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Abstract In this article we present a general theory of augmented Lagrangian functions
for cone constrained optimization problems that allows one to study almost all known aug-
mented Lagrangians for these problems within a unified framework. We develop a new
general method for proving the existence of global saddle points of augmented Lagrangian
functions, called the localization principle. The localization principle unifies, generalizes and
sharpens most of the known results on the existence of global saddle points, and, in essence,
reduces the problem of the existence of global saddle points to a local analysis of optimality
conditions. With the use of the localization principle we obtain first necessary and sufficient
conditions for the existence of a global saddle point of an augmented Lagrangian for cone
constrained minimax problems via both second and first order optimality conditions. In the
second part of the paper, we present a general approach to the construction of globally exact
augmented Lagrangian functions. The general approach developed in this paper allowed us
not only to sharpen most of the existing results on globally exact augmented Lagrangians,
but also to construct first globally exact augmented Lagrangian functions for equality con-
strained optimization problems, for nonlinear second order cone programs and for nonlinear
semidefinite programs. These globally exact augmented Lagrangians can be utilized in order
to design new superlinearly (or even quadratically) convergent optimizationmethods for cone
constrained optimization problems.
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1 Introduction

The main goal of this article is to present a general theory of augmented Lagrangian func-
tions for cone constrained optimization problems that provides a theoretical foundation for the
development of augmented Lagrangian methods for these problems. In recent years, several
attempts were made to develop a general theory of Lagrangian functions. A general dual-
ity theory for nonlinear Lagrangian functions for mathematical programming problems was
developed in [1,2]. In [3–6], the image space analysis was applied to the study of duality the-
ory for augmented Lagrangian functions, while in [7–9] some general classes of augmented
Lagrangian functions constructed from the Rockafellar–Wets augmented Lagrangian ([10],
Sect. 11.K) were studied. A unified theory of augmented Lagrangian methods for mathe-
matical programming problems was presented in [11]. However, there is no satisfactory and
general enough theory of the existence of global saddle points that can be applied to various
augmented Lagrangians for various cone constrained optimization problems. Furthermore,
there are no results on exact augmented Lagrangian functions for cone constrained optimiza-
tion problems. Our aim is to fill these gaps and develop a general theory containing simple
and easily verifiable necessary and sufficient conditions for the existence of global saddle
points of augmented Lagrangian functions, and for the global exactness of these function.

In this paper, instead of utilizing a modification of the Rockafellar–Wets augmented
Lagrangian, we consider a more straightforward approach to the theory of augmented
Lagrangian functions (that is very similar to the one used in the image space analysis),
in which an augmented Lagrangian is defined simply as the sum of the objective function
and a convolution function depending on constraints, multipliers and penalty parameter, and
satisfying some general assumptions (axioms). The main advantage of this approach is the
fact that it does not rely on the particular structure of the augmented Lagrangian, and allows
one to include almost all particular cases into the general theory.

The axiomatic approach that we use was inspired by [12]. It provides one with a sim-
ple and unified framework for the study of various augmented Lagrangian functions, such
as the Hestenes–Powell–Rockafellar augmented Lagrangian [13–15], the cubic augmented
Lagrangian [16], Mangasarian’s augmented Lagrangian [17,18], the exponential penalty
function [11,12,19–21], the Log-Sigmoid Lagrangian [22,23], the penalized exponential-
type augmented Lagrangians [11,12,19,21], the modified barrier functions [11,12,21,24],
the p-th power augmented Lagrangian [12,25–30], He–Wu–Meng’s augmented Lagrangian
[31], extensions of the Hestenes–Powell–Rockafellar augmented Lagrangian to the case of
nonlinear second order cone programs [32–34], nonlinear semidefinite programs [35–43],
and semi-infinite programs [44–47], as well as extensions of the exponential penalty function
and the modified barrier functions to the case of nonlinear second order cone programs [48],
and nonlinear semidefinite programs [43,49–53].

The first part of the paper is devoted to the problem of the existence of global saddle
points of augmented Lagrangian functions, which is important for convergence analysis
of augmented Lagrangian methods, since the existence of a global saddle point is, usually,
necessary for the global convergence of thesemethods. The problemof the existence of global
saddle points was studied for general cone constrained optimization problems in [54,55], for
mathematical programming problems in [9,12,18,21,56–59], for nonlinear second order
cone programming problems in [34], for nonlinear semidefinite programming problems in
[42,53], and for semi-infinite programming problems in [44,47]. The analysis of the known
results on the existence of global saddle points of augmented Lagrangian functions indicates
that the same, in essence, results are proved and reproved multiple times in different settings.
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In this article, we propose a unified approach to the study of global saddle points of
augmented Lagrangian functions, called the localization principle. The localization principle
was first developed by the author for the study of exact linear penalty functions [60,61] and
augmented Lagrange multipliers [62]. A modification of this principle presented in this
paper provides first simple necessary and sufficient conditions for the existence of global
saddle points that unify, generalize and sharpen almost all known results in this area (see
Remark 10). Furthermore, the localization principle reduces the study of global saddle points
to a local analysis of sufficient optimality conditions.With the use of this principleweobtained
simple necessary and sufficient conditions for the existence of global saddle points for cone
constrainedminimax problems via both second order and first order (the so-called alternance
conditions; see [63–68]) sufficient optimality conditions. To the best of authors knowledge,
the problem of the existence of saddle points for cone constrained minimax problems has
never been studied before. We also provide simple sufficient conditions for the existence of
local saddle points that unify and sharpen many existing result (see Remark 16).

As it is well known, standard augmented Lagrangian methods converge only linearly (see,
e.g., [15,33,36,48–50,52] and references therein), and in order to apply them one has tomini-
mize an augmented Lagrangian function numerous times. In order to overcome this difficulty,
Di Pillo and Grippo [69] proposed to consider the so-called exact augmented Lagrangian
functions. Exact augmented Lagrangian functions are constructed in such a way that it is
necessary to minimize them only once (but simultaneously in primal and dual variables)
in order to recover KKT-points corresponding to globally optimal solutions of the initial
optimization problem. Furthermore, one can design superlinearly and even quadratically
convergent methods for minimizing exact augmented Lagrangian functions. Thus, the use
of the exact augmented Lagrangians allows one to overcome main disadvantages of stan-
dard augmented Lagrangian methods. Exact augmented Lagrangian functions and numerical
methods based on the use of these functions were studied in [70–85]). However, it should
be noted that all existing exact augmented Lagrangian functions were constructed from the
Hestenes–Powell–Rockafellar augmented Lagrangian, and were only considered for math-
ematical programming problems, except for the exact augmented Lagrangian function for
nonlinear semidefinite programming problem from a recent paper [86].

In the second part of the paper, we develop a general theory of globally exact aug-
mented Lagrangian functions. We present a simple method for constructing exact augmented
Lagrangian functions, and provide first simple necessary and sufficient conditions for the
global exactness of these functions in the form of the localization principle. We also demon-
strate that globally exact augmented Lagrangians for mathematical programming problems
can be constructed not only from the Hestenes–Powell–Rockafellar augmented Lagrangian,
but also from many other augmented Lagrangian functions. Moreover, we, for the first time,
propose globally exact augmented Lagrangian functions for equality constrained problems
and for nonlinear secondorder coneprograms.Wealso propose newglobally exact augmented
Lagrangian functions for nonlinear semidefinite programming problems. These exact aug-
mented Lagrangian functions can be utilized in order to design new efficient superlinearly
(or even quadratically) convergent optimization methods.

The paper is organized as follows. In Sect. 2,we introduce a general augmentedLagrangian
function for a cone constrained optimization problem, and present main assumptions on this
function that are utilized throughout the article. In Sect. 3, we provide many particular
examples of augmented Lagrangian functions for general cone constrained, mathematical
programming, nonlinear second order cone programming, nonlinear semidefinite program-
ming and semi-infinite programming problems, and point out that all these augmetned
Lagrangian functions satisfy the main assumptions of this article. Some general results on
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the existence of global sadde points are presented in Sect. 4, while in Sect. 5 we study the
localization principle. Applications of the localization principle to cone constrainedminimax
problems are given in Sect. 6. The general theory of globally exact augmented Lagrangian
functions is developed in Sect. 7, while some applications of this theory as well as particular
examples of globally exact augmented Lagrangians are presented in Sect. 8.

2 An augmented Lagrangian function for cone constrained optimization
problems

Let X be a finite dimensional normed space, and A ⊂ X be a nonempty set. Let also Y be a
normed space, and K ⊂ Y be a nonempty closed convex cone. As usual, denote by Y ∗ the
topological dual of Y , and by 〈·, ·〉 the standard coupling function between Y and its dual or
the inner product in Rs , s ∈ N, depending on the context.

Throughout this article, we study the following cone constrained optimization problem

min f (x) subject to G(x) ∈ K , x ∈ A, (P)

where f : X → R ∪ {+∞} and G : X → Y are given functions. Hereinafter, we suppose
that there exists a feasible point x of (P) such that f (x) < +∞, and there exists a globally
optimal solution of the problem (P).

Let us introduce an augmented Lagrangian function for the problem (P). Choose a func-
tion Φ : Y × Y ∗ × (0,+∞) → R ∪ {+∞}, and define

L (x, λ, c) = f (x) + Φ(G(x), λ, c)

where λ ∈ Y ∗ is a Lagrange multiplier, and c > 0 is a penalty parameter.

Remark 1 Note that only the constraint G(x) ∈ K is incorporated into the augmented
Lagrangian function, while the constraint x ∈ A has to be taken into account directly. This
approach allows one to choose what constraints of an optimization problem under consider-
ation are handled via the augmented Lagrangian function, and what constraints are handled
by other methods.

Our main goal is to obtain simple necessary and sufficient conditions for the exis-
tence of global saddle points of the augmented Lagrangian function L (x, λ, c) that can
be easily applied to various cone constrained optimization problems, and various augmented
Lagrangians for these problems.

Before we proceed to the study of saddle points, let us list main assumptions on the
function Φ that we utilise throughout the article. In order to include several particular cases
into the general theory, we formulate our assumptions (as well as all definitions and results
below) with respect to a given closed convex cone Λ ⊆ Y ∗. In particular, one can define
Λ = Y ∗ or Λ = K ∗, where K ∗ = {y∗ ∈ Y ∗ | 〈y∗, y〉 ≤ 0 for all y ∈ K } is the polar cone
of K . Let us point out that a proper choice of the cone Λ is necessary to ensure that the
augmented Lagrangian function L (x, λ, c) has desirable properties. Some remarks on how
to choose the cone Λ are given throughout the text.

For any y ∈ Y and r > 0 denote B(y, r) = {z ∈ Y | ‖z − y‖ ≤ r} and dist(y, K ) =
inf z∈K ‖y − z‖. In the subsequent sections, the following assumptions on the function Φ are
utilised:

(A1) ∀y ∈ K ∀c > 0 one has Φ(y, 0, c) ≥ 0;
(A2) ∀y ∈ K ∀λ ∈ Λ ∀c > 0 one has Φ(y, λ, c) ≤ 0;
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(A3) ∀y /∈ K ∀c > 0 ∃λ ∈ Λ such that limt→+∞ Φ(y, tλ, c) = +∞;
(A4) ∀y ∈ Y ∀λ ∈ Λ the function Φ(y, λ, c) is non-decreasing in c;
(A5) ∀λ ∈ Λ∀c > 0 the functionΦ(·, λ, c) ismonotonewith respect to the order generated

by K , i.e. Φ(y1, λ, c) ≤ Φ(y2, λ, c) if y1 − y2 ∈ K ;
(A6) ∀y /∈ K ∀λ ∈ Λ ∀c0 > 0 ∃r > 0 such that

lim
c→+∞ inf{Φ(z, λ, c) − Φ(z, λ, c0) | z ∈ B(y, r) : Φ(z, λ, c0) < +∞} = +∞;

(A7) ∀λ ∈ Λ ∀c0 > 0 ∀r > 0 one has

lim
c→+∞ inf

{
Φ(y, λ, c) − Φ(y, λ, c0)

∣∣∣ y ∈ Y : dist(y, K ) ≥ r, Φ(y, λ, c0) < +∞
}

= +∞.

(A8) ∀y ∈ K ∀λ ∈ Λ\K ∗ ∀c > 0 one has Φ(y, λ, c) < 0;
(A9) ∀y ∈ K ∀λ ∈ Λ ∀c > 0 such that 〈λ, y〉 �= 0 one has Φ(y, λ, c) < 0;

(A10) ∀y ∈ K ∀λ ∈ K ∗ ∀c > 0 such that 〈λ, y〉 = 0 one has Φ(y, λ, c) = 0;
(A11) ∀y ∈ K ∀λ ∈ K ∗ ∀c > 0 such that 〈λ, y〉 = 0 the function Φ(·, λ, c) is Fréchet

differentiable at y, and DyΦ(y, λ, c) = Φ0(λ), where Dy stands for the Fréchet
derivative in y, and Φ0 : K ∗ → K ∗ is a surjective mapping that does not depend on
y and c, and such that 〈Φ0(λ), y〉 = 0 iff 〈λ, y〉 = 0;

(A12) ∀y ∈ K ∀λ ∈ Λ one has Φ(y, λ, c) → 0 as c → ∞.

Remark 2 Since K is closed, then (A7) implies (A6). Furthermore, note that the bigger is
the cone Λ, the more restrictive are the above assumptions (apart from assumption (A3)).

3 Examples of augmented Lagrangian functions

Below, we provide many particular examples of the augmented Lagrangian function
L (x, λ, c) for various cone constrained optimization problems, and point out whether
assumptions above are satisfied in these examples.

3.1 General cone constrained problems

We start with an augmented Lagrangian function introduced by Rockafellar and Wets ([10],
Sect. 11.K), which is the only augmented Lagrangian function for the general cone con-
strained optimization problem known to the author (apart from its direct generalizations, as
in [7–9]). For more details on this augmented Lagrangian, see [54,62,87,88] and references
therein.

Example 1 Let a function σ : Y → [0,+∞] be such that σ(0) = 0 and σ(y) > 0 for any
y �= 0. Define

Φ(y, λ, c) = inf
p∈K−y

( − 〈λ, p〉 + cσ(p)
)
.

Here we suppose that the function σ is such that Φ(y, λ, c) > −∞ for all y ∈ Y , λ ∈ Y ∗
and c > 0. In particular, one can set σ(y) = ‖y‖2/2.

Let Λ = Y ∗. Then assumptions (A1)–(A5) and (A10) are satisfied in the general case.
Assumptions (A6) and (A7) hold true, if the function σ has a valley at zero (i.e. for any
neighbourhood U of zero there exists δ > 0 such that σ(y) ≥ δ for all y ∈ Y\U ). Assump-
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tions (A8) and (A9) are valid, if σ(t y)/t → 0 as t → 0 for any y ∈ Y . Assumption (A11) is
satisfied with Φ0(λ) ≡ λ, in particular, if Y is a Hilbert space and σ(y) = ‖y‖2/2 (see [54]).
Finally, assumption (A12) is satisfied, provided σ(y) ≥ ω(‖y‖) for some non-negative con-
tinuous function ω such that ω(t) = 0 iff t = 0, and lim inf t→+∞ ω(t)/t > 0.

3.2 Mathematical programming

Consider the following mathematical programming problem:

min f (x) subject to gi (x) ≤ 0, i ∈ I, g j (x) = 0, j ∈ J, x ∈ A, (1)

where gi : X → R are given functions, I = {1, . . . , l} and J = {l + 1, . . . , l + s}. Denote
Y = R

l+s , G(·) = (g1(·), . . . , gl+s(·)) and K = R
l− × {0s}, where R− = (−∞, 0]. Then

problem (1) is equivalent to the problem (P). Note that in this case K ∗ = R
l+ × R

s and
Y ∗ = R

l+s , where R+ = [0,+∞).
Below, we only provide examples of separable augmented Lagrangian functions for prob-

lem (1), i.e. such augmented Lagrangians that

Φ(y, λ, c) =
l+s∑
i=1

Φi (yi , λi , c), y = (
y1, . . . , yl+s

)
, λ = (

λ1, . . . , λl+s
)
,

where Φi : R2 × (0,+∞) → R∪ {+∞} are some functions. Let us note that most of (if not
all) augmented Lagrangian functions for mathematical programming problems appearing in
applications are indeed separable.

Example 2 Suppose that J = ∅, i.e. suppose that there are no equality constraints. Let
φ : R → R be a twice continuously differentiable and strictly convex function such that
φ(0) = 0, φ′(0) = 0 and the derivative φ′(·) is surjective. For any s, t ∈ R define

P(t, λ) =
{

λt + φ(t), if λ + φ′(t) ≥ 0,

minτ∈R[λτ + φ(τ)], otherwise,

and set

Φi (yi , λi , c) = 1

c
P(cyi , λi ) ∀i ∈ I

(see [19], Sect. 5.1.2, Example 1). In this case, the functionL (x, λ, c) is called the essentially
quadratic augmented Lagrangian function for problem (1) [11,12,21]. If φ(t) = t2/2, then
the essentially quadratic augmented Lagrangian function coincides with the well-known
Hestenes–Powell–Rockafellar Lagrangian function [13–15], which is a particular case of the
augmented Lagrangian from Example 1.

Let Λ = Y ∗ = R
l . Then one can verify that all assumptions (A1)–(A12) are satisfied,

and Φ0(λ) ≡ λ.

Example 3 Suppose that J = ∅. Define

Φi (yi , λi , c) = 1

3c

[
max

{
sign(λi )

√|λi | + cyi , 0
}3 − |λi |3/2

]
∀i ∈ I.

Then L (x, λ, c) coincides with the cubic augmented Lagrangian [16].
Let Λ = Y ∗ = R

l . Then it is not difficult to check that all assumptions (A1)–(A12) are
valid, and Φ0(λ) ≡ λ.
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Example 4 Let φ : R → R be a twice differentiable and strictly convex function such that
φ(0) = φ′(0) = 0, and φ′(·) is surjective. Define

Φi (yi , λi , c) = 1

c

[
φ

(
max{cyi + λi , 0}

)
− φ(λi )

]
∀i ∈ I,

Φ j (y j , λ j , c) = 1

c

[
φ(cy j + λ j ) − φ(λ j )

] ∀ j ∈ J.

ThenL (x, λ, c) coincides with the augmented Lagrangian function proposed by Mangasar-
ian [17] (see also [18]).

Let Λ = Y ∗ = R
l+s . Then one can check that all assumptions (A1)–(A12) are satisfied,

and Φ0(λ) ≡ φ′(λ) = (φ′(λ1), . . . , φ′(λl+s)).

Example 5 Suppose that J = ∅. Let φ : R → R be a twice differentiable and strictly
increasing function such that φ(0) = 0. Define

Φi (yi , λi , c) = λi

c
φ(cyi ) ∀i ∈ I.

If φ(t) = et − 1, then the augmented LagrangianL (x, λ, c) coincides with the exponential
penalty function [11,12,19–21]. In the case φ(t) = 2(ln(1+ et ) − ln 2) it coincides with the
Log-Sigmoid Lagrangian [22,23]

Let Λ = K ∗ = R
l+. Then one can check that assumptions (A1)–(A3), (A5) and (A8)–

(A10) are satisfied. Assumption (A4) is valid, provided φ is convex. Assumption (A11) is
satisfied iff φ′(0) �= 0, and in this case Φ0(λ) ≡ φ′(0)λ. Assumption (A12) is satisfied iff
φ(t)/t → 0 as t → −∞, while assumptions (A6) and (A7) are not valid, regardless of the
choice of Λ (set λ = 0). Note also that assumptions (A2), (A4) (if φ is convex), (A5), (A8)
and (A9) are satisfied iff Λ ⊆ K ∗.

Example 6 Suppose that J = ∅. Let the function φ be as in the previous example, and let
ξ : R → R+ be a twice continuously differentiable non-decreasing function such that ξ(t) =
0 for all t ≤ 0, and ξ(t) > 0 for all t > 0 (in particular, one can choose ξ(t) = max{0, t}3).
Define

Φi (yi , λi , c) = λi

c
φ(cyi ) + 1

c
ξ(cyi ) ∀i ∈ I

(see [19], Sect. 5.1.2, Example 2). In this case, the augmentedLagrangian functionL (x, λ, c)
is called the penalized exponential-type augmented Lagrangian function [11,12,21].

Let Λ = K ∗ = R
l+. Then, as in the previous example, assumptions (A1)–(A3), (A5) and

(A8)–(A10) are satisfied in the general case, assumption (A4) is valid, provided both φ and
ξ are convex, assumption (A11) is satisfied iff φ′(0) �= 0 (in this case Φ0(λ) ≡ φ′(0)λ),
and assumption (A12) is satisfied iff φ(t)/t → 0 as t → −∞. However, in contrast to
the previous example, assumptions (A6) and (A7) are satisfied if (and, in fact, only if)
ξ(t)/t → +∞ as t → +∞, and φ is bounded below. Let us also note that for assumptions
(A2) and (A4)–(A9) to hold true it is necessary that Λ ⊆ K ∗.

Remark 3 As we will demonstrate below (see Example 18 and Remark 14), in the case
when assumption (A6) is not satisfied, it is necessary to impose some rather restrictive
assumptions on the problem (P) in order to guarantee the existence of a global saddle point
of the augmented LagrangianL (x, λ, c). In order to avoid this drawback one can introduce
an additional penalty term into the definition of the function Φ(y, λ, c) in the same way as
in example above (cf. [21]).
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Example 7 Suppose that J = ∅. Let φ : (−∞, 1) → R be a twice differentiable and strictly
increasing function such that φ(0) = 0. Define

Φi (yi , λi , c) =
⎧
⎨
⎩

λi

c
φ(cyi ), if cyi < 1,

+∞, otherwise.
∀i ∈ I

In this case, the augmented Lagrangian function L (x, λ, c) coincides with the modified
barrier function introduced by Polyak [24]. In particular, if φ(s) = − ln(1 − s) or φ(s) =
1/(1 − s) − 1, then L (x, λ, c) coincides with the modified Frisch function or the modified
Carroll function, respectively [24] (see also [11,12,21]).

Let Λ = K ∗ = R
l+. Then assumptions (A1)–(A3) and (A5)–(A10) are satisfied.

Assumption (A4) is satisfied, if φ is convex; assumption (A11) is valid iff φ′(0) �= 0
(Φ0(λ) ≡ φ′(0)λ), while assumption (A12) is satisfied, provided φ(t)/t → 0 as t → −∞.
Furthermore, note that the function Φi (·, λi , c) is l.s.c. iff φ(t) → +∞ as t → 1 and
Λ ⊆ K ∗. Thus, in particular, the modified Frisch and the modified Carroll functions satisfy
assumptions (A1)–(A12) and are l.s.c. in y. Note, finally, that for assumptions (A2), (A4),
(A5), (A8) and (A9) to hold true it is necessary that Λ ⊆ K ∗.

Example 8 Suppose that J = ∅. Choose b ≥ 0 and a non-decreasing function φ : R → R+
such that φ(t) > φ(b) > 0 for all t > b (in particular, one can set φ(t) = exp(t) or
φ(t) = max{0, t} with b > 0). Note that the inequality gi (x) ≤ 0 is satisfied iff φ(gi (x) +
b)/φ(b) ≤ 1. Furthermore, φ(gi (x) + b) ≥ 0 for all x ∈ X by the definition of φ. Define

Φi (yi , λi , c) = λi

c

[(
φ(yi + b)

φ(b)

)c

− 1

]
∀i ∈ I

(see [25]). Then L (x, λ, c) coincides with the p-th power augmented Lagrangian function
[12,25–30].

Let Λ = K ∗ = R
l+. Then assumptions (A1)–(A5), (A8)–(A10) and (A12) are satisfied.

Assumption (A11) is satisfied provided φ′(b) �= 0 (Φ0(λ) ≡ φ′(b)λ), while assumptions
(A6) and (A7) are not valid, regardless of the choice of Λ. Note also that, as in the above
examples, assumptions (A2), (A4), (A5), (A8) and (A9) are satisfied iff Λ ⊆ K ∗.

Example 9 Let J = ∅. Following the ideas of [31], define

Φi (yi , λi , c) = 1

c

∫ cyi

0

(√
t2 + λ2i + t

)
dt ∀i ∈ I.

For any λi �= 0 the function Φi has the form

Φi (yi , λi , c) = yi
2

√
(cyi )2 + λ2i + cy2i

2
+ λ2i

2c
ln

(√
(cyi )2 + λ2i + cyi

)
− λ2i

2c
ln |λi |,

while Φi (yi , 0, c) = cyi (|yi | + yi )/2. In this case, we refer to the function L (x, λ, c) as
He–Wu–Meng’s augmented Lagrangian.

Let Λ = Y ∗ = R
l . Then one can verify that assumptions (A1)–(A6) and (A9)–(A12) are

satisfied, and Φ0(λ) ≡ λ. Assumption (A8) holds true iff Λ ⊆ K ∗.

3.3 Nonlinear second order cone programming

Consider the following nonlinear second order cone programming problem:

min f (x) subject to gi (x) ∈ Qli+1, i ∈ I, h(x) = 0, x ∈ A, (2)
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where gi : X → R
li+1, I = {1, . . . , r}, and h : X → R

s are given functions, and

Qli+1 = {
y = (y0, y) ∈ R × R

li
∣∣ y0 ≥ ‖y‖}

is the second order (Lorentz) cone of dimension li + 1 (here ‖ · ‖ is the Euclidean norm).
Denote

Y = R
l1+1 × . . . × R

lr+1 × R
s, K = Ql1+1 × . . . × Qlr+1 × {0s},

and G(·) = (g1(·), . . . , gr (·), h(·)). Then problem (2) is equivalent to the problem (P). Note
that in this case K ∗ = (−Ql1+1) × . . . × (−Qlr+1) × R

s and Y ∗ = Y .

