∩ q−1(−e) = ∅ when
e ∈ {+∞,−∞}. Here, p−1(e) is the preimage of e under p.

Let H be a nonempty set of functions h : X → E . The set H is said to be closed under
addition if for any h1, h2 ∈ H the sum h1 + h2 is well-defined and belongs to H .

Let F be a filter on X . Denote by P F(X,F, E, H) the set consisting of all pairs of
functions (�,�) such that � : X → E is H -convex, � : X → E is H -concave, and there
exists S ∈ F such that S ⊂ dom� ∩ dom�.

Remark 1 We will only consider values of the sum � + � in a ‘neighbourhood’ of a
given point x , since the sum � + � will serve as an approximation of the increment of a
function in this ‘neighbourhood’. Therefore, it is natural to demand that the sum �+� is
well-defined and finite only in a ‘neighbourhood’ of x . Thus, the filter F will usually be the
filter of neighbourhoods of a point x .

In subsequent we will consider an approximation of the increment of a function by the
sum of H -convex and H -concave functions. Different pairs of H -convex and H -concave
functions could define the same approximation. Therefore, it is convenient to introduce the
set of equivalence classes of pairs of H -convex and H -concave functions that define the
same approximation.

Let us introduce a binary relation σ on the set P F(X,F, E, H). We say that ((�1, �1),

(�2, �2)) ∈ σ , where (�i , �i ) ∈ P F(X,F, E, H), i ∈ {1, 2}, if and only if there exists
S ∈ F such that S ⊂ dom�i ∩ dom�i , i ∈ {1, 2} and

�1(x)+�1(x) = �2(x)+�2(x) ∀x ∈ S.

It is easy to see that σ is an equivalence relation on P F(X,F, E, H). The quotient set of
P F(X,F, E, H) by σ is denoted by E P F(X,F, E, H). If (�,�) ∈ P F(X,F, E, H),
then the equivalence class of (�,�) under σ is denoted by [�,�].

Since an H -convex (or H -concave) function is defined by a subset of the set H , then
one can consider the set P S(H,F) instead of P F(X,F, E, H), where P S(H,F) is the set
consisting of all pairs (U, V ) of nonempty sets U, V ⊂ H such that (suph∈U h, inf p∈V p) ∈
P F(X,F, E, H). Let us introduce a binary relation σ̂ on the set P S(H,F), which is similar
to the relation σ . Define ((U1, V1), (U2, V2)) ∈ σ̂ , where (Ui , Vi ) ∈ P S(H,F), i ∈ {1, 2},
if and only if
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Optimization 5(
( sup
h1∈U1

h1, inf
p1∈V1

p1), ( sup
h2∈U2

h2, inf
p2∈V2

p2)

)
∈ σ

It is obvious that σ̂ is an equivalence relation on P S(H,F). The quotient set of P S(H,F)
by σ̂ is denoted by E P S(H,F). If (U, V ) ∈ P S(H,F), then the equivalence class of the
element (U, V ) under σ̂ is denoted by [U, V ].

Introduce the operations of addition and scalar multiplication on the set E P F(X,F,
E, H). Let α ∈ R be arbitrary. Suppose that 0 ∈ H in the case α = 0, and the set H is a
cone (i.e. for any h ∈ H and for all λ > 0 one has p = λh ∈ H ) in the case α 
= 0. Denote
(−H) = {−h | h ∈ H}.

Let (�,�) ∈ P F(X,F, E, H). Define

α[�,�] =

⎧⎪⎨⎪⎩
[α�, α�] ∈ E P F(X,F, E, H), if α > 0,

[α�, α�] ∈ E P F(X,F, E,−H), if α < 0,

[0, 0], if α = 0.

It is easy to check that the previous definition is correct in the sense that if (�1, �1),

(�2, �2) ∈ [�,�], then [α�1, α�1] = [α�2, α�2] in the case α > 0 and [α�1, α�1] =
[α�2, α�2] in the case α < 0.

Suppose now that the set H is closed under addition. Let (�1, �1), (�2, �2) ∈
P F(X,F, E, H). Then we set [�1, �1] + [�2, �2] = [�1 + �2, �1 + �2]. It is easy
to verify that the given definition of the sum is correct.

The operations of addition and scalar multiplication on the set E P S(H,F) are defined
in a similar way.

Remark 2 (i) The construction of the sets E P S(H,F) and E P F(X,F, E, H) is
similar to the construction of the space of convex sets [16] and the set of the differences of
sublinear functions.[7,17]
(ii) Let X be a topological vector space and F be the filter of neighbourhoods of the origin.
Then, we write P F(X, E, H) instead of P F(X,F, E, H) and use analogous abbreviations
for E P F(X,F, E, H), P S(H,F) and E P S(H,F).

We need to introduce other equivalence relations on the set P F(X,F, E, H) in order
to avoid ambiguity in the definition of abstract codifferentiable function.

Let X be a topological vector space (normed space) over the field of real or complex
numbers, and E be an order complete Hausdorff topological vector lattice. Define a binary
relation σw (and σs) on the set P F(X, E, H). Let (�i , �i ) ∈ P F(X, E, H), i ∈ {1, 2} be
arbitrary. Set

((�1, �1), (�2, �2)) ∈ σw
(
((�1, �1), (�2, �2)) ∈ σs

)
if and only if �1(0)+�1(0) = �2(0)+�2(0) and for any x ∈ X

lim
α↓0

1

α
(�1(αx)+�1(αx)−�2(αx)−�2(αx)) = 0(

lim
x→0

1

‖x‖ (�1(x)+�1(x)−�2(x)−�2(x)) = 0

)
.
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6 M.V. Dolgopolik

Hereafter, we write α ↓ 0 instead of α ∈ R, α → +0. It is easy to see that σw and σs are
equivalence relations on the set P F(X, E, H). The quotient set of P F(X, E, H) by σw
is denoted by E P Fw(X, E, H), and the quotient set of P F(X, E, H) by σs is denoted by
E P Fs(X, E, H). If (�,�) ∈ P F(X, E, H), then the equivalence class of (�,�) under
σw is denoted by [�,�]w, and the equivalence class of (�,�) under σs is denoted by
[�,�]s .

One can introduce similar equivalence relations σ̂w and σ̂s on the set P S(H) and the
quotient sets E P Sw(H) and E P Ss(H). Also, it is easy to define the operations of addition
and scalar multiplication on the sets E P Fw(X, E, H), E P Fs(X, E, H), E P Sw(H) and
E P Ss(H) in the same way as we defined these operations on the sets E P F(X,F, E, H)
and E P S(H,F).

Let us give several definitions that is useful for the study of continuity. Let, as earlier, X
be a nonvoid set and f : X → E P S(H,F) be an arbitrary mapping (one can also consider
f : X → E P Sw(H) or f : X → E P Ss(H)). A mapping ϕ = (ϕ1, ϕ2) : X → P S(H,F),
where ϕi : X → S(H), i ∈ {1, 2}, is said to be a selection of the mapping f if ϕ(x) ∈ f (x)
for all x ∈ X . Here S(H) is the set of all nonempty subsets of H .

Let X and H be equipped with topologies and let � be a neighbourhood of a point
x ∈ X .

Definition 2.2 A mapping f : � → E P S(H,F) is called lower semicontinuous (upper
semicontinuous, continuous) at the point x if there exists a selection ϕ = (ϕ1, ϕ2) : � →
P S(H,F) of f such that the set-valued mappings ϕ1, ϕ2 are lower semicontinuous (upper
semicontinuous, continuous) at the point x . If H is a metric space, then the mapping f is
called Hausdorff continuous at the point x if there exists a selection ϕ = (ϕ1, ϕ2) : � →
P S(H,F) of f such that the set-valued mappings ϕ1, ϕ2 are Hausdorff continuous at this
point.

3. Abstract codifferentiable functions

In the following subsections we give definitions of H -codifferentiable and H -quasi-
differentiable functions and discuss related notions. Also, we show that many well-known
classes of nonsmooth functions are, in fact, H -codifferentiable or H -quasidifferentiable for
particular sets H .

3.1. A definition of abstract codifferentiable functions

Hereafter, let X be a Hausdorff topological vector space over the field of real or complex
numbers, E be an order complete Hausdorff topological vector lattice, H be a nonempty set
of functions h : X → E and � ⊂ X be an open set. Denote the closure of a subset A ⊂ T
of a topological space T by cl A and the convex hull of a subset A ⊂ L of a linear space L
by co A.

Definition 3.1 A function F : � → E is said to be weakly H -codifferentiable (or Gâteaux
H -codifferentiable, or weakly abstract codifferentiable with respect to H ) at a point x ∈ �
if there exists an element δFH [x] ∈ E P Fw(X, E, H) for which there exists a pair (�,�) ∈
δFH [x] such that �(0) + �(0) = 0 and for any admissible argument increment �x ∈ X
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Optimization 7

(i.e. co{x, x +�x} ⊂ (� ∩ dom� ∩ dom�)) the following holds

F(x +�x)− F(x) = �(�x)+�(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. The element δFH [x] is called a weak H -derivative (or
Gâteaux H -derivative) of the function F at the point x .

It is clear that if a function F is weakly H -codifferentiable at a point x , then any pair
(�,�) ∈ δFH [x] satisfies all assumptions of the previous definition, i.e. the definition
of weakly H -codifferentiable function does not depend on the choice of a pair (�,�) ∈
δFH (x).

Definition 3.2 Let X be a normed space. A function F : � → E is said to be strongly
H -codifferentiable (or Fréchet H -codifferentiable) at a point x ∈ � if there exists an
element F ′

H [x] ∈ E P Fs(X, E, H) for which there exists a pair (�,�) ∈ F ′
H [x] such that

�(0)+�(0) = 0 and for any admissible �x ∈ X

F(x +�x)− F(x) = �(�x)+�(�x)+ o(�x, x),

where o(�x, x)/‖�x‖ → 0 as�x → 0. The element F ′
H [x] is called a strong H -derivative

(or Fréchet H -derivative) of the function F at the point x .

