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ABSTRACT

In this paper, we develop a new approach to the design of direct
numerical methods for multidimensional problems of the calcu-
lus of variations. The approach is based on a transformation of
the problem with the use of a new class of Sobolev-like spaces
that is studied in the article. This transformation allows one to
analytically compute the direction of steepest descent of the
main functional of the calculus of variations with respect to a
certain inner product, and, in turn, to construct newdirect numer-
ical methods for multidimensional problems of the calculus of
variations. In the endof thepaper,wepoint out how the approach
developed in the article can be extended to the case of problems
with more general boundary conditions, problems for function-
als depending on higher order derivatives, and problems with
isoperimetric and/or pointwise constraints.
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1. Introduction

The main problem of the calculus of variations has the form

min I(u) =

∫

�

f (x, u(x),∇u(x)) dx subject to u|∂� = ψ , (1.1)

where� ⊂ R
n is an open set, ∂� is the boundary of�, and f : �×R×R

n → R

and ψ : ∂� → R are given functions. Various aspects of this problem, such as

the existence and regularity of solutions [1–5], qualitative properties of critical

points (so-called “the calculus of variations in the large”) [6, 7], and necessary

and su�cient conditions for a local minimum [8], have been extensively studied

by many researches. However, relatively little attention has been paid to the

development of direct numerical methods (especially in the multidimensional

case) for problems of the calculus of variations.

By direct numerical methods, we mean methods that are not based on direct

numerical solution of the Euler–Lagrange equation, and, instead, rely on the

variational formulation of the problem. Besides being one of the approaches

to numerical solution of some partial di�erential equations, direct numerical

CONTACTMaksim V. Dolgopolik maxim.dolgopolik@gmail.com Department of Applied Mathematics and
Control Processes, Saint Petersburg State University, Universitetskii prospekt 35, Petergof, Saint-Petersburg 198504,
Russia.
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2 M. V. DOLGOPOLIK

methods are especially useful and important for those problems of the calculus

of variations that arise directly as optimization problems. This type of problems

naturally appear, in particular, in image processing [9, 10].

The vast majority of direct numerical methods of the calculus of variations

is based on an approximate reduction of problem (1.1) to a �nite-dimensional

optimization problem. Various types of reduction techniques and correspond-

ing numerical methods in the one-dimensional case (i.e., in the case when� =

(a, b) ⊂ R) were proposed in [11–20]. In the multidimensional case, the range

of choice of direct methods is much more narrow, and it includes (although is

not exhausted by) the �nite elements methods, the Galerkin method, and the

Ritz method [21–26]. However, there exist some direct numerical methods of

the calculus of variations in the one-dimensional case that do not consist of

an approximate reduction to a �nite-dimensional problem. Among them are

the �rst- and second-variation methods [27], that are based on straightforward

usage of the necessary optimality conditions for problem (1.1), He’s variational

iteration method [28], the continuous method of steepest descent [29], the dis-

crete steepest descent method [30, 31], Newton’s method [32], and the method

of hypodi�erential descent based on the use of exact penalty functions [33–35].

Let us also mention that some multidimensional problems of the calculus of

variations can be solved by standard gradient-based methods for functionals

de�ned onHilbert or Banach spaces [29, 31, 36–41] with the use of the so-called

Sobolev gradients [42].

The main goal of this paper is to develop a new approach to the design

of direct numerical methods for multidimensional problems of the calculus

of variations. This approach is based on a transformation of problem (1.1)

that allows one to analytically compute the direction of steepest descent of the

functional I with respect to a certain norm. Utilizing this direction of steepest

descent, one can apply an obviousmodi�cation of almost any �rst-ordermethod

of �nite-dimensional optimization to problem (1.1). The basic ideas (in a very

crude form) that lead to the the development of the approach studied in this

article were presented in the two-dimensional case in [43]. It should be noted

that the main results of the paper [43] were inspired by the ideas of the late

professor Demyanov [44, 45], as well as the method of hypodi�erential descent

and the method of steepest descent mentioned above.

The paper is organized as follows. In Section 2, we informally discuss the

underlying ideas of the approach developed in this article. In Section 3, we

introduce and study a new class of Sobolev-like spaces that plays a central role in

the formalization of the new direct numerical methods. In particular, we obtain

a convenient characterization of a certain function space from this class that is

very important for the transformation of problem (1.1). The direction of steepest

descent of the functional I with respect to a certain norm is derived in Section 4.

In conclusion, we discuss possible generalizations of the ideas developed in this

paper and brie�y outline some directions of future research.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 3

2. How to compute the direction of steepest descent?

In this section, we informally discuss a general technique for constructing new

minimization methods for the main problem of the calculus of variations. A

possible formalization of this technique is presented in the subsequent sections.

We suppose that all functions that appear in this section are su�ciently smooth.

Consider the main problem of the calculus of variations

min I(u) =

∫

�

f (x, u(x),∇u(x)) dx subject to u|∂� = ψ , (2.1)

where � ⊂ R
n is an open set and f = f (x, u, z). We want to apply in�nite-

dimensional analogues of standard gradient-basedmethods of �nite-dimensional

optimization to the problem above. To do that we need to compute the gradient

or, more generally, the direction of steepest descent of the functional I .

It is well known and easy to check that the functional I is Gâteaux di�eren-

tiable, and its Gâteaux derivative has the form

I
′[u](h) =

∫

�

(

∂f

∂u
(x, u(x),∇u(x))h(x)+

n
∑

i=1

∂f

∂zi
(x, u(x),∇u(x))

∂h

∂xi
(x)

)

dx.

(2.2)
Therefore to compute the direction of steepest descent of the functional I , we

need to solve the following problem of the calculus of variations

min I
′[u](h) subject to h|∂� = 0, ‖h‖ ≤ 1,

where ‖ · ‖ is some norm. However, this problem is, usually, too complicated to

be solved analytically, and even in simple cases, it is equivalent to the problem

of solving a linear partial di�erential equation (see, e.g., [42, Chapter 9]).

To overcome this di�culty, let us transform problem (2.1). For the sake of

simplicity, suppose that n = 2, ψ ≡ 0, and let � be an open box, i.e.,

� = (a1, b1)×(a2, b2). Let also u be a function such that u|∂� = 0. Observe that

u(x1, x2) =

∫ x1

a1

∂u

∂x1
(ξ1, x2) dξ1 ∀x ∈ �. (2.3)

Since u(x1, a2) ≡ 0, then ∂u/∂x1(x1, a2) ≡ 0. Therefore

∂u

∂x1
(x1, x2) =

∫ x2

a2

∂2u

∂x2∂x1
(x1, ξ2) dξ2 ∀x ∈ �.

Hence with the use of (2.3) one gets that

u(x1, x2) =

∫ x1

a1

∫ x2

a2

∂2u

∂x2∂x1
(ξ1, ξ2) dξ2dξ1 ∀x ∈ �.