Example 10 For any y = (y1, . . . , yr , z) ∈ Y and λ = (λ1, . . . , λr , μ) ∈ Y define

Φ(y, λ, c) = c

2

r∑
i=1

[
dist2

(
yi + 1

c
λi , Qli+1

)
− 1

c2
‖λi‖2

]
+ 〈μ, z〉 + c

2
‖z‖2.

(see [32–34]). The function Φ(y, λ, c) defined above is a particular case of the function
Φ(y, λ, c) for the general cone constrained optimization problem from Example 1 with
σ(y) = ‖y‖2/2. Therefore it satisfies all assumptions (A1)–(A12) with Λ = Y ∗ = R

l1+1 ×
. . . × R

lr+1 × R
s , and Φ0(λ) ≡ λ.

Following the ideas of [48] we can define another augmented Lagrangian function for
problem (2), which is a generalization of the augmented Lagrangians from Examples 5 and
7 to the case of nonlinear second order cone programming problems. To this end, recall that
for any function ψ : R → R and for any y = (y0, y) ∈ R

l+1 Löwner’s operator associated
with ψ is defined as

Ψ (y) = 1

2

⎛
⎝

ψ(y0 + ‖y‖) + ψ(y0 − ‖y‖)(
ψ(y0 + ‖y‖) − ψ(y0 − ‖y‖)

) y

‖y‖

⎞
⎠ ,

if y �= 0, and Ψ (y) = (ψ(y0), 0l) otherwise (see [48,89,90] for more details). It is easy to
check that if ψ is non-decreasing and ψ(0) = 0, then y ∈ K �⇒ Ψ (−y) ∈ −K , while
y /∈ K �⇒ Ψ (−y) /∈ −K .

Example 11 Suppose, for the sake of simplicity, that there are no equality constraints. Let
ψ : R → R∪ {+∞} be a non-decreasing convex function such that domψ = (−∞, ε0) for
some ε0 ∈ (0,+∞], ψ(t) → +∞ as t → ε0, ψ(t)/t → +∞ as t → +∞ if ε0 = +∞,
ψ is twice continuously differentiable on domψ , ψ(0) = 0 and ψ ′(0) = 1. Then for any
y = (y1, . . . , yr ) ∈ Y and λ = (λ1, . . . , λr ) ∈ Y define

Φ(y, λ, c) = −1

c

r∑
i=1

〈
λi , Ψ (−cyi )

〉
, (3)

if y0i + ‖yi‖ < ε0 for all i ∈ I , and Φ(y, λ, c) = +∞ otherwise. It is easy to see that the
function Φ(y, λ, c) is lower semicontinuous.

LetΛ = K ∗. Then one can easily verify that assumptions (A1)–(A4), (A8)–(A10) are sat-
isfied in the general case. Assumption (A11) is satisfied withΦ0(λ) ≡ λ by [48], Lemma 3.1.
Assumptions (A6) and (A7) are valid, if ε0 < +∞, while assumption (A12) is valid, pro-
videdψ(t)/t → 0 as t → −∞. Finally, assumption (A5) is never satisfied for the functionΦ

defined above, since for (A5) to hold true it is necessary that Löwner’s operator y → Ψ (−y)
is non-increasing with respect to the order generated by the second order cone, which is not
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the case when ψ is non-decreasing. Let us also note that for assumptions (A2), (A4), (A8)
and (A9) to hold true it is necessary that Λ ⊆ K ∗.

Remark 4 Note that one can easily incorporate equality constraints into the augmented
Lagrangian function from the previous example by simply adding terms corresponding to
these constraints into the right-hand side of (3). One can define these additional terms in the
same way as in Examples 4 or 10.

3.4 Nonlinear semidefinite programming

Consider the following nonlinear semidefinite programming problem:

min f (x) subject to G0(x) � 0, h(x) = 0, x ∈ A, (4)

where G0 : X → S
l and h : X → R

s are given functions, Sl denotes the set of all l × l real
symmetric matrices, and the relation G0(x) � 0 means that the matrix G0(x) is negative
semidefinite. Hereinafter, we suppose that the linear space S

l is equipped with the inner
product 〈A, B〉 = Tr(AB), and the corresponding norm ‖A‖F = √

Tr(A2), which is called
the Frobenius norm of a matrix A ∈ S

l . Here Tr(·) is the trace operator.
Denote by S

l+ the cone of l × l positive semidefinite matrices, and denote by S
l− the

cone of l × l negative semidefinite matrices. Define Y = S
l × R

s , K = S
l− × {0s} and

G(·) = (G0(·), h(·)). Then problem (4) is equivalent to the problem (P). Note that in this
case K ∗ = S

l+ × R
s and Y ∗ = Y .

Example 12 For any y = (y0, z) ∈ Y = S
l × R

s and λ = (λ0, μ) ∈ Y define

Φ(y, λ, c) = 1

2c

(
Tr

([cy0 + λ0]2+
) − Tr(λ20)

)
+ 〈μ, z〉 + c

2
‖z‖2,

where [·]+ denotes the projection of a matrix onto the cone Sl+ (see [35–43] for more details
on this augmented Lagrangian). One can check that the function Φ(y, λ, c) defined above is
a particular case of the function Φ(y, λ, c) from Example 1 with σ(y) = (‖y0‖2F +‖z‖2)/2.
Therefore it satisfies all assumptions (A1)–(A12) with Φ0(λ) ≡ λ and Λ = Y ∗ = S

l × R
s .

As in the case of the second order cone programs, one can extend the augmented
Lagrangians from Examples 5 and 7 to the case of nonlinear semidefinite programming
problems with the use of Löwner’s operator (see [90–92]). For any function ψ : R → R and
any y ∈ S

l the matrix function (Löwner’s operator) associated with ψ is defined as

Ψ (y) = E diag
(
ψ(σ1(y)), . . . , ψ(σl(y))

)
ET ,

where y = E diag(σ1(y), . . . , σl(y))ET is a spectral decomposition of y ∈ S
l , and

σ1(y), . . . , σl(y) are the eigenvalues of y listed in the decreasing order. Note that the projec-
tion operator [·]+ is simply thematrix function associatedwith the functionψ(t) = max{0, t}.
Example 13 Letψ : R → R∪{+∞}be anon-decreasing convex function such that domψ =
(−∞, ε0) for some ε0 ∈ (0,+∞], ψ(t) → +∞ as t → ε0, ψ(t)/t → +∞ as t → +∞ if
ε0 = +∞, ψ is twice continuously differentiable on domψ , ψ(0) = 0 and ψ ′(0) = 1. For
any y = (y0, z) ∈ Y = S

l × R
s and λ = (λ0, μ) ∈ Y define

Φ(y, λ, c) = 1

c

〈
λ0, Ψ (cy0)

〉 + 〈μ, z〉 + c

2
‖z‖2,
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if σ1(y0) < ε0, and Φ(y, λ, c) = +∞ otherwise (see [43,49–53]). Note that the function
Φ(y, λ, c) is lower semicontinuous.

LetΛ = K ∗ = S
l+×R

s . Then assumptions (A1)–(A4) and (A8)–(A10) hold true. Further-
more, assumption (A11) is satisfied with Φ0(λ) ≡ λ by [53], Proposition 4.2. Assumption
(A5) is satisfied, if the matrix function Ψ (y) is monotone (see, e.g., [93], Def. 6.6.33).
Assumptions (A6) and (A7) hold true, provided ε0 < +∞, while assumption (A12) is valid
iff ψ(t)/t → 0 as t → −∞. Note also that for assumptions (A2) and (A4), (A5), (A8) and
(A9) to hold true it is necessary that Λ ⊆ K ∗.

Following the ideas of [53] we can also extend the penalized exponential-type augmented
Lagrangian function from Example 6 to the case of nonlinear semidefinite programming
problems.

Example 14 Let the function ψ be as in the previous example with ε0 = +∞, and let
ξ : R → R be a twice continuously differentiable non-decreasing convex function such that
ξ(t) = 0 for all t ≤ 0, and ξ(t) > 0 for all t > 0. Denote by Ξ(·) the matrix function
associated with ξ(·).

For any y = (y0, z) ∈ Y and λ = (λ0, μ) ∈ Y define

Φ(y, λ, c) = 1

c

〈
λ0, Ψ (cy0)

〉 + 1

c
Tr

(
Ξ(cy0)

) + 〈μ, z〉 + c

2
‖z‖2

(see [53]). Let Λ = K ∗ = S
l+ × R

s . Then assumptions (A1)–(A4) and (A8)–(A11) are
satisfied. Assumption (A5) hold true, provided both matrix functionsΨ andΞ are monotone,
assumptions (A6) and (A7) are satisfied iff ξ(t)/t → +∞ as t → +∞, and φ is bounded
below, while assumption (A12) is valid iff ψ(t)/t → 0 as t → −∞.

3.5 Semi-infinite programming

Consider the following semi-infinite programming problem:

min f (x) subject to gi (x, t) ≤ 0, t ∈ T, i ∈ I, h(x) = 0, x ∈ A, (5)

where T is a compact metric space, the functions gi : X × T → R, I = {1, . . . , l}, are
continuous, and h : X → R

s . Let C(T ) be the space of all real-valued continuous functions
defined on T endowed with the uniform norm, and denote by C+(T ) the closed convex
subcone ofC(T ) consisting of all nonnegative functions. As it is well-known, the topological
dual space ofC(T ) is isometrically isomorphic to the space of signed (i.e. real-valued) regular
Borel measures on T , which we denote by rca(T ), while the space of regular Borel measures
on T is denoted as rca+(T ).

Define Y = (C(T ))l × R
s and K = (−C+(T ))l × {0s}, and introduce the function

x → G(x) = (g1(x, ·), . . . , gl(x, ·), h(x)) mapping X to Y . Then problem (5) is equivalent
to the problem (P). Note that in this case Y ∗ is isometrically isomorphic to (and, thus, can
be identified with) the space (rca(T ))l × R

s , while K ∗ can be identified with the cone
(rca+(T ))l × R

s .
To the best of author’s knowledge, the only augmented Lagrangian function for semi-

infinite programming problems studied in the literature is a particular case of the Rockafellar–
Wets augmented Lagrangian function from Example 1 (see [44–47]).

Example 15 Let a function σ : C(T ) → R+ be such that σ(0) = 0 and σ(y) > 0 for all
y �= 0. Suppose also that σ has a valley at zero. For any y = (y1, . . . , yl , z) ∈ Y (i.e.
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yi ∈ C(T ) and z ∈ R
s) and λ = (λ1, . . . , λl , μ) ∈ Y ∗ (i.e. λi ∈ rca(T ) and μ ∈ R

s) define

Φ(y, λ, c)

=
l∑

i=1

inf
{

−
∫

T
pdλi + cσ(p)

∣∣∣ p ∈ C(T ), p(·) + yi (·) ≤ 0
}

+ 〈μ, z〉 + c

2
‖z‖2.

Let Λ ⊆ Y ∗ (in particular, one can define Λ as the set of all measures λ ∈ rca(T ) with
finite support, see [44,47]). Then, as it was pointed out in Example 1, assumptions (A1)–
(A7) and (A10) are satisfied. Assumptions (A8) and (A9) are valid, if σ(t y)/t → 0 as
t → 0 for any y ∈ Y , while assumption (A12) is satisfied, provided σ(y) ≥ ω(‖y‖) for
all y ∈ Y , where ω is a non-negative continuous function such that ω(t) = 0 iff t = 0 and
lim inf t→+∞ ω(t)/t > 0. Finally, it seems that there are no natural general assumptions on
the function σ and the cone Λ which can guarantee the validity of (A11).

Let us also present a new augmented Lagrangian function for problem (5), which is a
simple extension of the augmented Lagrangian functions from Examples 5 and 7 to the case
of semi-infinite programming problems.

Example 16 Suppose, for the sake of simplicity, that there are no equality constraints. Let
φ : R → R ∪ {+∞} be a non-decreasing convex function such that dom φ = (−∞, ε0) for
some ε0 ∈ (0,+∞], φ(t) → +∞ as t → ε0, φ(t)/t → +∞ as t → +∞ if ε0 = +∞,
φ is twice continuously differentiable on dom φ, φ(0) = 0 and φ′(0) = 1. For any y =
(y1, . . . , yl) ∈ Y and λ = (λ1, . . . , λl) ∈ Y ∗ define

Φ(y, λ, c) = 1

c

l∑
i=1

∫

T
φ(cyi ) dλi , (6)

if ‖yi‖ < ε0 for all i ∈ I , and Φ(y, λ, c) = +∞ otherwise.
Let Λ ⊆ K ∗ = (rca+(T ))l . Then assumptions (A1)–(A5) and (A8)–(A11) are satisfied

(Φ0(λ) ≡ λ). Assumptions (A6) and (A7) are valid, provided ε0 < +∞, while assumption
(A12) is valid iff φ(t)/t → 0 as t → −∞.

Remark 5 (i) Note that if one defines function (6) for λ ∈ K ∗, then there is no need to
separate the case, when ‖yi‖ ≥ ε0 for some i ∈ I .
(ii) If T ⊂ R

q for some q ∈ N, then one can also extend the penalized exponential-type
augmented Lagrangian function from Example 6 to the case of semi-infinite programming
problems by simply adding the term c−1

∫
T ξ(cyi (t)) dt to the right-hand side of (6), where

the function ξ is the same as in Example 6.

4 Saddle points of augmented Lagrangian functions

Let us turn to the study of saddle points of the augmented Lagrangian function L (x, λ, c).
Recall that we formulate all definitions and results with respect to a given closed convex cone
Λ ⊆ Y ∗.

Definition 1 A pair (x∗, λ∗) ∈ A × Λ is called a global saddle point of the augmented
Lagrangian L (x, λ, c) if there exists c0 > 0 such that L (x∗, λ∗, c) < +∞ for all c ≥ c0
and

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) ≤ inf
x∈A

L (x, λ∗, c) ∀c ≥ c0.
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The greatest lower bound of all such c0 is denoted by c∗(x∗, λ∗) and is referred to as the least
exact penalty parameter for the global saddle point (x∗, λ∗).

Definition 2 A pair (x∗, λ∗) ∈ A × Λ is called a local saddle point of the augmented
Lagrangian L (x, λ, c) if there exist c0 > 0 and a neighbourhood U of x∗ such that
L (x∗, λ∗, c) < +∞ for all c ≥ c0 and

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) ≤ inf
x∈U∩A

L (x, λ∗, c) ∀c ≥ c0. (7)

The greatest lower bound of all such c0 is denoted by c∗
loc(x∗, λ∗) and is referred to as the

least local exact penalty parameter for the local saddle point (x∗, λ∗).

Observe a direct connection between saddle points of the augmented Lagrangian
L (x, λ, c) and optimal solutions of the problem (P).

Proposition 1 Suppose that assumptions (A1)–(A3) are satisfied. If (x∗, λ∗) is a local
(global) saddle point of the augmented LagrangianL (x, λ, c), then x∗ is a locally (globally)
optimal solution of the problem (P).

Proof Let (x∗, λ∗) be a local saddle point of L (x, λ, c). Then L (x∗, λ∗, c) is finite for all
c > 0, and there exist c0 > 0 and a neighbourhood U of x∗ such that (7) holds true. Let
us prove, at first, that x∗ is a feasible point of the problem (P). Indeed, suppose that x∗ is
infeasible, i.e. that G(x∗) /∈ K . Then by (A3) for any c > 0 there exists λ0 ∈ Λ such that
limt→+∞ Φ(G(x∗), tλ0, c) = +∞. From (7) it follows that for any c ≥ c0 one has

L (x∗, λ∗, c) ≥ L (x∗, tλ0, c) = f (x∗) + Φ(G(x∗), tλ0, c) ∀t > 0.

Passing to the limit as t → +∞ one obtains that L (x∗, λ∗, c) = +∞, which contradicts
the definition of local saddle point. Thus, G(x∗) ∈ K .

Let x ∈ U be a feasible point of the problem (P). Then applying the second inequality in
(7), and (A2) one obtains that

L (x∗, λ∗, c) ≤ L (x, λ∗, c) ≤ f (x) ∀c ≥ c0. (8)

Applying (A2) again one gets that Φ(G(x∗), λ∗, c) ≤ 0. On the other hand, from the first
inequality in (7) and (A1) it follows that Φ(G(x∗), λ∗, c) ≥ Φ(G(x∗), 0, c) ≥ 0 for all
c ≥ c0, which yields that Φ(G(x∗), λ∗, c) = 0 for all c ≥ c0. Hence and from (8) one gets
that f (x∗) ≤ f (x) for any feasible point x ∈ U , which implies that x∗ is a locally optimal
solution of the problem (P).

Repeating the same argument as above with U replaced by A one obtains that if (x∗, λ∗)
is a global saddle point of L (x, λ, c), then x∗ is a globally optimal solution of the problem
(P). ��
Remark 6 Let assumptions (A1)–(A3) be satisfied. From the proof of the proposition above
it follows that if (x∗, λ∗) ∈ A×Λ is such that supλ∈Λ L (x∗, λ, c0) ≤ L (x∗, λ∗, c0) < +∞
for some c0 > 0, then x∗ is feasible point of the problem (P), and L (x∗, λ∗, c0) = f (x∗).
If, additionally, assumption (A4) holds true, then L (x∗, λ∗, c) = f (x∗) for all c ≥ c0. In
particular, if (x∗, λ∗) is a local saddle point of L (x, λ, c), and assumptions (A1)–(A3) are
valid, then L (x∗, λ∗, c) = f (x∗) for all c > c∗

loc(x∗, λ∗).

Below we will show that there is a direct connection between local (global) saddle points
of the augmented Lagrangian function L (x, λ, c) and KKT-pairs of the problem (P) cor-
responding to locally (globally) optimal solutions of this problem. Since for any KKT-pair
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(x∗, λ∗) one has λ∗ ∈ K ∗ and 〈λ∗,G(x∗)〉 = 0, then it is natural to ask when these conditions
are satisfied for local or global saddle points. The two following propositions give an answer
to this question.

Proposition 2 Let assumptions (A1), (A3) and (A8) be valid, and let a pair (x∗, λ∗) ∈ A×Λ

satisfy the inequalities

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) < +∞ (9)

for some c > 0. Then λ∗ ∈ K ∗.

Proof Arguing by reductio ad absurdum, suppose that λ∗ /∈ K ∗. Repeating the first part of
the proof of Proposition 1 one can easily verify that x∗ is a feasible point of the problem (P).
Then applying (A1) and (A8) one gets that Φ(G(x∗), λ∗, c) < 0 ≤ Φ(G(x∗), 0, c) for all
c > 0. Hence for any c > 0 one has L (x∗, λ∗, c) < L (x∗, 0, c), which contradicts (9). ��

Let us demonstrate that the proposition above does not hold true in the case when assump-
tion (A8) is not valid. To this end, let us consider the exponential penalty function from
Example 5 with Λ = Y ∗ = R

l (note that in this case assumption (A8) is not satisfied).

Example 17 Let X = A = R
2. Consider the following optimization problem

min f (x1, x2) = x21 + x22 subject to

g1(x1, x2) = x1 + x2 + 2 ≤ 0, g2(x1, x2) = 1

2
(x1 + 2)2 + 1

2
(x2 + 2)2 − 1 ≤ 0.

Let x∗ = (−1,−1) and λ∗ = (−1, 3). Let us show that the pair (x∗, λ∗) is a global saddle
point of the exponential penalty function L (x, λ, c) despite the fact that λ∗ /∈ K ∗ = R

2+.
Indeed, by definition

L (x, λ, c) = f (x) + λ1

c

(
ecg1(x) − 1

) + λ2

c

(
ecg2(x) − 1

)
.

Since g1(x∗) = g2(x∗) = 0, then L (x∗, ·, c) ≡ f (x∗) = 2, which yields that

sup
λ∈R2

L (x∗, λ, c) = L (x∗, λ∗, c) = 2 ∀c > 0

Let us prove that x∗ is a point of global minimum of the function L (·, λ∗, c) for any c > 0.
Then one gets that (x∗, λ∗) is a global saddle point of the exponential penalty function for
the above problem.

Note that g2(x) ≥ g1(x) for all x ∈ R
2. Therefore taking into account the fact that

λ∗ = (−1, 3) one gets that for any x ∈ R
2 and c > 0 one has

L (x, λ∗, c) = f (x) + 2

c

(
ecg2(x) − 1

) + 1

c

(
ecg2(x) − ecg1(x)

) ≥ fc(x), (10)

where fc(x) = f (x)+2(ecg2(x) −1)/c. It is easy to see that for any c > 0 the function fc(x)
is convex, and ∇ fc(x∗) = 0, which implies that x∗ is a point of global minimum of fc for all
c > 0.Hence taking into account inequality (10), and the fact thatL (x∗, λ∗, c) = fc(x∗) = 2
one obtains the required result.

Remark 7 As the previous example shows, one needs to properly choose the coneΛ in order
to ensure the validity of the inclusion λ∗ ∈ K ∗. Alternatively, one can guarantee the validity
of the inclusion λ∗ ∈ K ∗ with the use of a suitable constraint qualification. In particular, it is
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easy to check that if (x∗, λ∗) is a local saddle point of the exponential penalty function with
Λ = R

l , and LICQ holds true at x∗, then λ∗ ∈ K ∗. On the other hand, note that if at least one
of the inequality constraints is not active at x∗, say gi (x∗) < 0, then for (x∗, λ∗) to be a local
saddle point of the exponential penalty function it is necessary that λi ≥ 0 for all λ ∈ Λ.

Arguing in a similar way to the proof of Proposition 2 one can check that the following
result holds true.

Proposition 3 Let assumptions (A1), (A3) and (A9) hold true, and let a pair (x∗, λ∗) ∈ A×Λ

satisfy inequalities (9) for some c > 0. Then 〈λ∗,G(x∗)〉 = 0.

Remark 8 Let us note that if

Φ(y, λ, c) = 〈λ,Φ1(y, c)〉 + Φ2(y, c) (11)

for some functionsΦ1 andΦ2, and (x∗, λ∗) is a local saddle point ofL (x, λ, c)withΛ = Y ∗,
then

〈
λ,Φ1(G(x∗), c)

〉 ≤ 〈
λ∗, Φ1(G(x∗), c)

〉 ∀λ ∈ Y ∗ ∀c > c∗
loc(x∗, λ∗),

which in all particular examples presented above implies that 〈λ∗,G(x∗)〉 = 0. Note also that
assumption (A9) is satisfied with Λ = Y ∗ for all particular augmented Lagrangian functions
that cannot be represented in the form (11).

Let us now provide several useful characterizations of global saddle points of the
augmented Lagrangian functionL (x, λ, c). Global saddle points ofL (x, λ, c) can be char-
acterized in terms of solutions of the augmented dual problem. Recall that the augmented
dual problem of (P) associated with the augmented Lagrangian L (x, λ, c) has the form

max
(λ,c)

Θ(λ, c) subject to λ ∈ Λ, c > 0,

where Θ(λ, c) = inf x∈A L (x, λ, c). Note that if assumption (A2) is satisfied, then the weak
duality between (P) and the augmented dual problem holds, i.e.

Θ(λ, c) ≤ f (x) ∀(λ, c) ∈ Λ × (0,+∞) ∀x ∈ Ω,

where Ω is the feasible set of the problem (P). One says that the zero duality gap property
holds true for the augmented Lagrangian L (x, λ, c), if

inf
x∈Ω

f (x) = sup
{
Θ(λ, c)

∣∣ λ ∈ Λ, c > 0
}
.

Now, we can obtain a simple and well-known characterization of global saddle points in
terms of globally optimal solutions of the augmented dual problem.

Proposition 4 Suppose that assumptions (A1)–(A4) are satisfied. If (x∗, λ∗) is a global
saddle point of the augmented Lagrangian L (x, λ, c), then for any c > c∗(x∗, λ∗) the
pair (λ∗, c) is a globally optimal solution of the augmented dual problem, and the zero
duality gap property holds true. Conversely, if (λ∗, c∗) is a globally optimal solution of the
augmented dual problem, and the zero duality gap property holds true, then for any globally
optimal solution x∗ of the problem (P) the pair (x∗, λ∗) is a global saddle point ofL (x, λ, c)
and c∗ ≥ c∗(x∗, λ∗).
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Proof Let (x∗, λ∗) be a global saddle point of L (x, λ, c). Applying Remark 6 one obtains
that for any c > c∗(x∗, λ∗) the following inequalities hold true

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) = f (x∗) ≤ inf
x∈A

L (x, λ∗, c).

Consequently, taking into account the definition of Θ one gets that

Θ(λ, c) ≤ f (x∗) ≤ Θ(λ∗, c) ∀λ ∈ Λ ∀c > c∗(x∗, λ∗).

Assumption (A4) implies that Θ(λ, c) is non-decreasing in c for any λ ∈ Λ. Therefore
Θ(λ, c) ≤ f (x∗) for all (λ, c) ∈ Λ × (0,+∞). Hence taking the supremum over all
(λ, c) ∈ Λ × (0,+∞) one obtains that

sup
{
Θ(λ, c)

∣∣ (λ, c) ∈ Λ × (0,+∞)
} ≤ f (x∗) ≤ Θ(λ∗, c) ∀c > c∗(x∗, λ∗).

Consequently, (λ∗, c) is a globally optimal solution of the augmented dual problem for any
c > c∗(x∗, λ∗), and the zero duality gap property holds true, since x∗ is a globally optimal
solution of the problem (P) by virtue of Proposition 1.