It is easy to check that the weak (strong) H -derivative of a function F : � → E at a
point x ∈ � is uniquely defined. Also, it is clear that if a function F : � → E is strongly
H -codifferentiable at a point x , then F is weakly H -codifferentiable at this point and for
any (�,�) ∈ F ′

H [x] one has (�,�) ∈ δFH [x] (the opposite inclusion does not hold true
in the general case).

Remark 1 One can consider the definition of H -codifferentiation in a more general frame-
work. Indeed, let X be a vector space, E be a complete vector lattice,� ⊂ X be an arbitrary
set. Denote by

core� = {x ∈ � | ∀g ∈ X ∃αg > 0 : x + αg ∈ � ∀α ∈ (0, αg)}.
the algebraic interior of the set �. Let F = {S ⊂ X | 0 ∈ core S}, and suppose that
core� 
= ∅.

A function F : � → E is said to be order H -codifferentiable at a point x ∈ core�
if there exists an element δo FH [x] ∈ E P F(X,F, E, H) for which there exists a pair
(�,�) ∈ δo FH [x] such that �(0) + �(0) = 0 and for any argument increment �x ∈ E
such that co{x, x +�x} ⊂ core(� ∩ dom� ∩ dom�)) the following holds

o-limα↓0 |F(x +�x)− F(x)−�(�x)−�(�x)|/α = 0,

where o-lim stands for the order limit in the lattice E .
Let X be a topological vector space. One can also consider the notion of H -codifferenti-

ability for a function defined on the set � ∩ K, where K ⊂ X is a cone, or on a closed set
M ⊂ X . In these cases, the H -derivative of a function is an element of E P F(K,F, E, H),
where F = {S ⊂ K | 0 ∈ intK S}, intK stands for the interior of a set in the topological
subspace K of the space X , and K ⊂ X is either an arbitrary cone or some kind of a tangent
cone to the set M .
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8 M.V. Dolgopolik

We will not consider the generalization of H -codifferentiability suggested above. The
interested reader can transfer main results obtained in the article to these more general cases.

Let a function F : � → E be weakly H -codifferentiable at a point x ∈ �, and let
(�,�) ∈ δFH [x] be arbitrary. Then, by the definitions of abstract convex and abstract
concave functions, there exist nonempty sets U, V ⊂ H such that

�(y) = sup
h∈U

h(y), �(y) = inf
p∈V

p(y) ∀y ∈ X. (2)

We denote the equivalence class [U, V ]w ∈ E P Sw(H) by Dw
H F(x). The set Dw

H F(x) is
called a weak H -codifferential (or Gâteaux H -codifferential) of the function F at the point
x . It is easy to check that Dw

H F(x) does not depend on the choice of (�,�) ∈ δFH [x] and
the choice of the sets U, V ⊂ H satisfying (2). Hence the weak H -codifferential of the
function F at the point x is unique. One can analogously define a strong H -codifferential
(or Fréchet H -codifferential) Ds

H F(x) of the function F at the point x .

Definition 3.3 Let a function F : � → E be weakly (strongly) H -codifferentiable at a
point x ∈ �, and suppose that 0 ∈ H . The function F is said to be weakly (strongly)
H -hypodifferentiable at x if there exists an H -convex function � : X → E such that
δFH [x] = [�, 0]w (F ′

H [x] = [�, 0]s). The function F is said to be weakly (strongly)
H -hyperdifferentiable at x if there exists an H -concave function � such that δFH [x] =
[0, �]w (F ′

H [x] = [0, �]s).

Although the H -derivative of a function is unique, in the general case there exist
(�i , �i ) ∈ F ′

H [x], i ∈ {1, 2} such that [�1, �1] 
= [�2, �2]. The following example
shows the difference between equivalence relations σ and σs .

Example 3.4 Let X = E = R, H be the set of all affine functions, i.e.

H = {h : R → R | h(x) = ax + b, where a, b, x ∈ R},
and F(x) = x4 for all x ∈ R. It is clear that F is strongly H -codifferentiable at the point
x = 0, and F ′

H [0] = [0, 0]s . Define �(x) = x2, x ∈ R. It is easy to verify that � is
H -convex and [�, 0] 
= [0, 0], despite the fact that (�, 0) ∈ F ′

H [0], i.e. [�, 0]s = [0, 0]s .

Let us introduce the important concept of continuously H -codifferentiable functions.
Let H be endowed with a topology.

Definition 3.5 A function F : � → E is said to be continuously (upper semicontinuously,
lower semicontinuously or, in the case when H is equipped with a metric, Hausdorff
continuously) weakly H -codifferentiable at a point x ∈ � if the function F is weakly
H -codifferentiable in a neighbourhood O of x , and the mapping y → Dw

H F(y), y ∈ O
is continuous (upper semicontinuous, lower semicontinuous, Hausdorff continuous) at x .
Continuously strongly H -codifferentiable functions are defined in the same way.

Definition 3.6 Let 0 ∈ H . A function F : � → E is said to be continuously weakly
H -hypodifferentiable at a point x ∈ � if the function F is weakly H -hypodifferentiable
in a neighbourhood O of x and there exists a continuous mapping ϕ : O → S(H) such
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Optimization 9

that (ϕ(y), 0) ∈ Dw
H F(y) for all y ∈ O. Other types of continuity (semicontinuity) of

H -hypodifferentiable and H -hyperdifferentiable functions are defined in a similar way.

Remark 2 It is to be mentioned that the theory of continuously H -codifferentiable func-
tions is closely related to the theory of continuous approximations of nonsmooth
functions.[18,19]

Let us give an auxiliary definition that will be useful in subsequent.

Definition 3.7 Suppose that X is a normed space, and E is an order complete normed
lattice. Let a function F : � → E be weakly (strongly) H -codifferentiable at a point
x ∈ �. The weak (strong) H -derivative of F at x is said to be Lipschitz continuous in a
neighbourhood of zero (or to satisfy the Lipschitz condition in a neighbourhood of zero) if
there exists (�,�) ∈ δFH [x] ((�,�) ∈ F ′

H [x]) such that the functions �(·) and �(·) are
Lipschitz continuous in a neighbourhood of zero.

Note an obvious property of an H -codifferentiable function which H -derivative is
Lipschitz continuous in a neighbourhood of zero.

Proposition 3.8 Let X be a normed space, E be an order complete normed lattice, and
a function F : � → E be weakly H-codifferentiable at a point x ∈ �. Suppose that δFH [x]
is Lipschitz continuous in a neighbourhood of zero. Then there exists L > 0 such that for
any admissible argument increment �x ∈ X there exists α0 > 0 such that

‖F(x + α�x)− F(x)‖ ≤ Lα‖�x‖ ∀α ∈ (0, α0).

Moreover, if F is strongly H-codifferentiable at x and F ′
H [x] is Lipschitz continuous in a

neighbourhood of zero, then there exists L > 0 and r > 0 such that

‖F(x +�x)− F(x)‖ ≤ L‖�x‖ ∀�x ∈ X, ‖�x‖ ≤ r,

and, in particular, the function F is continuous and calm at the point x.

3.2. Examples of abstract codifferentiable functions

In this subsection we show that some well-known classes of nonsmooth functions are
H -codifferentiable for particular sets H .

Example 3.9 Let X be a normed space, E be an order complete normed lattice, and let
B(X, E) ⊂ H , i.e. H includes the space of all bounded linear operators mapping X to E .
Then it is clear that if a function F : � → E is Gâteaux (Fréchet) differentiable at a point
x ∈ �, then F is weakly (strongly) H -codifferentiable at this point. Moreover, if δF[x]
(F ′[x]) is the Gâteaux (Fréchet) gradient of the function F at the point x , then

δFH [x] = [δF[x], 0]w = [0, δF[x]]w, Dw
H F(x) = [{δF[x]}, {0}]w = [{0}, {δF[x]}]w

(F ′
H [x] = [F ′[x], 0]s = [0, F ′[x]]s, Ds

H F(x) = [{F ′[x]}, {0}]s = [{0}, {F ′[x]}]s).
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10 M.V. Dolgopolik

The space H can be equipped with the standard operator norm. Then it is easy to see that if
the function F : � → E is continuously Gâteaux (Fréchet) differentiable at a point x ∈ �,
then F is Hausdorff continuously weakly (strongly) H -codifferentiable at this point.

Example 3.10 Let X be a real normed space, E = R, and let H be the set of all continuous
affine functions mapping X to R, i.e.

H = {h : X → R | h(·) = a + p(·), a ∈ R, p ∈ X∗},
where, as usual, X∗ is the topological dual space of X . The set H can be identified with the
space R × X∗. Thus, H is a linear space that can be endowed with the norm

‖h‖r = (|a|r + ‖p‖r ) 1
r , h = (a, p) ∈ H = R × X∗,

where 1 ≤ r < ∞, or ‖h‖∞ = max{|a|, ‖p‖}.
It is well-known (cf. [20], Proposition I.3.1) that a function � : X → R is abstract

convex (abstract concave) with respect to the set H under consideration if and only if �
is a proper lower semicontinuos convex function (proper upper semicontinuous concave
function). Hence, a function F : � → R is weakly H -codifferentiable at a point x ∈ �

if and only if there exist a proper lower semicontinuos (l.s.c.) convex function � : X →
R and a proper upper semicontinuous (u.s.c.) concave function � : X → R such that
0 ∈ int(dom� ∩ dom�), �(0) + �(0) = 0, and for any admissible argument increment
�x ∈ X

F(x +�x)− F(x) = �(�x)+�(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0.
We need the following proposition in order to give another characterization of

H -codifferentiability for the set H under consideration. Let x ∈ X and r > 0. Denote
O(x, r) = {y ∈ X | ‖x − y‖ < r} and B(x, r) = {y ∈ X | ‖x − y‖ ≤ r}.