Furthermore, from the latter equality, it follows that
∫ b1

a1

∂2u

∂x2∂x1
(ξ1, ·) dξ1 ≡ 0,

∫ b2

a2

∂2u

∂x2∂x1
(·, ξ2) dξ2 ≡ 0

due to the fact that u(x1, b2) ≡ 0 and u(b1, x2) ≡ 0.
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4 M. V. DOLGOPOLIK

Let now v be a function such that
∫ b1

a1

v(ξ1, ·) dξ1 ≡ 0,

∫ b2

a2

v(·, ξ2) dξ2 ≡ 0.

Then it is easy to see that for the function u = Tv, where

(Tv)(x1, x2) =

∫ x1

a1

∫ x2

a2

v(ξ1, ξ2) dξ2dξ1 ∀x ∈ �,

one has u|∂� = 0. Thus, we have that the following result holds true.

Proposition 1. Let u : [a1, b1] × [a2, b2] → R be a su�ciently smooth function.

Then u|∂� = 0 if and only if there exists a su�ciently smooth function v such that

1. u(x1, x2) = (Tv)(x1, x2) =
∫ x1
a1

∫ x2
a2

v(ξ1, ξ2) dξ2dξ1 for all x ∈ �;

2.
∫ b1
a1

v(ξ1, ·) dξ1 ≡ 0 and
∫ b2
a2

v(·, ξ2) dξ2 ≡ 0.

Moreover, v = ∂2u/∂x1∂x2.

From the proposition above, it follows that problem (2.1) with ψ ≡ 0 is

equivalent to the following optimization problem: minimize

F(v) =

∫

�

f
(

x, (Tv)(x),

∫ x2

a2

v(x1, ξ2) dξ2,

∫ x1

a1

v(ξ1, x2) dξ1

)

dx1dx2 (2.4)

subject to the constraints

∫ b1

a1

v(ξ1, ·) dξ1 ≡ 0,

∫ b2

a2

v(·, ξ2) dξ2 ≡ 0. (2.5)

As we shall see, one can easily compute the direction of steepest descent for this

problem.

Indeed, denote by L0, the linear space consisting of all functions v satisfying

(2.5). Clearly, the functional F is Gâteaux di�erentiable. Integrating by parts in

(2.2) one gets that the Gâteaux derivative of F has the form

F′[v](h) =

∫

�

Q(v)(x)h(x) dx,

where

Q(v)(x) =

∫ b1

x1

∫ b2

x2

∂f

∂u
(ξ , u(ξ),∇u(ξ)) dξ2dξ1 −

−

∫ b2

x2

∂f

∂z1
(x1, ξ2, u(x1, ξ2),∇u(x1, ξ2)) dξ2 −

−

∫ b1

x1

∂f

∂z2
(ξ1, x2, u(ξ1, x2),∇u(ξ1, x2)) dξ1, (2.6)
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 5

and u = Tv. Hence the direction of steepest descent for problem (2.4), (2.5) is a

solution of the following optimization problem:

min

∫

�

Q(v)(x)h(x) dx subject to h ∈ L0, ‖h‖ ≤ 1, (2.7)

where ‖ · ‖ is some norm. We choose the L2-norm, i.e., ‖h‖ =
(

∫

�
h2(x) dx

)
1
2
.

Let us solve problem (2.7).

Proposition 2. Suppose that the function u = Tv does not satisfy the Euler–

Lagrange equation for the functional I . Then the direction of steepest descent h∗

for problem (2.4), (2.5) has the form h∗(x) = G(v)(x)/‖G(v)‖2, where

G(v)(x) = −Q(v)(x)+
1

b1 − a1

∫ b1

a1

Q(v)(ξ1, x2)dξ1 +
1

b2 − a2

∫ b2

a2

Q(v)(x1, ξ2)dξ2 −
1

(b1 − a1)(b2 − a2)

∫ b1

a1

∫ b2

a2

Q(v)(ξ1, ξ2)dξ2dξ1. (2.8)

Proof. Applying the Lagrange multipliers rule to problem (2.7), one gets that

there exists λ ∈ R such that
∫

�

(Q(v)(x)+ λh∗(x))h(x) dx = 0 ∀h ∈ L0.

Note that for any in�nitely di�erentiable function ϕ with compact support one

has ∂2ϕ/∂x1∂x2 ∈ L0 (see Proposition 1). Therefore
∫

�

(Q(v)(x)+ λh∗(x))
∂2ϕ

∂x1∂x2
(x) dx =

∫

�

∂2

∂x1∂x2
(Q(v)(x)+ λh∗(x))ϕ(x) dx

= 0

for any in�nitely di�erentiable function ϕ with compact support. Hence apply-

ing the fundamental lemma of the calculus of variations, one gets that

∂2

∂x1∂x2
(Q(v)(x)+ λh∗(x)) = 0 ∀x ∈ �.

It is easy to verify that λ = 0 if and only if the function u = Tv satis�es the

Euler–Lagrange equation for the functional I (see Equation (2.6)). Thus, we can

suppose that λ 6= 0. Hence

h∗(x) = −
1

λ
Q(v)(x)+ r1(x1)+ r2(x2),
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6 M. V. DOLGOPOLIK

where r1 and r2 are some functions. Taking into account the fact that h∗ ∈ L0
one obtains that























−
1

λ

∫ b1

a1

Q(v)(ξ1, ·)dξ1 +

∫ b1

a1

r1(ξ1)dξ1 + (b1 − a1)r2(·) = 0,

−
1

λ

∫ b2

a2

Q(v)(·, ξ2)dξ2 + (b2 − a2)r1(x1)+

∫ b2

a2

r2(ξ2)dξ2 = 0.

Solving this system with respect to r1 and r2, one obtains that

r1(x1) =
1

λ(b2 − a2)

∫ b2

a2

Q(v)(x1, ξ2)dξ2,

r2(x2) =
1

λ(b1 − a1)

∫ b1

a1

Q(v)(ξ1, x2)dξ1 −
1

λ(b1 − a1)(b2 − a2)

∫

�

Q(v)(ξ)dξ .

Hence (2.8) holds true.

Since we know the direction of steepest descent for problem (2.4), (2.5),

we can apply an obvious modi�cation of almost any gradient-based algorithm

of �nite-dimensional optimization to this problem and, in turn, to the initial

problem (2.1).

If we look at the way the direction of steepest descent was derived, we can

easily see that this direction is the direction of the steepest descent of the

functional I with respect to the norm

‖u‖ =

(

∫

�

(

∂2u

∂x1∂x2
(x)

)2

dx

)
1
2

(the fact that this seminorm is, indeed, a norm follows from Proposition 1).

However, any space of smooth functions equippedwith this norm is incomplete.

Therefore, it is natural to consider the original problem in the setting of Sobolev-

like spaces and to transfer the main ideas discussed above to this more general

setting.