Let, now, (λ∗, c∗) be a globally optimal solution of the augmented dual problem, x∗ be a
globally optimal solution of the problem (P), and suppose that the zero duality gap property
holds true. Then with the use of the fact that Θ is non-decreasing in c due to (A4) one gets
that Θ(λ∗, c) = f (x∗) for all c ≥ c∗. Since x∗ is a feasible point of (P), then applying
assumption (A2) one obtains thatL (x∗, λ∗, c) ≤ f (x∗) for any c > 0. Therefore taking into
account the definition of Θ one gets that

L (x∗, λ∗, c) ≤ f (x∗) = Θ(λ∗, c) := inf
x∈A

L (x, λ∗, c) ∀c ≥ c∗, (12)

which implies that L (x∗, λ∗, c) = f (x∗). Applying (A2) again one obtains that

L (x∗, λ, c) ≤ f (x∗) = L (x∗, λ∗, c) ∀(λ, c) ∈ Λ × [c∗,+∞). (13)

Combining (13) and (12) one gets that (x∗, λ∗) is a global saddle point of L (x, λ, c) and
c∗ ≥ c∗(x∗, λ∗). ��
Corollary 1 Let assumptions (A1)–(A4) be satisfied, and suppose that the zero duality gap
property holds true for L (x, λ, c). Then a global saddle point of L (x, λ, c) exists if and
only if there exists a globally optimal solution of the augmented dual problem.

Corollary 2 Let assumptions (A1)–(A4) be satisfied, and let (x∗, λ∗) be a global saddle point
of L (x, λ, c). Then for any globally optimal solution z∗ of (P) the pair (z∗, λ∗) is a global
saddle point of L (x, λ, c) as well.

Let us also obtain a characterization of global saddle points of the augmented Lagrangian
L (x, λ, c) in terms of the behaviour of the optimal value function (or the perturbation
function)

β(p) = inf
{
f (x)

∣∣ x ∈ A, G(x) − p ∈ K
} ∀p ∈ Y

of the problem (P) (cf. [10], Sect. 11.K, and [8,54]).

Proposition 5 Let assumptions (A1)–(A5) be satisfied. Then a pair (x∗, λ∗) ∈ A × Λ is
a global saddle point of L (x, λ, c) if and only if x∗ is a globally optimal solution of the
problem (P), and there exists c0 > 0 such that

β(p) ≥ β(0) − Φ(p, λ∗, c) ∀p ∈ Y ∀c ≥ c0. (14)
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Proof Let (x∗, λ∗) be a global saddle point ofL (x, λ, c). By Proposition 1 the point x∗ is a
globally optimal solution of the problem (P), which implies that f (x∗) = β(0).

Fix an arbitrary p ∈ Y . If there is no x ∈ A such that G(x) − p ∈ K , then β(p) = +∞,
and inequality (14) is valid. Otherwise, for any such x one has

L (x, λ∗, c) ≥ L (x∗, λ∗, c) = f (x∗) = β(0) ∀c > c∗(x∗, λ∗)

by virtue of the fact that (x∗, λ∗) is a global saddle point ofL (x, λ, c) and Remark 6. Hence
and from (A5) it follows that f (x) ≥ β(0) − Φ(p, λ∗, c) for all c > c∗(x∗, λ∗). Taking the
infimum over all x ∈ A for which G(x) − p ∈ K one obtains that (14) holds true.

Let, now, x∗ be a globally optimal solution of (P), and let (14) be valid. Fix arbitrary
c ≥ c0 and x ∈ A. Define p = G(x). Then (14) implies that

f (x) ≥ β(p) ≥ f (x∗) − Φ(G(x), λ∗, c)

or, equivalently, L (x, λ∗, c) ≥ f (x∗). Taking the infimum over all x ∈ A one gets that
Θ(λ∗, c) ≥ f (x∗) = inf x∈Ω f (x). Hence and from the fact that the weak duality between
(P) and the augmented dual problem holds by (A2), it follows that the zero duality gap
property holds true forL (x, λ, c), and (λ∗, c) is a globally optimal solution of the augmented
dual problem. Consequently, applying Proposition 4 one gets that (x∗, λ∗) is a global saddle
point. ��
Remark 9 It should be noted that under some additional assumptions inequality (14) holds
true if and only if there exist c0 > 0 and a neighbourhood of zero, U ⊂ Y , such that
β(p) ≥ β(0) − Φ(p, λ∗, c) for all p ∈ U and c ≥ c0 (cf. [10] Theorem 11.61, and [54]
Lemma 3.1). However, we do not present an exact formulation of this result here, and leave
it to the interested reader.

5 The localization principle for saddle points

In this section, we develop a new general method for proving the existence of global saddle
points of augmented Lagrangian functions. According to this method, one has to verify that
there exists a multiplier λ∗ such that for any globally optimal solution x∗ of the problem
(P) the pair (x∗, λ∗) is a local saddle point of L (x, λ, c) in order to prove the existence
of a global saddle point. In turn, the existence of such multiplier λ∗ can usually be proved
with the use of sufficient optimality conditions. Thus, the general method for proving the
existence of global saddle points of augmented Lagrangian functions, that we discuss in this
section, allows one to reduce the problem of the existence of global saddle points to a local
analysis of sufficient optimality conditions. That is why we call this method the localization
principle.

Let x∗ be a globally optimal solution of the problem (P). Denote by Λloc(x∗) (resp.
Λ(x∗)) the set of all λ∗ ∈ Λ for which the pair (x∗, λ∗) is a local (resp. global) saddle point
of the augmented Lagrangian functionL (x, λ, c). Also, denote by Ω∗ the set of all globally
optimal solutions of the problem (P). Define

Λloc(P) =
⋂

x∗∈Ω∗
Λloc(x∗), Λ(P) =

⋂
x∗∈Ω∗

Λ(x∗)

Corollary 2 implies that, in actuality,Λ(P) = Λ(x∗) for any x∗ ∈ Ω∗, provided assumptions
(A1)–(A4) are valid.
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Since every global saddle point of L (x, λ, c) is a local one, then Λ(P) ⊆ Λloc(P).
Therefore for the existence of a global saddle point of L (x, λ, c) it is necessary that
Λloc(P) �= ∅. The localization principle states that under some additional assumptions the
condition Λloc(P) �= ∅ is also sufficient for the existence of a global saddle point.

We need an auxiliary result in order to prove the localization principle.

Lemma 1 Let λ∗ ∈ Λloc(P), A be closed, and assumptions (A2), (A4) and (A6) be valid.
Suppose also that G is continuous on A, L (·, λ∗, c) is l.s.c. on A for all c > 0, and
L (·, λ∗, c0) is bounded from below on A for some c0 > 0. Let, finally, sequences {cn} ⊂
[c0,+∞) and {εn} ⊂ (0,+∞) be such that cn → +∞ and εn → 0 as n → ∞. Then any
cluster point of a sequence {xn} ⊂ A such that

L (xn, λ∗, cn) ≤ inf
x∈A

L (x, λ∗, cn) + εn ∀n ∈ N. (15)

is a globally optimal solution of the problem (P).

Proof Let x∗ be a cluster point of a sequence {xn} ⊂ A satisfying (15). Replacing, if nec-
essary, the sequences {cn}, {εn} and {xn} by their subsequences, one can suppose that {xn}
converges to x∗. Note that x∗ ∈ A due to the fact that A is closed.

Fix an arbitrary x0 ∈ Ω∗. Since λ∗ ∈ Λloc(P), then λ∗ ∈ Λ, which implies that
L (x0, λ∗, c) ≤ f (x0) for all c > 0 by assumption (A2). Hence and from (15) it follows that

L (xn, λ∗, cn) ≤ f (x0) + εn ∀n ∈ N, (16)

which yields that

f (xn) < +∞, Φ(G(xn), λ∗, cn) < +∞ ∀n ∈ N. (17)

Choose an arbitrary c > 0. Since lim cn = +∞, then there exists n0 ∈ N such that cn ≥ c
for all n ≥ n0. Hence with the use of (A4) one obtains that L (xn, λ∗, c) ≤ f (x0) + εn for
all n ≥ n0. Passing to the limit inferior as n → ∞ one gets that L (x∗, λ∗, c) ≤ f (x0) for
all c > 0. Let us verify that x∗ is a feasible point of the problem (P). Then applying (A2)
one obtains that f (x∗) ≤ f (x0), which implies that x∗ ∈ Ω∗ due to the definition of x0.

Arguing by reductio ad absurdum, suppose that x∗ is infeasible, i.e. that y∗ := G(x∗) /∈ K .
Then by (A6) there exists r > 0 such that

lim
c→∞ inf{Φ(y, λ∗, c) − Φ(y, λ∗, c0) | y ∈ B(y∗, r) : Φ(y, λ∗, c0) < +∞} = +∞. (18)

Since G is continuous and xn → x∗ as n → ∞, then there exists k ∈ N such that G(xn) ∈
B(y∗, r) for all n ≥ k. Consequently, taking into account (17) and assumption (A4) one gets
that for all n ≥ k the following inequalities hold true

L (xn, λ∗, cn) = L (xn, λ∗, c0) + Φ(G(xn), λ∗, cn) − Φ(G(xn), λ∗, c0)

≥ γ + inf{Φ(y, λ∗, cn) − Φ(y, λ∗, c0) | y∈ B(y∗, r) : Φ(y, λ∗, c0) < +∞},
where γ = inf x∈A L (x, λ∗, c0) > −∞. Hence applying (18) one obtains thatL (xn, λ∗, cn)
→ +∞ as n → ∞, which contradicts (16). Thus, x∗ is a feasible point of the problem (P),
which completes the proof. ��

Now, we are ready to derive the localization principle for global saddle points of the
augmented Lagrangian functionL (x, λ, c). Denote by f∗ = infx∈Ω f (x) the optimal value
of the problem (P).
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Theorem 1 (Localization Principle) Let A be closed, G be continuous on A, andL (·, λ, c)
be l.s.c. on A for all λ ∈ Λ and c > 0. Suppose also that assumptions (A1)–(A4) and (A6)
are satisfied. Then a global saddle point ofL (x, λ, c) exists if and only if Λloc(P) �= ∅, and
there exist λ∗ ∈ Λloc(P) and c0 > 0 such that the set

S(λ∗, c0) := {
x ∈ A

∣∣ L (x, λ∗, c0) < f∗
}

is either bounded or empty. Furthermore, Λ(P) consists of all those λ∗ ∈ Λloc(P) for which
there exists c0 > 0 such that the set S(λ∗, c0) is either bounded or empty.

Proof Suppose that there exists a global saddle point (x∗, λ∗) ofL (x, λ, c). By Corollary 2,
for any globally optimal solution x0 of (P) the pair (x0, λ∗) is a global saddle point of
L (x, λ, c), which yields that λ∗ ∈ Λloc(P). Furthermore, from the definition of global
saddle point and Remark 6 it follows that for any c > c∗(x∗, λ∗) the set S(λ∗, c) is empty.

Suppose, now, that λ∗ ∈ Λloc(P), and there exists c0 > 0 such that the set S(λ∗, c0) is
either bounded or empty. From (A4) it follows that

S(λ∗, c) ⊆ S(λ∗, c0) ∀c ≥ c0, (19)

which implies, in particular, that S(λ∗, c) is bounded (or empty) for any c ≥ c0.
If there exists c ≥ c0 such that S(λ∗, c) = ∅, then infx∈A L (x, λ∗, c) ≥ f∗ for all c ≥ c

due to (A4). Hence applying the definition of local saddle point and Remark 6 one gets that
for any globally optimal solution x∗ of (P), and for all c > max{c, c∗

loc(x∗, λ∗)} the following
inequalities hold true

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) = f (x∗) = f∗ ≤ inf
x∈A

L (x, λ∗, c),

i.e. (x∗, λ∗) is a global saddle point of L (x, λ, c).
Thus, it remains to consider the case when S(λ∗, c) �= ∅ for all c ≥ c0. As it was noted

above (see inclusion (19)), the set S(λ∗, c) is bounded for all c ≥ c0. Therefore, taking into
account the fact that L (·, λ∗, c) is l.s.c. on A, one obtains that L (·, λ∗, c) attains a global
minimum on A at a point x(c) for all c ≥ c0. Choose an increasing unbounded sequence
{cn} ⊂ [c0,+∞), and denote xn = x(cn). Inclusion (19) implies that the sequence {xn} is
contained in the bounded set S(λ∗, c0). Therefore there exists a subsequence {xnk } converging
to a point x∗ that belongs to the set A due to the fact that A is closed.

By the definition of xn one has L (xn, λ∗, cn) = infx∈A L (x, λ∗, cn). Consequently,
applying Lemma 1 one obtains that x∗ is a globally optimal solution of the problem (P).
Hence taking into account the fact that λ∗ ∈ Λloc(P) and applying Remark 6 one gets that
there exist c > 0 and a neighbourhood U of x∗ such that

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) = f (x∗) ≤ inf
x∈U∩A

L (x, λ∗, c) ∀c ≥ c. (20)

Since {xnk } converges to x∗, and {cn} is an increasing unbounded sequence, then there exists
k0 ∈ N such that xnk ∈ U and cnk ≥ c for all k ≥ k0. Hence applying (20) and the fact that
x∗ ∈ Ω∗ one obtains that L (xnk , λ∗, cnk ) ≥ f (x∗) = f∗ for all k ≥ k0, which contradicts
our assumption that S(λ∗, c) �= ∅ for all c ≥ c0 due to the fact that xn is a global minimizer
of L (·, λ∗, cn) on the set A. ��

Corollary 3 (Localization Principle) Let all assumptions of the theorem above be satisfied,
and suppose that the set A is compact. Then Λ(P) = Λloc(P).
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Remark 10 The localization principle for global saddle points of augmented Lagrangian
functions for cone constrained programming problems (Theorem 1) unifies and sharpens
most of the known results on the existence of global saddle points of augmented Lagrangians
for mathematical programming problems ([12, Theorem 3.3], [56, Theorem 3], [58, Theo-
rem4.1], [59, Theorem3.3], [18, Theorem2], [57, Theorems. 3.3 and 3.4], [21, Theorems 3.1,
3.3 and 3.4], [9, part 3 of Corollary 4.1, 4.3 and 4.4, part 2 of Corollary 4.2 and 4.5, and parts
3 and 4 of Corollary 4.6]), nonlinear second order cone programming problems ([34, The-
orem 3.1]) and nonlinear semidefinite programming ([42, Theorem 4], [53, Theorem 4.4]).
Furthermore, the localization principle provides first simple necessary and sufficient condi-
tions for the existence of global saddle points.

Let us note that if, instead of assumption (A6), stronger assumption (A7) holds true, then
instead of S(λ∗, c) one can use a smaller set.

Proposition 6 Let assumptions (A4) and (A7) be valid, and let the function L (·, λ∗, c0) be
bounded from below on A for some λ∗ ∈ Λ and c0 > 0. Then the set S(λ∗, c1) is bounded
for some c1 > 0 iff there exist c2 > 0 and α > 0 such that the set Q(λ∗, c2, α) := {x ∈ A |
L (x, λ∗, c2) < f∗, d(G(x), K ) < α} is bounded.
Proof The validity of the “only if” part of the proposition follows directly from the obvious
inclusion Q(λ∗, c, α) ⊆ S(λ∗, c) that holds true for all c > 0 and α > 0. Therefore,
let us prove the “if” part. Namely, let us show that for any α > 0 there exists c > 0
such that S(λ∗, c) ⊆ Q(λ∗, c, α) for all c ≥ c. Then taking into account the inclusion
Q(λ∗, c′, α) ⊆ Q(λ∗, c′′, α), that holds true for all c′ ≥ c′′ due to (A4), one obtains the
required result.

Fix α > 0. Let x ∈ A be such that d(G(x), K ) ≥ α and Φ(G(x), λ∗, c0) < +∞. Then
for all c ≥ c0 one has

L (x, λ∗, c) = L (x, λ∗, c0) + Φ(G(x), λ∗, c) − Φ(G(x), λ∗, c0)
≥ γ + inf

{
Φ(y, λ∗, c) − Φ(y, λ∗, c0)

∣∣ y ∈ Y : d(y, K ) ≥ α, Φ(y, λ∗, c0) < +∞}
,

where γ = infx∈A L (x, λ∗, c0) > −∞. Applying (A7) one gets that there exists c ≥ c0
(that depends only on λ∗, c0 and α > 0) such that L (x, λ∗, c) ≥ f∗ for all c ≥ c. In other
words, S(λ∗, c) = Q(λ∗, c, α) for all c ≥ c. ��
Remark 11 Let the following assumption be valid:

(A13) ∀λ ∈ Λ ∀ε > 0 ∀c0 > 0 ∃ c ≥ c0 ∃ α > 0 such that Φ(G(x), λ, c) > −ε for all
x ∈ A : dist(G(x), K ) < α;

Then one can easily verify that the set Q(λ, c, α) from the proposition above is bounded for
some c > 0 and α > 0, provided there exists γ > 0 such that the set

{
x ∈ A

∣∣ f (x) < f∗ + γ, d(G(x), K ) < γ
}

(21)

is bounded. Note that the assumption on the boundedness of set (21) is utilized in most of
the known results on existence of global saddle points of augmented Lagrangian functions
(cf., e.g., [21, Theorems 3.1–3.4], [12, Theorem 3.3], [18, Theorem 2], [59, Theorem 3.3],
[55, Theorems 3.1 and 3.2], [34, Theorem 3.1], etc.). Observe also that assumption (A13) is
satisfied in Examples 1 and 15, provided σ(y) ≥ ω(‖y‖) for some non-negative continuous
function ω such that lim inf t→+∞ ω(t)/t > 0. This assumptions is always valid in Exam-
ples 2–4, 8–10 and 12. Finally, (A13) is satisfied in Examples 5–7, 11, 13, 14 and 16 if either
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the function φ (or ψ) is bounded from below or the sets gi (A) ∩ Ki , i ∈ I , are bounded,
where Ki is eitherR− or the second order cone or the cone of negative semidefinite matrices
or the cone of non-positive continuous functions, depending on the context. Let us finally
note that the assumption on the boundedness of the sets gi (A) ∩ Ki was utilized in various
paper on augmented Lagrangian functions (see, e.g., [9,11,12]).

Remark 12 Note that if assumption (A7) is valid, and the set Q(λ∗, c, α) is bounded for
some c > 0 and α > 0, but the function L (·, λ∗, c) is not bounded from below for any
c > 0, then one can redefine the function Φ(y, λ, c) in order to guarantee the existence of
global saddle points. Namely, define

Φ̂(y, λ, c) =
⎧⎨
⎩

(
α − dist(y, K )�

) · Φ

(
1

α − dist(y, K )�
y, λ, c

)
, if d(y, K )� < α,

+∞, otherwise

for some α > 0 and � > 0. One can verify that such transformation not only guarantees
the boundedness from below of the function L (·, λ, c), but also preserves local and global
saddle points, the boundedness of the set Q(λ∗, c, α), and general properties of the augmented
Lagrangian L (x, λ, c) (such as continuity, differentiability if � ≥ 2, etc.) in all particular
examples presented above, except for Example 11. Finally, it should be noted that there is
no need for such transformation of the function Φ(y, λ, c) in Example 7, and Examples 11,
13 and 16 in the case when ε0 < +∞, since the augmented Lagrangian functions from these
examples are bounded from below iff the set Q(λ∗, c, α) is bounded for some c > 0 and
α > 0.

The following proposition contains a simple reformulation of the boundedness condition
on the set S(λ∗, c) that will allow us to give an illuminating interpretation of the localization
principle.

Proposition 7 Let λ∗ ∈ Λloc(P), A be closed, L (·, λ∗, c) be l.s.c. on A for all c > 0,
and G be continuous on A. Suppose also that assumptions (A2), (A4) and (A6) are satisfied.
Then for the existence of c0 > 0 such that the set S(λ∗, c0) is either bounded or empty it is
necessary and sufficient that there exist c0 > 0 and R > 0 such that for any c ≥ c0 there
exists x(c) ∈ argminx∈A L (x, λ∗, c) with ‖x(c)‖ ≤ R.

Proof Suppose that exists c0 > 0 such that the set S(λ∗, c0) is either bounded or empty. Note
that (A4) implies that (19) holds true. If there exists c1 ≥ c0 such that S(λ∗, c1) = ∅, then
taking into account (A2) and (A4) one gets that x∗ ∈ argminx∈A L (x, λ∗, c) for all c ≥ c1,
where x∗ is a globally optimal solution of (P). On the other hand, if S(λ∗, c) �= ∅ for all
c ≥ c0, then taking into account (19) and the fact that L (·, λ∗, c) is l.s.c. on A one obtains
that for any c ≥ c0 there exists x(c) ∈ argminx∈A L (x, λ∗, c) such that x(c) ∈ S(λ∗, c0).
Since S(λ∗, c0) is bounded, then there exists R > 0 such that ‖x(c)‖ ≤ R for all c ≥ c0.

Suppose, now, that there exist c0 > 0 and R > 0 such that for any c ≥ c0 there exists
x(c) ∈ argminx∈A L (x, λ∗, c)with ‖x(c)‖ ≤ R. Choose an increasing unbounded sequence
{cn} ⊂ [c0,+∞), and define xn = x(cn). Without loss of generality one can suppose that
the sequence {xn} converges to a point x∗. By Lemma 1, the point x∗ is a globally optimal
solution of (P).

Taking into account Remark 6 and the fact that λ∗ ∈ Λloc(P) one gets that there exist
r > 0 and a neighbourhood U of x∗ such that

sup
λ∈Λ

L (x∗, λ, c) ≤ L (x∗, λ∗, c) = f (x∗) ≤ inf
x∈U∩A

L (x, λ∗, c) ∀c ≥ r.
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Since xn → x∗ and cn → +∞ as n → ∞, then there exists n ∈ N for which xn ∈ U
and cn ≥ r . For any such n one has L (xn, λ∗, cn) ≥ f (x∗) = f∗, which implies that
S(λ∗, cn) = ∅ due to the definition of xn . ��

Remark 13 With the use of the proposition above we can give the following interpretation of
the localization principle. Roughly speaking, according to the localization principle a global
saddle point of the augmented Lagrangian function L (x, λ, c) exists if and only if there
exists a multiplier λ∗ such that for any globally optimal solution x∗ of (P) the pair (x∗, λ∗)
is a local saddle point of L (x, λ, c), the function L (·, λ∗, c) attains a global minimum on
A for any sufficiently large c > 0, and global minimizers of L (·, λ∗, c) on A do not escape
to infinity as c → +∞.

Note that, in particular, the exponential penalty function (Example 5) and the p-th power
augmented Lagrangian (Example 8) do not satisfy assumption (A6). Therefore one cannot
apply the localization principle in order to obtain necessary and sufficient conditions for
the existence of global saddle points of these augmented Lagrangian functions. Let us show
that global saddle points of these augmented Lagrangian functions exist only under a rather
restrictive assumption on the problem (P).

Example 18 Consider the following nonlinear programming problem

min f (x) subject to g1(x) ≤ 0, g2(x) ≤ 0. (22)

In this case K = R
2−. Let Λ = K ∗ = R

2+, and let

L (x, λ, c) = f (x) + λ1

c

(
ecg1(x) − 1

) + λ2

c

(
ecg2(x) − 1

)

be the exponential penalty function for this problem. Suppose that a pair (x∗, λ∗) with λ∗ ∈
R
2+ is a global saddle point of L (x, λ, c), i.e.

sup
λ∈R2+

L (x∗, λ, c) ≤ L (x∗, λ∗, c) ≤ inf
x∈X L (x, λ∗, c) (23)

for any sufficiently large c > 0. Suppose, in addition, that g2(x∗) < 0. Then (λ∗)2 = 0 by
Proposition 3,which implies thatL (x, λ∗, c) does not depend on g2(x). Consequently, taking
the supremum in (23) over only those λ ∈ R

2+ for which λ2 = 0 one gets that (x∗, (λ∗)1)
is a global saddle point of the reduced augmented Lagrangian function L0(x, λ1, c) =
L (x, (λ1, 0), c). Hence applying Proposition 1 one gets that x∗ is a globally optimal solution
of problem (22), and of the problem of minimizing f (x) subject to g1(x) ≤ 0.

Thus, if a global saddle point of the exponential penalty function exists, then the removal
of inequality constraints that are inactive at a globally optimal solution must not change
the global optimality of the given solution. After inactive inequality constraints have been
removed, the exponential penalty function will satisfy assumptions (A6) and (A7) for a given
multiplier λ∗ ∈ Λloc(P), provided all components of λ∗ are positive (or, equivalently, if λ∗
satisfies the strict complementarity condition at all globally optimal solutions of the problem
(P)). Then arguing in the same way as in the proof of the localization principle one can
obtain simple necessary and sufficient conditions for the existence of a global saddle point
of the exponential penalty function.

Namely, one can verify that the following result holds true.
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Proposition 8 Let A be closed, and L (x, λ, c) be the exponential penalty function for the
problem

min f (x) subject to gi (x) ≤ 0, i ∈ I, x ∈ A. (P1)

Let also f be l.s.c. on A, and gi , i ∈ I , be continuous on A. Then a global saddle point
of L (x, λ, c) exists if and only if there exist λ∗ ∈ Λloc(P1) and c0 > 0 such that the set
S(λ∗, c0) is either bounded or empty, every globally optimal solutions of the problem (P1)

is a globally optimal solution of the problem

min f (x) subject to gi (x) ≤ 0, i ∈ I (λ∗), x ∈ A, (P2)

and λ∗ ∈ Λloc(P2), where I (λ∗) = {i ∈ I | (λ∗)i > 0}.
Remark 14 (i) It should be noted that the example and the proposition above were inspired
by “the separation condition” (3.11) from [21], where it was used in order to obtain sufficient
conditions for the existence of a global saddle point of the exponential penalty function ([21],
Theorem 3.2). Let us note that Proposition 8 significantly sharpens Theorem 3.2 from [21],
since we do not assume that A is compact or that a globally optimal solution of the problem
(P1) is unique, and obtain necessary and sufficient conditions for the existence of a global
saddle point, in contrast to only sufficient conditions in [21].
(ii) Observe that every globally optimal solution of the problem (P1) is a globally optimal
solution of the problem (P2) and Λloc(P1) = Λloc(P2) in the case when the problem (P1)

is convex. However, note also that in the convex case one obviously has Λ(P) = Λloc(P) =
Λloc(x∗) for any x∗ ∈ Ω∗, and the localization principle holds trivially.
(iii) The interested reader can extend Proposition 8 to case of other augmented Lagrangians,
such as the ones from Examples 11, 13 and 16 with ε0 = +∞.