Proposition 3.11 Let X be a real Banach space and f : X → R be a proper l.s.c.
convex function such that 0 ∈ int dom f . Then there exist r > 0 and a convex bounded set
A ⊂ R × X∗ that is compact in the topological product (R, τ )× (X∗, w∗) and such that

f (x) = max
(a,p)∈A

(a + p(x)) ∀x ∈ B(x, r). (3)

Here τ is the standard topology on R and w∗ is the weak∗ topology on X∗.

Proof Since the space X is complete, 0 ∈ int dom f and f is a proper l.s.c. convex
function, then f is continuous on int dom f ([20], Corollary I.2.5), and for any x ∈
int dom f one has ∂ f (x) 
= ∅ ([20], Proposition I.5.2), where ∂ f (x) is the subdifferential
of the convex function f at a point x . Thus, there exist r > 0 and C > 0 such that

| f (x)| ≤ C ∀x ∈ O(0, 4r). (4)

With the use of the definition of the subgradient of a convex function it is easy to show
that there exists M > 0 (M ≤ C/r ) such that for all x ∈ O(0, 2r)

‖p‖ ≤ M ∀p ∈ ∂ f (x), (5)
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Optimization 11

i.e. the subdifferential of f is bounded on O(0, 2r).
Since ∂ f (x) 
= ∅ for all x ∈ B(0, r), then (by the axiom of choice) there exists a

mapping B(0, r) � x → p[x] ∈ X∗ such that p[x] ∈ ∂ f (x). Introduce the set

A = cl co{(a, p) ∈ R × X∗ | a = f (x)− p[x](x), p = p[x], x ∈ B(0, r)}.
Here, the closure is taken in the topology τ × w∗. The set A is obviously convex. Taking
into account (4) and (5) one has that

A ⊂ [−C − r M,C + r M] × {p ∈ X∗ | ‖p‖ ≤ M}. (6)

Therefore, the set A is bounded and compact in the topology τ×w∗, since the set {p ∈ X∗ |
‖p‖ ≤ M} is weak∗ compact by the Banach–Alaoglu theorem, and the set on the right-hand
side of (6) is compact in the topology τ × w∗ as the direct product of two compact sets.

By the definition of the subgradient of a convex function one has that

f (y) ≥ f (x)− p[x](x)+ p[x](y) ∀y ∈ X, ∀x ∈ B(0, r)

and the last inequality turns into an equality when y = x . Hence the validity of (3) follows
from the definition of the set A. �

Corollary 3.12 Let X be a Banach space and { fλ}, λ ∈ 
 be a family of proper l.s.c.
convex functions mapping X to R. Suppose that there exist ρ > 0 and Cλ > 0, λ ∈ 
 such
that | fλ(x)| ≤ Cλ for all x ∈ O(0, ρ) and λ ∈ 
. Then there exist r > 0 (depending only
on ρ) and a family {Aλ}, λ ∈ 
 of subsets of the space R × X∗ such that for any λ ∈ 
 the
set Aλ is nonempty, convex, bounded and compact in the topology τ×w∗, and the following
holds

fλ(x) = max
(a,p)∈Aλ

(a + p(x)) ∀x ∈ B(0, r).

Let us give a description of H -codifferentiable functions for the set H under consider-
ations. Suppose that the normed space X is complete. By virtue of the previous proposition
one has that a function F : � → R is weakly H -codifferentiable at a point x ∈ � if and
only if there exist bounded convex sets A, B ⊂ R × X∗ that are compact in the topology
τ × w∗ and such that for any admissible argument increment �x ∈ X

F(x +�x)− F(x) = max
(a,p)∈A

(a + p(�x))+ min
(b,q)∈B

(b + q(�x))+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. Thus, the function F is weakly H -codifferentiable at
a point x ∈ � if and only if it is codifferentiable at this point (cf. [7,19,21,22]). Also it is
easy to show that the function F is Hausdorff continuously weakly H -codifferentiable at a
point x ∈ � if and only if F is continuously codifferentiable at this point. Moreover, F is
strongly H -codifferentiable if and only if F is codifferentiable uniformly in directions (see
[7,21]). If F is strongly H -codifferentiable at x , then we will call it Fréchet (or strongly)
codifferentiable at x .

Remark 3 The concept of codifferentiability in Banach lattices [19] is, in fact, the particular
case of H -codifferentiability, when the set H consists of all affine functions h : X → E ,
h(x) = a + Ax , where a ∈ E and A : X → E is a linear operator.
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12 M.V. Dolgopolik

Example 3.13 Let X be a real Banach space, E = R, and let the set H consist of all
proper l.s.c. convex functions h : X → R such that 0 ∈ int dom h. In this example we
only consider H -hyperdifferentiable functions, since the set of all H -hyperdifferentiable
functions contains a certain class of nonsmooth functions.

Suppose that a function F : � → R is weakly H -hyperdifferentiable at a point x ∈ �,
i.e. there exists a set U ⊂ H such that for any admissible argument increment �x ∈ X

F(x +�x)− F(x) = inf
h∈U

h(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. Suppose also that there exist ρ > 0 and Ch > 0, h ∈ U
such that

|h(x)| ≤ Ch ∀x ∈ O(0, ρ),∀h ∈ U. (7)

Then, applying Corollary 3.12 one gets that there exists a family of convex bounded sets
Ah ⊂ R × X∗, h ∈ U , which are compact in the topology τ × w∗ and such that for any
admissible argument increment �x ∈ X

F(x +�x)− F(x) = inf
h∈U

max
(a,p)∈Ah

(a + p(�x))+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. Thus, the family E(x) = {Ah ⊂ R × X∗ | h ∈ U },
that is said to be generated by U , is a Dini upper coexhauster of the function F at the point
x (cf. [23]). Therefore, as it is easy to check, a function F has a Dini upper coexhauster
at a point x if and only if F is weakly H -hyperdifferentiable at this point and there exist
(U, {0}) ∈ Dw

H F[x], ρ > 0 and Ch > 0, h ∈ U such that (7) holds true. The notion of
coexhauster of a nonsmooth function was introduced by Aban’kin [24], where the functions
having upper coexhauster were called H -hyperdifferentiable (cf. also, [23]).

We will say that a family of nonempty convex, bounded and compact in the topology
τ × w∗ subsets E(x) of R × X∗ is a Fréchet upper coexhauster of F at x if F is Fréchet
H -hyperdifferentiable at this point and there exists (U, {0}) ∈ Ds

H F(x) such that E(x) is
generated by U .

Remark 4 One can also consider an example, that is similar to the previous one, where
the set H coincides with the set of all proper u.s.c. concave functions h : X → R such that
0 ∈ int dom h. In this case, if a function F : � → R has a Dini lower coexhauster at a point
x ∈ � then F is weakly H -hypodifferentiable at this point.

3.3. Abstract quasidifferentiable functions

It is easy to verify that the following proposition about the directional derivative of an
H -codifferentiable function holds true.

Proposition 3.14 Let X be a topological vector space (normed space), a function
F : � → E be weakly (strongly) H-codifferentiable at a point x ∈ �. Suppose also
that there exists (�,�) ∈ δFH [x] ((�,�) ∈ F ′

H [x]) such that the functions � and �
are Dini (Hadamard) directionally differentiable at the origin. Then the function F is Dini
(Hadamard) directionally differentiable at the point x and

F ′(x, g) = �′(0, g)+� ′(0, g) ∀g ∈ X.
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Optimization 13

Here F ′(x, ·), �′(0, ·) and � ′(0, ·) are the Dini (Hadamard) directional derivatives of the
functions F, � and �, respectively.

Corollary 3.15 Let X be a topological vector space, a function F : � → E be weakly
H-codifferentiable at a point x ∈ �. Suppose that any function h ∈ H is positively
homogeneous of degree one (p.h.). Then the function F is Dini directionally differentiable
at the point x and for any (�,�) ∈ δFH [x] one has

F ′(x, g) = �(g)+�(g) ∀g ∈ X.

Remark 5 About Dini and Hadamard directional derivatives see, e.g. [7,23].

The previous corollary motivates us to introduce the definition of H -quasidifferentiable
(or abstract quasidifferentiable with respect to H ) function. Suppose that any function
h ∈ H is p.h. (then any H -convex or H -concave function is also p.h. and the equivalence
relations σ , σw and σs coincide).

Definition 3.16 Afunction F : X → E is said to be Dini (Hadamard) H-quasidifferentiable
at a point x ∈ � if F is Dini (Hadamard) directionally differentiable at this point and there
exists an element DH F(x) ∈ E P F(X, E, H) such that for any (p, q) ∈ DH F(x)

F ′(x, g) = p(g)+ q(g) ∀g ∈ X,

where F ′(x, ·) is the Dini (Hadamard) directional derivative of F at x .

The element DH F(x) from the definition of Dini (Hadamard) H -quasidifferentiable
function is called a Dini (Hadamard) H -quasidifferential of the function F at the point x .
It is clear that DH F(x) is uniquely defined.

Definition 3.17 Let a function F : � → E be Dini (Hadamard) H -quasidifferentiable at
a point x ∈ �, and suppose that 0 ∈ H . The function F is said to be Dini (Hadamard)
H -subdifferentiable at the point x if there exists an H -convex function p : X → E such
that DH F(x) = [p, 0]. The function F is said to be Dini (Hadamard) H -superdifferentiable
at the point x if there exists an H -concave function q : X → E such that DH F(x) = [0, q].