Remark 1. As it is well known, the direction of steepest descent as well as the

performance of the method of steepest descent depend on the choice of an

underlying Hilbert (Banach) space and an inner product (norm) in this space

(see, e.g., [42, 46, 47]). From this point of view, the main goal of this article is to

introduce a Hilbert space such that the direction of the steepest descent of the

functional I(u) in this space can be easily computed analytically.

3. Special function spaces

In this section, we introduce a class of function spaces that plays a central role in

the formalization of the minimization methods for multidimensional problems
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 7

of the calculus of variations discussed above. This class of functions is closely

related to the Sobolev spaces and possesses many properties of these spaces. We

suppose that the reader is familiar with basic results on the Sobolev spaces that

can be found in [48–50].

3.1. Main de�nitions and basic properties

Introduce the notation �rst. A point in R
n is denoted by x = (x1, . . . , xn) ∈

R
n, and its norm is denoted by |x| =

(
∑n

i=1 x
2
i

)
1
2 . As usual, any n-tuple α =

(α1, . . . ,αn) ∈ Zn
+ of nonnegative integers αi is called a multi-index; its absolute

value |α| = α1 + . . .+ αn. For any multi-index α denote by Dα = Dα11 . . .D
αn
n ,

a di�erential operator of order |α|, where Di = ∂/∂xi for i ∈ {1, . . . , n}. If α =

(0, . . . , 0), then Dαu = u for any function u. De�ne

Ik =
{

α ∈ Zn
+ | |α| = k,αi = 0 or αi = 1 ∀i ∈ {1, . . . , n}

}

.

for any k ∈ {0, . . . , n}. It is clear that I0 = {(0, . . . , 0)} and In = {(1, . . . , 1)}.

If α ∈ Ik for some 0 ≤ k ≤ n, then a unique multi-index β ∈ In−k such that

α + β ∈ In is denoted by α. Here the sum of multi-indices is component-wise.

The kernel of a linear operator L : X → Y is referred to as ker L (here X, Y are

linear spaces).

Remark 2. We consider only real-valued functions and normed spaces over the

�eld of real numbers. If f is a bounded linear functional de�ned on a normed

spaceX, then we denote its norm by ‖f ‖ or by ‖f ‖X when we want to specify the

domain of f .

Herea�er, let� ⊂ R
n be a bounded open box, i.e.,� =

∏n
k=1(ai, bi). Denote

by Ck(�) the set of all those u ∈ Ck(�) for which all functions Dαu with 0 ≤

|α| ≤ k are bounded and uniformly continuous on � (then there exist unique

continuous extensions of functionsDαuwith 0 ≤ |α| ≤ k to the closure� of the

set�). The set of all in�nitely continuously di�erentiable functions u : � → R

with compact support is denoted by C∞
0 (�).

Let us introduce a new function space. For any m ∈ {1, . . . , n} and 1 ≤ p ≤

∞ denote byMm,p(�), the set of all u ∈ Lp(�) such that for any k ∈ {1, . . . ,m}

and α ∈ Ik, there exists the weak derivative Dαu belonging to Lp(�). Thus,

Mm,p(�) consists of all functions u ∈ Lp(�) for which there exist all weakmixed

derivatives of the order k = 1 : m that belong to Lp(�). The set M
m,p(�) is a

linear space that can be equipped with the norm

‖u;Mm,p‖ =



























m
∑

k=0

∑

α∈Ik

(‖Dαu‖p)
p





1
p

for 1 ≤ p < ∞,

max{‖Dαu‖∞ | α ∈ Ik, 1 ≤ k ≤ m} for p = ∞,
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8 M. V. DOLGOPOLIK

where ‖·‖p is the standard normon Lp(�). The closure ofC
∞
0 (�) in the normed

spaceMm,p(�) is denoted byM
m,p
0 (�).

Let, as usual, Wm,p(�) with m ∈ N and 1 ≤ p ≤ ∞ be the Sobolev space,

andW
m,p
0 (�) be the closure of C∞

0 (�) inWm,p(�). It is clear thatWm,p(�) ⊂

Mm,p(�) and, analogously,W
m,p
0 (�) ⊂ M

m,p
0 (�). Moreover, these embeddings

are continuous. On the other hand, Mm,p(�) is dense in W1,p(�) for any m ∈

{1, . . . , n}, andM1,p(�) = W1,p(�).

Let us describe some properties of the spacesMm,p(�). Arguing in a similar

way to the case of the Sobolev spaces (see, e.g., Theorems 3.2 and 3.5 in [48])

one can easily derive the following results.

Theorem 1. For any 1 ≤ m ≤ n, the space Mm,p(�) is complete in the case

1 ≤ p ≤ ∞, is separable in the case 1 ≤ p < ∞, and is re�exive and uniformly

convex in the case 1 < p < ∞. Moreover, Mm,2(�) is a separable Hilbert space

with the inner product

〈u, v〉m =

m
∑

k=0

∑

α∈Ik

〈Dαu,Dαv〉,

where 〈ϕ,ψ〉 =
∫

�
ϕ(x)ψ(x) dx is the inner product in L2(�).

Remark 3.

(i) An analogous result holds true forM
m,p
0 (�).

(ii) Note that for any ϕ ∈ C∞(�) ∩ Mm,∞(�) and u ∈ Mm,p(�), one has

ϕu ∈ Mm,p(�). Furthermore, for any α ∈ Ik, 1 ≤ k ≤ m, one has

Dα(ϕu) =
∑

β+γ=α

DβϕDγ u.

It is well known that the spaceW
m,p
0 (�) can be equipped with the norm

‖u‖0,m,p =
(

∑

|α|=m

(‖Dαu‖p)
p
)

1
p
, u ∈ W

m,p
0 (�) (3.1)

which is equivalent to the standard norm ‖ · ‖m,p (see, e.g., [48, Sections 6.25

and 6.26]). Analogously, the space M
m,p
0 (�) can be equipped with a di�erent

norm, which is equivalent to the norm ‖·;Mm,p‖, and is more suitable for our

purposes. Set

‖u;M
m,p
0 ‖ =

(

∑

α∈Im

(‖Dαu‖p)
p
)

1
p
, u ∈ M

m,p
0 (�).

It is clear that ‖·;M
m,p
0 ‖ is a seminorm on M

m,p
0 (�). Arguing in a similar way

to the case of W
m,p
0 (�) (cf. [48, Section 6.26]) one can easily verify that the

following theorem holds true.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 9

Theorem 2. The seminorm ‖·;M
m,p
0 ‖ is a norm on M

m,p
0 (�) which is equivalent

to the norm ‖·;Mm,p‖.

3.2. Characterization ofMn,2
0 (�)

Our aim now is to give a simple characterization of the space Mn,2
0 (�) that is

crucial for the computation of the direction of steepest descent. To do that, we

need to introduce several integral operators that will be useful in the sequel.