6 Applications of the localization principle for global saddle points

The main goal of this section is to demonstrate that the localization principle allows one to
easily prove the existence of global saddle points of augmented Lagrangian functions with
the use of sufficient optimality conditions. Below, we suppose that X = R

d . For the sake of
simplicity, in this section we also suppose that the set A is convex.

At first, we study the existence of local saddle points. Our aim is to establish a connection
between KKT-pairs of the problem (P) and local saddle points of the augmented Lagrangian
function L (x, λ, c).

Let (P) be a cone constrained minimax problem, i.e. let f (x) have the form f =
maxk∈M fk , where fk : Rd → R∪ {+∞} are given functions, and M = {1, . . . ,m}. Denote
by L(x, λ) = f (x) + 〈λ,G(x)〉 the standard Lagrangian function for the problem (P). For
any α = (α1, . . . , αm) ∈ R

m+ denote L0(x, λ, α) = ∑m
k=1 αk fk(x) + 〈λ,G(x)〉. Finally,

denote M(x) = {k ∈ M | fk(x) = f (x)}.
Suppose that the functions fk , k ∈ M , and G are twice differentiable at a point x∗ ∈ A.

Recall that a pair (x∗, λ∗) is called a KKT-pair of the problem (P) if G(x∗) ∈ K , λ∗ ∈ K ∗,
〈λ∗,G(x∗)〉 = 0 and

[
L(·, λ∗)

]′
(x∗, h) ≥ 0 ∀h ∈ TA(x∗).

Here [L(·, λ∗)]′(x∗, h) is the directional derivative of the function L(·, λ∗) at the point x∗ in
a direction h, and TA(x∗) is the contingent cone to A at x∗. Any λ∗ ∈ K ∗ such that (x∗, λ∗)
is a KKT-pair of (P) is called a Lagrange multiplier of (P) at x∗.
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One can easily verify that a pair (x∗, λ∗) is a KKT-pair of (P) iff G(x∗) ∈ K , λ∗ ∈ K ∗,
〈λ∗,G(x∗)〉 = 0, and there exists a vector α ∈ R

m+ (that is sometimes called a Danskin–
Demyanov multiplier) such that αk = 0 for any k /∈ M(x∗), and

m∑
k=1

αk = 1,
〈
Dx L0(x∗, λ∗, α), h

〉 ≥ 0 ∀h ∈ TA(x∗). (24)

The set of all such α is denoted by α(x∗, λ∗).
Let us also recall the second order necessary optimality conditions (cf. [94], Theorem 3.45

and Proposition 3.46). One says that a KKT-pair (x∗, λ∗) satisfies the second order necessary
optimality condition if

sup
α∈α(x∗,λ∗)

〈
h, D2

xx L0(x∗, λ∗, α)h
〉 − σ(λ∗,T (h)) ≥ 0

∀h ∈ C(x∗, λ∗) : [L(·, λ∗)]′(x∗, h) = 0. (25)

Here σ(λ∗, T (h)) = supy∈T (h)〈λ∗, y〉, T (h) = T 2
K (G(x∗), DG(x∗)h) is the outer second

order tangent set to the set K at the point G(x∗) in the direction DG(x∗)h (see [94, Defini-
tion 3.28]), and

C(x∗, λ∗) =
{
h ∈ TA(x∗)

∣∣∣ DG(x∗)h ∈ TK
(
G(x∗)

)
, 〈λ∗, DG(x∗)h〉 = 0

}
.

is the critical cone at the point x∗. Note that if the cone K is polyhedral, then σ(λ∗, T (h)) = 0
for any h ∈ C(x∗, λ∗), and optimality condition (25) is reduced to the standard optimality
condition. On the other hand, in the general case σ(λ∗, T (h)) ≤ 0 for all h ∈ C(x∗, λ∗),
which means that optimality condition (25) is weaker than the standard one. It should be
mentioned that the term σ(λ∗, T (h)), in a sense, represents the contribution of the curvature
of the cone K at the point G(x∗).

In order to study a connection between local saddle points and KKT-pairs, we need to
introduce an additional assumption on differentiability properties of the function Φ.

Definition 3 Let assumption (A11) hold true, and G be twice Fréchet differentiable at a
feasible point x∗ ∈ A. Let also λ∗ ∈ K ∗ be such that 〈λ∗,G(x∗)〉 = 0. One says that the
function Φ(G(x), λ, c) admits the second order expansion in x at (x∗, λ∗), if for all c > 0
there exists a positively homogeneous of degree 2 and function ωc : X → R such that for
any h in a neighbourhood of zero and c > 0 one has

Φ(G(x∗ + h), λ∗, c) − Φ(G(x∗), λ∗, c) = 〈μ∗, DG(x∗)h〉
+ 1

2
〈μ∗, D2G(x∗)(h, h)〉 + 1

2
ωc(h) + o(‖h‖2),

where o(‖h‖2)/‖h‖2 → 0 as h → 0, and

1. μ∗ = Φ0(λ∗) and Φ0(λ) = DyΦ(y, λ, c) (see (A11));
2. ωc(h) → −σ(μ∗, T (h)) as c → +∞ for any h ∈ C(x∗, μ∗);
3. if lim sup[h,c]→[h∗,+∞] ωc(h) is finite for some h∗ ∈ TA(x∗), then h∗ ∈ C(x∗, μ∗), and

lim sup[h,c]→[h∗,+∞] ωc(h) ≥ −σ(μ∗, T (h∗)).

Note that the function Φ(G(·), λ∗, c) need not be twice differentiable at x∗ to admit the
second order expansion in x at (x∗, λ∗).

Remark 15 Let us discuss when the assumption that the function Φ(G(x), λ, c) admits the
second order expansion in x at (x∗, λ∗) is satisfied for the previously analysed examples.
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This assumption is satisfied in Example 1, provided Y is finite dimensional, σ(y) = ‖y‖2/2,
(x∗, λ∗) is a KKT-pair, and the restriction of the function σ(λ∗, T 2

K (G(x∗), ·)) to its effective
domain is u.s.c. (see [54], formulae (3.23) and (3.25)). In this case one has

ωc(h) = min
z∈C (x∗,λ∗)

(
c
∥∥DG(x∗)h − z

∥∥2 − σ
(
λ∗, T 2

K (G(x∗), z)
))

,

where C (x∗, λ∗) = {z ∈ TK (G(x∗)) | 〈λ∗, z〉 = 0}. In particular, the assumption holds true
in Examples 10 and 12, if (x∗, λ∗) is a KKT-pair.

The assumption is satisfied in Example 2 with

ωc(h) =
∑

i∈I+(x∗,λ∗)
cφ′′(0)‖∇gi (x∗)h‖2 +

∑
i∈I0(x∗,λ∗)

cφ′′(0)max{0, 〈∇gi (x∗), h〉}2,

provided φ′′(0) > 0, where I+(x∗, λ∗) = {i ∈ I (x∗) | (λ∗)i > 0}, I0(x∗, λ∗) = {i ∈ I (x∗) |
(λ∗)i = 0} and I (x∗) = {i ∈ I | gi (x∗) = 0}. The assumption is satisfied in Example 3 iff the
strict complementarity (s.c.) condition holds true, and it is satisfied in Example 4 iffφ′′(t) > 0
for all t ∈ R. This assumptions is valid in Examples 5–7 iff φ′(0) �= 0, φ′′(0) > 0 and s.c.
condition holds true. The assumptions is valid in Example 8 iff φ′(b) �= 0, φ′′(b) > −φ′(b)2
and s.c. condition holds true, and it is always satisfied in Example 9.

The assumption is valid in Example 11, provided the constraint nondegeneracy and s.c.
conditions are satisfied ([48], Corollary 3.1 and Proposition 3.1). Similarly, this assumption
is satisfied in Examples 13 and 14, if s.c. condition holds true ([49], Theorem 5.1, and [53],
Proposition 4.2).

Finally, one can check that the function Φ(x, λ, c) from Example 16 never admits the
second order expansion in x due to the fact that in this example ωc(h) → 0 as c → +∞
for any h ∈ C(x∗, λ∗), while the sigma term σ(λ∗, T (h)) for semi-infinite programming
problems is not identically equal to zero in the general case (see [94], Sect. 5.4.3). Apparently,
the same conclusion can be drawn for Example 15.

Let us show that a local saddle point of the augmented Lagrangian L (x, λ, c) must be
a KKT-pair of the problem (P) that under some additional assumptions satisfies the second
order necessary optimality condition.

Proposition 9 Let (x∗, λ∗)bea local saddle point ofL (x, λ, c), and the functions fk , k ∈ M,
and G be differentiable at x∗. Suppose also that assumptions (A1)–(A3), (A8), (A9) and (A11)
are satisfied. Then (x∗, μ∗) is a KKT-pair of the problem (P), where μ∗ = Φ0(λ∗). If, in
addition, x∗ ∈ int A, the functions fk , k ∈ M, and G are twice continuously differentiable
at x∗, the function Φ(G(x), λ, c) admits the second order expansion in x at (x∗, λ∗), and
either m = 1 or Φ(G(·), λ∗, c) is twice continuously differentiable at x∗, then the KTT-pair
(x∗, μ∗) satisfies the second order necessary optimality condition.

Proof Proposition 1 implies that x∗ is a feasible point of the problem (P), i.e. G(x∗) ∈ K ,
while Propositions 2 and 3, and (A11) imply that μ∗ ∈ K ∗ and 〈μ∗,G(x∗)〉 = 0.

Taking into account (A11) one gets that the functionL (·, λ∗, c) is Hadamard directionally
differentiable at x∗, and [L (·, λ∗, c)]′(x∗, h) = [L(·, μ∗)]′(x∗, h) for all h ∈ X and c > 0.
Note that by the definition of local saddle point x∗ is a local minimizer ofL (·, λ∗, c) on the
set A for any c > c∗

loc(x∗, λ∗). Therefore

[L (·, λ∗, c)]′(x∗, h) = [L(·, μ∗)]′(x∗, h) ≥ 0 ∀h ∈ TA(x∗) (26)

for any c > c∗
loc(x∗, λ∗). Thus, (x∗, μ∗) is a KKT-pair of the problem (P).
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Let us now turn to second order necessary optimality conditions. Suppose, at first, that
m = 1. In this case, the function L(·, μ∗) is twice differentiable at x∗, and Dx L(x∗, μ∗) = 0
due to the fact that x∗ ∈ int A. Fix arbitrary c > c∗

loc(x∗, λ∗) and h ∈ C(x∗, μ∗), and choose
a sequence {γn} ⊂ (0, 1) such that γn → 0 as n → ∞. Since x∗ ∈ int A, then one can
suppose that xn := x∗ + γnh ∈ A for all n ∈ N.

As it was noted above, x∗ is a local minimizer of L (·, λ∗, c) on the set A. Therefore
L (xn, λ∗, c) ≥ L (x∗, λ∗, c) for any sufficiently large n. Hence taking into account (26),
the equality Dx L(x∗, μ∗) = 0, and the fact that Φ(G(x), λ, c) admits the second order
expansion in x at (x∗, λ∗) one obtains that

0 ≤ L (xn, λ∗, c) − L (x∗,λ∗, c)

= γ 2
n

2
〈h, D2

xx L(x∗, μ∗)h〉 + γ 2
n

2
ωc(h) + o(‖xn − x∗‖2)

for any n large enough. Dividing this inequality by γ 2
n , passing to the limit as n → +∞,

and then passing to the limit as c → ∞ with the use of Definition 3 one obtains that the
KKT-pair (x∗, μ∗) satisfies the second order necessary optimality condition.

Suppose, now, that Φ(G(·), λ∗, c) is twice continuously differentiable at x∗. Fix an arbi-
trary c > c∗

loc(x∗, λ∗). As it was pointed out above, x∗ is a point of local minimum of
L (·, λ∗, c). Consequently, the point (x∗, 0) ∈ R

d+1 is a locally optimal solution of the
problem

min
(x,z)

z subject to gk(x, z) ≤ 0, k ∈ M, (27)

where gk(x, z) = fk(x)+Φ(G(x), λ∗, c)− z. The Lagrangian function for this problem has
the form L(x, z, α) = z + ∑m

k=1 αkgk(x, z). Observe that the set of Lagrange multipliers of
problem (27) at the point (x∗, 0) coincides with α(x∗, μ∗).

From the fact that Φ(G(·), λ∗, c) is twice continuously differentiable at x∗ it follows that
the functions gk(x, z) are twice continuously differentiable at the point (x∗, 0). Furthermore,
the Mangasarian-Fromovitz constraint qualification obviously holds at this point. Therefore,
applying the second order necessary optimality conditions (see, e.g., [94], Theorem 3.45)
one can easily verify that for any h ∈ R

d such that 〈Dxgk(x∗, 0), h〉 ≤ 0 for all k ∈ M(x∗)
one has

sup
α∈α(x∗,μ∗)

〈h, DxxL(x∗, 0, α)h〉 ≥ 0.

Hence applying (A11) and Definition 3 one gets that

sup
α∈α(x∗,μ∗)

〈h, Dxx L0(x∗, μ∗, α)h〉 + ωc(h) ≥ 0 ∀c > c∗
loc(x∗, λ∗)

for any h ∈ R
d such that [L(·, μ∗)]′(x∗, h) = maxk∈M(x∗)〈Dxgk(x∗, 0), h〉 ≤ 0. Passing

to the limit as c → ∞, and taking into account Definition 3 one obtains that the KKT-pair
(x∗, μ∗) satisfies optimality condition (25). ��

Let us prove that under some additional assumptions any KKT-pair satisfying the second
order sufficient optimality condition is a local saddle point of the augmented Lagrangian
function L (x, λ, c).

Suppose that the functions fk , k ∈ M and G are twice Fréchet differentiable at a point
x∗ ∈ A. One says that a KKT-pair (x∗, λ∗) satisfies the second order sufficient optimality
condition (cf. [94], Theorem 3.86) if
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sup
α∈α(x∗,λ∗)

〈
h, D2

xx L0(x∗, λ∗, α)h
〉 − σ(λ∗, T (h)) > 0

∀h ∈ C(x∗, λ∗)\{0} : [L(·, λ∗)]′(x∗, h) = 0. (28)

The following result holds true.

Theorem 2 Let x∗ be a locally optimal solution of the problem (P), the functions fk , k ∈ M,
and G be twice Fréchet differentiable at x∗, and (x∗, μ∗) be a KKT-pair of the problem (P)

satisfying the second order sufficient optimality condition. Suppose also that assumptions
(A2), (A4), (A10) and (A11) hold true, and the function Φ(G(x), λ, c) admits the second
order expansion in x at (x∗, λ∗) for some λ∗ ∈ Φ−1

0 (μ∗). Then (x∗, λ∗) is a local saddle
point of L (x, λ, c).

Proof Note that since (x∗, μ∗) is a KKT-pair of the problem (P), then with the use of (A2),
(A10) and (A11) one can easily verify that for all c > 0 one has supλ∈Λ L (x∗, λ, c) ≤
L (x∗, λ∗, c).

Applying (A11) and Definition 3 one obtains that for any c > 0 there exists a neighbour-
hood Uc of x∗ such that for all x ∈ Uc one has∣∣∣L (x, λ∗, c) − L (x∗, λ∗, c)

− max
k∈M(x∗)

(
〈∇ fk(x∗), x − x∗〉 + 1

2

〈
x − x∗,∇2 fk(x∗)(x − x∗)

〉)

−
〈
μ∗, DG(x∗)(x − x∗) + 1

2
D2G(x∗)(x − x∗, x − x∗)

〉

− 1

2
ωc(x − x∗)

∣∣∣ <
1

2c
‖x − x∗‖2. (29)

Arguing by reductio ad absurdum, suppose that (x∗, λ∗) is not a local saddle point of
L (x, λ, c). Then for any n ∈ N there exists xn ∈ A ∩ Un such that L (xn, λ∗, n) <

L (x∗, λ∗, n). Then taking into account (29) one obtains that

0 > L (xn, λ∗, n) − L (x∗, λ∗, n) ≥ max
k∈M(x∗)

(
〈∇ fk(x∗), zn〉 + 1

2
〈zn,∇2 fk(x∗)zn〉

)

+
〈
μ∗, DG(x∗)zn + 1

2
D2G(x∗)(zn, zn)

〉
+ 1

2
ωn(zn) − 1

2n
‖zn‖2 (30)

for any n ∈ N, where zn = xn − x∗.
Recall that if α ∈ α(x∗, μ∗), then α ∈ R

m+, αk = 0 for all k /∈ M(x∗), and
∑m

k=1 αk = 1.
Therefore with the use of (30) one obtains that for any α ∈ α(x∗, μ∗) and n ∈ N one has

0 > L (xn, λ∗, n) − L (x∗,λ∗, n) ≥ 〈
Dx L0(x∗, μ∗, α), zn

〉

+ 1

2

〈
zn, D

2
xx L0(x∗, μ∗, α)zn

〉 + 1

2
ωn(zn) − 1

2n
‖zn‖2. (31)

Denote hn = zn/‖zn‖. Since X is a finite dimensional space, then without loss of generality
one can suppose that the sequence hn converges to a point h∗ with ‖h∗‖ = 1. Furthermore,
since xn ∈ A for all n ∈ N and A is convex, then h∗ ∈ TA(x∗) and zn ∈ TA(x∗) for all n ∈ N.

Let us check that [L(·, μ∗)]′(x∗, h∗) = 0. Indeed, since (x∗, μ∗) is a KKT-pair and
h∗ ∈ TA(x∗), then [L(·, μ∗)]′(x∗, h∗) ≥ 0. Suppose that [L(·, μ∗)]′(x∗, h∗) > 0. Then by
virtue of (A11) for any c > 0 one has

lim
n→∞

L (x∗ + γnhn, λ∗, c) − L (x∗, λ∗, c)
γn

= [L(·, μ∗)]′(x∗, h∗) > 0,
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where γn = ‖xn−x∗‖. Note that x∗+γnhn = xn . Therefore, in particular, there exists n0 ∈ N

such that L (xn, λ∗, 1) > L (x∗, λ∗, 1) for all n ≥ n0. Observe that L (x∗, λ∗, c) = f (x∗)
for all c > 0 due to (A10) and the fact that (x∗, μ∗) is a KKT-pair, while L (xn, λ∗, c) ≥
L (xn, λ∗, 1) for all c ≥ 1 by (A4). Consequently, L (xn, λ∗, n) > L (x∗, λ∗, n) for any
n ≥ n0, which contradicts the definition of xn . Thus, [L(·, μ∗)]′(x∗, h∗) = 0.

From (31) and the fact that (x∗, μ∗) is a KKT-pair (see (24)) it follows that

0 >
〈
zn, D

2
xx L0(x∗, μ∗, α)zn

〉 + ωn(zn) − 1

n
‖zn‖2.

Dividing this inequality by ‖zn‖2, passing to the limit superior as n → ∞ with the use of
Definition 3, and taking the supremum over all α ∈ α(x∗, μ∗) one obtains that

0 ≥ sup
α∈α(x∗,μ∗)

〈
h∗, D2

xx L0(x∗, μ∗, α)h∗
〉 − σ(μ∗, T (h∗)), h∗ ∈ C(x∗, μ∗),

which contradicts the fact that the KKT-pair (x∗, μ∗) satisfies the second order sufficient
optimality condition due to the fact that [L(·, μ∗)]′(x∗, h∗) = 0. ��
Remark 16 (i) Let us note that Φ0(λ) ≡ λ for most particular augmented Lagrangian func-
tions appearing in applications. Therefore, usually, there is a direct connection between local
saddle points and KKT-pairs corresponding to locally optimal solutions, i.e. if (x∗, λ∗) is a
local saddle point, then x∗ is a locally optimal solution, and (x∗, λ∗) is a KKT-pair satisfying
the second order necessary optimality condition (Proposition 9), and, conversely, if (x∗, λ∗)
is a KKT-pair satisfying the second order sufficient optimality condition, then (x∗, λ∗) is a
local saddle point (Theorem 2).
(ii) As it was noted above, existing augmented Lagrangian functions for semi-infinite pro-
gramming problems do not admit the second order expansion in x in the sense of Definition 3
due to the absence of the sigma term σ(λ∗, T (h∗)) in their second order expansions. There-
fore, the second order sufficient optimality condition (28) cannot be utilized in order to prove
the existence of a local saddle point in the case of semi-infinite programming problems.
More important, one can easily provide an example of a semi-infinite programming problem
such that there exists a KKT-pair of this problem satisfying (28), but which is not a local
saddle point of augmented Lagrangian functions from Example 16 and Example 15 with
σ(y) defined as in [44,47] (such KKT-pair must not satisfy optimality conditions without
the sigma term).
(iii) Theorem 2 unifies and sharpens many known results on existence of local saddle points
of augmented Lagrangian for mathematical programming problems (see, e.g., [95, Theo-
rem 3.3], [59, Theorem 2.8], [18, Theorem 2], [56, Theorem 2], [12, Theorem 3.2], [21,
Theorems 2.1, 2.3 and 2.4]), nonlinear second order cone programming problems ([34,
Theorem 2.3]) and nonlinear semidefinite programming problems ([53, Theorem 4.2]). Fur-
thermore, Theorem 2 also extends the aforementioned results to the case of minimax cone
constrained optimization problem. To the best of author’s knowledge, Theorem 2 contains
first simple sufficient conditions for the existence of local saddle points in the case of cone
constrained minimax problems. Let us also note that Theorem 2 provides a correct proof of
Theorem 4 in [62].

In the theorem above, we demonstrated that the existence of a local saddle point of the
augmented Lagrangian function L (x, λ, c) can be easily proved via second order sufficient
optimality conditions. Let us show that one can utilize first order sufficient optimality con-
ditions for constrained minimax problems [63–68] in order to obtain a similar result.
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Suppose that the functions fk , k ∈ M and G are differentiable at a point x∗ ∈ A, and let
(x∗, λ∗) be a KKT-pair of the problem (P). Then [L(·, λ∗)]′(x∗, h) ≥ 0 for any h ∈ TA(x∗).
The natural “no gap” first order sufficient optimality condition for the problem (P) has the
form

[L(·, λ∗)]′(x∗, h) > 0 ∀h ∈ C(x∗, λ∗)\{0} (32)

(cf. [94] Sect. 3.1.4). The main drawbacks of this sufficient optimality condition consist in
the facts that this condition is difficult to verify, and it rarely holds true for smooth problems.
However, sufficient optimality condition (32) often holds for constrained minimax problems,
and, furthermore, it can be reformulated in amore convenient form of the so-called alternance
conditions that are independent of the Lagrange multiplier λ∗.

Let us introduce alternance optimality conditions for the problem (P). Let Z ⊂ R
d be a

set consisting of d linearly independent vectors. Denote by NA(x∗) = {z ∈ R
d | 〈z, h〉 ≤

0 ∀h ∈ TA(x∗)} the normal cone to A at x∗. For any linear subspace Y0 ⊂ Y denote by
Y⊥
0 = {y∗ ∈ Y ∗ | 〈y∗, y〉 = 0∀y ∈ Y0} the annihilator of Y0. For the sake of correctness, for

any linear operatorU : Rd → Y denote by [U ]∗ the composition of the natural isomorphism
between (Rd)∗ and Rd and the adjoint operator U∗ : Y ∗ → (Rd)∗.

One says that a p-point alternance exists at x∗ with p ∈ {1, . . . , d + 1}, if there exist
k0 ∈ {1, . . . , p}, i0 ∈ {k0 + 1, . . . , p}, vectors

V1, . . . , Vk0 ∈
{
∇ fk(x∗)

∣∣∣ k ∈ M(x∗)
}
,

Vk0+1, . . . , Vi0 ∈ [
DG(x∗)

]∗(
K ∗ ∩ span(G(x∗))⊥

)
, Vi0+1, . . . , Vp ∈ NA(x∗),

and vectors Vp+1, . . . , Vd+1 ∈ Z such that the dth-order determinants �s of the matrices
composed of the columns V1, . . . , Vs−1, Vs+1, . . . Vd+1 satisfy the following conditions

�s �= 0, s ∈ {1, . . . , p}, sign�s = − sign�s+1, s ∈ {1, . . . , p − 1},
�s = 0, s ∈ {p + 1, . . . d + 1}.

One can verify that a p-point alternance exists at x∗ for some p ∈ {1, . . . , d + 1} iff there
exists λ∗ ∈ K ∗ such that (x∗, λ∗) is a KKT-pair of the problem (P). Moreover, the existence
of a complete (i.e. d + 1-point) alternance is a first order sufficient optimality condition for
the problem (P) (see [63–68] for more details). Note that in the case of complete alternance
one has

�s �= 0 s ∈ {1, . . . , d + 1}, sign�s = − sign�s+1 s ∈ {1, . . . , d},
i.e. the determinants �s , s ∈ {1, . . . , d + 1} are not equal to zero and have alternating signs,
which explains the term alternance optimality conditions. Finally, it should bementioned that
usually alternance optimality conditions can only be applied in the case when the cardinality
of M(x∗) is greater than 1, i.e. when the objective function f (x) is nonsmooth at x∗.