Note a connection between H -quasidifferentiable functions and H -codifferentiable
functions. It is clear that a function F : � → E is weakly H -codifferentiable at a point
x ∈ � if and only if F is Dini H -quasidifferentiable at this point. Also, it is easy to see
that if F is Dini H -quasidifferentiable at a point x ∈ �, and there exists (p, q) ∈ DH F(x)
such that p and q are Lipschitz continuous in a neighbourhood of zero, then F is Hadamard
H -quasidifferentiable at x . The following proposition, which is, partly, a generalization of
Theorem 2.1 from [26], reveals a connection between strongly H -codifferentiable functions
and Hadamard H -quasidifferentiable functions.

Proposition 3.18 Let X be a normed space, E be an order complete normed lattice,
and F : � → E be an arbitrary function. For the function F to be Hadamard H-quasi-
differentiable at a point x ∈ � it is sufficient and, in the case when X is finite dimensional,
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14 M.V. Dolgopolik

necessary that F is strongly H-codifferentiable at this point and for any (�,�) ∈ F ′
H [x]

the sum �+� is finite and continuous on X.

Proof Sufficiency Let (�,�) ∈ F ′
H [x], g ∈ X and sequences {gn} ⊂ X , {αn} ⊂

(0,+∞) such that gn → g and αn → 0 as n → ∞ be arbitrary. Since (�,�) ∈ F ′
H [x]

and the sum �+� is continuous, then

1

αn‖gn‖‖F(x + αngn)− F(x)−�(αngn)−�(αngn)‖ → 0

and ‖�(gn)+�(gn)−�(g)−�(g)‖ → 0 as n → ∞. Consequently∥∥∥∥ F(x + αngn)− F(x)

αn
−�(g)−�(g)

∥∥∥∥ ≤ ‖�(gn)+�(gn)−�(g)−�(g)‖

+ ‖gn‖ 1

αn‖gn‖‖F(x + αngn)− F(x)−�(αngn)−�(αngn)‖ → 0

as n → ∞. Therefore, the function F is Hadamard H -quasidifferentiable at the point x and
(p, q) ∈ DH F(x) if and only if (p, q) ∈ F ′

H [x].
Necessity Ab absurdo, suppose that F is not strongly H -codifferentiable at the point x .
Fix an arbitrary (p, q) ∈ DH F(x). It is clear that there exist ε > 0 and a sequence of
admissible argument increments {�xn} ⊂ X such that ‖�xn‖ → 0 and for any n ∈ N

1

‖�xn‖ ‖F(x +�xn)− F(x)− p(�xn)− q(�xn)‖ > ε. (8)

Denote αn = ‖�xn‖, gn = �xn/αn . Applying the fact that X is finite dimensional one gets
that there exists a subsequence {gnk } converging to some g∗ ∈ X , ‖g∗‖ = 1.

Since F is Hadamard H -quasidifferentiable, then there exists k1 ∈ N such for all k > k1
one has ∥∥∥∥ F(x + αnk gnk )− F(x)

αnk

− p(g∗)− q(g∗)
∥∥∥∥ < ε

4
.

It is well-known and easy to check, that the directional derivative F ′(x, g) of the Hadamard
directionally differentiable function F is continuous with respect to g. Therefore, the sum
p + q is continuous on X . Hence, there exists k2 ∈ N such that for any k > k2 one has
‖p(gnk ) + q(gnk ) − p(g∗) − q(g∗)‖ < ε/4. Taking into account the fact that (p, q) ∈
DH F(x) one gets that for any k > max{k1, k2}

1

‖�xnk ‖
∥∥F(x +�xnk )− F(x)− p(�xnk )− q(�xnk )

∥∥
≤
∥∥∥∥ F(x + αnk gnk )− F(x)

αnk

− p(g∗)− q(g∗)
∥∥∥∥

+ ∥∥p(gnk )+ q(gnk )− p(g∗)− q(g∗)
∥∥

≤ ε

4
+ ε

4
= ε

2
,

which contradicts (8). Thus, the function F is strongly H -codifferentiable at the point x
and taking into account the fact that the equivalence relations σ and σs coincide in the case
when any h ∈ H is p.h., one gets that (p, q) ∈ DH F(x) if and only if (p, q) ∈ F ′

H [x].
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Optimization 15

Furthermore, for any (�,�) ∈ F ′
H [x] the sum � + � is finite and continuous on X ,

since for any (p, q) ∈ DH F(x) the sum p(·) + q(·) = F ′(x, ·) is finite and continuous
on X . �

Remark 6 It is to be mentioned that the notion of strong H -codifferentiability in the case
when any function h ∈ H is positively homogeneous of degree one is closely related to the
notion of semidifferentiability introduced in [25].

Let us briefly discuss two well-known examples of H -quasidifferentiable functions. Let
X be a locally convex Hausdorff topological vector space over the real field and E = R. It
is easy to verify that if H = X∗, then a function F : � → R is Dini H -quasidifferentiable
at a point x ∈ � if and only if F is quasidifferentiable at this point (cf. [7,26,27]).

Suppose now that H consists of all finite l.s.c. positively homogeneous convex functions
h : X → R (or u.s.c. positively homogeneous concave functions h : X → R). Then one
can show that a function F : � → R is Dini H -superdifferentiable (H -subdifferentiable)
at a point x ∈ � if and only if there exists an upper exhauster (lower exhauster) [23] of a
functions F at this point.

Remark 7 Note that the notion of quasidifferentiable functions in order complete vector
lattices (cf. [7]) coincide with the notion of H -quasidifferentiable functions for the set
H = B(X, Y ). Also, the notion of quasidifferentiable in the generalized sense functions
introduced in [28] is the particular case of the notion of H -quasidifferentiable functions,
when the set H consists of all finite l.s.c. positively homogeneous convex and finite u.s.c.
positively homogeneous concave functions.

3.4. Abstract convex approximations of nonsmooth functions

In this section we consider the concept of abstract convex approximations of nonsmooth
functions, that is closely related to the notion of H -codifferentiability. These approximations
are a very convenient tool for studying various kinds of optimization problems. We will use
them to derive necessary conditions for an extremum of an H -codifferentiable function.
The notion of abstract convex approximation is a natural generalization of the notion of
convex approximation (see [29] and references therein).

Let, as earlier, H be a nonempty set of functions mapping X to E , and let F : � → E
be an arbitrary function.

Definition 3.19 An H -convex function ϕ : X → E is called a weak upper H -convex
approximation (or weak upper abstract convex approximation with respect to H ) of the
function F at a point x ∈ � if

(1) ϕ(0) ≥ 0 and 0 ∈ int dom ϕ;
(2) for any �x ∈ X there exist α0 > 0 and a function β : (0, α0) → E such that

co{x, x + α0�x} ⊂ � ∩ dom ϕ, β(α) → 0 as α ↓ 0 and

F(x + α�x)− F(x) ≤ ϕ(α�x)+ αβ(α) ∀α ∈ [0, α0).
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16 M.V. Dolgopolik

Definition 3.20 An H -concave function ψ : X → E is referred to as a weak lower
H -concave approximation (or weak lower abstract concave approximation with respect
to H ) of the function F at a point x ∈ � if

(1) ψ(0) ≤ 0 and 0 ∈ int domψ ;
(2) for any �x ∈ X there exist α0 > 0 and a function β : (0, α0) → E such that

co{x, x + α0�x} ⊂ � ∩ domψ , β(α) → 0 as α ↓ 0 and

F(x + α�x)− F(x) ≥ ψ(α�x)− αβ(α) ∀α ∈ [0, α0).

Definition 3.21 Let X be a normed space. An H -convex function ϕ : X → E is called a
strong upper H -convex approximation of the function F at x ∈ � if

(1) ϕ(0) ≥ 0 and 0 ∈ int dom ϕ;
(2) there exists r > 0 and a functionβ : B(0, r) → E such thatβ(�x) → 0 as�x → 0

and
F(x +�x)− F(x) ≤ ϕ(�x)+ ‖�x‖β(�x) ∀�x ∈ B(0, r).

One can also define a strong lower H -concave approximation of the function F at a
point x ∈ �.

It is natural to expect that an upper H -convex approximation (lower H -concave approx-
imation) does not usually provide enough information about the behaviour of the function
F in a neighbourhood of a point x . Therefore, we have to use various families of upper
H -convex (lower H -concave) approximations. Families of these approximations that are of
the most importance for the study of optimization problems is called an exhaustive families.

Definition 3.22 A family {ϕλ}, λ ∈ 
 of weak upper H -convex approximations of the
function F at a point x ∈ � is said to be exhaustive if inf λ∈
 ϕλ(0) = 0 and for any
admissible �x ∈ X

F(x +�x)− F(x) = inf
λ∈
ϕλ(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0.

Definition 3.23 A family {ψλ}, λ ∈ 
 of weak lower H -concave approximations of the
function F at a point x ∈ � is referred to as exhaustive if supλ∈
 ψλ(0) = 0 and for any
�x ∈ X

F(x +�x)− F(x) = sup
λ∈


ψλ(�x)+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0.

Definition 3.24 Let X be a normed space. A family {ϕλ}, λ ∈ 
 of strong upper
H -convex approximations of the function F at a point x ∈ � is said to be exhaustive
if inf λ∈
 ϕλ(0) = 0 and for any �x ∈ X

F(x +�x)− F(x) = inf
λ∈
ϕλ(�x)+ o(�x, x),

where o(�x, x)/‖�x‖ → 0 as �x → 0.
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Optimization 17

The exhaustive family of strong lower H -concave approximations is defined in a similar
way.

The following proposition reveals an obvious connection between upper H -convex
(lower H -concave) approximations and H -codifferentials.