Let v ∈ L2(�). For 1 ≤ i ≤ n de�ne the operator

(Tiv)(x) =

∫ xi

ai

v(x1, . . . xi−1, ξi, xi+1, . . . , xn) dξi for a.e. x ∈ �.

By virtue of the Fubini theorem, one gets that Ti is correctly de�ned and is a

continuous linear operator mapping L2(�) to L2(�). Let α ∈ Ik, 1 ≤ k ≤ n,

and suppose that αij = 1, 1 ≤ j ≤ k, where 1 ≤ i1 < . . . < ik ≤ n, and

αl = 0 i� l 6= ij for any 1 ≤ j ≤ k, i.e., αij are the only nonzero components

of the multi-index α. Then de�ne the operator Tα = Tαi1 ◦ . . . ◦ Tαik mapping

continuously L2(�) to L2(�). With the use of the Fubini theorem, one gets that

for any permutation ℓ of the set {1, . . . , k}, the following holds

Tα = Tαiℓ(1) ◦ . . . ◦ Tαiℓ(k) .

For the sake of convenience, denote T = T(1,...,1). Applying the Lebesgue

di�erentiation theorem (cf., for instance, [51, Corollary 2.9.9]) and integrating

by parts, one can verify that for any v ∈ L2(�), 1 ≤ k ≤ n and α ∈ Ik there

exists the weak derivative Dα(Tv) ∈ L2(�) and

Dα(Tv) = Tα(v). (3.2)

Recall that α ∈ In−k is a unique multi-index such that α + α ∈ In. Thus, as it is

easy to see, T is a continuous linear operator mapping L2(�) toM
n,2(�).

For any α ∈ Ik, 1 ≤ k ≤ n and for all v ∈ L2(�) de�ne

Sαv =

∫ bαi1

aαi1

. . .

∫ bαik

aαik

v dξαik . . . dξαi1 ,

where 1 ≤ i1 < . . . < ik ≤ n and αr = 0 i� r 6= ij for all 1 ≤ j ≤ k. For the

sake of convenience denote Si = Sα for any α ∈ I1, where i is the only non-zero

component of α.

It is easy to verify that for any α ∈ Ik, 1 ≤ k ≤ n the linear operator Sα
continuously maps L2(�) to L2(�). Therefore, in particular, the linear subspace

L0 =
⋂

1≤i≤n

ker Si =

{

v ∈ L2(�)

∣

∣

∣

∣

∫ bk

ak

v dξk = 0 k ∈ {1, . . . , n}

}

.
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10 M. V. DOLGOPOLIK

of the Hilbert space L2(�) is closed. Consequently, there exists the orthogonal

projector PrL0 of L2(�) onto L0. We will need an explicit formula for the

projector PrL0 (cf. Proposition 2).

Proposition 3. For any v ∈ L2(�), one has

PrL0v = v +

n
∑

k=1

∑

α∈Ik

(−1)|α|cαSαv, (3.3)

where cα =
∏n

i=1(bi − ai)
−αi .

Proof. Fix an arbitrary v ∈ L2(�), and denote the function on the right-hand

side of (3.3) by w. A direct computation shows that
∫ bk
ak

wdξk = 0 for all k ∈

{1, . . . , n}. Consequently, w ∈ L0. Let us show that v − w ∈ L⊥
0 , where L

⊥
0 is

the orthogonal complement of L0, then PrL0v = w, since the decomposition

v = v1 + v2 for v1 ∈ L0 and v2 ∈ L⊥
0 is unique. For an arbitrary h ∈ L0, one has

〈v − w, h〉 =

n
∑

k=1

∑

α∈Ik

(−1)|α|cα

∫

�

(Sαv)(x)h(x) dx.

For any α ∈ Ik, 1 ≤ k ≤ n there exists 1 ≤ i ≤ n such that αi = 1. Hence Sαv

does not depend on xi. Denote�i =
∏

k6=i(ai, bi). One has
∫

�

(Sαv)(x)h(x) dx =

∫

�i

(Sαv)(x)(Sih)(x) dx1 . . . dxi−1dxi+1 . . . dxn

= 0,

by the Fubini theorem and the fact that Sih = 0 since h ∈ L0. Therefore 〈v −

w, h〉 = 0 for any h ∈ L0, which means that v − w ∈ L⊥
0 .

Remark 4.

(i) Note that for any function ϕ ∈ Cn(�) with compact support, one has

D(1,...,1)ϕ ∈ L0.

(ii) It is obvious that if v ∈ Ck(�) ∩ L2(�), then PrL0v ∈ Ck(�), i.e., the

projection operator PrL0 preserves smoothness.

The following theorem gives a convenient characterization of Mn,2
0 (�)

(cf. Proposition 1).

Theorem 3. A function u : � → R belongs to Mn,2
0 (�) if and only if there exists

a function v ∈ L2(�) such that

1. v ∈ L0, i.e., for any 1 ≤ i ≤ n one has Siv =
∫ bi
ai
v dξi = 0,

2. u(x) = (Tv)(x) =
∫ xn
an
. . .
∫ x1
a1

v(ξ)dξ1 . . . dξn for a.e. x ∈ �.

Proof. Let us show that for any u ∈ Mn,2
0 (�) one has that v = D(1,...,1)u ∈ L0 and

u = Tv. Indeed, it is clear that for any ϕ ∈ C∞
0 (�), one has that D

(1,...,1)ϕ ∈ L0
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 11

and ϕ = TD(1,...,1)ϕ. Let u ∈ Mn,2
0 (�) be arbitrary, and {ϕk} ⊂ C∞

0 (�) be

a sequence such that ϕk → u in Mn,2(�). Then, denoting v = D(1,...,1)u and

vk = D(1,...,1)ϕk, one gets that for some C ≥ 0, depending only on n and �, the

following inequalities holds true

‖u − Tv;Mn,2(�)‖ ≤ ‖u − ϕk;M
n,2(�)‖ + ‖Tv − Tvk;M

n,2(�)‖

≤ ‖u − ϕk;M
n,2(�)‖ + C‖v − vk‖2 ≤ (C + 1)

‖u − ϕk;M
n,2(�)‖ → 0

as k → ∞. Consequently, u = T(D(1,...,1)u). Moreover, since for any k ∈ N, one

has Sivk = 0, then, as it easy to verify, Siv = 0 for all 1 ≤ i ≤ n. Consequently,

v = D(1,...,1)u ∈ L0.

Let us prove the converse statement. Fix an arbitrary v ∈ L0, and set u = Tv.

We need to prove that there exists a sequence {ϕm} ⊂ C∞
0 (�) such that ϕm → u

in Mn,2(�). We will prove that there exist functions um ∈ Mn,2(�) such that

um → u inMn,2(�) and um = 0 outside some compact set Km ⊂ �. Then one

can mollify um to generate a sequence {ϕm} ⊂ C∞
0 (�) such that ϕm → u in

Mn,2(�) (see, for instance, [49, Theorem 5.3.1 and Appendix C.4]).

