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HOMOGENIZATION FOR NON-SELF-ADJOINT PERIODIC
ELLIPTIC OPERATORS ON AN INFINITE CYLINDER∗

NIKITA N. SENIK†

Abstract. We consider the problem of homogenization for non-self-adjoint second-order elliptic
differential operators Aε of divergence form on L2(Rd1 × Td2 ), where d1 is positive and d2 is non-
negative. The coefficients of the operator Aε are periodic in the first variable with period ε and
smooth in a certain sense in the second. We show that, as ε gets small, (Aε−µ)−1 and∇x2 (Aε−µ)−1

for an appropriate µ converge in the operator norm to, respectively, (A0−µ)−1 and ∇x2 (A0−µ)−1,
where A0 is an operator whose coefficients depend only on x2. We also obtain an approximation for
∇x1 (Aε−µ)−1 and find the next term in the approximation for (Aε−µ)−1. Estimates for the rates
of convergence and the rates of approximation are provided and are sharp with respect to the order.
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1. Introduction. The periodic homogenization problem consists in studying
asymptotic behavior of solutions of differential equations with rapidly oscillating co-
efficients. Let Ξ be a domain in Rd, and let A be a one-periodic matrix-valued function
on Rd that satisfies, for almost every x ∈ Rd,

cA|ξ|2 ≤ 〈A(x)ξ, ξ〉Cd ≤ CA|ξ|2, ξ ∈ Cd,

where 0 < cA ≤ CA < ∞. Consider the traditional model of homogenization:
given a weakly convergent sequence {fε}ε>0 in L2(Ξ), find {uε}ε>0 in the Sobolev
space H1(Ξ) such that

−divA(ε−1x)∇uε + µuε = fε in Ξ,

uε = 0 on ∂Ξ

(with a fixed µ ∈ C). The coefficients of this equation are ε-periodic and so rapidly
oscillate if ε is small. The key fact about homogenization is that the solutions of
such problems converge, as the period tends to 0, to solutions of problems whose
coefficients have no oscillations. Classical arguments (as in [BLP], [BP], or [ZhKO])
show that uε has a weak limit in H1(Ξ), which is the solution of the problem

−divA0∇u0 + µu0 = f0 in Ξ,

u0 = 0 on ∂Ξ,

where A0 is a constant matrix and f0 is the weak limit of fε. In applications, this
means that we can approximate highly heterogeneous media by a homogeneous one.

In the case that Ξ is bounded, the embedding H̊1(Ξ) → L2(Ξ) is compact.
Hence, passing to a subsequence if necessary, one finds that uε converges, in fact,
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in the L2(Ξ)-norm. An elementary argument [AlC], again using the compactness of
the embedding, then yields the norm-resolvent convergence of the corresponding op-
erators. (Notice, however, that it says nothing about the rate of convergence.) This
result has several important implications. It tells us, in particular, that the spectrum
of the original operator converges to the spectrum of the limit operator in the sense
of Hausdorff.

Matters are different if Ξ is not bounded, or, more precisely, quasi-bounded (say,
an infinite strip on the plane with constant width or the entire plane). In that case,
the embedding H̊1(Ξ) → L2(Ξ) fails to be compact [AF], and therefore one needs a
different technique in order to obtain the norm-resolvent convergence. Such a tech-
nique was suggested by Birman and Suslina [BSu1] (see also [BSu2]), and it settled
the case of Ξ = Rd for a broad class of purely periodic elliptic problems. What is
more, they established a sharp-order bound on the rate of convergence. Many related
results appeared in subsequent years; see, for example, [Gr1], [Gr2], [Zh], [ZhP], [Bo],
[KLS], and references therein. In the recent paper [ChC], a result of this kind was
proved for some of the high-contrast problems.

The present paper is motivated by the study of homogenization problems on
unbounded domains when the coefficients of the corresponding operators are periodic
only in certain directions. These arise naturally in many applications—for instance, in
the theory of waveguides and in elasticity—and were investigated in [S-HT], [OShY],
[Su1], [BCSu], and [Se1].

Let Ξ be the cylinder Rd1 ×Td2 (T is the flat torus). In [Su1], Suslina studied the
homogenization problem for elliptic self-adjoint operators Aε on Ξ of the form

Aε = −divx1
A11(ε−1x1, x2)∇x1

− divx2
A22(ε−1x1, x2)∇x2

.

Here, A11 and A22 are periodic in the first variable and Lipschitz in the second.
She proved that Aε converges in the norm-resolvent sense to an operator A0, whose
coefficients depend only on the nonperiodic variable x2, and furthermore

‖(Aε + 1)−1 − (A0 + 1)−1‖B(L2(Ξ)) ≤ Cε.

Such problems were further analyzed in [Se1], where we extended that result to self-
adjoint operators with lower-order terms and also obtained an approximation for
the resolvent in B(L2(Ξ), H1(Ξ)). (Strictly speaking, the work [Se1] deals with the
case d1 = d2 = 1, although it is possible to use the techniques of that article to treat
the other cases.) But operators with nondiagonal terms were left beyond the scope of
these papers, and it was our original intention to fill this gap.