Proposition 3.25 Let the set H be closed under addition, and let for any h ∈ H one has
0 ∈ int dom h. Suppose that a function F : � → E is weakly (strongly) H-codifferentiable
at a point x ∈ �. Then for any (�,�) ∈ δFH [x] and for all h ∈ supp−(�, H) and
p ∈ supp+(�, H) the function � + p is a weak (strong) upper H-convex approximation
of F at x and the function h +� is a weak (strong) lower H-concave approximation of F
at x. Moreover, for any (�,�) ∈ δFH [x] and for any U, V ⊂ H such that � is generated
by U and � is generated by V the family {�+ p}, p ∈ V is an exhaustive family of weak
(strong) upper H-convex approximations of F at x, and the family {h + �}, h ∈ U is an
exhaustive family of weak (strong) lower H-concave approximations of F at x.

4. Calculus of abstract codifferentiable functions

In this section we discuss the problem of computing H -codifferentials and construct the
H -codifferential calculus. We also consider the problem of continuity of H -codifferentials,
which is very important for practical applications. We study only the Hausdorff continuity
of H -codifferentials; however, one could reformulate all results of this sections to the case
of other types of continuity.

In the following propositions and theorems we mostly study weakly H -codifferentiable
functions but all results of this section are also valid for strongly H -codifferentiable func-
tions.

Remark 1 (i) We do not discuss any formulae for computing H -quasidifferentials,
upper H -convex (lower H -concave) approximations, and exhaustive families of these
approximations. One can easily derive them arguing in a similar way to the cases of ex-
haustive families of nonhomogeneous convex approximations [29] and quasidifferentiable
functions.[7]
(ii) One can consider the main results of this section as sufficient conditions for the set of
all H -codifferentiable (or all continuously H -codifferentiable) at a given point functions to
be a cone, a group under addition (or multiplication), a linear space, an algebra, a lattice or
a vector lattice.

As earlier mentioned, we suppose that X is a Hausdorff topological vector space over
the field of real or complex numbers, E is an order complete Hausdorff topological vector
lattice, H is an arbitrary nonempty set of functions h : X → E , and � ⊂ X is an open set.

It is obvious that if a function F : � → E is weakly H -codifferentiable at x ∈ �, then for
any c ∈ E the function F+c is also weakly H -codifferentiable at x , δ(F+c)H [x] = δFH [x]
and Dw

H (F + c)(x) = Dw
H F(x). It is easy to check that the following propositions hold

true.

Proposition 4.1 Let a function F : � → E be weakly H-codifferentiable at a point
x ∈ �, and let α ∈ R be arbitrary. Suppose also that H is a cone in the case α 
= 0,
and 0 ∈ H in the case α = 0. Then the function αF is weakly H-codifferentiable at the
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18 M.V. Dolgopolik

point x, δ(αF)H [x] = αδFH [x] and Dw
H (αF)(x) = αDw

H F(x) in the case α ≥ 0, and
the function αF is weakly (−H)-codifferentiable at x, δ(αF)(−H)[x] = αδFH [x] and
Dw
(−H)(αF)(x) = αDw

H F(x) in the case α < 0.

Corollary 4.2 Let all assumptions of the previous proposition be satisfied, and let
(H, d) be a metric space. Suppose that the mapping h → αh is uniformly continuous on H
(if α < 0 and (−H) � H, then we suppose that the set (−H) is equipped with a metric; in
particular, one can suppose that d(−h,−p) = d(h, p) for all h, p ∈ H). Suppose also that
the function F is Hausdorff continuously weakly H-codifferentiable at the point x. Then
the function αF is Hausdorff continuously weakly H-codifferentiable at the point x.

Proposition 4.3 Let functions F1, F2 : � → E be weakly H-codifferentiable at a point
x ∈ �, and let the set H be closed under addition. Then the function F1 + F2 is weakly
H-codifferentiable at the point x, δ(F1+ F2)H [x] = δ(F1)H [x]+δ(F2)H [x] and Dw

H (F1+
F2)(x) = Dw

H F1(x)+ Dw
H F2(x).

Corollary 4.4 Let all assumption of the previous proposition be satisfied, and let (H, d)
be a metric space. Suppose that the mapping (h, p) → h + p is uniformly continuous on
H × H; in particular, one can suppose that there exists C > 0 such that

d(h1 + h2, p1 + p2) ≤ C(d(h1, p1)+ d(h2, p2)) ∀h1, h2, p1, p2 ∈ H.

Suppose also that the functions F1 and F2 are Hausdorff continuously weakly
H-codifferentiable at the point x. Then the function F1 + F2 is Hausdorff continuously
weakly H-codifferentiable at x.

Let us study the problem of finding the H -codifferential of the superposition of functions.

Theorem 4.5 Let X, Y be arbitrary normed spaces, E be an order complete normed
lattice. Suppose that the following conditions are satisfied:

(1) a function F : � → E is strongly H-codifferentiable at a point x ∈ �;
(2) F ′

H [x] is Lipschitz continuous in a neighbourhood of zero;
(3) S ⊂ Y is an open set, y ∈ S is arbitrary;
(4) a function G : S → X is continuous and Gâteaux differentiable at the point y, and

G(y) = x.

Then there exists an open set O ⊂ S such that y ∈ O, the function T = F ◦G is defined
on O and weakly Ĥ -codifferentiable at the point y, where

Ĥ = {ĥ : Y → R | ĥ = h ◦ δG[y], h ∈ H}
and δG[y] is the Gâteaux derivative of the function G at the point y. Moreover, for any
(�,�) ∈ F ′

H [x] and (U, V ) ∈ Ds
H F(x) one has

δTĤ [y] = [� ◦ δG[y], � ◦ δG[y]]w, (9)

Dw
Ĥ

T (y) =
[{

ĥ = h ◦ δG[y] ∈ Ĥ
∣∣ h ∈ U

}
,
{

p̂ = p ◦ δG[y] ∈ Ĥ
∣∣ p ∈ V

}]
w
. (10)

D
ow

nl
oa

de
d 

by
 [

  ]
 a

t 0
7:

32
 1

2 
Se

pt
em

be
r 

20
14

 



Optimization 19

Proof Note that the right-hand sides of equalities (9) and (10) do not depend on the choice
of (�,�) ∈ F ′

H [x] and (U, V ) ∈ Ds
H F(x). Hence these formulae are correct.

Since the function G is continuous at the point y and the set� is open, then there exists
μ > 0 such that O(y, μ) ⊂ S and G(O(y, μ)) ⊂ �. Denote O = O(y, μ). It is clear that
the composition F ◦ G is defined at least on O.

Fix an arbitrary �y ∈ O(0, μ). The function G is Gâteaux differentiable at the point y
hence

G(y +�y) = G(y)+ δG[y](�y)+ oG(�y),

where oG(α�y)/α → 0 as α ↓ 0. Denote ω(�y) = δG[y](�y) + oG(�y). It is obvious
that there exists α0 ∈ (0, 1) such that for all α ∈ (0, α0)

‖ω(α�y)‖ ≤ α(‖δG[y]‖ + 1)‖�y‖.
In particular, one has that ‖ω(α�y)‖ → 0 as α ↓ 0.

Fix an arbitrary (�,�) ∈ F ′
H [x] such that the functions �(·) and �(·) are Lipschitz

continuous in a neighbourhood of zero (such � and � exist since F ′
H [x] is Lipschitz

continuous in a neighbourhood of zero). The function F is strongly H -codifferentiable at
the point x = G(y), therefore for any admissible �x ∈ X one has

F(x +�x)− F(x) = �(�x)+�(�x)+ oF (�x),

where ‖oF (�x)‖/‖�x‖ → 0 as �x → 0 or, equivalently, ‖oF (�x)‖ = β(�x)‖�x‖,
where β(�x) → 0 as �x → 0. Thus, one gets

T (y +�y)− T (y) = F(G(y +�y))− F(G(y))

= F(G(y)+ ω(�y))− F(G(y))

= �(ω(�y))+�(ω(�y))+ oF (ω(�y)).

For any α ∈ (0, α0) one has

‖oF (ω(α�y))‖ ≤ αβ(ω(α�y))(‖G ′[y]‖ + 1)‖�y‖.
Since β(�x) → 0 as �x → 0 and ‖ω(α�y)‖ → 0 as α ↓ 0, then β(ω(α�y)) → 0
as α ↓ 0. Therefore, ‖oF (ω(α�y))‖/α → 0 as α ↓ 0. It remains to note that since the
functions �(·) and �(·) are Lipschitz continuous in a neighbourhood of zero, then

�(ω(�y))+�(ω(�y)) = (� ◦ δG[y])(�y)+ (� ◦ δG[y])(�y)+ o(�y),

where o(α�y, y)/α → 0 as α ↓ 0. �

Let us recall some definitions from lattice theory (see [11,12,30]). Let Y be an order
complete vector lattice. Denote by L(E, Y )+ the set of all positive linear operators mapping
E to Y . A linear operator T : E → Y is said to be a complete lattice homomorphism, if for
any bounded from above set A ⊂ E one has T supx∈A x = supx∈A T x , and for any bounded
from below set B ⊂ E one has T inf x∈B x = inf x∈B T x . It is clear that any complete lattice
homomorphism T is a positive operator.

A linear operator T : E → Y is said to be completely regular, if there exist complete
lattice homomorphisms S, R : E → Y such that T = S − R. One can verify that the
representation T = S − R of the completely regular operator T as the difference of two
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20 M.V. Dolgopolik

complete lattice homomorphisms is not unique. It is easy to see that any linear mapping
T : Rm → Rn , where Rm and Rn are endowed with the canonical order relations, is
completely regular.

Theorem 4.6 Let X be a normed space, E and Y be order complete normed lattices.
Suppose that the following conditions are satisfied:

(1) the set H is closed under addition and for any h ∈ H one has −h ∈ H;
(2) a function F : � → E is weakly H-codifferentiable at a point x;
(3) δFH [x] is Lipschitz continuous in a neighbourhood of zero;
(4) � ⊂ E is an open set such that F(x) ∈ �;
(5) a function G : � → Y is Fréchet differentiable at a point F(x);
(6) the Fréchet derivative G ′[F(x)] of G at F(x) is a completely regular linear

mapping;
(7) the function T = G ◦ F is defined on an open set O ⊂ � (in particular, one can

suppose that � = E or that F is continuous at x).