Choose an arbitrary function ζ ∈ C∞
0 (R) such that ζ(x) = 1 when x ∈ [0, 1],

ζ(x) = 0, when x ≥ 2 and 0 ≤ ζ(x) ≤ 1 for all x ∈ R. For any m ∈ N de�ne

the function

um(x) = (Tv)(x)

n
∏

k=1

[

1 − ζ(m(xk − ak))
][

1 − ζ(m(bk − xk))
]

∀x ∈ �.

It is clear that um ∈ Mn,2(�) and um = 0 outside
∏n

k=1[ak + 1/m, bk − 1/m]

for m ∈ N large enough. Let us show that um → u inMn,2(�), then we get the

desired result.

Indeed, it is easy to verify that um → u in L2(�). Fix an arbitrary α ∈ Ir,

1 ≤ r ≤ n. Observe that
n
∏

k=1

(

1 − ζ(m(xk − ak))
)(

1 − ζ(m(bk − xk))
)

= 1 +

n
∑

k=1

ζ(m(xk − ak))ω
(1)
k (x)+

n
∑

k=1

ζ(m(bk − xk))ω
(2)
k (x),

where the functions ω
(i)
k are in�nitely continuously di�erentiable and bounded

on�. Therefore by Remark 3, one has

Dαum(x) = (Dαu)(x)+

n
∑

k=1

(Dαu)(x)ζ(m(xk − ak))ω
(1)
k (x)

+

n
∑

k=1

(Dαu)(x)ζ(m(bk − xk))ω
(2)
k (x)+

∑

β+γ=α,β 6=α

(Dβu)(x)ζγ (x),
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12 M. V. DOLGOPOLIK

where ζγ ∈ C∞(�) and

ζγ (x) = Dγ
(

n
∏

k=1

[

1 − ζ(m(xk − ak)
][

1 − ζ(m(bk − xk)
]

)

. (3.4)

Hence there exists C ≥ 0 depending only on n,� and ζ such that

∫

�

|Dαum − Dαu|2dx ≤ C

n
∑

k=1

∫ ak+2/m

ak

∫

�k

|Dαu|2 dξ kdxk

+ C

n
∑

k=1

∫ bk

bk−2/m

∫

�k

|Dαu|2 dξ kdxk

+ C
∑

β+γ=α,β 6=α

∫

�

|Dβu|2(x)|ζγ |
2(x) dx

= A1(m)+ A2(m)+ A3(m)

by virtue of the fact that ζ(m(xk − ak)) = 0 for any xk > ak + 2/m and

ζ(m(bk − xk)) = 0 for any x < bk − 2/m. Here �k =
∏

i6=k(ai, bi) and

ξ k = (ξ1, . . . , ξk−1, xk, ξk+1, . . . , ξn). It is clear thatA1(m) → 0 andA2(m) → 0

asm → ∞. Let us show thatA3(m) → 0 asm → ∞, then ‖Dαum−Dαu‖2 → 0

asm → ∞ for any α ∈ Ir, 1 ≤ r ≤ n and, consequently, um → u inMn,2(�).

Fix an arbitrary 0 ≤ k ≤ r − 1, β ∈ Ik and γ ∈ Ir−k such that β + γ = α.

Without loss of generality, we can suppose that α1 = . . . = αr = 1, γ1 = . . . =

γr−k = 1 and βr−k+1 = . . . = βr = 1. Our aim is to show that
∫

�

|Dβu|2(x)|ζγ (x)|
2 dx → 0 asm → ∞,

then A3(m) → 0 asm → ∞. Taking into account (3.4), one gets that

ζγ (x) = m|γ |
∑

η+θ=γ

ωη,θ (x)

n
∏

l=1

ζ ′(m(xl − al))
ηl

n
∏

s=1

ζ ′(m(bs − xs))
θs ,

where ωη,θ ∈ C∞(�) and |ωη,θ | ≤ 1. Therefore, it is su�cient to show that for

any multi-indices η and θ such that η + θ = γ one has

m2|γ |

∫

�

|Dβu|2(x)

n
∏

l=1

|ζ ′(m(xl − al))|
2ηl

n
∏

s=1

|ζ ′(m(bs − xs))|
2θs dx → 0

as m → ∞. Fix an arbitrary 0 ≤ j ≤ r − k, η ∈ Ij and θ ∈ Ir−k−j such that

η + θ = γ . Without loss of generality, we can suppose that η1 = . . . = ηj = 1

and θj+1 = . . . = θr−k = 1. As it was mentioned above, Dβu = DβTv = Tβv

(see Equality (3.2)). Then, taking into account the fact that since v ∈ L0, then
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 13

∫ xi
ai
v dξi = −

∫ bi
xi
v dξi for all 1 ≤ i ≤ n one has that for a.e. x ∈ �

Dβu = (−1)|θ |
∫ x1

a1

. . .

∫ xj

aj

∫ bj

xj+1

. . .

∫ br−k

xr−k

∫ xr+1

ar+1

. . .

∫ xn

an

v dξn . . . dξr+1dξr−k . . . dξ1.

Consequently, with the use of the Hölder inequality one gets that there exists

C ≥ 0, depending only on n and�, such that for a.e. x ∈ �

|Dβu|2(x) ≤ C

j
∏

l=1

(xl − al)

r−k
∏

s=j+1

|bs − xs|(Tβ |v|
2)(x).

Therefore, applying the fact that ζ ′(m(xk − ak)) = 0 for any xk > ak + 2/m and

ζ ′(m(bk − xk)) = 0 for any xk < bk − 2/m one gets that for some C1,C2 > 0

that do not depend onm the following holds

m2|γ |

∫

�

|Dβu|2(x)

j
∏

l=1

|ζ ′(m(xl − al))|

r−k
∏

s=j+1

|ζ ′(m(bs − xs))| dx

≤ C1m
2|γ |

∫ a1+2/m

a1

. . .

∫ aj+2/m

aj

∫ bj+1

bj+1−2/m
. . .

∫ br−k

br−k−2/m

j
∏

l=1

(xl − al)

×

r−k
∏

s=j+1

|bs − xs|
(

(SγTβ |v|
2)(x)

)

dxr−k . . . dx1

≤ C2

∫ a1+2/m

a1

. . .

∫ aj+2/m

aj

∫ bj+1

bj+1−2/m
. . .

∫ br−k

br−k−2/m

∫ br−k+1

ar−k+1

. . .

∫ bn

an

|v|2 dx

→ 0

asm → ∞. Thus, the proof is complete.

Corollary 1. The operator T is an isometric isomorphism between

L0 =
{

v ∈ L2(�)
∣

∣

∣

∫ bi

ai

vdξi = 0, 1 ≤ i ≤ n
}

and Mn,2
0 (�). Furthermore, the inverse operator of the restriction of T to L0 is the

restriction of the di�erential operator D(1,...,1) to Mn,2
0 (�).