Remark 17 Let us point out that there is a close connection between standard and alternance
optimality conditions for minimax optimization problems. In particular, if one considers the
unconstrained problem (i.e. G(x) ≡ 0, K = {0} and A = R

d ), then the standard first order
necessary optimality condition 0 ∈ ∂ f (x∗) = {∇ fk(x∗) | k ∈ M(x∗)} is equivalent to the
existence of a p-point alternance at x∗ for some p ∈ {1, . . . , d + 1}. Similarly, the natural
first order sufficient optimality condition 0 ∈ int ∂ f (x∗), that is equivalent to the first order
growth condition at x∗ (i.e. there exists γ > 0 such that f (x) ≥ f (x∗)+γ ‖x− x∗‖ for any x
in a neighbourhood of x∗), is also equivalent to the existence of a complete alternance. Let us
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also note that the existence of complete alternance is a natural assumption for many particular
minimax problems. For more details on alternance optimality conditions see [63–68].

Our aim is to prove that the existence of a complete alternance at a locally optimal solu-
tion of the problem (P) guarantees the existence of a local saddle point of the augmented
Lagrangian L (x, λ, c).

Theorem 3 Let x∗ be a locally optimal solution of the problem (P), the functions fk , k ∈ M
and G, be twice Fréchet differentiable at x∗, and let a complete alternance exists at x∗.
Suppose also that assumptions (A2), (A4), (A10) and (A11) are satisfied, and the function
Φ(G(x), λ, c) admits the second order expansion in x at (x∗, λ) for any λ ∈ K ∗ such that
〈λ,G(x∗)〉 = 0. Then there exists λ∗ ∈ K ∗ such that (x∗, λ∗) is a local saddle point of the
augmented Lagrangian L (x, λ, c). Furthermore, under the assumptions of the theorem for
any KKT-pair (x∗, μ∗) of the problem (P), and for all λ∗ ∈ Φ−1

0 (μ∗) the pair (x∗, λ∗) is a
local saddle point of L (x, λ, c).

Proof Let us verify, at first, that there exists μ∗ ∈ K ∗ such that (x∗, μ∗) is a KKT-pair
of the problem (P). Indeed, let k0 ∈ {1, . . . , d + 1}, i0 ∈ {k0 + 1, . . . , d + 1} and vectors
V1, . . . , Vd+1 ∈ R

d be from the definition of complete alternance. Applying Cramer’s rule to
the system

∑d+1
s=2 βsVs = −V1 one obtains that there exist unique βs > 0, s ∈ {2, . . . , d+1}

such that

V1 +
d+1∑
s=2

βsVs = 0, βs = (−1)s−1 �s

�1
> 0 s ∈ {2, . . . , d + 1}. (33)

Denote β̂ = 1 + β2 + . . . + βk0 , γ1 = 1/β̂, and γs = βs/β̂ > 0, s ∈ {2, . . . , d + 1}. Define
α = (α1, . . . , αm) ∈ R

m+ as follows

αk =
{

γs, if k ∈ M(x∗) and ∃s ∈ {1, . . . , k0} : Vs = ∇ fk(x∗),
0, otherwise.

Then one can easily see that α1 + . . . + αm = 1, αk = 0 if k /∈ M(x∗), and
k0∑
s=1

γi Vi =
m∑

k=1

αk∇ fk(x∗).

Denote W = ∑i0
k0+1 γsVs . Since K ∗ ∩ span(G(x∗))⊥ is a convex cone, then W ∈

[DG(x∗)]∗(K ∗ ∩ span(G(x∗))⊥). Hence W = [DG(x∗)]∗μ∗ for some μ∗ ∈ K ∗ such
that 〈μ∗,G(x∗)〉 = 0 (in the case k0 = d + 1 one has W = 0 and μ∗ = 0). Therefore for
any h ∈ R

d one has

〈
Dx L0(x∗, μ∗, α), h

〉 =
〈 i0∑
s=1

γi Vi , h
〉
= −γs

d+1∑
s=i0+1

〈Vs, h〉.

By definition, Vs ∈ NA(x∗) for any s ∈ {i0 + 1, . . . , d + 1}. Consequently,
〈
Dx L0(x∗, μ∗, α), h

〉 ≥ 0 ∀h ∈ TA(x∗)

(note that in the case k0 = d + 1 or i0 = d + 1 one has Dx L0(x∗, μ∗, α) = 0, and
the above inequality holds trivially). Thus, (x∗, μ∗) is a KKT-pair of the problem (P) and
α ∈ α(x∗, μ∗).
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Let, now, μ∗ ∈ K ∗ be such that (x∗, μ∗) is a KKT-pair of the problem (P), and
λ∗ ∈ Φ−1

0 (μ∗) be arbitrary. With the use of (A2), (A10) and (A11) one obtains that
supλ∈Λ L (x∗, λ, c) ≤ L (x∗, λ∗, c) for all c > 0.

Applying (A11) and Definition 3 one gets that for any c > 0 there exists a neighbourhood
Uc of x∗ such that for any x ∈ Uc one has∣∣∣L (x, λ∗, c) − L (x∗, λ∗, c)

− max
k∈M(x∗)

(
〈∇ fk(x∗), x − x∗〉 + 1

2

〈
x − x∗,∇2 fk(x∗)(x − x∗)

〉)

−〈
μ∗, DG(x∗)(x − x∗)

〉 − 1

2

〈
μ∗, D2G(x∗)(x − x∗, x − x∗)

〉

−1

2
ωc(x − x∗)

∣∣∣ <
1

2c
‖x − x∗‖2. (34)

Recall that our aim is to show that (x∗, λ∗) is a local saddle point of L (x, λ, c). Arguing
by reductio ad absurdum, suppose that this claim is false. Then for any n ∈ N there exists
xn ∈ A ∩ Un such that L (xn, λ∗, n) < L (x∗, λ∗, n). Taking into account (34) one obtains
that for any n ∈ N the following inequality holds true

0 > max
k∈M(x∗)

(
〈∇ fk(x∗), zn〉+ 1

2

〈
zn,∇2 fk(x∗)zn

〉) + 〈
μ∗, DG(x∗)zn

〉

+1

2

〈
μ∗, D2G(x∗)(zn, zn)

〉 + 1

2
ωn(zn) − 1

2n
‖zn‖2, (35)

where zn = xn − x∗. For any n ∈ N denote hn = zn/‖zn‖. Without loss of generality, one
can suppose that the sequence {hn} converges to a vector h∗ ∈ TA(x∗) such that ‖h∗‖ = 1.

Since A is convex, then zn ∈ TA(x∗) for all n ∈ N. Hence taking into account (35) and
the fact that (x∗, μ∗) is a KKT-pair one obtains that

0 > 〈zn, D2
xx L0(x∗, μ∗, α)zn〉 + ωn(zn) − 1

n
‖zn‖2

for any n ∈ N and α ∈ α(x∗, μ∗). Dividing this inequality by ‖zn‖2 and passing to the limit
superior as n → ∞ with the use of Definition 3 one gets that h∗ ∈ C(x∗, μ∗), which implies
that 〈μ∗, DG(x∗)h∗〉 = 0 due to the definition of the cone C(x∗, μ∗).

Dividing (35) by ‖zn‖, passing to the limit superior as n → ∞with the use of Definition 3,
and taking into account the facts that ωn(zn)/‖zn‖ = ωn(zn/

√‖zn‖), zn/√‖zn‖ → 0 as
n → ∞, and σ(μ∗, T (0)) = 0 one obtains

0 ≥ max
k∈M(x∗)

〈∇ fk(x∗), h∗〉. (36)

Here we used the equality 〈μ∗, DG(x∗)h∗〉 = 0.
Introduce the matrix V = (V1, . . . , Vd+1), and define β = (1, β2, . . . , βd+1)

T , where
the vectors Vs are from the definition of complete alternance, and βs are from (33). The first
equality in (33) implies that

〈Vβ, h∗〉 = 〈β, V T h∗〉 = 〈V1, h∗〉 +
d+1∑
s=2

βs〈Vs, h∗〉 = 0. (37)

As it was shown above, h∗ ∈ C(x∗, μ∗). Therefore h∗ ∈ TA(x∗) and 〈Vs, h∗〉 ≤ 0 for
any s ∈ {i0 + 1, . . . , d + 1}. Furthermore, since h∗ ∈ C(x∗, μ∗) and K is convex, then
DG(x∗)h∗ ∈ TK (G(x∗)) = cl cone(K − G(x∗)) and 〈y∗, DG(x∗)h∗〉 ≤ 0 for any y∗ ∈

123

Author's personal copy



J Glob Optim

K ∗ ∩ span(G(x∗))⊥, which yields that 〈Vs, h∗〉 ≤ 0 for any s ∈ {k0 + 1, . . . , i0}. Thus,
〈Vs, h∗〉 ≤ 0 for all s ∈ {k0 + 1, . . . , d + 1}.

Thedefinitionof complete alternance implies that thematrixV has full rank.Consequently,
V T h∗ �= 0 due to the fact that h∗ �= 0. Hence taking into account (37) and the fact that βs > 0
for all s ∈ {2, . . . , d+1} one obtains that there exists s0 ∈ {1, . . . , k0} such that 〈Vs0 , h∗〉 > 0.
Recall that Vs ∈ {∇ fk(x∗) | k ∈ M(x∗)} for any s ∈ {1, . . . , k0}. Therefore there exists
k ∈ M(x∗) such that Vs0 = ∇ fk(x∗). Hence one has maxk∈M(x∗)〈∇ fk(x∗), h∗〉 > 0, which
contradicts (36). Thus, (x∗, λ∗) is a local saddle point of L (x, λ, c). ��

Now, we can easily obtain simple necessary and sufficient conditions for the existence of a
global saddle point of the augmented LagrangianL (x, λ, c) with the use of the localization
principle.

Recall thatΩ∗ is the set of globally optimal solutions of the problem (P). By Proposition 9
any local saddle point (x∗, λ∗) of the augmented Lagrangian function L (x, λ, c) must be
a KKT-pair of the problem (P). Hence taking into account Corollary 2 one obtains that for
the existence of a global saddle point ofL (x, λ, c) it is necessary that there exists λ∗ ∈ K ∗
such that (x∗, λ∗) is a KKT-pair of (P) for any x∗ ∈ Ω∗. Therefore, if there are at least two
globally optimal solutions of the problem (P) that have disjoint sets of Lagrange multipliers,
then there are no global saddle points of the augmented Lagrangian L (x, λ, c).

Under the additional assumption that the first or the second order sufficient optimality
conditions hold at every x∗ ∈ Ω∗, one can demonstrate that the existence of λ∗ ∈ K ∗ such
that (x∗, λ∗) is a KKT-pair of (P) for any x∗ ∈ Ω∗ is also sufficient for the existence of a
global saddle point of L (x, λ, c).

Theorem 4 Let A be closed, G be continuous on A, and L (·, λ, c) be l.s.c. on A for any
λ ∈ Λ and c > 0. Suppose that assumptions (A1)–(A4), (A6), (A10) and (A11) are satisfied.
Let also the following assumptions be valid:

1. fk , k ∈ M and G are twice Fréchet differentiable at every point x∗ ∈ Ω∗;
2. there existsμ∗ ∈ Λ such that (x∗, μ∗) is a KKT-pair of the problem (P) for any x∗ ∈ Ω∗;
3. for any x∗ ∈ Ω∗ either a complete alternance exists at x∗ or the KKT-pair (x∗, μ∗)

satisfies the second order sufficient optimality condition;
4. the functionΦ(G(x), λ, c) admits the second order expansion in x at every point (x∗, λ∗)

such that x∗ ∈ Ω∗ and λ∗ ∈ Φ−1
0 (μ∗).

Then for any λ∗ ∈ Φ−1
0 (μ∗) one has λ∗ ∈ Λ(P) iff there exists c0 > 0 such that the set

S(λ∗, c0) = {x ∈ A | L (x, λ∗, c0) < f∗} is either bounded or empty.
Proof With the use of Theorems 2 and 3 one obtains that λ∗ ∈ Λloc(P). Then applying the
localization principle we arrive at the required result. ��

In the case when a complete alternance exists at every globally optimal solution of (P)

one can obtain a stronger result.

Theorem 5 Let A be closed, G be continuous on A,L (·, λ, c) be l.s.c. on A for any λ ∈ Λ

and c > 0. Suppose that assumptions (A1)–(A4), (A6) and (A8)–(A11) are satisfied. Let also
the following assumptions be valid:

1. the functions fk , k ∈ M, and G are twice Fréchet differentiable at every x∗ ∈ Ω∗;
2. the function Φ(G(x), λ, c) admits the second order expansion in x at every point

(x∗, λ∗) ∈ Ω∗ × K ∗ such that 〈λ∗,G(x∗)〉 = 0;
3. a complete alternance exists at every x∗ ∈ Ω∗.
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Then a global saddle point of L (x, λ, c) exists if and only if there exist μ∗ ∈ K ∗, λ∗ ∈
Φ−1

0 (μ∗) and c0 > 0 such that for any x∗ ∈ Ω∗ the pair (x∗, μ∗) is a KKT-pair of (P), and
the set S(λ∗, c0) is either bounded or empty. Furthermore,Λ(P) consists of all those λ∗ ∈ Λ

which satisfy the above assumptions.

Proof Let (x∗, λ∗) be a global saddle point of L (x, λ, c), and μ∗ = Φ0(λ∗). Then for any
z∗ ∈ Ω∗ the pair (z∗, μ∗) is a KKT-pair of (P) by Corollary 2 and Proposition 9. Moreover,
the set S(λ∗, c0) is empty for any c0 ≥ c∗(x∗, λ∗).

Let, now, μ∗ ∈ K ∗ and λ∗ ∈ Φ−1
0 (μ∗) be such that for any x∗ ∈ Ω∗ the pair (x∗, μ∗)

is a KKT-pair of (P), and there exists c0 > 0 for which the set S(λ∗, c0) is either bounded
or empty. Since a complete alternance exists at every x∗ ∈ Ω∗, then λ∗ ∈ Λloc(P) by
Theorem 3. Then applying the localization principle one obtains the desired result. ��
Remark 18 To the best of author’s knowledge, Theorems 4 and 5 are the first results on the
existence of global saddle points of augmented Lagrangian functions for cone constrained
minimax problems.

Let us demonstrate how one can apply the theorems above to semi-infinite and generalized
semi-infinite min-max problems.

Example 19 Consider the following semi-infinite programming problem

min f (x) subject to g(x, t) ≤ 0 ∀t ∈ T, (38)

where T is a compact metric space. Suppose that the functions f (·) and g(·, t), t ∈ T , are
twice continuously differentiable, and the functions g(x, t), ∇x g(x, t) and ∇2

xx g(x, t) are
continuous (jointly in x and t).

Let x∗ be a globally optimal solution of problem (38), and (x∗, λ∗) be a KKT-pair of this
problem. Then, without loss of generality (see, e.g., [94], Lemma 5.110), one can suppose
that the support of the measure λ∗ consists of at most d points, i.e. λ∗ has the form λ∗ =∑l

i=1 λiδ(ti ) for some l ≤ d , λi ≥ 0 and ti ∈ T , where λi g(x, ti ) = 0 for all i ∈ I :=
{1, . . . , l}, and δ(ti ) denotes the Dirac measure of mass one at the point ti . Denote λ =
(λ1, . . . , λm).

Let, finally, Φ(y, λ, c) be defined as in Example 16. Then

L (x, λ∗, c) = f (x) + 1

c

l∑
i=1

λiφ(cg(x, ti )) = L(x, λ, c) ∀x ∈ R
d , (39)

where L(x, λ, c) is the exponential penalty function (Example 5) for the discretized problem

min f (x) subject to gi (x) = g(x, ti ) ≤ 0 ∀i ∈ I. (40)

With the use of (39) one can easily check that (x∗, λ∗) is a global saddle point ofL (x, λ, c)
iff (x∗, λ) is a global saddle point ofL(x, λ, c). Therefore applying Proposition 1 one obtains
that for the pair (x∗, λ∗) to be a global saddle point of L (x, λ, c) it is necesssary that x∗ is
a globally optimal solution of the discretized problem (40).

One can apply Theorem 4 in order to obtain necessary and sufficient conditions for the
existence of a global saddle point of the exponential penalty function L(x, λ, c) for the
discretized problem (40), which, in turn, can be used as necessary and sufficient conditions
for the existence of a global saddle point of the augmented LagrangianL (x, λ, c). However,
this approach forces one to use sufficient optimality conditions for the discretized problem
(40) that are unnatural for semi-infinite programming problems due to the absence of the
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sigma term σ(λ∗, T (h)) (see [94] Sect. 5.4.3). Let us note that this drawback is common
for all existing results on global saddle points of augmented Lagrangian functions for semi-
infinite programming problems (cf. [44,47]).

Remark 19 It should be noted that all existing augmented Lagrangian functions for semi-
infinite programming problems are constructed as a straightforward generalization of
corresponding augmented Lagrangian functions for mathematical programming problems.
This approach leads to unsatisfactory results, since one has to utilize unnatural optimality
conditions in order to prove the existence of global or local saddle points of augmented
Lagrangian functions for semi-infinite programming problems. Clearly, a completely differ-
ent approach to the construction of augmented Lagrangian functions for these problems is
needed. The search of such an approach is a challenging topic of future research.

Example 20 Consider the following generalized semi-infinite min-max problem

min
x∈Rd

max
z∈Z(x)

f (x, z), Z(x) = {
z ∈ A

∣∣ G(x, z) ∈ K
}
, (41)

where A ⊂ R
l is a nonempty set, while f : Rd+l → R and G : Rd+l → Y are given

functions. Denote f0(x) = maxz∈Z(x) f (x, z), Z∗(x) = {z ∈ Z(x) | f0(x) = f (x, z)}, and
introduce the following lower level cone constrained optimization problem

min
z∈Rl

(− fx (z)) subject to Gx (z) ∈ K , z ∈ A, (42)

where fx (z) = f (x, z) and Gx (z) = G(x, z). Clearly, the set of globally optimal solutions
of this problem coincide with Z∗(x).

Being inspired by the ideas of [96], define

h(x, λ, c) = sup
z∈A

(
f (x, z) − Φ(G(x, z), λ, c)

)
∀x ∈ R

d , λ ∈ Y ∗, c > 0,

Let Lx (z, λ, c) be the augmented Lagrangian function for problem (42). Then h(x, λ, c) =
− inf z∈A Lx (z, λ, c), i.e. h(x, λ, c) is the negative of the objective function of the augmented
dual problemof problem (42). Therefore applyingProposition 4 one obtains that the following
result holds true.

Proposition 10 Suppose that assumption (A2) holds true. Then

h(x, λ, c) ≥ f0(x) ∀x ∈ R
d , λ ∈ Λ, c > 0.

Suppose, additionally, that assumptions (A1)–(A4) hold true and Z∗(x) �= ∅. Then
h(x, λ, c) = f0(x) for some λ ∈ Λ and c > 0 iff there exists z ∈ Z∗(x) such that (z, λ) is a
global saddle point of Lx (z, λ, c), and c ≥ c∗(z, λ).

The proposition above motivates us to consider the following auxiliary minimax problem

min
(x,λ,c)

h(x, λ, c) subject to λ ∈ Λ, c > 0. (43)

Let x∗ be a locally optimal solution of problems (41) such that f0(x) > f0(x∗) for any
x ∈ U\{x∗}, where U is a neighbourhood of x∗. From Proposition 10 it follows that if
h(x∗, λ∗, c∗) = f0(x∗) for some λ∗ ∈ Λ and c∗ > 0, then (x∗, λ∗, c∗) is a locally optimal
solution of problem (43) such that h(x, λ, c) > h(x∗, λ∗, c∗) for any x ∈ U\{x∗}, λ ∈ Λ and
c > 0. With the use of this result one can easily obtain necessary and sufficient conditions
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for the sets of all locally (and hence globally) optimal solutions of problems (41) and (43) to
coincide. Here, we only provide such conditions for the case of globally optimal solutions.

We say that problems (41) and (43) are equivalent if their optimal values coincide, and x∗
is a globally optimal solution of problem (41) iff (x∗, λ∗, c∗) with some λ∗ ∈ Λ and c∗ > 0
is a globally optimal solution of problem (43). Applying Proposition 10 one can easily obtain
the following result.

Proposition 11 Suppose that assumptions (A1)–(A4) hold true, and Z∗(x∗) �= ∅ for any
globally optimal solution x∗ of problem (41). Then problems (41) and (43) are equivalent iff
for any globally optimal solution x∗ of problem (41) there exists a global saddle point of the
augmented Lagrangian Lx∗(z, λ, c).

With the use of the proposition above and Theorems 4 and 5 (or the localization principle)
one can obtain simple necessary and sufficient conditions for the equivalence of problems
(41) and (43) in terms of sufficient optimality conditions for lower level problem (42).
The interested reader can easily formulate these conditions, which unify and significantly
generalize some existing results ([96, Theorem 3.1], [57, Theorem 4.5]).

7 Exact augmented Lagrangian functions

Being inspired by the ideas of Di Pillo, Grippo and Lucidi [69–76] (see also [77–85]), in this
section, we present a general method for constructing exact augmented Lagrangian functions,
and obtain simple sufficient (and necessary) conditions for the exactness of these functions.
In particular, we demonstrate that one can easily extend the localization principle to the case
of exact augmented Lagrangian functions, thus showing that the study of the exactness of
an augmented Lagrangian function can be easily reduced to a local analysis of sufficient
optimality conditions.

Introduce the penalized augmented Lagrangian function

Le(x, λ, c) = f (x) + Φ(G(x), λ, c) + η(x, λ) = L (x, λ, c) + η(x, λ),

where η : X × Y ∗ → [0,+∞] is a given non-negative function (the subscript “e” stands for
“exact”). The function η must be defined in such a way that it penalizes the violation of the
KKT optimality conditions. However, at first, we suppose that η is an arbitrary non-negative
function.

Our aim is to show that under some additional assumptions the penalized augmented
LagrangianLe(x, λ, c) is exact, i.e. that all points of global minimum (x∗, λ∗) ofLe(x, λ, c)
in (x, λ) on the set A × Λ are exactly KKT-pairs of the problem (P) corresponding to
globally optimal solutions of this problem.Note that unlike the case of augmentedLagrangian
functions studied in the previous sections, one must simultaneously minimize the penalized
augmented Lagrangian Le(x, λ, c) both in primal variable x and in dual variable λ in order
to recover optimal solutions of the original problem.

We start by studying the behaviour of global minimizers of Le(x, λ, c) in (x, λ) as the
penalty parameter c increases unboundedly. To this end, we need to introduce a stronger
version of assumption (A6).

(A6)s ∀y /∈ K ∀λ ∈ Λ ∀c0 > 0 ∃r > 0 such that

lim
c→∞ inf

{
Φ(z, μ, c) − Φ(z, μ, c0)

∣∣∣
z ∈ B(y, r), μ ∈ B(λ, r) ∩ Λ : Φ(z, μ, c0) < +∞

}
= +∞;
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One can verify that this assumption is satisfied in Example 1, provided σ has a valley at zero,
and hence it is valid in Examples 10, 12 and 15. This assumption is also valid in Examples 2–4,
6, 7, 9 and 14 in the general case, and in Examples 11, 13 and 16 in the case when ε0 < +∞.
Finally, assumption (A6)s (as well as (A6)) is never satisfied in Examples 5 and 8.

The following result extends Lemma 1 to the case of the penalized augmented Lagrangian
function Le(x, λ, c).

Lemma 2 Let A be closed, G be continuous on A, Le(·, ·, c) be l.s.c. on A × Λ for all
c > 0, andLe(·, ·, c0) be bounded from below on A×Λ for some c0 > 0. Suppose also that
assumptions (A2), (A4), (A6)s and (A12) are satisfied, and there exists (x, λ) ∈ Ω∗ ×Λ such
that η(x, λ) = 0. Let, finally, a pair (x∗, λ∗) be a cluster point of a sequence {(xn, λn)} ⊂
A × Λ such that

Le(xn, λn, cn) ≤ inf
(x,λ)∈A×Λ

Le(x, λ, cn) + εn ∀n ∈ N,

where {cn} ⊂ [c0,+∞) is an increasing unbounded sequence, and the sequence {εn} ⊂
(0,+∞) is such that εn → 0 as n → ∞. Then x∗ is a globally optimal solution of (P) and
η(x∗, λ∗) = 0.

Proof Replacing, if necessary, the sequences {(xn, λn)}, {cn} and {εn} with their subse-
quences, one can suppose that (x∗, λ∗) is a limit point of the sequence {(xn, λn)}. Furthermore,
note that (x∗, λ∗) ∈ A × Λ by virtue of the fact that A and Λ are closed.

Let us verify, at first, that x∗ is a feasible point of the problem (P). Indeed, with the use
of (A2) one gets thatLe(x, λ, c) ≤ f (x) < +∞ for all c > 0. Therefore for any n ∈ N one
has

Le(xn, λn, cn) ≤ inf
(x,λ)∈A×Λ

Le(x, λ, cn) + εn ≤ f (x) + εn . (44)

Hence, in particular, f (xn) < +∞ andΦ(G(xn), λn, cn) < +∞ for all n ∈ N. Furthermore,
one has

lim sup
n→∞

Le(xn, λn, cn) ≤ f (x) < +∞. (45)

Arguing by reductio ad absurdum, suppose that G(x∗) /∈ K . Then by (A6)s there exists
r > 0 such that

lim
c→∞ inf

{
Φ(y, y∗, c) − Φ(y, y∗, c0)

∣∣∣
y ∈ B(G(x∗), r), y∗ ∈ B(λ∗, r) ∩ Λ : Φ(y, y∗, c0) < +∞

}
= +∞. (46)

Since G is continuous on A, and (x∗, λ∗) is a limit point of the sequence {(xn, λn)}, then
there exists n0 ∈ N such that G(xn) ∈ B(G(x∗), r) and λn ∈ B(λ∗, r) for all n ≥ n0.
Consequently, for any n ≥ n0 one has

Le(xn, λn, cn) = Le(xn, λn, c0) + Φ(G(xn), λn, cn) − Φ(G(xn), λn, c0)

≥ γ + inf
{
Φ(y, y∗, c) − Φ(y, y∗, c0)

∣∣∣
y ∈ B(G(x∗), r), y∗ ∈ B(λ∗, r) ∩ Λ : Φ(y, y∗, c0) < +∞

}
,

where γ = inf{Le(x, λ, c0) | (x, λ) ∈ A × Λ} > −∞. Consequently, applying (46) one
obtains that Le(xn, λn, cn) → +∞ as n → ∞, which contradicts (45). Thus, G(x∗) ∈ K .