Then T is weakly Ĥ -codifferentiable at a point x, where Ĥ = {S ◦ h + R ◦ p′ | h, p ∈
H, S, R ∈ L(E, Y )+}. Futhermore, for all complete lattice homomorphisms S, R : E → Y
such that G ′[F(x)] = S − R, and for any (�,�) ∈ δFH [x] and (U, V ) ∈ Dw

H F(x) one
has

δTĤ [x] = [S ◦�− R ◦�, S ◦� − R ◦�]w, (11)

Dw
Ĥ

T (x) = [{S ◦ h − R ◦ p | h ∈ U, p ∈ V }, {S ◦ p − R ◦ h | h ∈ U, p ∈ V }]w. (12)

Proof Fix arbitrary complete lattice homomorphisms S, R : E → Y such that G ′[F(x)] =
S − R, and an arbitrary (�,�) ∈ δFH [x]. Arguing in a similar way to the proof of Theorem
4.5 one can show that for any admissible argument increment �x ∈ X

T (x +�x)− T (x) = G ′[F(x)](�(�x)+�(�x))+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. Let us show that the function K (·) = G ′[F(x)](�(·)+
�(·)) can be represented as the sum of Ĥ -convex and Ĥ -concave functions. Indeed, let �
be generated by U ⊂ H , and � be generated by V ⊂ H . Hence for any x ∈ X

K (x) = (S − R)(sup
h∈U

h(x)+ inf
p∈V

p(x))

= sup
h∈U,p∈V

(S(h(x))− R(p(x)))+ inf
h∈U,p∈V

(S(p(x))− R(h(x))).

Taking into account the assumptions about the set H one gets that K is the sum of Ĥ -convex
and Ĥ -concave functions.

It remains to note that formulae (11)–(12) do not depend on the choice of complete
lattice homomorphisms S, R : E → Y , such that G ′[F(x)] = S − R, (�,�) ∈ δFH [x]
and (U, V ) ∈ Dw

H F(x), since

(S ◦�− R ◦�)+ (S ◦� − R ◦�) = G ′[F(x)](�+�),
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Optimization 21

and for any function w : X → E and x ∈ X one has G ′[F(x)](w(αx))/α → 0 as α ↓ 0,
whenever w(αx)/α → 0 as α ↓ 0. �

As a simple, yet useful corollary to the previous proposition one gets the following
result.

Theorem 4.7 Let X be an arbitrary normed space. Suppose that the following conditions
are satisfied:

(1) the set H is a linear subspace of RX (where RX is the set of all functions mapping
X to R);

(2) functions Fi : � → R are weakly H-codifferentiable at a point x ∈ �, i ∈ I =
{1, . . . , d};

(3) δ(Fi )H [x] are Lipschitz continuous in a neighbourhood of zero, i ∈ I ;
(4) S ⊂ Rd is an open set such that y = (F1(x), . . . , Fd(x)) ∈ S;
(5) a function g : S → R is differentiable at the point y;
(6) the function T (·) = g(F1(·), . . . , Fd(·)) is defined on an open set O ⊂ �.

Then the function T is weakly H-codifferentiable at the point x and

δTH [x] =
∑
i∈I

∂g

∂yi
(y)δ(Fi )H [x], Dw

H T (x) =
∑
i∈I

∂g

∂yi
(y)Dw

H Fi (x).

Corollary 4.8 Let all assumptions of the previous theorem be satisfied, and let (H, d)
be a metric space. Suppose that the mapping (α, h) → αh, α ∈ R is uniformly continuous
on R×H, and the mapping (h, p) → h+ p is uniformly continuous on H ×H (in particular,
one can suppose that d is a norm). Suppose also that all functions Fi are continuous and
Hausdorff continuously weakly H-codifferentiable at the point x, and the function g is
continuously differentiable at the point y. Then the function T is Hausdorff continuously
weakly H-codifferentiable at x.

Remark 2 Let functions F, F1, F2 : � → R be (continuously) H -codifferentiable at a
point x ∈ �, and let F 
= 0 in a neighbourhood of x . As simple corollaries to Theorem
4.7 one gets the H -codifferentiability (continuous H -codifferentiability) of the functions
F1 · F2 and 1/F at the point x under suitable assumptions on the set H .

Let us consider the supremum and the infimum of H -codifferentiable functions.

Theorem 4.9 Let functions Fi : � → E be weakly H-codifferentiable at a point x ∈ �,
i ∈ I = {1, . . . , n}. Suppose that the set H satisfies the following assumptions:

(1) H is closed under addition;
(2) for any h ∈ H one has −h ∈ H;
(3) H is closed under vertical shifts, i.e. for any c ∈ E, h ∈ H one has h + c ∈ H.

Then the functions F = supi∈I Fi and G = inf i∈I Fi are weakly H-codifferentiable at the
point x. Moreover, for any (�i , �i ) ∈ δ(Fi )H [x] and (Ui , Vi ) ∈ Dw

H Fi (x), i ∈ I , one has
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22 M.V. Dolgopolik

δFH [x] =
⎡⎣sup

i∈I

(
Fi (x)− F(x)+�i −

∑
j∈I\{i}

� j

)
,
∑
k∈I

�k

⎤⎦
w

, (13)

δG H [x] =
⎡⎣∑

k∈I

�k, inf
i∈I

(
Fi (x)− G(x)+�i −

∑
j∈I\{i}

� j

)
,

⎤⎦
w

, (14)

and

Dw
H F(x) =

⎡⎣⋃
i∈I

{
{Fi (x)− F(x)} + Ui −

∑
j∈I\{i}

Vi

}
,
∑
k∈I

Vi

⎤⎦
w

, (15)

Dw
H G(x) =

⎡⎣∑
k∈I

Ui ,
⋃
i∈I

{
{Fi (x)− G(x)} + Vi −

∑
j∈I\{i}

Ui

}⎤⎦
w

. (16)

Proof Note that the right-hand sides of formulae (13)–(16) do not depend on the choice
of (�i , �i ) ∈ δ(Fi )H [x] and (Ui , Vi ) ∈ Dw

H Fi (x). Therefore, these formulae are correct.
We only consider the function F , since the assertion about the function G is proved in

a similar way. Fix arbitrary (�i , �i ) ∈ δFH [x] and (Ui , Vi ) ∈ Dw
H F(x), i ∈ I . For any

admissible argument increment �x ∈ X one has

Fi (x +�x) = Fi (x)+�i (�x)+�i (�x)+ oi (�x, x),

where oi (α�x, x)/α → 0 as α ↓ 0. Hence

F(x +�x)− F(x) = sup
i∈I
(Fi (x)− F(x)+�i (�x)+�i (�x)+ oi (�x, x)).

Applying the simple inequality∣∣ sup
i∈I
(Fi (x)− F(x)+�i (�x)+�i (�x)+ oi (�x, x))

− sup
i∈I
(Fi (x)− F(x)+�i (�x)+�i (�x))

∣∣
≤
∑
i∈I

|oi (�x, x)|

one gets

F(x +�x)− F(x) = sup
i∈I
(Fi (x)− F(x)+�i (�x)+�i (�x))+ o(�x, x),

where o(α�x, x)/α → 0 as α ↓ 0. It remains to note that

sup
i∈I
(Fi (x)− F(x)+�i (�x)+�i (�x))

= sup
i∈I

(
Fi (x)− F(x)+�i (�x)−

∑
j∈I\{ j}

� j (�x)

)
+

n∑
k=1

�k(�x),

and the fact that the right-hand side of the last equality is the sum of H -convex and
H -concave functions. �
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Optimization 23

Corollary 4.10 Suppose that all assumptions of the previous theorem are satisfied and
0 ∈ H (or, equivalently, for any c ∈ E the function h ≡ c belongs to H). Denote by
� : E → H the natural embedding of E in H, i.e. (�(y))(·) ≡ y for all y ∈ E. Let (H, d)
be a metric space such that the following assumptions are satisfied:

(1) the mapping (h, p) → h + p is uniformly continuous on H × H;
(2) the mapping h → −h is uniformly continuous on H;
(3) the quotient topology on �(E) induced by � is finer than the topology induced by

the metric d

(therefore, if a function T : � → E is continuous, then the function � ◦ T : � → H is also
continuous). Suppose also that all functions Fi are continuous and Hausdorff continuously
weakly H-codifferentiable at the point x, i ∈ I . Then the functions F and G are Hausdorff
continuously weakly H-codifferentiable at x.

Remark 3 One can easily prove that under suitable assumptions the supremum of an infi-
nite family of weakly H -hypodifferentiable functions is also weakly H -hypodifferentiable
(and that the infimum of an infinite family of weakly H -hyperdifferentiable functions is
weakly H -hypodifferentiable).

5. Necessary optimality conditions

In this section we derive necessary optimality conditions for H -quasidifferentiable and
H -codifferentiable functions with the use of upper abstract convex and lower abstract
concave approximations. Then we show how they can be transformed into more constructive
necessary optimality conditions in some particular cases.

5.1. General necessary conditions for an extremum

In this section we only consider the case E = R; however, one can modify main results of
this section to the case of general order complete topological vector lattices.

We need an auxiliary definition (see [18,19]).

Definition 5.1 Let f : X → R be an arbitrary function such that f (0) = 0. The function
f is said to be subhomogeneous (superhomogeneous) if for any �x ∈ X and α ∈ (0, 1)
one has

f (α�x) ≤ α f (�x) ( f (α�x) ≥ α f (�x)).

The class of all subhomogeneous (or superhomogeheous) functions is very broad. In
particular, any convex (concave) function f : X → R such that f (0) = 0 is subhomoge-
neous (superhomogeneous).Also, any positively homogeneous of degree λ ≥ 1 (λ ∈ (0, 1])
function is subhomogeneous (superhomogeneous).