Remark 5.

(i) The proof of the converse statement of the theorem above is based on the

proof of the theorem on the characterization of W
1,p
0 (�) in terms of the

trace operator (see [49, Theorem 5.5.2]).
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14 M. V. DOLGOPOLIK

(ii) Denote by Tr the trace operator de�ned on W1,2(�). Clearly, if u ∈

Mn,2
0 (�) ⊂ W1,2

0 (�), then Tr(u) = 0 (see [49, Theorem 5.5.2] and [50,

Theorem15.29]).However, there is an open questionwhether the converse

statement is true, i.e., whether u ∈ Mn,2(�) and Tr(u) = 0 implies that

u ∈ Mn,2
0 (�). This question becomes more reasonable a�er one notes that

if u ∈ Cn(�) and Tr(u) = 0, i.e., u|∂� = 0, then u ∈ Mn,2
0 (�). Indeed,

since Tr(u) = 0, then

u(x) =

∫ x1

a1

∂u

∂x1
(ξ1, x2, . . . , xn) dξ1 ∀x ∈ �. (3.5)

Observe that u(x1, a2, x3, . . . , xn) ≡ 0. Therefore ∂u/∂x1(x1, a2,

x3, . . . , xn) = 0 for all x ∈ �. Hence

∂u

∂x1
(x) =

∫ x2

a2

∂2u

∂x2∂x2
(x1, ξ2, x3, . . . , xn) dξ2 ∀x ∈ �.

Taking into account (3.5), one gets that

u(x) =

∫ x1

a1

∫ x2

a2

∂2u

∂x2∂x2
(ξ1, ξ2, x3, . . . , xn) dξ2dξ1 ∀x ∈ �.

Applying mathematical induction one can easily obtain that u =

TD(1,...,1)u and D(1,...,1)u ∈ L0, which by the theorem above yields that

u ∈ Mn,2
0 (�).

In the following sections, we will use the function space Mm,p(�,Rd) (or

M
m,p
0 (�,Rd)) that consists of all functions u = (u1, . . . , ud) : � → R

d such

that ui ∈ Mm,p(�) (or ui ∈ M
m,p
0 (�)) for all i ∈ {1, . . . , d}. It is clear that the

spacesMm,p(�,Rd) andM
m,p
0 (�,Rd) possess the same properties as their “one

dimensional” counterparts. In particular, one can easily obtain a characteriza-

tion of the spaceMn,2
0 (�,Rd) similar to the characterization ofMn,2

0 (�).

4. Direction of steepest descent

In this section, we compute the direction of steepest descent of the main

functional of the calculus of variations. This direction can be utilized to design

new direct numerical methods for solving multidimensional problems of the

calculus of variations.

Consider the following problem of the calculus of variations

min I(u) =

∫

�

f (x, u(x),∇u(x)) dx subject to u ∈ u+Mn,2
0 (�,Rd), (4.1)

where u ∈ W1,2(�,Rd) is a given function that de�nes boundary conditions,

u = (u1, . . . , ud) and

∇u =

{

∂uj

∂xi

}1≤j≤d

1≤i≤n

∈ R
d×n.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 15

We suppose that the function f : � × R
d × R

d×n → R, f = f (x, u, z) satis�es

the Carathéodory condition, is di�erentiable with respect to u and z, and the

derivatives ∂f /∂ui, ∂f /∂zij satisfy the Carathéodory condition as well. Let also

the following growth conditions be valid:

1. there exist C > 0 and g ∈ L1(�) such that for a.e. x ∈ � and for all u ∈ R
n,

z ∈ R
d×n one has |f (x, u, z)| ≤ C(|u|2 + |z|2)+ g(x).

2. there exist D1,D2 > 0, and g1, g2 ∈ L2(�) such that for a.e. x ∈ � and for all

u ∈ R
n, z ∈ R

d×n one has
∣

∣

∣

∣

∂f

∂u
(x, u, z)

∣

∣

∣

∣

≤ D1(|u| + |z|)+ g1(x),

∣

∣

∣

∣

∂f

∂z
(x, u, z)

∣

∣

∣

∣

≤ D2(|u| + |z|)+ g2(x).

Remark 6. In the general case, problem (4.1) is not equivalent to the standard

problem of the calculus of variations

min I(u) =

∫

�

f (x, u(x),∇u(x)) dx subject to u ∈ u + W1,2
0 (�,Rd).

(4.2)

Problems (4.1) and (4.2) are equivalent if and only if there exists an optimal

solution u∗ of problem (4.2) such that u∗ ∈ u + Mn,2
0 (�,Rd). In other words,

problems (4.1) and (4.2) are equivalent if and only if there exists a “su�ciently

smooth” optimal solution u∗ of problem (4.2).

It is easy to see that the functional I is Gâteaux di�erentiable at every point

u ∈ W1,2(�,Rd) and its Gâteaux derivative has the form

I
′[u](h) =

∫

�

(〈

∂f

∂u
(x, u(x),∇u(x)), h(x)

〉

+

〈

∂f

∂z
(x, u(x),∇u(x)),∇h(x)

〉)

dx (4.3)

for all h ∈ W1,2(�,Rd). Here 〈·, ·〉 is the inner product in R
s, and

∂f

∂u
=

(

∂f

∂u1
, . . . ,

∂f

∂ud

)

,
∂f

∂z
=

{

∂f

∂zji

}1≤j≤d

1≤i≤n

.

As it was mentioned above, the problem of �nding the direction of steepest

descent of the functional I is very complicated. We utilize the characterization

of Mn,2
0 (�,Rd) (Theorem 3) to solve this problem and to design new direct

numerical methods for minimizing this functional.

Recall that the operator T,

(Tv)(x) =

∫ xn

an

. . .

∫ x1

a1

v(ξ1, . . . , ξn)dξ1 . . . dξn for a.e. x ∈ �,
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16 M. V. DOLGOPOLIK

is an isometric isomorphism between L0 ⊂ L2(�,R
d) and Mn,2

0 (�,Rd).

Therefore problem (4.1) is equivalent to the problem

min F(v) = I(u + Tv) =

∫

�

f (x, u(x)+ (Tv)(x),∇u(x)+ ∇(Tv)(x)) dx

subject to v ∈ L0,

We suppose that the functional F is de�ned on L0, and will minimize F over the

space L0.

The functional F is Gâteaux di�erentiable, and integrating by parts in (4.3),

one gets that the Gâteaux derivative of the functional F has the form

F′[v](h) = 〈Q(u), h〉 =

∫

�

〈Q(u)(x), h(x)〉 dx ∀h ∈ L0,

where u = u + Tv,

Q(u)(x) = (−1)n
∫ bn

xn

. . .