Observe that from (A4) and (44) it follows that for any c > 0 there exists n0 ∈ N such that
Le(xn, λn, c) ≤ f (x)+εn for all n ≥ n0. Passing to the limit inferior as n → ∞, and taking
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into account the fact thatLe(x, λ, c) is l.s.c. in (x, λ) one obtains thatLe(x∗, λ∗, c) ≤ f (x)
for all c > 0. Since G(x∗) ∈ K and λ∗ ∈ Λ, then passing to the limit as c → ∞ with the
use of (A12) one gets that f (x∗)+ η(x∗, λ∗) ≤ f (x). Therefore x∗ ∈ Ω∗ and η(x∗, λ∗) = 0
due to the fact that x∗ is feasible, x ∈ Ω∗, and η is a non-negative function. ��

By analogy with the theory of exact penalty functions [60], let us introduce the definition
of locally and globally exact augmented Lagrangian functions.

Definition 4 Let x∗ be a locally optimal solution of (P), andλ∗ ∈ Λ be such that η(x∗, λ∗) =
0. The penalized augmented Lagrangian function Le(x, λ, c) is called (locally) exact at
(x∗, λ∗) (with respect to the function η) if there exist c0 > 0 and a neighbourhood U of
(x∗, λ∗) such that

Le(x, λ, c) ≥ Le(x∗, λ∗, c) ∀(x, λ) ∈ U ∩ (A × Λ) ∀c ≥ c0.

Note that if assumption (A4) holds true, then Le(x, λ, c) is locally exact at (x∗, λ∗) iff
there exists c0 > 0 such that the pair (x∗, λ∗) is a point of local minimum of Le(·, ·, c0) on
the set A × Λ.

Definition 5 The penalized augmented Lagrangian functionLe(x, λ, c) is called (globally)
exact (with respect to the functionη) if there exists c0 > 0 such that for any c ≥ c0 the function
Le(·, ·, c) attains a global minimum on A×Λ, and (x∗, λ∗) ∈ argmin(x,λ)∈A×Λ Le(x, λ, c)
if and only if x∗ is a globally optimal solution of (P) and η(x∗, λ∗) = 0.

Thus, if the augmented Lagrangian Le(x, λ, c) is globally exact, then the problem of
minimizingLe(x, λ, c) in (x, λ) over the set A×Λ is equivalent to the original problem (P)

for any sufficiently large value of the penalty parameter c, since in this case points of global
minimum of Le(x, λ, c) on A × Λ are exactly those pairs (x∗, λ∗) for which x∗ ∈ Ω∗ and
η(x∗, λ∗) = 0. In particular, in the case when η(x, λ) = 0 iff (x, λ) is a KKT-pair, points
of global minimum of Le(x, λ, c) on A × Λ coincide with KKT-pairs of the problem (P)

corresponding to globally optimal solutions of this problem.
Our aim is to show that (under some additional assumptions) the augmented Lagrangian

Le(x, λ, c) is exact if and only if it is locally exact at every pair (x∗, λ∗) such that x∗ ∈ Ω∗ and
η(x∗, λ∗) = 0. In other words, our aim is to prove the validity of the localization principle for
the penalized augmented Lagrangian functionLe(x, λ, c). As in the case of the localization
principle for global saddle points, the localization principle for the penalized augmented
Lagrangian Le(x, λ, c) allows one to study a local behaviour of Le(x, λ, c) near globally
optimal solutions of the problem (P) in order to prove the global exactness of this function.

We need to introduce a stronger version of assumption (A4). We say that a non-decreasing
function h : (0,+∞) → R ∪ {+∞} is strictly increasing at a point t > 0 such that h(t) <

+∞, if h(τ ) > h(t) for any τ > t .

(A4)s assumption (A4) holds true, and ∀y ∈ Y ∀λ ∈ Λ ∀c > 0 such that Φ(y, λ, c) < +∞
either the function Φ(y, λ, ·) is strictly increasing at c or Φ(y, λ, c) = 0 and y ∈ K .

Note that this assumption is satisfied in Example 1, if the infimum in the definition of
Φ(y, λ, c) is attained for all y ∈ Y , λ ∈ Λ and c > 0. Hence, in particular, assumption
(A4)s is satisfied in Examples 10 and 12. This assumption is always valid in Examples 2–4
and 9, and it is valid in Examples 6 and 14, provided φ is strictly convex, and ξ is strictly
convex on R+. Finally, observe that assumption (A4)s (unlike (A4)) is never satisfied in
Examples 5, 7, 8, 11, 13 and 16.
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Before we proceed to the localization principle, let us point out that instead of verifying
that all pairs (x∗, λ∗) with x∗ ∈ Ω∗ and η(x∗, λ∗) = 0 are global minimizers of Le(x, λ, c)
on A × Λ, it is sufficient to check that at least one such pair is a point of global minimum of
Le(x, λ, c) on A × Λ in order to prove that Le(x, λ, c) is globally exact.

Lemma 3 Let assumption (A4)s be valid, and suppose that

Φ(G(x∗), λ∗, c) = 0 ∀c > 0 ∀(x∗, λ∗) ∈ Ω∗ × Λ : η(x∗, λ∗) = 0. (47)

Then Le(x, λ, c) is globally exact if and only if there exist (x0, λ0) ∈ Ω∗ × Λ and c0 > 0
such that η(x0, λ0) = 0 and the pair (x0, λ0) is a point of global minimum ofLe(·, ·, c0) on
A × Λ.

Proof The validity of the “only if” part of the proposition follows directly from the definition
of global exactness. Therefore, let us prove the “if” part of the proposition.

By the definition of (x0, λ0) and assumption (47) one has

min
(x,λ)∈A×Λ

Le(x, λ, c0) = Le(x0, λ0, c0) = f (x0) = f∗.

Note that (A4)s implies that the function Le(x, λ, c) is non-decreasing in c, while (47)
implies that Le(x∗, λ∗, c) = f (x∗) = f∗ for all c > 0 and for any (x∗, λ∗) ∈ Ω∗ × Λ

such that η(x∗, λ∗) = 0. Therefore any such pair (x∗, λ∗) is a point of global minimum of
Le(·, ·, c) on A × Λ and min(x,λ)∈A×Λ Le(x, λ, c) = f∗ for all c ≥ c0.

Let, now, (x∗, λ∗) be a point of global minimum ofLe(·, ·, c1) on A×Λ for some c1 > c0.
Since L (x, λ, c) is non-decreasing in c, then Le(x∗, λ∗, c) = f∗ for all c ∈ [c0, c1] (recall
thatL (·, ·, c) ≥ f∗ for all c ≥ c0). Hence with the use of (A4)s one gets thatG(x∗) ∈ K and
Φ(G(x∗), λ∗, c) = 0 for all c ∈ [c0, c1). ThereforeLe(x∗, λ∗, c) = f (x∗)+η(x∗, λ∗) = f∗
for any c ∈ [c0, c1), which implies that x∗ ∈ Ω∗ and η(x∗, λ∗) = 0 due to the fact that x∗ is
feasible and η(·) is non-negative.

Thus, for any c > c0 the function Le(·, ·, c) attains a global minimum on A × Λ (at the
point (x0, λ0)), and (x∗, λ∗) ∈ argmin(x,λ)∈A×Λ Le(x, λ, c) iff x∗ ∈ Ω∗ and η(x∗, λ∗) = 0.
In other words, Le(x, λ, c) is globally exact. ��

Now, we can extend the localization principle to the case of the penalized augmented
Lagrangian function Le(x, λ, c). Let us note that the localization principle holds true only
in the finite dimensional case (cf. [60], Examples 3–5 and [62], Example 4). Therefore,
hereinafter, we must suppose that the space Y is finite dimensional.

Theorem 6 (Localization principle) Let Y be finite dimensional, A be closed, G be contin-
uous on A and Le(·, ·, c) be l.s.c. on A × Λ for all c > 0. Suppose also that assumptions
(A2), (A4)s , (A6)s and (A12) are satisfied, and

Φ(G(x∗), λ∗, c) = 0 ∀c > 0 ∀(x∗, λ∗) ∈ Ω∗ × Λ : η(x∗, λ∗) = 0. (48)

Then Le(x, λ, c) is globally exact (with respect to the function η) if and only if

1. there exists (x, λ) ∈ Ω∗ × Λ such that η(x, λ) = 0;
2. Le(x, λ, c) is locally exact at every (x∗, λ∗) ∈ Ω∗ × Λ such that η(x∗, λ∗) = 0;
3. there exists c0 > 0 such that the set

Se(c0) :=
{
(x, λ) ∈ A × Λ

∣∣∣ Le(x, λ, c0) < f∗
}

is either bounded or empty.
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Proof Let Le(x, λ, c) be globally exact. Then there exists c0 > 0 such that for all
c ≥ c0 the function Le(·, ·, c) attains a global minimum on A × Λ and (x∗, λ∗) ∈
argmin(x,λ)∈A×Λ Le(x, λ, c) iff x∗ ∈ Ω∗ and η(x∗, λ∗) = 0. Therefore, in particular, there
exists a pair (x∗, λ∗) ∈ Ω∗ × Λ such that η(x∗, λ∗) = 0 (otherwise, Le(x, λ, c) would not
attain a global minimum), and Le(x, λ, c) is locally exact at any such pair (x∗, λ∗), since
any such (x∗, λ∗) is a global minimizer of Le(·, ·, c) on A × Λ for all c ≥ c0. Furthermore,
applying (48) one gets that min(x,λ)∈A×Λ Le(x, λ, c) = f∗ for all c ≥ c0, which implies that
Se(c0) = ∅.

Let us prove the converse statement. If Se(c0) = ∅, then applying (48) one obtains that
a pair (x, λ) ∈ Ω∗ × Λ such that η(x, λ) = 0 (that exists by our assumption) is a point of
global minimum of Le(·, ·, c0) on A × Λ. Consequently, Le(x, λ, c) is globally exact by
Lemma 3.

Note that the function c → Le(x, λ, c) is non-decreasing by (A4)s . Therefore it remains
to consider the case when Se(c) �= ∅ for all c > 0. Choose an increasing unbounded
sequence {cn} ⊂ [c0,+∞). Assumption (A4)s implies that Se(cn) ⊆ Se(c0) for all n ∈ N.
Hence taking into account the facts that Se(c0) is bounded, and Le(·, ·, c) is l.s.c., one
obtains that for any n ∈ N there exists (xn, λn) ∈ argmin(x,λ)∈A×Λ Le(x, λ, cn), and,
moreover, (xn, λn) ∈ Se(cn) ⊆ Se(c0), which implies that {(xn, λn)} is a bounded sequence.
Consequently, without loss of generality one can suppose that it converges to some point
(x∗, λ∗) that belongs to A × Λ, since this set is closed.

Applying Lemma 2 one gets that x∗ ∈ Ω∗ and η(x∗, λ∗) = 0, which implies that
Le(x, λ, c) is locally exact at (x∗, λ∗). Therefore there exist ĉ > 0 and a neighbourhood
U of (x∗, λ∗) such that

Le(x, λ, c) ≥ Le(x∗, λ∗, c) ∀(x, λ) ∈ U ∩ (
A × Λ

) ∀c ≥ ĉ.

Since (xn, λn) → (x∗, λ∗) and cn → +∞ as n → ∞, then there exists n0 ∈ N such that
(xn, λn) ∈ U and cn ≥ ĉ for all n ≥ n0. Hence for any such n ∈ N one hasLe(xn, λn, cn) ≥
Le(x∗, λ∗, cn). Consequently, taking into account the definition of (xn, λn) one obtains that
(x∗, λ∗) is a point of global minimum of Le(x, λ, cn) on A × Λ. Applying (48) one gets
that min(x,λ)∈A×Λ Le(x, λ, cn) = Le(x∗, λ∗, cn) = f (x∗) = f∗, which contradicts the
assumption that Se(c) �= ∅ for all c > 0. ��
Remark 20 (i) Recall that for the existence of a global saddle point of the augmented
Lagrangian function L (x, λ, c) it is necessary that there exists λ∗ ∈ K ∗ such that for any
globally optimal solution x∗ of the problem (P) the pair (x∗, λ∗) is a KKT-pair of this prob-
lem. In particular, a global saddle point ofL (x, λ, c) cannot exist if the problem (P) has two
globally optimal solution with disjoint sets of Lagrangemultipliers. In contrast, the penalized
augmented Lagrangian function Le(x, λ, c) can be globally exact even if the problem (P)

has two (or more) globally optimal solutions with disjoint sets of Lagrange multipliers.
(ii) Note that the theorem above contains some existing results as simple particular cases
(see, e.g., [79, Theorems 4.3 and 4.4]).

Note that, as in the case of the localization principle for global saddle point of the aug-
mented Lagrangian L (x, λ, c), one can reformulate the assumption on the boundedness of
the set Se(c0) from the theorem above in terms of behaviour of points of global minimum of
L (·, ·, c) as c → ∞. Namely, arguing in a similar way to the proof of Proposition 7 one can
verify that the following result holds true.

Proposition 12 Let Y be finite dimensional, A be closed, G be continuous on A,Le(·, ·, c) be
l.s.c. on A×Λ for all c > 0, andLe(x, λ, c) be locally exact at every point (x∗, λ∗) ∈ Ω∗×Λ
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such that η(x∗, λ∗) = 0. Suppose also that assumptions (A2), (A4)s , (A6)s and (A12) are
satisfied, there exists (x, λ) ∈ Ω∗ × Λ such that η(x, λ) = 0, and (48) holds true. Then
for the existence of c0 > 0 such that Se(c0) is either bounded or empty it is necessary
and sufficient that there exist τ > 0 and R > 0 such that for any c ≥ τ there exists
(x(c), λ(c)) ∈ argmin(x,λ)∈A×Λ Le(x, λ, c) with ‖x(c)‖X + ‖λ(c)‖Y ≤ R.

Remark 21 Suppose that η(x∗, λ∗) = 0 iff (x∗, λ∗) is a KKT-pair of the problem (P), and
there exist x∗ ∈ Ω∗ andλ∗ ∈ K ∗ such that (x∗, λ∗) is aKKT-pair of (P). From the proposition
above it follows that, roughly speaking, the augmented Lagrangian function Le(x, λ, c) is
globally exact if and only if it is locally exact at every KKT-pair of (P) corresponding to a
globally optimal solution of this problem, and points of global minimum of Le(x, λ, c) in
(x, λ) do not escape to infinity as c → +∞.

Sometimes, the penalized augmented Lagrangian function Le(x, λ, c) is locally exact at
every pair (x∗, λ∗) ∈ Ω∗ × Λ such that η(x∗, λ∗) = 0, but the set Se(c) is unbounded for all
c > 0, which implies that Le(x, λ, c) is not globally exact. In this case it is natural to ask
whether the augmented Lagrangian Le(x, λ, c) possesses an exactness property that is, in a
sense, intermediate between local and global exactness. Let us show that that the answer to
this question is positive, and in this case the functionLe(x, λ, c) is exact on bounded subsets
of A × Λ. We need the following definition in order to clarify this statement.

Definition 6 Let Q ⊆ A × Λ be a nonempty set. The penalized augmented Lagrangian
function Le(x, λ, c) is called exact on the set Q (with respect to η) if there exists c0 > 0
such that Le(x, λ, c) ≥ f∗ for all (x, λ) ∈ Q and c ≥ c0.

Let us demonstrate that the above definition is a natural extension of the definition of
global exactness.

Proposition 13 Let Q ⊆ A × Λ be a nonempty set such that there exists (x, λ) ∈ (Ω∗ ×
Λ) ∩ Q for which η(x, λ) = 0. Let also assumption (A4)s hold true, and

Φ(G(x∗), λ∗, c) = 0 ∀c > 0 ∀(x∗, λ∗) ∈ Ω∗ × Λ : η(x∗, λ∗) = 0. (49)

Then Le(x, λ, c) is exact on Q if and only if there exists c0 > 0 such that for
any c ≥ c0 the function Le(·, ·, c) attains a global minimum on Q, and (x∗, λ∗) ∈
argmin(x,λ)∈Q Le(x, λ, c) iff x∗ ∈ Ω∗ and η(x∗, λ∗) = 0.

Proof Let Le(x, λ, c) be exact on Q, and c0 > 0 be from Definition 6. Then by (49) one
has that for any c ≥ c0 the function Le(·, ·, c) attains the global minimum on Q at (x, λ),
and min(x,λ)∈Q Le(x, λ, c) = f∗.

Let, now, (x∗, λ∗) be a point of global minimum of Le(x, λ, c1) on Q for some c1 > c0.
Then Le(x∗, λ∗, c1) = f∗. By (A4)s the function L (x∗, λ∗, ·) is non-decreasing, which
implies that L (x∗, λ∗, c) = f∗ for all c ∈ [c0, c1]. Therefore with the use of (A4)s one
obtains that x∗ is feasible, and Φ(G(x∗), λ∗, c0) = 0. Hence Le(x∗, λ∗, c0) = f (x∗) +
η(x∗, λ∗) = f∗, which yields that x∗ ∈ Ω∗ and η(x∗, λ∗) = 0. Thus, for any c > c0 one has
(x∗, λ∗) ∈ argmin(x,λ)∈Q Le(x, λ, c) iff x∗ ∈ Ω∗ and η(x∗, λ∗) = 0.

It remains to note that the validity of the converse statement follows directly
from (49). ��

Now, we can obtain simple necessary and sufficient conditions for the augmented
Lagrangian Le(x, λ, c) to be exact on every bounded subset of A × Λ.
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Theorem 7 (Localization Principle) Let Y be finite dimensional, A be closed, G be contin-
uous on A and Le(·, ·, c) be l.s.c. on A × Λ for all c > 0. Suppose also that assumptions
(A4)s , (A6)s and (A12) are satisfied, and

Φ(G(x∗), λ∗, c) = 0 ∀c > 0 ∀(x∗, λ∗) ∈ Ω∗ × Λ : η(x∗, λ∗) = 0. (50)

ThenLe(x, λ, c) is exact on any bounded subset of A×Λ if and only ifLe(x, λ, c) is locally
exact at every pair (x∗, λ∗) ∈ Ω∗ × Λ such that η(x∗, λ∗) = 0.

Proof If Le(x, λ, c) is exact on any bounded subset of A × Λ, then it is exact on the
intersection of a boundedneighbourhoodof a point (x∗, λ∗) ∈ Ω∗×Λ such thatη(x∗, λ∗) = 0
and the set A × Λ, which with the use of Proposition 13 implies that Le(x, λ, c) is locally
exact at every such point.

Let us prove the converse statement. Let Q ⊂ A × Λ be a bounded set. Replacing, if
necessary, the set Q with its closure one can suppose that Q is closed and, thus, compact (note
that if Le(x, λ, c) is exact on the closure of Q, then it is exact on Q). Choose an increasing
unbounded sequence {cn} ⊂ (0,+∞). Since Le(·, ·, c) is l.s.c., and Q is compact, then
for any n ∈ N the function Le(·, ·, cn) attains a global minimum on Q at a point (xn, λn).
Applying the compactness of Q again one can suppose that the sequence {(xn, λn)} converges
to a point (x∗, λ∗) ∈ Q.

From (A4)s it follows that the sequence {Le(xn, λn, cn)} is non-decreasing. If this
sequence is unbounded, then there exists n ∈ N such that Le(xn, λn, cn) ≥ f∗, which
implies that Le(x, λ, c) is exact on Q by the definition of (xn, λn). On the other hand, if
this sequence is bounded, then arguing in the same way as in the proof of Lemma 2 one can
check that x∗ is a feasible point of (P).

If η(x∗, λ∗) > 0, then applying (A12) one gets that there exists c0 > 0 such that
Le(x∗, λ∗, c) ≥ f (x∗) + η(x∗, λ∗)/2 for any c ≥ c0. Hence taking into account (A4)s and
the fact thatLe(·, ·, c) is l.s.c., one obtains thatLe(xn, λn, cn) ≥ f (x∗)+ η(x∗, λ∗)/4 > f∗
for any sufficiently large n ∈ N, which implies thatLe(x, λ, c) is exact on Q by the definition
of (xn, λn).

If η(x∗, λ∗) = 0, but f (x∗) > f∗, then applying (A12) and taking into account the fact
thatLe(·, ·, c) is l.s.c. one can check thatLe(xn, λn, cn) ≥ f (x∗) − ε > f∗, provided ε > 0
is small enough, and n ∈ N is large enough. Thus, Le(x, λ, c) is exact on Q in this case as
well.

Finally, if η(x∗, λ∗) = 0 and f (x∗) = f∗, i.e. x∗ ∈ Ω∗, then applying the fact that
Le(x, λ, c) is locally exact at (x∗, λ∗) one can easily verify that this function is exact on Q.

��
Remark 22 Note that the theorem above along with Proposition 13 contain some existing
results ([69], Theorems 4–7; [77], Theorems 4.1 and 6.1–6.6; [78], Theorems 7–12) as simple
particular cases.

8 Applications of the localization principle for exact augmented
Lagrangian functions

In this section, we demonstrate that one can easily prove the local exactness of the penalized
augmented Lagrangian function Le(x, λ, c) with the use of sufficient optimality conditions
and/or a proper constraint qualification. This result along with the localization principle
allows one to reduce the study of global exactness of the penalized augmented Lagrangian
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functionLe(x, λ, c) to the local analysis of sufficient optimality conditions and/or constraint
qualifications. In the end of the section, we provide several particular examples of globally
exact augmented Lagrangian functions.

8.1 Local exactness via sufficient optimality conditions

For the sake of simplicity, suppose that X = R
d , A is a convex set, and f is differentiable.

In order to prove the local exactness of Le(x, λ, c) via second order sufficient optimality
conditions one needs to utilize a suitable second order expansion of the function (x, λ) →
Le(x, λ, c) in a neighbourhood of a given KKT-pair. The following definition describes what
we mean by “a suitable expansion” (cf. Definition 3).

Definition 7 Let assumption (A11) be satisfied, and G be twice Fréchet differentiable at a
feasible point x∗ ∈ A. Let also λ∗ ∈ K ∗ be such that 〈λ∗,G(x∗)〉 = 0. One says that the
function Φ(G(x), λ, c) admits the second order expansion in (x, λ) at (x∗, λ∗), if for any
c > 0 there exist a function ϕc : X × Y ∗ → R such that for any h ∈ X , ν ∈ Y ∗ and α > 0
one has ϕc(αh, αν) = α2ϕc(h, ν), and

Φ(G(x∗ + h), λ∗ + ν, c) − Φ(G(x∗), λ∗, c) = 〈μ∗, DG(x∗)h〉
+1

2
〈μ∗, D2G(x∗)(h, h)〉 + 1

2
ϕc(h, ν) + o(‖h‖2 + ‖ν‖2),

where o(‖h‖2 + ‖ν‖2)/(‖h‖2 + ‖ν‖2) → 0 as (h, ν) → (0, 0), μ∗ = Φ0(λ∗), and if

lim sup
[h,ν,c]→[h∗,ν∗,+∞]

ϕc(h, ν)

is finite for some h∗ ∈ TA(x∗) and ν∗ ∈ Y ∗, then h∗ ∈ C(x∗, μ∗), and the limit is greater
than or equal to −σ(μ∗, T (h∗)).

Remark 23 Let us point out when the assumption that the functionΦ(G(x), λ, c) admits the
second order expansion in (x, λ) at a point (x∗, λ∗) is valid (cf. Remark 15).

This assumption is satisfied in Example 1, provided Y is finite dimensional, σ(y) =
‖y‖2/2, (x∗, λ∗) is a KKT-pair, and the restriction of σ(λ∗, T 2

K (G(x∗), ·)) to its effective
domain is u.s.c. (see [54], formulae (3.7), (3.23) and (3.25), and [97], Theorem 3.3). In this
case one has

ϕc(h, μ) = min
z∈C (x∗,λ∗)

(∥∥c(DG(x∗)h − z) + μ
∥∥2 − σ

(
λ∗, T 2

K (G(x∗), z)
))

− 1

c
‖μ‖2,

where C (x∗, λ∗) = {z ∈ TK (G(x∗)) | 〈λ∗, z〉 = 0}. In particular, the assumption holds true
in Examples 10 and 12, if (x∗, λ∗) is a KKT-pair.

The assumption is satisfied in Example 2 in the case φ(s) = s2/2, if one defines

ϕc(h, μ) =
∑

i∈I+(x∗,λ∗)

(
c‖∇gi (x∗)h‖2 + μi 〈∇gi (x∗), h〉

)
− 1

c

∑

i∈I\I (x∗)
μ2
i

+
∑

i∈I0(x∗,λ∗)

(
μi max

{
〈∇gi (x∗), h〉,−μi

c

}
+ c

2
max

{
〈∇gi (x∗), h〉, −μi

c

}2 )
.