Let A ⊂ X be a convex set, and let the set H be closed under vertical shifts. If x ∈ X
then denote A − x = {y ∈ X | y = a − x, a ∈ A}. Consider the following optimization
problem
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24 M.V. Dolgopolik

f0(x) → inf , x ∈ A, fi (x) ≤ 0, i ∈ I, (17)

where fi : X → R, i ∈ I0 = {0} ∪ I , I = {1, . . . , n}.

Theorem 5.2 Let functions ϕi : X → R be weak upper H-convex approximations of the
functions fi at a point x∗ ∈ A such that ϕi (0) = 0, i ∈ I0. Suppose that x∗ is a point of
local minimum in problem (17), and the H-convex function

g(·) = sup{ϕ0(·), ϕ1(·)+ f1(x
∗), . . . , ϕn(·)+ fn(x

∗)} (18)

is subhomogeneous. Then 0 is a point of global minimum of the function g on the set A− x∗.
Moreover, if A = X and 0 ∈ H, then 0 ∈ ∂H g(0).

Proof Since x∗ is a point of local minimum in problem (17), then it is obvious that x∗ is
a point of local minimum of the function

F(·) = max{ f0(·)− f0(x
∗), f1(·), . . . , fn(·)}

on the set A. It is easy to check that the function g (cf. (18)) is a weak upper H -convex
approximation of the function F at x∗ and g(0) = 0.

Suppose that 0 is not a point of global minimum of the function g on the set A − x∗.
Then there exists y ∈ A such that g(y − x∗) = −m < 0 = g(0). Denote �x = y − x∗.
Since g is a weak upper H -convex approximation of the function F at the point x∗ and g
is subhomogeneous, then there exists δ ∈ (0, 1) such that

F(x∗ + α�x)− F(x∗) ≤ g(α�x)+ m

2
α ≤ αg(�x)+ m

2
α = −m

2
α ∀α ∈ (0, δ),

which contradicts the fact that x∗ is a point of local minimum of F on A. �

Arguing in a similar way one can prove the following theorem, which is the ‘mirror
version’ of the previous one.

Theorem 5.3 Let functions ψi : X → R be weak lower H-concave approximations of
the functions fi at a point x∗ ∈ A such that ψi (0) = 0, i ∈ I0. Suppose that x∗ is a point
of local maximum in the problem

f0(x) → sup, x ∈ A, fi (x) ≥ 0, i ∈ I, (19)

and the H-concave function

g(·) = inf {ψ0(·), ψ1(·)+ f1(x
∗), . . . , ψn(·)+ fn(x

∗)}
is superhomogeneous. Then 0 is a point of global maximum of the function g on the set
A − x∗. Moreover, if A = X and 0 ∈ H, then 0 ∈ ∂H g(0).

One can obtain necessary optimality conditions in terms of abstract convex approx-
imations for more general optimization problems, although it requires more restrictive
assumptions. Namely, let X be a normed space and M ⊂ � be a nonempty set. For any
x ∈ cl M denote by TM (x) the contingent cone to the set M at the point x (see [31], Chapter
4). The following theorem holds true.
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Optimization 25

Theorem 5.4 Let x∗ ∈ X be a point of local minimum in the problem

f0(x) → inf , x ∈ M, fi (x) ≤ 0, i ∈ I, (20)

Suppose that a function ϕi : X → R is a strong upper H-convex approximation of the
function fi at the point x∗ such that ϕi (0) = 0, and ϕi is Lipschitz continuous in a
neighbourhood of zero, i ∈ I0. Suppose also that the H-convex function

g(x) = sup{ϕ0(x), ϕ1(x)+ f1(x
∗), . . . , ϕn(x)+ fn(x

∗)} x ∈ X (21)

is subhomogeneous. Then 0 is a point of global minimum of g on TM (x∗).

Proof It is clear that x∗ is a point of local minimum of the function

F(·) = max{ f0(·)− f (x∗), f1(·), . . . , fn(·)}
on the set M . Also, it is easy to verify that the function g (cf. (21)) is a strong upper
H -convex approximation of F at x∗. Moreover, g is Lipschitz continuous in a neighbour-
hood of zero and g(0) = 0.

Suppose that there exists v ∈ TM (x∗) such that g(v) = −m < g(0). Since v ∈ TM (x∗),
then there exist sequences {hn} ⊂ (0,+∞) and {vn} ⊂ X such that x∗ +hnvn ∈ M , hn ↓ 0
and vn → v as n → ∞.

Applying the fact that g is a strong upper H -convex approximation of F at x∗ one has
that there exist r > 0 and a function β : B(0, r) → R such that β(�x) → 0 as �x → 0
and

F(x∗ +�x)− F(x∗) ≤ g(�x)+ β(�x)‖�x‖ ∀�x ∈ B(0, r).

Hence, there exists n1 ∈ N such that for any n > n1 one has |β(hnvn)|‖vn‖ ≤ m/3. Since
g is Lipschitz continuous in a neighbourhood of zero and vn → v, then there exist L > 0
and n2 ∈ N such that for all n > n2

|g(hnvn)− g(hnv)| ≤ Lhn‖vn − v‖ ≤ m

3
hn .

Therefore, taking into account the subhomogeneity of g, one gets that for any n > max{n1, n2}
F(x∗ + hnvn)− F(x∗) ≤ g(hnvn)+ β(hnvn)hn‖vn‖

≤ g(hnv)+ 2m

3
hn ≤ −mhn + 2m

3
hn < 0,

which contradicts the fact that x∗ is a point of local minimum of F on M . �

Remark 1 One can easily proof an analogous theorem about necessary condition for a
local maximum in the problem

f0(x) → sup, x ∈ M, fi (x) ≥ 0, i ∈ I

in terms of strong lower H -concave approximations.

As obvious corollaries to the previous theorems one gets the following necessary
optimality conditions for H -codifferentiable functions.
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26 M.V. Dolgopolik

Theorem 5.5 Let the functions fi , i ∈ I0 be weakly H-codifferentiable at a point x∗ ∈ A,
and let x∗ be a point of local minimum in problem (17). Suppose that the set H is closed under
addition and for any h ∈ H one has 0 ∈ int dom h. Then for any (�i , �i ) ∈ δ( fi )H (x∗)
and pi ∈ ∂H�i (0), i ∈ I0 such that the H-convex function

g(·) = sup{�0(·)+ p0(·),�1(·)+ p1(·)+ f1(x
∗), . . . , �n(·)+ pn(·)+ fn(x

∗)}
is subhomogeneous the function g attains a global minimum on the set A − x∗ at the origin.

Theorem 5.6 Let the functions fi , i ∈ I0 and the set H be as in the previous theorem.
Suppose that x∗ is a point of local maximum in problem (19). Then for any (�i , �i ) ∈
δ( fi )H (x) and hi ∈ ∂H�i (0), i ∈ I0 such that the H-concave function

g(·) = inf {h0(·)+�0(·), h1(·)+�1(·)+ f1(x
∗), . . . , hn(·)+�n(·)+ fn(x

∗)}
is superhomogeneous the function g has a global maximum value on the set A − x∗ at the
origin.

In general, upper abstract convex approximations are more convenient for the study of
minimization problems, whereas lower abstract concave approximations are more conve-
nient for the study of maximization problems. Necessary conditions for a maximum can be
expressed in terms of upper abstract convex approximations, although these conditions are
much more cumbersome than the ones stated in Theorem 5.3.

We need additional notation. Denote

γ (x, A) = {g ∈ X | ∃α > 0 : x + αg ∈ A}
and �(x, A) = cl γ (x, A). It is easy to see that both γ (x, A) and �(x, A) are nonempty
convex cones.

Theorem 5.7 Let {ϕλ}, λ ∈ 
 be an exhaustive family of weak upper H-convex approx-
imations of the function f0 at a point x∗ ∈ A, and let x∗ be a point of local maximum of the
function f0 on the set A. Suppose that for any g ∈ �(x∗, A) there exists αg > 0 such that
for any λ ∈ 
 the function α → ϕλ(αg), α ∈ [0, αg) is convex. Then for any ε > 0 and
g ∈ γ (x∗, A) there exists λ ∈ 
 such that

ϕ′
λ(0, g) ≤ ε, (22)

where ϕ′
λ(0, g) is the directional derivative of the function ϕλ at the origin in the direction

g. Moreover, if 
 is finite, then for any g ∈ γ (x∗, A) there exists λ ∈ 
 such that

ϕ′
λ(0, g) ≤ 0.

If, in addition, for any λ ∈ 
 the function ϕ′
λ(0, ·) is continuous on �(x∗, A), then for any

g ∈ �(x∗, A) there exists λ ∈ 
 such that the last inequality holds true.

Proof Note that since for any λ ∈ 
 the function zλ,g(α) = ϕλ(αg), α ∈ [0, αg),
g ∈ �(x∗, A) is convex then, as it is well-known, there exists the right-hand derivative
(zλ,g)′+(0) and the following equalities hold true
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Optimization 27

(zλ,g)
′+(0) = lim

α↓0

ϕ(αg)− ϕ(0)

α
= ϕ′

λ(0, g) = inf
α∈(0,αg)

ϕλ(αg)− ϕλ(0)

α
(23)

(cf. [32], Proposition 4.1.3).
Suppose that there exists ε > 0 and g ∈ γ (x∗, A) such that inequality (22) does not

hold true for any λ ∈ 
. Hence, applying (23) one gets

ϕλ(αg) ≥ ϕλ(0)+ εα ∀α ∈ [0, αg) ∀λ ∈ 
. (24)

Taking into account the facts that g ∈ γ (x∗, A) and the set A is convex, one can suppose
that co{x∗, x∗ + αgg} ⊂ A.