∫ b1

x1

∂f

∂u
(ξ , u(ξ),∇u(ξ)) dξ1 . . . dξn

+ (−1)n−1
n
∑

i=1

∫ bn

xn

. . .

∫ bi+1

xi+1

∫ bi−1

xi−1

. . .

∫ b1

x1

∂f

∂zi
(ξ i, u(ξ i),∇u(ξ i)) dξ1 . . . dξi−1dξi+1 . . . dξn, (4.4)

∂f /∂zi = (∂f /∂z1i, . . . , ∂f /∂zdi), and ξ
i = (ξ1, . . . , ξi−1, xi, ξi+1, . . . , ξn). Since

the derivatives of f satisfy the growth condition, then Q(u) ∈ L2(�) for any

u ∈ Mn,2
0 (�,Rd). Hence one has that

F′[v](h) = 〈G(u), h〉 =

∫

�

〈G(u)(x), h(x)〉 dx ∀h ∈ L0,

where u = u + Tv, and G(u) = PrL0Q(u) is the projection of Q(u) onto L0
in L2(�,R

d) (see Proposition 3 above). Note that G(u) ∈ L0 is the Gâteaux

gradient of the functional F at the point v. Consequently, −G(u)/‖G(u)‖2
is the direction of steepest descent of F at the point v, which implies that

−TG(u)/‖G(u)‖2 is the direction of steepest descent of the functional I at the

point u = u + Tv.

Thus, the following result holds true.

Proposition 4. Let v ∈ L0 and u = u + Tv (or, equivalently, u = u + w for

some w ∈ Mn,2
0 (�,Rd) and v = D(1,...,1)w) be such that F′[v] 6= 0. Let also

J (w) = I(u + w) for any w ∈ Mn,2
0 (�,Rd). Then −TG(u)/‖G(u)‖2 is the

direction of steepest descent of J at the point w = Tv, and −G(u)/‖G(u)‖2 is the

direction of steepest descent of F at the point v.
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 17

Remark 7. Note that for any v ∈ L0, one has u = Tv ∈ Mn,2
0 (�,Rd) ⊂

W1,2
0 (�,Rd). Therefore, as it was mentioned above, the trace Tr(u) of the

function u = Tv is correctly de�ned and equals zero. Thus, the direction of

steepest descent −TG(u)/‖G(u)‖2 does not change the values of a function on

the boundary of�, i.e., Tr(u + αTG(u)) = Tr(u) for all α ∈ R.

Let us mention several simple properties of the mappings G(·) and Q(·).

Proposition 5. Let v ∈ L0 and u = u + Tv (or, equivalently, u = u + w for

some w ∈ Mn,2
0 (�,Rd) and v = D(1,...,1)w). Let also J (w) = I(u + w) for any

w ∈ Mn,2
0 (�,Rd). Then the following statements hold true:

1. ‖J ′[w]‖2 = ‖F′[v]‖2 = I ′[u](TG(u)) = F′[v](G(u)) =
(

‖G(u)‖2
)2
;

2. I ′[u] = 0 i� F′[v] = 0 i� D(1,...,1)Q(u) = 0 in the weak sense;

3. suppose that u ∈ C2(�,Rd) and f ∈ C2(�× R
d × R

d×n). Then F′[v] = 0 if

and only if for all x ∈ � one has

∂f

∂u
(x, u(x),∇u(x))−

n
∑

i=1

∂

∂xi

∂f

∂zi
(x, u(x),∇u(x)) = 0,

i.e., F′[v] = 0 i� u = u + Tv satis�es the Euler–Lagrange equation.

Proof. The validity of the �rst statement follows directly from de�nitions. Let us

prove the second statement. It is clear that I ′[u](Th) = F′[v](h) for any h ∈ L0.

Therefore I ′[u] = 0 if and only if

F′[v](h) = 〈Q(u), h〉 =

∫

�

〈Q(u)(x), h(x)〉 dx = 0 ∀h ∈ L0. (4.5)

Since for any ϕ ∈ C∞
0 (�,R

d), one has D(1,...,1)ϕ ∈ L0, then (4.5) is equivalent

to the fact that D(1,...,1)Q(u) = 0 in the weak sense.

Suppose in addition that u ∈ C2(�,Rd) and f ∈ C2(�× R
d × R

d×n). Then

integrating in (4.5) by parts, one gets that
∫

�

〈g(x),ϕ(x)〉 dx = 0 ∀ϕ ∈ C∞
0 (�,R

d),

where

g(x) = (D(1,...,1)Q(v))(x) =
∂f

∂u
(x, u(x),∇u(x))−

n
∑

i=1

∂

∂xi

∂f

∂zi
(x, u(x),∇u(x)).

Applying the fundamental lemma of the calculus of variations (see, e.g.,

[5, Theorem 3.40]), one obtains the desired result.

Observe that the mapping u → G(u) ∈ L0 is well de�ned for any u ∈

W1,2(�,Rd).
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18 M. V. DOLGOPOLIK

Proposition 6. Let u∗ ∈ u + W1,2
0 (�,Rd). Then I ′[u∗](·) = 0 on W1,2

0 (�,Rd)

if and only if G(u∗) = 0.

Proof. Necessity. Suppose that I ′[u∗](·) = 0 on W1,2
0 (�,Rd). Since G(u∗) ∈

L0, then TG(u∗) ∈ Mn,2
0 (�,Rd) ⊂ W1,2

0 (�,Rd). Hence I ′[u∗](TG(u∗)) = 0.

Consequently, integrating by parts, one gets

0 = I
′[u∗](−TG(u∗)) = −

∫

�

〈Q(u∗)(x),G(u∗)(x)〉 dx

= −

∫

�

〈G(u∗)(x),G(u∗(x)〉 dx = −(‖G(u∗)‖2)
2,

since G(u∗) ∈ L0 and PrL0Q(u
∗) = G(u∗). Thus, G(u∗) = 0.

Su�ciency. Let G(u∗) = 0. Then it is easy to verify that I ′[u∗](h) = 0 for

all h ∈ Mn,2
0 (�,Rd). The space Mn,2

0 (�,Rd) is dense in W1,2
0 (�,Rd), and the

linear functional I ′[u∗] is bounded on W1,2(�,Rd). Therefore I ′[u∗](h) = 0

for any h ∈ W1,2
0 (�,Rd).

Since we now know the gradientG(·) of the functional F, we canmodifymost

of the gradient-based methods of �nite-dimensional optimization to the case of

this functional and use these methods to �nd critical points (or points of global

minimum in the convex case) of the functionals F and I . Convergence analysis

of thesemethods can be performed in the standardway (see, e.g., [29, 31, 36, 38–

41] for convergence analysis of minimization methods in Banach and Hilbert

spaces.).

5. Conclusion

In this article, we developed a new approach to the design of minimization

algorithms for the main problem of the calculus of variations. Let us discuss

some possible generalizations of this approach and some directions of future

research.