The assumption is also valid in Example 4, provided φ′′(t) > 0 for all t ∈ R. In all other
examples, one must modify the function Φ(y, λ, c) in order to ensure that the function
Φ(G(x), ·, c) is smooth enough, and DλΦ(G(x∗), λ∗, c) = 0 (this equality is necessary for
Φ(G(x), λ, c) to admit the second order expansion in (x, λ); see Definition 7).
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Namely, suppose for the sake of shortness that there are no equality constraints, and choose
a twice continuously differentiable function ζ : R → R such that ζ ′(0) = 0, ζ(R+) = R+,
and ζ(t) = 0 iff t = 0. Let us replace the functionΦ(y, λ, c)with the functionΦ(y, ζ(λ), c),
where ζ(λ) = (ζ(λ1), . . . , ζ(λl)) in the case when (P) is a mathematical programming
problem, and ζ(λ) is Löwner’s operator associated with ζ in the case when (P) is either
a second order cone or semidefinite programming problem. Then one can verify that the
assumption on the function Φ(G(x), ζ(λ), c) is satisfied in Example 3 with ζ(t) = t2 iff
s.c. condition holds true. The assumption holds true in Examples 5, 8 and 7 iff φ′(0) �= 0,
φ′′(0) > 0, and s.c. condition holds true. This assumption is satisfied in Example 8 iff
φ′(b) �= 0, φ′′(b) > −φ′(b)2, and s.c. condition holds true, and it is always satisfied in
Example 9, provided ζ(t) = t1+ε for some ε > 0.

The assumption is also satisfied in Examples 13 and 14, if s.c. condition holds true ([49,
Theorem 5.1], and [53, Proposition 4.2]), and ζ(t) = t2.

Finally, let us note that under some natural assumptions on the function ζ (that are sat-
isfied, e.g., if ζ(t) = t2) the function Φ(y, ζ(λ), c) has the same properties as the function
Φ(y, λ, c). In particular, Φ(y, ζ(λ), c) satisfies the same main assumption of this paper as
Φ(y, λ, c).

Now, we can prove that under some additional assumptions the penalized augmented
Lagrangian function Le(x, λ, c) is locally exact at a KKT-pair (x∗, λ∗) of the problem (P),
provided this KKT-pair satisfies the second order sufficient optimality condition, and the
function η(x∗, ·) behaves like a positive definite quadratic function in a neighbourhood of
λ∗.
Theorem 8 Let Y be finite dimensional, assumptions (A4) and (A11) be satisfied, x∗ be a
locally optimal solution of the problem (P), f and G be twice Fréchet differentiable at x∗, and
(x∗, μ∗) be a KKT-pair of the problem (P) satisfying the second order sufficient optimality
condition. Suppose also that the function Φ(G(x), λ, c) admits the second order expansion
in (x, λ) at (x∗, λ∗) for some λ∗ ∈ Φ−1

0 (μ∗), the function η is twice Fréchet differentiable at
(x∗, λ∗), D2

λλη(x∗, λ∗) is positive definite, and η(x∗, λ∗) = 0. Then the penalized augmented
Lagrangian function Le(x, λ, c) is locally exact at (x∗, λ∗).
Proof Denote ξ = (x, λ), ξ∗ = (x∗, λ∗) and ξ = (x∗, μ∗). Under the assumptions of the
theorem, for any c > 0 there exists a neighbourhoodUc of ξ∗ such that for all ξ = (x, λ) ∈ Uc

one has
∣∣∣Le(ξ, c) − Le(ξ∗, c) − 〈

Dx L(ξ), x − x∗
〉 − 1

2

〈
x − x∗, D2

xx L(ξ)(x − x∗)
〉

−1

2
ϕc(x − x∗, λ − λ∗) − 1

2
D2η(ξ∗)(ξ − ξ∗, ξ − ξ∗)

∣∣∣

<
1

2c

(
‖x − x∗‖2 + ‖λ − λ∗‖2

)
. (51)

Here we used the equalities Dxη(ξ∗) = 0 and Dλη(ξ∗) = 0 that hold true due to the facts
that η(x, λ) is nonnegative, and η(ξ∗) = 0.

Arguing by reductio ad absurdum, suppose thatLe(x, λ, c) is not locally exact at (x∗, λ∗).
Then for any n ∈ N there exists ξn = (xn, λn) ∈ Un ∩ (A × Λ) such that Le(ξn, n) <

Le(ξ∗, n). Applying (51) one gets that

0 > 〈Dx L(ξ), xn − x∗〉 + 1

2

〈
xn − x∗, D2

xx L(ξ)(xn − x∗)
〉 + 1

2
ϕn(xn − x∗, λn − λ∗)

+1

2
D2η(ξ∗)(ξn − ξ∗, ξn − ξ∗) − 1

2n

(
‖xn − x∗‖2 + ‖λn − λ∗‖2

)
(52)
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for anyn ∈ N. Denoteαn = ‖xn−x∗‖+‖λn−λ∗‖, hn = (xn−x∗)/αn and νn = (λn−λ∗)/αn .
Replacing, if necessary, the sequence {(xn, λn)} by its subsequence, one can suppose that the
sequence {(hn, νn)} converges to a point (h∗, ν∗) such that ‖h∗‖+‖ν∗‖ = 1 (recall that both
X and Y are finite dimensional). Note that h∗ ∈ TA(x∗).

Suppose, at first, that h∗ = 0. In other words, suppose that (xn − x∗)/αn converges to
zero as n → ∞. Observe that since xn ∈ A and A is convex, then

xn − x∗ ∈ TA(x∗), 〈Dx L(ξ), xn − x∗〉 ≥ 0 ∀n ∈ N (53)

due to the fact that (x∗, μ∗) is a KKT-pair. Hence dividing (52) by α2
n , and passing to the

limit as n → ∞ one obtains that D2
λλη(x∗, λ∗)(ν∗, ν∗) ≤ 0 by virtue of Definition 7, which

contradicts our assumption that D2
λλη(x∗, λ∗) is positive definite. Thus, h∗ �= 0.

Recall that η is a nonnegative function and η(ξ∗) = 0, i.e. ξ∗ is a point of global minimum
of the function η. Therefore D2η(ξ∗)(ξn − ξ∗, ξn − ξ∗) ≥ 0 for all n ∈ N. Applying this
estimate and (53) in (52), and dividing by α2

n one gets that

0 > 〈hn, D2
xx L(ξ)hn〉 + ϕn(hn, μn) − 1

n
(54)

for any n ∈ N. Here we used the fact that α2ϕc(h, μ) = ϕc(αh, αμ) for all α ≥ 0 by
Definition 7.

Passing to the limit superior in (54) with the use of Definition 7 one obtains that h∗ ∈
C(x∗, λ∗) and 0 ≥ 〈h∗, D2

xx L(ξ)h∗〉−σ(μ∗, T (h∗)), which contradicts the assumption that
the KKT-pair (x∗, μ∗) satisfies the second order sufficient optimality condition. ��
Remark 24 Note that the theorem above contains some existing results (e.g. [74], Theo-
rem 6.3; [79], Theorem 4.1) as simple particular cases. Furthermore, it is easy to verify
that under the assumptions of the theorem there exist γ > 0 and c0 > 0 such that
Le(x, λ, c) ≥ Le(x∗, λ∗, c)+ γ (‖x − x∗‖2 +‖λ−λ∗‖2) for all c ≥ c0 and (x, λ) ∈ A×Λ

that are sufficiently close to (x∗, λ∗).

Let us now provide several particular examples of globally exact augmented Lagrangian
functions, and demonstrate how one can utilize the theorem above and the localization prin-
ciple in order to prove the global exactness of these augmented Lagrangians.

8.2 Mathematical programming

Let the problem (P) be the mathematical programming problem of the form

min f (x) subject to gi (x) ≤ 0, i ∈ I, g j (x) = 0, j ∈ J, (55)

where gi : X → R, I = {1, . . . , l} and J = {l + 1, . . . , l + s}. Suppose that the functions f
and gi , i ∈ I ∪ J are twice continuously differentiable. Define

η1(x, λ) =
l∑

i=1

(〈
Dx L(x, λ),∇gi (x)

〉 + gi (x)
2λi

)2 +
l+s∑

j=l+1

〈
Dx L(x, λ),∇g j (x)

〉2

(see [74]). Let x∗ be a locally optimal solution of problem (55), and let LICQ holds at x∗.
Then one can easily verify that η1(x∗, λ∗) = 0 for some λ∗ ∈ R

l+s iff (x∗, λ∗) is a KKT-pair
of problem (55) (note that such λ∗ is unique). Furthermore, the matrix D2

λλη1(x∗, λ∗) is
positive definite. Thus, one can apply Theorem 8 in order to prove the local exactness of the
penalized augmented Lagrangian function Le(x, λ, c) for problem (55).
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In order to ensure that the function Le(·, ·, c) is level-bounded and, thus, globally exact,
one must add barrier terms into the definition of this function (see [74], and Remark 12
above). Choose α > 0 and � > 2, and define

p(x, λ) = a(x)

1 + ∑l
i=1 λ2i

, q(x, λ) = b(x)

1 + ∑l+s
j=l+1 λ2j

,

where

a(x) = α −
l∑

i=1

max{0, gi (x)}�, b(x) = α −
l+s∑

j=l+1

g j (x)
2.

Denote Ωα = {x ∈ R
d | a(x) > 0, b(x) > 0}. Then one can introduce the following

penalized augmented Lagrangian function for problem (55) (see Example 2). Namely, define

Le(x, λ, c) = f (x)

+
l∑

i=1

(
λi max

{
gi (x),− p(x, λ)

c
λi

}
+ c

2p(x, λ)
max

{
gi (x),− p(x, λ)

c
λi

}2)

+
l+s∑
j=l+1

(
λ j g j (x) + c

2q(x, λ)
g j (x)

2
)

+ η1(x, λ), (56)

if x ∈ Ωα , and Le(x, λ, c) = +∞ otherwise.
One can easily verify that the augmented Lagrangian function introduced above is l.s.c.

jointly in (x, λ)onRd×R
l+s , and continuously differentiable in (x, λ)on its effective domain,

i.e. on Ωα × R
l+s (cf. [74]). One can also check that the function Φ(y, λ, c) corresponding

to penalized augmented Lagrangian function (56) satisfies assumptions (A2), (A4)s , (A6)s ,
(A11) with Φ0(λ) ≡ λ, and (A12). Furthermore, the function Φ(G(x), λ, c) admits the
second order expansion in (x, λ) at every KKT-pair of problem (55), and Φ(G(x∗), λ∗, c) =
0, if (x∗, λ∗) is a KKT-pair. Therefore one can obtain the following result.

Theorem 9 Let f and gi , i ∈ I ∪ J , be twice continuously differentiable, LICQ hold true
at every globally optimal solution of problem (55), and for any x∗ ∈ Ω∗ a unique KKT-pair
(x∗, λ∗) satisfy the second order sufficient optimality condition. Then penalized augmented
Lagrangian function (56) is globally exact if and only if there exists c0 > 0 such that the set

Se(c0) := {
(x, λ) ∈ R

d × R
l+s

∣∣ Le(x, λ, c0) < f∗
}

is either bounded or empty. In particular, if there exists γ > 0 such that the set

Ω(γ, α) := {
x ∈ R

d | f (x) < f∗ + γ, a(x) > 0, b(x) > 0}
is bounded, then penalized augmented Lagrangian function (56)is globally exact in the sense
that its points of global minimum in (x, λ) on R

d × R
l+s are exactly KKT-pairs of problem

(55) corresponding to globally optimal solutions of this problem, provided c > 0 is large
enough.

Proof Under the assumptions of the theorem augmented Lagrangian (56) is locally exact
at every KKT-pair corresponding to a globally optimal solution of problem (55) by Theo-
rem 8. Then applying the localization principle (Theorem 6) one obtains that this augmented
Lagrangian is globally exact iff the set Se(c0) is either bounded or empty for some c0 > 0.
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Let us verify that if the set Ω(γ, α) is bounded, then the set Se(c0) is bounded for some
c0 > 0. Minimizing the function q(t) = λi t +ct2/2p(x, λ) one obtains that for any (x, λ) ∈
Ωα × R

l+s and c > 0 the following inequalities hold true:

Le(x, λ, c) ≥ f (x) − p(x, λ)

2c

l∑
i=1

λ2i − q(x, λ)

2c

l+s∑
j=l+1

λ2j + η1(x, λ)

≥ f (x) − α

c
+ η1(x, λ). (57)

Consequently, for any c > α/γ and (x, λ) ∈ Se(c) one has x ∈ Ω(γ, α). Hence applying
(57) and the fact that the set Ω(γ, α) is bounded one gets that there exists τ ∈ R such that
Le(x, λ, c) ≥ τ for all (x, λ) ∈ R

d × R
l+s and c > α/γ .

Arguing by reductio ad absurdum, suppose that the set Se(c) is unbounded for any c > 0.
Choose an increasing unbounded sequence {cn} ⊂ R+ such that c1 > α/γ . Then for any
n ∈ N there exists (xn, λn) ∈ Se(cn) such that ‖λn‖ ≥ n. By the choice of c1 one has that
{xn} ⊂ Ω(γ, α). Therefore without loss of generality one can suppose that the sequence {xn}
converges to a point x∗. Let us show that x∗ is a globally optimal solution of problem (55).

Denote w
j
n = q(xn, λn)(λn) j g j (xn) + cng j (xn)2/2

uin = p(xn, λn)(λn)i max
{
gi (xn),− p(xn, λn)

cn
(λn)i

}

+cn
2

max
{
gi (xn),− p(xn, λn)

cn
(λn)i

}2
.

Arguing as above, one can easily verify that lim infn→∞ un/p(xn, λn) ≥ 0 and
lim infn→∞ wn/q(xn, λn) ≥ 0.

From (57) and the fact that (xn, λn) ∈ Se(cn) it follows that the sequences { f (xn)}
and {η1(xn, λn)} are bounded. Moreover, by the definition of {(xn, λn)} one has τ ≤
Le(xn, λn, cn) < f∗. Therefore the sequence

∑l
i=1 u

i
n/p(xn, λn)+

∑l+s
j=l+1 w

j
n/q(xn, λn) is

bounded, which implies that {uin/p(xn, λn)}, i ∈ I , and {w j
n/q(xn, λn)}, j ∈ J , are bounded

sequences. By definition 0 < p(xn, λn) ≤ α and 0 < q(xn, λn) ≤ α for all n ∈ N. Therefore,
the sequences {uin} and {w j

n } are bounded as well. Hence taking into account the fact that
cn → +∞ as n → ∞ one can easily check that max{gi (xn), 0} → 0 and g j (xn) → 0 as
n → ∞ for all i ∈ I and j ∈ J , which implies that x∗ is a feasible point.

Indeed, suppose, for instance, that g j (xn) does not converge to zero. Then there exist
ε > 0 and a subsequence {xnk } such that |g j (xnk )| ≥ ε for all k ∈ N. Consequently,

w
j
nk ≥ c2nk ε

2/2 − α|g j (xnk )|. Passing to the limit as k → ∞ one obtains that w
j
nk → +∞

as k → ∞, which is impossible. Thus, x∗ is a feasible point of problem (55).
From (57) and the fact that (xn, λn) ∈ Se(cn) it follows that f (x∗) ≤ f∗, which implies

that x∗ is a globally optimal solution of problem (55). Consequently, LICQ holds at this
point.

Observe that the function η(x, ·) is quadratic. Hence and from the fact that LICQ holds
at x∗ one obtains that there exist a neighbourhood U of x∗, δ1 > 0 and δ2, δ3 ∈ R such that
η(x, λ) ≥ δ1‖λ‖2+δ2‖λ‖+δ3 for all x ∈ U andλ ∈ R

l+s . Applying this estimate in (57), and
taking into account the fact that‖λn‖ → +∞ asn → ∞one gets thatLe(xn, λn, cn) → +∞
asn → ∞, which contradicts the definition of the sequence {(xn, λn)}. Thus, Se(c) is bounded
for some c > 0. ��
Remark 25 (i) Note that the theorem above strengthens all existing results on global exact-
ness of augmented Lagrangian functions (see, e.g., [74, Theorem 4.6], [85, Proposition 1],
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[79, Theorems 4.3 and 4.4]), since it provides first necessary and sufficient conditions for
the global exactness, and is formulated for the optimization problem with both equality and
inequality constraints. Furthermore, to the best of author’s knowledge the theorem above pro-
vides first sufficient conditions for the global exactness of augmented Lagrangian functions
for equality constrained optimization problems (cf. [69,70,77,78,85]).
(ii) It should be mentioned that one can construct an exact augmented Lagrangian function
fromMangasarian’s augmented Lagrangian (Example 4). However, sinceΦ0(λ) ≡ φ′(λ) for
this augmented Lagrangian, then one has to consider the penalty term η(x, λ) = η1(x, φ′(λ)),
and impose some rather restrictive assumptions on the function φ in order to ensure the global
exactness of the corresponding penalized augmented Lagrangian.

Let us extend the previous theorem to the case of other augmented Lagrangian functions.
As it was noted in Remark 23, only augmented Lagrangian functions from Examples 2 and
4 admit the second order expansion in (x, λ) without some modifications of the function
Φ(y, λ, c). In order to accommodate necessary modifications of this function one needs to
modify the penalty term η(x, λ) as well. Below, we utilize the transformation λ → ζ(λ)with
ζ(t) = t2 in order to ensure the desired properties of the function Φ(y, λ, c). Therefore we
define

η2(x, λ) =
l∑

i=1

〈
Dx L(x, ζ(λ)),∇gi (x)

〉2 +
l∑

i=1

gi (x)
2λ2i .

Hereinafter, ζ(λ) = (λ21, . . . , λ
2
l ).

Let x∗ be a locally optimal solution of problem (55), and let LICQ holds at x∗. Then, as
in the case of η1(x, λ), one can easily verify that η2(x∗, λ∗) = 0 for some λ∗ ∈ R

l+s iff
(x∗, ζ(λ∗)) is a KKT-pair of problem (55). Furthermore, the matrix D2

λλη1(x∗, λ∗) is positive
definite, provided the pair (x∗, λ∗) satisfies s.c. condition. Finally, one can check that there
exists a neighbourhood U of x∗ such that inf x∈U η2(x, λ) → +∞ as ‖λ‖ → +∞.

Now, we can define the following penalized augmented Lagrangian functions. Suppose
that there are no equality constraints, and define

Le(x, λ, c) = f (x) + η2(x, λ)

+ 1

3cp(x, ζ(λ))2

l∑
i=1

[
max

{
cgi (x) + p(x, ζ(λ))λi , 0

}3 − ∣∣p(x, ζ(λ))λi
∣∣3]

, (58)

if x ∈ Ωα , and Le(x, λ, c) = +∞ otherwise (see Example 3). Similarly, one can define

Le(x, λ, c) = f (x) + p(x, λ)

c

l∑
i=1

[
λ2i φ

(
cgi (x)

p(x, λ)

)
+ ξ

(
cgi (x)

p(x, λ)

)]
+ η2(x, λ), (59)

if x ∈ Ωα , and Le(x, λ, c) = +∞ otherwise (see Example 6). Here the function φ : R →
R ∪ {+∞} is non-decreasing, strictly convex, and such that dom φ = (−∞, ε0) for some
ε0 ∈ (0,+∞], φ(t) → +∞ as t → ε0, φ(t)/t → +∞ as t → +∞ if ε0 = +∞, φ is
twice continuously differentiable on dom φ, φ(0) = 0, φ′(0) = 1, and φ′′(0) > 0, while the
function ξ : R → R+ is twice continuously differentiable, and such that ξ is strictly convex
on R+, ξ(t) = 0 for all t ≤ 0, and ξ(t) > 0 for all t > 0.

Finally, one can define

Le(x, λ, c) = f (x) + 1

cp(x, λ)

l∑
i=1

∫ cgi (x)

0

(√
t2 + p(x, λ)2λ4i + t

)
dt + η2(x, λ), (60)

if x ∈ Ωα , and Le(x, λ, c) = +∞ otherwise (see Example 9).
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As in the case of augmented Lagrangian (56), one can easily verify that the penalized
augmented Lagrangian functions (58), (59) and (60) are l.s.c. jointly in (x, λ) on Rd ×R

l+s ,
and continuously differentiable in (x, λ) on their effective domains. One can also check that
the functions Φ(y, λ, c) corresponding to these augmented Lagrangians satisfy assumptions
(A2), (A4)s , (A6)s , (A11) with Φ0(λ) ≡ ζ(λ), and (A12) in the case Λ = Y ∗ = R

l+s .
Furthermore, the corresponding functions Φ(G(x), λ, c) admit the second order expansion
in (x, λ) at every point (x∗, λ∗) such that x∗ is feasible, and λ∗ satisfies s.c. condition. Finally,
Φ(G(x∗), λ∗, c) = 0, if x∗ is feasible, and η(x∗, λ∗) = 0.

Thus, one can apply the localization principle (Theorem6) andTheorem8 in order to prove
the global exactness of penalized augmented Lagrangian functions (58) and (59). Augmented
Lagrangian (60), as one can verify, is not bounded from below, which implies that it is not
globally exact.

Arguing in the same way as in the proof of Theorem 9 one can verify that the following
result holds true.

Theorem 10 Let f and gi , i ∈ I , be twice continuously differentiable, LICQ hold true
at every globally optimal solution of problem (55), and for any x∗ ∈ Ω∗ a unique KKT-
pair (x∗, λ∗) satisfy the second order sufficient optimality and the strict complementarity
conditions. Then penalized augmented Lagrangian functions (58) and (59) are globally
exact (with respect to the function η2(x, λ)) if and only if there exists c0 > 0 such that the
corresponding set Se(c0) is either bounded or empty. In particular, if there exists γ > 0
such that the set Ω(γ, α) is bounded, then penalized augmented Lagrangian functions (58)
and (59) (provided φ is bounded from below) are globally exact in the sense that for any
sufficiently large c > 0 a pair (x∗, λ∗) is a point of global minimum of these functions in
(x, λ) on Rd × R

l iff x∗ ∈ Ω∗ and (x∗, ζ(λ∗)) is a KKT-pair of problem (55).

As it was noted above, augmented Lagrangian (60) is not globally exact. However, with
the use of Theorems 7 and 8 one can provide simple sufficient contidions for the the exactness
of this augmented Lagrangian on bounded sets. Namely, the following result holds true.

Theorem 11 Let f and gi , i ∈ I , be twice continuously differentiable, LICQ hold true
at every globally optimal solution of problem (55), and for any x∗ ∈ Ω∗ a unique KKT-
pair (x∗, λ∗) satisfy the second order sufficient optimality and the strict complementarity
conditions. Then penalized augmented Lagrangian function (60) is exact on any bounded
subset of Rd × R

l with respect to the function η2.

Remark 26 (i) To the best of author’s knowledge, all exact augmented Lagrangian function
studied in the literature were constructed from the Hestenes–Powell–Rockafellar augmented
Lagrangian function. Thus, penalized augmented Lagrangian functions (58), (59) and (60)
as well as the theorems on exactness of these functions are completely new. Furthermore,
even augmented Lagrangian (56) has not been considered for the case of general equality
and inequality constraints before.
(ii) Note that in order to guarantee that there is a unique point of global minimum of aug-
mented Lagrangians (58) and (59) in (x, λ) corresponding to a globally optimal solution of
problem (55) one can add the penalty term ω(λ) = ∑l

i=1 max{0,−λi }� to these functions.
Note also that one can incorporate equality constraints into augmented Lagrangians (58),
(59) and (60) in the same way as in (56).
(iii) It should be mentioned that globally exact augmented Lagrangian functions cannot be
constructed from the exponential penalty function (Example 5), the modified barrier function
(Example 7) and the p-th power augmented Lagrangian (Example 8) without some nontrivial
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transformations of these functions due to the facts that for these augmented Lagrangians one
has L (x, 0, c) ≡ f (x), and it is very difficult (if at all possible) to construct a continuously
differentiable function η(x, λ) that satisfies the main assumption of this article, and such that
f (x) + η(x, 0) ≥ f∗ for all x ∈ R

d .

8.3 Nonlinear second order cone programming

Let the problem (P) be the nonlinear second order cone programming problem of the form

min f (x) subject to gi (x) ∈ Qli+1, i ∈ I, h(x) = 0, (61)

where the functions f : X → R, gi : X → R
li+1, I = {1, . . . , r}, and h : X → R

s are twice
continuously differentiable, and Qli+1 is the second order (Lorentz) cone of dimension li +1.

Let x∗ be a locally optimal solution of problem (61). Recall that the point x∗ is called
nondegenerate (see [94], Def. 4.70), if

⎡
⎢⎢⎢⎣

Jg1(x∗)
...

Jgr (x∗)
Jh(x∗)

⎤
⎥⎥⎥⎦R

d +

⎡
⎢⎢⎢⎣

lin TQl1+1

(
g1(x∗)

)
...

lin TQlr+1

(
gr (x∗)

)
{0}

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

R
l1+1

...

R
lr+1

R
s

⎤
⎥⎥⎥⎦ .

where Jgi (x) is the Jacobian of gi (x), and “lin” stands for the lineality subspace of a convex
cone, i.e. the largest linear space contained in this cone. Let us note that the nondegeneracy
condition can be expressed as a “linear independence-type” condition (see [98] Lemma 3.1,
and [99] Proposition 19). Furthermore, by [94] Proposition 4.75, the nondegeneracy condition
guarantees that there exists a unique Lagrange multiplier at x∗.

Being inspired by the ideas of [98], for any x ∈ X and λ = (λ1, . . . , λr , μ) ∈ Y ∗ :=
R
l1+1 × . . . × R

lr+1 × R
s define

η(x, λ) = ‖Dx L(x, λ)‖2 +
r∑

i=1

(
〈λi , gi (x)〉2 + ‖(λi )0gi (x) + (gi )0(x)λi‖2

)
,

where λi = ((λi )0, λi ) ∈ R × R
li , and the same notation is used for gi (x). Suppose that

x∗ is a nondegenerate locally optimal solution of problem (61). Then arguing in the same
way as in the proof of Proposition 3.3 in [98] one can verify that η(x∗, λ∗) = 0 for some λ∗
iff (x∗, λ∗) is a KKT-pair, and such λ∗ is unique. Furthermore, the matrix D2

λλη(x∗, λ∗) is
positive definite. Therefore one can utilize Theorem 8 in order to prove the local exactness
of the penalized augmented Lagrangian function Le(x, λ, c) for problem (61).