Since {ϕλ}, λ ∈ 
, is an exhaustive family of weak upper H -convex approximations of
f0 at x∗, then inf λ∈
 ϕλ(0) = 0 and there exists δ > 0 such that

f0(x
∗ + αg)− f0(x

∗) ≥ inf
λ∈
ϕλ(αg)− ε

2
α ∀α ∈ (0, δ).

Thus, taking into account (24) one has

f0(x
∗ + αg)− f0(x

∗) ≥ inf
λ∈
ϕλ(0)+ ε

2
α = ε

2
α ∀α ∈ (0,min{δ, αg}),

which contradicts the fact that x∗ is a point of local maximum of f0 on A. �

Remark 2 (i) An analogous theorem about necessary conditions for a minimum in
terms of weak lower abstract concave approximations also holds true.

(ii) One can construct a numerical method for finding stationary points of an
H -codifferentiable function (as well as a numerical method for finding a solution of the
equation F(x) = 0, where F is H -codifferentiable) based on the method for the search of a
local minimizer of a nonsmooth function having a continuous approximation (see [18,19]).

5.2. Necessary conditions for an extremum of abstract quasidifferentiable function

Let us consider necessary optimality conditions for H -quasidifferentiable functions. We
only discuss necessary conditions for a minimum, since necessary conditions for a maximum
are symmetrical to them. All necessary optimality conditions stated below immediately
follows from the necessary conditions for an extremum of a directionally differentiable
function. Therefore, we omit the proofs.

Let all functions h ∈ H be p.h., and, as earlier, suppose that f0 : � → R is an arbitrary
function, A ⊂ � is a nonempty convex set.

Theorem 5.8 Let the function f0 be Dini (Hadamard) H-quasidifferentiable at a point
x∗ ∈ A. Suppose that x∗ is a point of local minimum of the function f0 on the set A. Then
for any (�,�) ∈ DH f0(x∗) and for all p ∈ supp+(�, H) the function � + p attains a
global minimum value on the set γ (x∗, A) (�(x∗, A)) at the origin. Also, for any U ⊂ H
such that � = suph∈U h, for any ε > 0 and for all g ∈ γ (x∗, A) (g ∈ �(x∗, A)) there
exists h ∈ U such that h(g)+�(g) ≥ −ε. Moreover, if there exists U ⊂ H such that

(1) � is generated by U,
(2) for any x ∈ X there exists h ∈ U such that �(x) = h(x) (in particular, if U is

finite)
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28 M.V. Dolgopolik

then for any g ∈ γ (x∗, A) (g ∈ �(x∗, A)) there exists h ∈ U such that h(g) +
�(g) ≥ 0.

Corollary 5.9 Suppose that all assumption of the previous theorem are satisfied, x∗ ∈
int A, and let 0 ∈ H. Then for any (�,�) ∈ DH f0(x∗) and for all p ∈ supp+(�, H) one
has 0 ∈ ∂H (�+ p)(0).

Remark 3 Applying Theorems 5.5 and 5.8 for different paricular sets H one can easily
obtain well-known necessary optimality conditions for codifferentiable and quasidiffer-
entiable functions, and for functions having upper (lower) exhauster or upper (lower)
coexhauster.[7,23,24,33]

5.3. Some particular cases

Let us consider how general necessary optimality conditions for H -codifferentiable func-
tions can be easily transformed into more convenient conditions in some particular cases.
In this subsection, X is a real Banach space, E = R, A ⊂ � is a nonvoid closed convex
set. Note, that if the set H is closed under vertical shifts then, without loss of generality, we
may assume that for any weakly H -codifferentiable function f and for all (�,�) ∈ δ fH

one has �(0) = �(0) = 0.
Let f, fi : X → R be arbitrary functions, i ∈ I0 = {0} ∪ I , where I = {1, . . . , n}. For

any x ∈ X denote R(x) = {0} ∪ {i ∈ I | fi (x) = 0}.

Example 5.10 Let H coincide with the set of all continuous affine function h : X → R.
Then, as it was shown in Example 3.10, the function f is weakly H -codifferentiable at a
point x ∈ � iff f is codifferentiable at this point.

Let us derive necessary optimality conditions for a codifferentiable function in the
problem with smooth equality and codifferentiable inequality constraints.

Proposition 5.11 Let Y be a Banach space, a mapping F : X → Y be continuously
Fréchet differentiable at a point x∗ ∈ X, the functions fi be Fréchet codifferentiable at a
point x∗, i ∈ I0. Suppose that the Fréchet derivative F ′[x∗] of the map F at x∗ is surjective,
and x∗ is a point of local minimum in the problem

f0(x) → inf , F(x) = 0, fi (x) ≤ 0, i ∈ I.

Then for any (0, qi ) ∈ d fi (x∗), i ∈ R(x∗) there exists y∗ ∈ Y ∗ such that

(0, y∗ ◦ F ′[x∗]) ∈
(

co
⋃

i∈R(x∗)
(d fi (x

∗)+ {(0, qi )})
)
.

Proof Fix an arbitrary (0, qi ) ∈ d fi (x∗), i ∈ I0 and define

ϕi (x) = max
(a,p)∈d fi (x∗)+(0,qi )

(a + p(x)) ∀x ∈ X,∀i ∈ I0.

It is easy to check that the function ϕi is a strong upper H -convex approximation of fi at
x∗, ϕi (0) = 0 and ϕi is Lipschitz continuous in a neighbourhood of zero ([34], Corollary
2.2.12), i ∈ I0.
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Optimization 29

Denote M = {x ∈ X | F(x) = 0}. By virtue of Theorem 5.4 one has that 0 is a point
of global minimum of the convex function

g(·) = max{ϕ0(·), ϕ1(·)+ f1(x
∗), . . . , ϕn(·)+ fn(x

∗)}
on the set TM (x∗). Taking into account the Lusternik theorem (see [32], Section 0.2) one
has that Ker F ′[x∗] ⊂ TM (x∗), where Ker F ′[x∗] is the kernel of the linear operator
F ′[x∗]. Therefore, applying the necessary and sufficient condition for a minimum of a
convex function on a closed convex set ([32], Theorem 1.1.2′) and the theorem about the
subdifferential of the maximum of a finite family of convex functions ([34], Corollary
2.8.11), one gets

∂g(0) ∩ (−N (0,Ker F ′[x∗])) 
= ∅, ∂g(x∗) = co
⋃

i∈R(x∗)
∂gi (0),

where ∂g(0) is the subdifferential of the convex function g at 0 and N (0,Ker F ′[x∗]) =
{p ∈ X∗ | p(x) ≤ 0 ∀x ∈ Ker F ′[x∗]} is the normal cone to the set Ker F ′[x∗] at the point
0. By virtue of the theorem about the subdifferential of the supremum ([32], Theorem 4.2.3)
one has {0} × ∂gi (0) ⊂ d fi (x∗)+ {(0, qi )}. Hence(

co
⋃

i∈R(x∗)
(d fi (x

∗)+ {(0, qi )})
)

∩ ({0} × (−N (0,Ker F ′[x∗]))) 
= ∅

It remains to note that N (0,Ker F ′[x∗]), as the annihilator of the subspace Ker F ′(x∗),
coincides with the image of the adjoint operator of F ′[x∗] ([35], Theorem 6.5.10), i.e. for
any p ∈ N (0,Ker F ′[x∗]) there exists y∗ ∈ Y ∗ such that p = y∗ ◦ F ′[x∗]. �

Example 5.12 Let H consist of all proper l.s.c. convex functions h : X → R such that
0 ∈ int dom h. Let us recall that in this case if there exists an upper coexhauster of the
function f at the point x ∈ �, then the function f is weakly H -hyperdifferentiable at this
point (cf. Example 3.13).

Arguing in a similar way to the proof of Proposition 5.11 one can get the following
result.

Proposition 5.13 Let Y be a Banach space, a mapping F : X → Y be continuously
Fréchet differentiable at a point x∗ ∈ X. Suppose that there exist Fréchet upper coex-
hausters Ei (x∗) of the functions fi at a point x∗, i ∈ I0. Suppose also that the operator
F ′[x∗] is surjective, and x∗ is a point of local minimum in the problem

f0(x) → inf , F(x) = 0, fi (x) ≤ 0, i ∈ I.

Then for any Ci ∈ ei (x∗), i ∈ R(x∗) there exists y∗ ∈ Y ∗ such that

(0, y∗ ◦ F ′[x∗]) ∈
(

co
⋃

i∈R(x∗)
Ci

)
.

where ei (x∗) = {C ∈ Ei (x∗) | max(a,p)∈C a = 0}.

Let us obtain necessary conditions for a maximum in terms of a lower coexhauster.
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30 M.V. Dolgopolik

Proposition 5.14 Suppose that there exists an upper coexhauster E(x∗) of the function
f at a point x∗ ∈ A, and let x∗ be a point of local maximum of the function f on the set
A. Then for any ε > 0 and g ∈ γ (x∗, A) there exists C ∈ E(x∗) such that p(g) ≤ ε for
all (aC , p) ∈ C, where aC = max(a,p)∈C a. Moreover, if the family E(x∗) is finite, then for
any g ∈ �(x∗, A) there exists C ∈ E(x∗) such that p(g) ≤ 0 for all (aC , p) ∈ C.

Proof By virtue of Theorem 5.7 one has that for any ε > 0 and g ∈ γ (x∗, A) there exists
C ∈ E(x∗) such that h′(0, g) ≤ ε, where h(·) = max(a,p)∈C (a + p(·)). It remain to note
that h′(0, g) = maxp∈∂h(0) p(g), where ∂h(0) = {p ∈ X∗ | (aC , p) ∈ C} (see, e.g. [32],
Chapter 4). �

Remark 4 One could also consider the case when the set H consists of all proper u.s.c.
concave functions h : X → R such that 0 ∈ int dom h.
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