5.1. More general boundary conditions

The results developed in this article can be modi�ed to the case when the

boundary condition has the form u|Ŵ = ψ , where Ŵ ⊂ ∂�. In other words,

one can extend the theory presented in this article to the case when the values of

a function u are speci�ed only on a part of the boundary of�. However, it should

be mentioned that any modi�cation of the methods discussed above to the case

ofmore general boundary conditions requires a di�erent formalization, then the

one based on the use of spaceMn,2
0 (�). Therefore, the following discussion has

an informal character.

D
ow

nl
oa

de
d 

by
 [

18
8.

24
2.

67
.8

0]
 a

t 0
1:

21
 0

7 
O

ct
ob

er
 2

01
7 



NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 19

Let, for example, n = 2 and the boundary condition has the from

u|Ŵ = ψ , Ŵ = ∂� \ [a1, b1] × {b2},

i.e., the values of u are not speci�ed on the upper side on the rectangle � =

(a1, b1)× (a2, b2). Then one can show that the gradient of the functional F has

the form

Q(u)(x1, x2)−
1

b1 − a1

∫ b1

a1

Q(u)(ξ1, x2) dξ1 ∀(x1, x2) ∈ �.

Here we use the same notation as in Section 4.

In the case when the boundary condition has the form

u|Ŵ = ψ , Ŵ =
(

{a1} × [a2, b2]
)

∪
(

[a1, b1] × {a2}
)

,

the gradient of the functional F coincides with the function Q(u).

If the boundary condition has the from

u|Ŵ = ψ , Ŵ =
(

{a1} × [a2, b2]
)

∪
(

[a1, b1] × {b2}
)

,

then one should use a di�erent representation of a function u:

u(x1, x2) =

∫ x1

a1

∫ b2

x2

∂2u

∂x1∂x2
(ξ1, ξ2)dξ2dξ1.

This representation can be used to compute the direction of steepest descent.

5.2. Isoperimetric problems

One can easily modify the proposed approach to the case of problems of the

calculus of variations with linear isoperimetric constraints. Namely, let n = 2,

and suppose that there is the additional constraint

J (u) =

∫

�

(

g0(x)u(x)+ g1(x)D1u(x)+ g2(x)D2u(x)
)

dx = c. (5.1)

Denote byQI(u) the functionQ(u) for the functional I (see Equalities (2.6) and

(4.4)).

Applying the same argument as in Section 2, one can easily demonstrate that

the direction of steepest descent for the problem with additional isoperimetric

constraint (5.1) has the same form as for the problem without this constrain

with the function QI(u)(x) replaced by the function QI(u) + λQJ (u). Here

λ is a constant that is chosen so that the direction of steepest descent satis�es

constraint (5.1) with c = 0.

5.3. Functionals depending on higher order derivatives

Let us also note that the approach developed in this article can be generalized

to the case when the functional I(u) depends on derivatives of the function
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20 M. V. DOLGOPOLIK

u of order greater than 1. Indeed, consider, for instance, the following two-

dimensional problem of the calculus of variations:

min I(u) =

∫

�

f
(

x, u(x),∇u(x),∇2u(x)
)

dx (5.2)

subject to u|∂� = ψ1,
∂u

∂ν

∣

∣

∣

∂�
= ψ2, (5.3)

where � = (a1, b1) × (a2, b2), and ν is the outward unit normal at the

boundary of �. Let us demonstrate how one can easily transform this problem

utilizing the same technique as above to easily compute the direction of steepest

descent of the functional I(u) with respect to a certain norm. Here we provide

only an informal description of such transformation. A formalization of this

transformation can be done in the same way as in the case of the functional

that depends only on the �rst-order derivatives.

Let su�ciently smooth functions u and u satisfy boundary conditions (5.3).

Then the function w = u − u satis�es the same boundary conditions with

ψ1(·) = ψ2(·) = 0. Hence

w(x1, x2) =

∫ x1

a1

∂w

∂x1
(ξ1, x2) dξ1

due to the fact that w(a1, ·) = 0. Then applying the fact that w′
x1
(a1, ·) = 0, one

obtains that

w(x1, x2) =

∫ x1

a1

∫ ξ1

a1

∂2w

∂x21
(θ1, x2) dθ1 dξ1.

Note that since w(·, a2) = 0, then w′′
x1x1

(·, a2) = 0, which implies that

w(x1, x2) =

∫ x1

a1

∫ ξ1

a1

∫ x2

a2

∂3w

∂x2∂x
2
1

(θ1, ξ2) dξ2 dθ1 dξ1.

Finally, from the fact thatw′
x2
(·, a2) = 0, it follows thatw′′′

x2x1x1
(·, a2) = 0, which

yields

w(x) =
(

Tv
)

(x), v =
∂4w

∂x22∂x
2
1

,

where

(

Tv
)

(x) =

∫ x1

a1

∫ ξ1

a1

∫ x2

a2

∫ ξ2

a2

v(θ1, θ2) dθ2 dξ2 dθ1 dξ1. (5.4)

Furthermore, it is easy to check that

w|∂� = 0,
∂w

∂ν

∣

∣

∣

∂�
= 0
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NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION 21

if and only if
∫ b1

a1

v(ξ1, ·) dξ1 = 0,

∫ b2

a2

v(·, ξ2) dξ2 = 0. (5.5)

Thus, the following result holds true (cf. Proposition 1).

Proposition 7. Let u : [a1, b1] × [a2, b2] → R be a su�ciently smooth function.

Then u satis�es boundary conditions (5.3) if and only if there exists a su�ciently

smooth function v such that

1. u = u + Tv, where the operator T is de�ned in (5.4);

2.
∫ b1
a1

v(ξ1, ·) dξ1 ≡ 0 and
∫ b2
a2

v(·, ξ2) dξ2 ≡ 0.

Moreover, v = ∂4u/∂x21∂x
2
2.

Applying the proposition above, one obtains that problem (5.2), (5.3) is

equivalent to the problem of minimizing the functional F(v) = I(u + Tv)

subject to linear equality constraints (5.5). The direction of steepest descent for

this problem with respect to the L2-norm can be easily computed in the same

way as in the proof of Proposition 2.

5.4. Directions of future research

Let us brie�y outline some other directions of future research:

• One canmodify Newton’s method [32] to the multidimensional case, and use

the methods developed in this article to perform each iteration of Newton’s

method. The use ofNewton’smethodmight be reasonable in the case of highly

nonlinear problems of the calculus of variations.

• In the case of problems of the calculus of variations with nonlinear isoperi-

metric constraints, one canmodify sequential quadratic programmingmeth-

ods [52] to solve these problems. On each iteration of this method, one needs

to solve a problem with a quadratic functional and linear constraints that can

be solved with the use of the methods discussed above.

• One can use the same augmented Lagrangian method as in [53] (or some

other augmented Lagrangian methods) to apply the approach developed in

this article to variational problems with pointwise constraints.
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