As in the case of the mathematical programming problem, one must add barrier terms into
the definition of Le(x, λ, c) in order to ensure that it is level-bounded and globally exact.
Choose α > 0 and � > 2, and for any λ = (λ1, . . . , λr , μ) ∈ Y ∗ define

p(x, λ) = a(x)

1 + ∑r
i=1 ‖λi‖2 , q(x, λ) = b(x)

1 + ‖μ‖2 , (62)

where

a(x) = α −
r∑

i=1

dist�
(
gi (x), Qli+1

)
, b(x) = α − ‖h(x)‖2.

Denote Ωα = {x ∈ R
d | a(x) > 0, b(x) > 0}. Then one can introduce a penalized aug-

mented Lagrangian function for problem (61) as follows (see Example 10, and Remark 23).
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For any λ = (λ1, . . . , λr , μ) ∈ Y ∗ define

Le(x, λ, c) = f (x)

+ c

2p(x, λ)

r∑
i=1

[
dist2

(
gi (x) + p(x, λ)

c
λi , Qli+1

)
− p(x, λ)2

c2
‖λi‖2

]

+〈μ, h(x)〉 + c

2q(x, λ)
‖h(x)‖2 + η(x, λ). (63)

if x ∈ Ωα , and Le(x, λ, c) = +∞, otherwise.
Observe that the functionLe(x, λ, c) is l.s.c. jointly in (x, λ) onRd×Y ∗, and continuously

differentiable in (x, λ) on its effective domain Ωα × Y ∗ by [94], Theorem 4.13. One can
also check that the function Φ(y, λ, c) corresponding to penalized augmented Lagrangian
function (63) satisfies assumptions (A2), (A4)s , (A6)s , (A11) with Φ0(λ) ≡ λ, and (A12).
Furthermore,Φ(G(x∗), λ∗, c) = 0, if (x∗, λ∗) is a KKT-pair, and arguing in the same way as
in ([54], pp. 487–488) one can check that Φ(G(x), λ, c) admits the second order expansion
in (x, λ) at every KKT-pair of problem (61) (see also [97]). Therefore one can obtain the
following result.

Theorem 12 Let the functions f , gi , i ∈ I , and h be twice continuously differentiable.
Suppose also that every globally optimal solution of problem (61) is nondegenerate, and
for any x∗ ∈ Ω∗ a unique KKT-pair (x∗, λ∗) satisfies the second order sufficient optimality
condition. Then penalized augmented Lagrangian function (63) is globally exact if and only
if there exists c0 > 0 such that the set Se(c0) := {(x, λ) ∈ R

d × Y ∗ | |Le(x, λ, c0) < f∗} is
either boundedor empty. In particular, if the setΩ(γ, α) = {x ∈ R

d | f (x) < f∗+γ, a(x) >

0, b(x) > 0} is bounded for some γ > 0, then penalized augmented Lagrangian function
(63) is globally exact.

Proof Under the assumptions of the theorem augmented Lagrangian (63) is locally exact
at every KKT-pair corresponding to a globally optimal solution of problem (61) by Theo-
rem 8. Then applying the localization principle (Theorem 6) one obtains that this augmented
Lagrangians is globally exact iff the set Se(c0) is either bounded or empty for some c0 > 0.

Suppose, now, that the set Ω(γ, α) is bounded for some γ > 0. Let us check that in this
case the set Se(c) is bounded for sufficiently large c > 0. From (62) and (63) it follows that
for any (x, λ) ∈ Ωα × Y ∗ and c > 0 one has

Le(x, λ, c) ≥ f (x) − α

c
+ η(x, λ). (64)

Hence taking into account the fact that the function η(x, λ) is nonnegative one obtains that for
any c > α/γ and (x, λ) ∈ Se(c) one has x ∈ Ω(γ, α). Consequently, there exists τ > −∞
such thatLe(x, λ, c) ≥ τ for any (x, λ) ∈ Se(c) and c > α/γ due to the boundedness of the
set Ω(γ, α).

Arguing by reductio ad absurdum, suppose that the set Se(c) is unbounded for any c >

0. Choose an increasing unbounded sequence {cn} ⊂ R+ such that c1 > α/γ . By our
assumption for any n ∈ N there exists (xn, λn) ∈ Se(cn) such that ‖λn‖ ≥ n. Note that by
the choice of c1 one has xn ∈ Ω(γ, α) for all n ∈ N, which implies that without loss of
generality one can suppose that the sequence {xn} converges to a point x∗.
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Let us check that x∗ is a globally optimal solution of problem (61). Indeed, denote

uin = cn
2

[
dist2

(
gi (xn) + p(xn, λn)

cn
(λn)i , Qli+1

)
− p(xn, λn)2

c2n
‖(λn)i‖2

]
,

wn = q(xn, λn)〈μn, h(xn)〉 + cn
2

‖h(xn)‖2,

where λn = ((λn)1, . . . , (λn)r , μn), and i ∈ I . Note that uin/p(xn, λn) ≥ −α/2cn and
wn/q(xn, λn) ≥ −α/2cn for all i ∈ I and n ∈ N, i.e. the sequences {uin/p(xn, λn)}, i ∈ I ,
and {wn/q(xn, λn)} are bounded from below.

Observe that since (xn, λn) ∈ Se(cn) and cn ≥ c1 > α/γ due to our choice, then
τ ≤ Le(xn, λn, cn) < f∗ for all n ∈ N. Hence applying (64) and the fact that η(x, λ) is
nonnegative one obtains that the sequences { f (xn)} and {η(xn, λn)} are bounded. Therefore
the sequence {∑r

i=1 u
i
n/p(xn, λn) + wn/q(xn, λn)} is bounded as well, which implies that

the sequences {uin/p(xn, λn)}, i ∈ I , and {wn/q(xn, λn)} are bounded due to the fact that
they are bounded from below. Since by definition one has 0 < p(xn, λn) ≤ α and 0 <

q(xn, λn) ≤ α for all n ∈ N, then the sequences {uin}, i ∈ I , and {wn} are bounded as
well. Consequently, applying the fact that cn → +∞ as n → ∞ one can easily check that
dist(gi (xn), Qli+1) → 0 and h(xn) → 0 as n → ∞, which yields that x∗ is a feasible point
of problem (61).

From (64) and the fact that (xn, λn) ∈ Se(cn) it follows that f (xn) − α/cn < f∗. Passing
to the limit as n → ∞ and taking into account the fact that x∗ is feasible one obtains that x∗
is a globally optimal solution of problem (61).

Note that the function η(x∗, ·) is quadratic. Furthermore, arguing in the same way as
in the proof of Proposition 3.3 in [98] one can check that the Hessian of η(x∗, ·) at λ∗
is positive definite, which implies that there exist a neighbourhood U of x∗, δ1 > 0 and
δ2, δ3 ∈ R such that η(x, λ) ≥ δ1‖λ‖2 + δ2‖λ‖ + δ3 for all x ∈ U and λ ∈ Y ∗. Therefore
η(xn, λn) → +∞ as n → ∞, since {xn} converges to x∗ and ‖λ‖ ≥ n. Consequently, with
the use of (64) one obtains that Le(xn, λn, cn) → +∞ as n → ∞, which contradicts the
fact that (xn, λn) ∈ Se(cn). Thus, the set Se(c) is bounded for some c > 0. ��
Remark 27 To the best of author’s knowledge, penalized augmented Lagrangian functions
for nonlinear second-order cone programming problems have never been studied before.
Thus, augmented Lagrangian function (63) is the first globally exact augmented Lagrangian
function for problem (61).

8.4 Nonlinear semidefinite programming

Let the problem (P) be the nonlinear semidefinite programming problem of the form

min f (x) subject to G0(x) � 0, h(x) = 0, (65)

where the functions f : X → R, G0 : X → S
l and h : X → R

s are twice continuously
differentiable.

Let x∗ be a locally optimal solution of problem (65). Recall that the point x∗ is called
nondegenerate (see [94], Def. 4.70), if

[
DG0(x∗)
Jh(x∗)

]
R
d +

[
lin T

S
l−

(
G0(x∗)

)
{0}

]
=

[
S
l

R
s

]
.

As in the case of second order cone programming problems, the above nondegeneracy condi-
tion can be rewritten as a “linear independence-type” condition.Namely, let rankG0(x∗) = r .
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Then the point x∗ is nondegenerate iff the d-dimensional vectors

vi j =
(
eTi

∂G0(x∗)
∂x1

e j , . . . , e
T
i

∂G0(x∗)
∂xd

e j

)T

, ∇hk(x∗) (66)

are linearly independent, where 1 ≤ i ≤ j ≤ l − r , e1, . . . el−r is a basis of the null space of
the matrix G0(x∗), 1 ≤ k ≤ s, and h(x) = (h1(x), . . . , hs(x)) (see [94], Proposition 5.71).

For any λ = (λ0, μ) ∈ Y ∗ = S
l × R

s define

η(x, λ) = ∥∥Dx L(x, λ)
∥∥2 + Tr(λ20G0(x)

2).

Let us demonstrate that the nondegeneracy condition ensures that the function η(x, λ) has
desired properties.

Lemma 4 Let a locally optimal solution x∗ of problem (65) be nondegenerate. Then there
exists a unique Lagrange multiplier λ∗ at x∗, and η(x∗, λ) = 0 if and only if λ = λ∗.
Furthermore, the matrix D2

λλη(x∗, λ∗) is positive definite.

Proof The existence of a unique Lagrange multiplier λ∗ at x∗ follows directly from [94]
Proposition 4.75. Furthermore, note that the function η(x∗, ·) is quadratic. Therefore it
remains to check that the matrix D2

λλη(x∗, λ∗) is positive definite.
Suppose that λ = (λ0, μ) ∈ Y ∗ is such that D2

λλη(x∗, λ∗)(λ, λ) = 0. Then
Tr(λ20G0(x∗)2) = 0. Let G0(x∗) = E diag(σ1(x∗), . . . , σl(x∗))ET be a spectral decom-
position of G0(x∗) such that the eigenvalues σi (x∗) are listed in the decreasing order. Then
G0(x∗)2 = E diag(σ1(x∗)2, . . . , σl(x∗)2)ET . Applying the fact that the trace operator is
invariant under cyclic permutations one obtains that

Tr
(
λ20G0(x∗)2

)
= Tr

(
ET λ20E diag(σ1(x∗)2, . . . , σl(x∗)2)

)

=
l∑

i=1

σi (x∗)2eTi λ20ei = 0,

where ei is an eigenvector of G0(x∗) corresponding to the eigenvalue σi (x∗). Let
rank G0(x∗) = r . Then the above equalities imply that λ0ei = 0 for any i ∈ {l−r+1, . . . , l}.
Therefore there exists a (l − r) × (l − r) symmetric matrix Γ such that

ET λ0E =
(

Γ 0
0 0

)
, λ0 = E

(
Γ 0
0 0

)
ET = E0Γ ET

0 ,

where E0 is a l × (l − r) matrix whose columns are a basis of the null space of the matrix
G0(x∗) (note that in the case r = l one has λ0 = 0).

Since D2
λλη(x∗, λ∗)(λ, λ) = 0, then for the function ω(·) = ‖Dx L(x∗, ·)‖2 one has

D2ω(λ∗)(λ, λ) = 0 or, equivalently,

d∑
i=1

Tr

(
λ0

∂G0(x∗)
∂xi

)
· Tr

(
λ0

∂G0(x∗)
∂xi

)
+ 2

s∑
j=1

d∑
i=1

Tr

(
λ0

∂G0(x∗)
∂xi

)
· μ j

∂h j (x∗)
∂xi

+
s∑

j,k=1

d∑
i=1

μ jμk
∂h j (x∗)

∂xi

∂hk(x∗)
∂xi

= 0. (67)
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Applying the equality λ0 = E0Γ ET
0 one obtains that

Tr

(
λ0

∂G0(x∗)
∂xi

)
= Tr

(
Γ ET

0
∂G0(x∗)

∂xi
E0

)
=

l−r∑
j,k=1

Γ jke
T
j
∂G0(x∗)

∂xi
ek .

Hence and from (67) one gets that

l−r∑
i, j=1

l−r∑
p,q=1

Γi jΓpq〈vi j , vpq 〉 + 2
l−r∑
i, j=1

s∑
k=1

Γi jμk〈vi j ,∇hk(x∗)〉

+
s∑

i, j=1

μiμ j 〈∇hi (x∗),∇h j (x∗)〉 = 0,

where v jk are defined as in (66). Denote z = ∑l−r
i, j=1 Γi jvi j +∑s

k=1 μk∇hk(x∗). The equality
above implies that ‖z‖2 = 0, i.e. z = 0 or, equivalently,

l−r∑
i=1

Γi ivi i +
∑

1≤i< j≤l−r

2Γi jvi j +
s∑

k=1

μk∇hk(x∗) = 0.

Here we used the facts that the matrix Γ is symmetric and vi j = v j i . With the use of the
nondegeneracy condition one obtains that Γ = 0 and μ = 0, i.e. λ = 0, which implies that
the matrix D2

λλη(x∗, λ∗) is positive definite. ��
Now, we can introduce the penalized augmented Lagrangian function for problem (65).

Choose α > 0 and � > 1, and for any λ = (λ0, μ) ∈ Y ∗ define

p(x, λ) = a(x)

1 + Tr(λ20)
, q(x, λ) = b(x)

1 + ‖μ‖2 ,

where

a(x) = α − Tr
([G0(x)]2+

)�
, b(x) = α − ‖h(x)‖2.

Denote Ωα = {x ∈ R
d | a(x) > 0, b(x) > 0}. Finally, for any λ = (λ0, μ) ∈ Y ∗ define

Le(x, λ, c) = f (x) + 1

2cp(x, λ)

(
Tr

([cG0(x) + p(x, λ)λ0]2+
) − p(x, λ)2 Tr(λ20)

)

+〈μ, h(x)〉 + c

2q(x, λ)
‖h(x)‖2 + η(x, λ), (68)

if x ∈ Ωα , and Le(x, λ, c) = +∞, otherwise (see Example 12). Note that the func-
tion Le(x, λ, c) is l.s.c. jointly in (x, λ) on R

d × Y ∗, and continuously differentiable in
(x, λ) on its effective domain Ωα × Y ∗ by [94], Theorem 4.13. One can also check that
the functionΦ(y, λ, c) corresponding to penalized augmented Lagrangian function (68) sat-
isfies assumptions (A2), (A4)s , (A6)s , (A11) with Φ0(λ) ≡ λ, and (A12). Furthermore,
Φ(G(x∗), λ∗, c) = 0, if (x∗, λ∗) is a KKT-pair, and arguing in the same way as in ([54],
pp. 487–488) one can check that Φ(G(x), λ, c) admits the second order expansion in (x, λ)

at every KKT-pair of problem (65).
Applying Lemma 4, Theorem 8 and the localization principle, and arguing in the same

way as in the proofs of Theorems 9 and 12 one can easily verify that the following result
holds true (see [97] for the detailed proof of this result).
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Theorem 13 Let the functions f , G0, and h be twice continuously differentiable. Suppose
also that every globally optimal solution of problem (65) is nondegenerate, and for any
x∗ ∈ Ω∗ a unique KKT-pair (x∗, λ∗) satisfies the second order sufficient optimality condition.
Then penalized augmented Lagrangian function (68) is globally exact if and only if there
exists c0 > 0 such that the set {(x, λ) ∈ R

d × Y ∗ | Le(x, λ, c0) < f∗} is either bounded or
empty. In particular, if the set {x ∈ R

d | f (x) < f∗ + γ, a(x) > 0, b(x) > 0} is bounded
for some γ > 0, then penalized augmented Lagrangian function (68) is globally exact in the
sense that for any sufficiently large c > 0 its points of global minimum in (x, λ) are exactly
KKT-pairs of problem (65) corresponding to globally optimal solutions of this problem.

Remark 28 (i) One can easily construct a globally exact penalized augmented Lagrangian
function for problem (65) from augmented Lagrangian from Example 14. Namely, for any
λ = (λ0, μ) ∈ Y ∗ set

η(x, λ) = ‖Dx L(x, λ20, μ)‖2 + Tr(λ20G0(x)
2),

and define

Le(x, λ, c) = f (x) + 〈μ, h(x)〉 + c

2q(x, λ)
‖h(x)‖2 + η(x, λ)

+ p(x, λ)

c

〈
λ20, Ψ

(
c

p(x, λ)
G0(x)

)〉
+ p(x, λ)

c
Tr

[
Ξ

(
c

p(x, λ)
G0(x)

)]
, (69)

if x /∈ Ωα , andLe(x, λ, c) = +∞ otherwise (see Remark 23), where Ψ and Ξ are the same
as in Example 14. Then penalized augmented Lagrangian (69) is globally exact provided
every globally optimal solution of problem (65) is nondegenerate, satisfies the second order
sufficient optimality and strict complementarity conditions, the set {x ∈ R

d | f (x) <

f∗ + γ, a(x) > 0, b(x) > 0} is bounded, and the function ψ(t) is bounded from below. We
do not present the proof of this result here, and leave it to the interested reader.
(ii) Let us note that penalized augmented Lagrangian functions (68) and (69) for problem
(65) are completely new. A different exact augmented Lagrangian function for nonlinear
semidefinite programming problems was recently introduced in [86]. It should be pointed
out that our augmented Lagrangian function is defined via the problem data directly, while the
augmented Lagrangian function from [86] depends on a solution of a certain system of linear
equations, which makes the computation of the value of this augmented Lagrangian function
and its derivatives more expensive. Furthermore, in order to correctly define the augmented
Lagrangian function from [86] one must suppose that every feasible point of problem (65)
is nondegenerate, which might be a too restrictive assumption for many applications. In
contrast, we assume that only globally optimal solutions of problem (65) are nondegerate.

8.5 A different approach to global exactness

As the examples above show, one must suppose that both sufficient optimality conditions
and a constraint qualification hold true at globally optimal solutions of the problem (P) in
order to guarantee the global exactness of penalized augmented Lagrangian functions with
the use of the localization principle and Theorem 8.

Being inspired by the ideas of [74] and the localization principle, we present different
necessary and sufficient conditions for the global exactness of Le(x, λ, c) that are based on
the use of constraint qualifications only. However, let us point out that this conditions are
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applicable only in the case whenL (x, λ, c) is the Hestenes–Powell–Rockafellar augmented
Lagrangian function.

Theorem 14 Let Y be finite dimensional, A = X, Λ = Y ∗, G be continuous, andLe(·, ·, c)
be l.s.c. for all c > 0. Suppose also that assumptions (A2), (A4)s , (A6)s and (A12) are
satisfied, and

Φ(G(x∗), λ∗, c) = 0 ∀c > 0 ∀(x∗, λ∗) ∈ Ω∗ × Y ∗ : η(x∗, λ∗) = 0. (70)

Suppose, finally, that for any (x∗, λ∗) ∈ Ω∗ × Y ∗ such that η(x∗, λ∗) = 0 there exist
a neighbourhood U of (x∗, λ∗) and c > 0 such that the function Le(·, ·, c) is Gâteaux
differentiable in U for all c ≥ c, and

(
(x, λ) ∈ U ∧ D(x,λ)Le(x, λ, c) = 0

)
�⇒

(
x ∈ Ω ∧ Φ(G(x), λ, c) = 0

)
. (71)

Then Le(x, λ, c) is globally exact (with respect to the function η) if and only if there exists
(x0, λ0) ∈ Ω∗ × Y ∗ such that η(x0, λ0) = 0, and there exists c0 > 0 such that the set Se(c0)
is either bounded or empty.

Proof The “only if” part of the theorem is proved in the same way as the “only if” part of
Theorem 6. Therefore, let us prove the “if” part.

Choose an increasing unbounded sequence {cn} ⊂ [c0,+∞). Assumption (A4)s implies
that Se(cn) ⊆ Se(c0) for all n ∈ N. Hence taking into account the fact that Se(c0) is either
bounded or empty, and Le(·, ·, c) is l.s.c. one obtains that for any n ∈ N the function
Le(·, ·, cn) attains a global minimum at a point (xn, λn), and the sequence {(xn, λn)} is
bounded. Note that if Se(cn) = ∅ for some n, thenLe(x, λ, cn) attains a global minimum at
(x0, λ0) ∈ Ω∗ × Y ∗ due to (70).

Since {(xn, λn)} is a bounded sequence, and both X and Y are finite dimensional, then
without loss of generality one can suppose that {(xn, λn)} converges to a point (x∗, λ∗). By
Lemma 2 one has x∗ ∈ Ω∗ and η(x∗, λ∗) = 0. Therefore there exist a neighbourhood U of
(x∗, λ∗) and c > 0 such that (71) holds true.

From the facts that (x∗, λ∗) is a limit point of {(xn, λn)}, and {cn} is an increas-
ing unbounded sequence it follows that there exists n ∈ N such that (xn, λn) ∈ U
and cn ≥ c. Applying the first order necessary optimality condition one obtains that
D(x,λ)Le(xn, λn, cn) = 0, which with the use of (71) implies that xn is a feasible point of
(P), andLe(xn, λn, cn) = f (xn) + η(xn, λn) ≥ f (xn) ≥ f∗. Hence taking into account the
facts that (xn, λn) is a point of global minimum of Le(·, ·, cn), and min(x,λ) Le(x, λ, cn) ≤
Le(x0, λ0, cn) = f (x0) = f∗ one gets that xn ∈ Ω∗ and η(xn, λn) = 0. Consequently,
applying Lemma 3 one obtains that Le(x, λ, c) is globally exact. ��

Note that condition (71) is satisfied for augmented Lagrangian (56) (in the case when there
are no equality constraints) by [74], Proposition 4.3, provided LICQ holds at every globally
optimal solution. Therefore with the use of the theorem above one can obtain the following
result that improves Theorem 5.4 from [74], since we do note assume that LICQ holds true
at every feasible point of problem (55), and obtain necessary and sufficient conditions for
the global exactness of augmented Lagrangian (56) for problem (55).

Theorem 15 Suppose that J = ∅. Let f and gi , i ∈ I , be twice continuously differentiable,
and let LICQ hold true at every globally optimal solution of problem (55). Then penalized
augmented Lagrangian function (56) is globally exact if and only if there exists c0 > 0 such
that the set Se(c0) is either bounded or empty. In particular, if there exists γ > 0 such that
the set Ω(γ, α) is bounded, then augmented Lagrangian (56) is globally exact.
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Remark 29 (i) It is natural to assume that Proposition 4.3 from [74] (and, thus, the theorem
above) can be extended to the case of other penalized augmented Lagrangian functions (in
particular, to the case of augmented Lagrangians (63) and (68)). However, we do not discuss
the possibility of such an extension here, and pose it as an interesting open problem.
(ii) Let us note that with the use of Theorem 14 one can easily obtain necessary and sufficient
conditions for the global exactness of the augmented Lagrangian function for nonlinear
semidefinite programming problems from [86], which strengthen Theorem 4.8 from this
paper.

9 Conclusions

In this article we developed a general theory of augmented Lagrangian functions for cone
constrained optimization problems. Let us briefly discuss some conclusions that can be drawn
from this theory.

Note that there are two main classes of augmented Lagrangian functions for cone
constrained optimization problem. The first class consists of the well-known Hestenes–
Powell–Rockafellar augmented Lagrangian for mathematical programming problems and
its various modifications and extensions to the case of other cone constrained optimization
problem (Examples 1–4, 10, 12 and 15). The second class of augmented Lagrangians consists
of the exponential penalty functions and its numerous modifications (Examples 5–8, 11, 13,
14 and 16). It is natural to refer to the augmented Lagrangians from this class as nonlinear
rescaling augmented Lagrangians, since, in essence, all these augmented Lagrangians are
constructed as the standard Lagrangian function for the problem with rescaled constraints
(see [23]). Finally, there is also He–Wu–Meng’s augmented Lagrangian (Example 9) that
does not fall into either of those classes.

Nonlinear rescaling augmented Lagrangians are smoother than Hestenes-Power-
Rockafellar-type augmented Lagrangians. However, in order to guarantee the existence of
global saddle points (or local/global exactness) of nonlinear rescaling augmentedLagrangians
onemust impose the strict complementarity condition,which is not necessary in the case of the
Hestenes–Power–Rockafellar-type augmented Lagrangians and He–Wu–Meng’s augmented
Lagrangian (see Remarks 15 and 23) with the only exclusion being the cubic augmented
Lagrangian (Example 3). Therefore, it seems that in order to avoid the strict complemen-
tarity condition one must consider augmented Lagrangians that are not twice continuously
differentiable. Furthermore, as it was noted above (see Remark 19), all existing augmented
Lagrangian functions are not suitable for handling semi-infinite programming problems, and
a new approach to the construction of augmented Lagrangians for these problem is needed.

From the theoretical point of view, the augmented Lagrangian functions that are least
suitable for the study of the existence of global saddle points (and global exactness) are
those augmented Lagrangians that do not contain penalty terms (namely, the exponential
penalty function and the p-th power augmented Lagrangian; see Example 18 and Remark 14).
However, numerical methods based on these augmented Lagrangians sometimes work well
for convex (even infinite dimensional, see [100]) problems.

Finally, let us note that we did not discuss augmented Lagrangian methods for cone con-
strained optimization problems as well as numerical methods based on the use of globally
exact augmented Lagrangian functions for these problems. It seems that under some addi-
tional assumptions one might extend the existing augmented Lagrangian methods to the case
of the augmented LagrangianL (x, λ, c) for problem (P), thus developing a general theory
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of augmented Lagrangian methods for cone constrained optimization problems. We leave
the development of this theory as an open problem for future research.
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