In this article, we will be concerned with an elliptic non-self-adjoint operator Aε
on Ξ of the form

Aε = −divA(ε−1x1, x2)∇+ div a1(ε−1x1, x2) + a∗2(ε−1x1, x2)∇+ q(ε−1x1, x2),

where A, a1, a2, and q are periodic in the first variable with respect to a lattice in Rd1
and have weak derivatives with respect to the second variable. We further assume
that the coefficients together with the derivatives belong to certain spaces of Sobolev
multipliers. We find approximations for (Aε−µ)−1 and ∇(Aε−µ)−1 in the operator
norm and prove the following estimates:

‖(Aε − µ)−1 − (A0 − µ)−1‖B(L2(Ξ)) ≤ Cε,(1.1)

‖∇x2
(Aε − µ)−1 −∇x2

(A0 − µ)−1‖B(L2(Ξ))d2 ≤ Cε(1.2)
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and

‖∇x1
(Aε − µ)−1 −∇x1

(A0 − µ)−1 − ε∇x1
Kεµ‖B(L2(Ξ))d1 ≤ Cε,(1.3)

‖(Aε − µ)−1 − (A0 − µ)−1 − εCεµ‖B(L2(Ξ)) ≤ Cε2(1.4)

(see the statements of Theorems 3.1–3.3 in section 3). Here, A0 is the effective
operator and Kεµ and Cεµ are correctors. The effective operator has a form similar to
that of Aε, with coefficients depending only on the nonperiodic variable x2, while the
correctors involve rapidly oscillating functions. The estimates are sharp with respect
to the order and the constants on the right may be expressed explicitly in terms of
the problem parameters. Some of our results were announced in [Se2].

The estimates (1.2) and (1.4) have no analogue in [Su1] and [Se1]. The former
is new and the latter has appeared for the first time in [BSu3] for certain self-adjoint
operators on the entire space. A more recent development [Su4] has extended that
result to self-adjoint operators with lower-order terms. We also mention here the
paper [P], where an estimate similar to (1.4) was obtained for operators on Rd with
smooth coefficients. However, all those results apply only to purely periodic operators.

On the other hand, we may regard the problem we address here as a special
case of more general locally periodic homogenization problems (where the coefficients
may depend on both x and ε−1x). From this point of view, estimates of type (1.1)
and (1.3) are known; see, for instance, [PT], where symmetric operators with no
lower-order terms were treated. In contrast, the estimate (1.2) is a feature of our
problem. As for (1.4), the arguments provided here can be used to prove a similar
result for locally periodic operators as well. Our results on locally periodic operators
will appear elsewhere [Se4]. For a detailed treatment, see [Se3].

The operator-theoretic method of Birman and Suslina deals only with purely pe-
riodic operators and cannot be extended to locally periodic ones. Nevertheless, the
abstract results they obtained may be adapted, by ad hoc means, to get the ap-
proximations for operators with A having block-diagonal structure, as shown in [Su1]
and [Se1]. However, operators with more general A do not fit into this framework.
So, if we are to handle these cases, we must develop a different approach.

Our program is as follows. We first reduce the problem to a problem on a fun-
damental domain for the lattice. This is done by applying the scaling transformation
and the Gelfand transform, both with respect to the periodic variable. The Gelfand
transform is a standard tool in the spectral approach to homogenization (see, for ex-
ample, [BLP, Chapter 4], [ZhKO, Chapter 2, section 6], [Sev], [BSu1], and [COV]).
But we would like to emphasize that our method is not spectral in nature, and the
use of the Floquet–Bloch theory is a mere convenience. The crucial step is to obtain
suitable versions of the resolvent identity (see (4.26) and (4.30) below) that enable us
to verify the desired inequalities by rather elementary means.

We note that the torus Td2 can be replaced by any flat manifold without boundary
(Rd2 , for instance). We hope that the techniques presented in this article will prove
useful in studying homogenization problems on domains of type Rd1 × (0, 1)d2 with
Dirichlet or Neumann boundary conditions as well.

The paper is organized as follows. In section 2, we give the necessary background
information, introduce the operator Aε, as well as the effective operator and the
correctors, formulate the problem under consideration, and provide an example of Aε.
Section 3 contains presentation of the main results. In section 4, we deal with the
problem on the fundamental domain and prove the results.



HOMOGENIZATION FOR OPERATORS ON A CYLINDER 877

2. Basic definitions and problem formulation. We begin with some
notation.

2.1. Preliminaries. The symbol ‖·‖U denotes the norm on a normed space U .
Let U and V be Banach spaces. We use the notation B(U, V ) to denote the Banach
space of bounded linear operators from U to V . When U = V , the space B(U) =
B(U,U) becomes a Banach algebra with identity I. The inner product on a pre-
Hilbert space U is denoted by ( · , ·)U . In the finite-dimensional case U = Cn, the
norm and the inner product are denoted by | · | and 〈 · , · 〉, respectively. We shall
identify the spaces B(Cn,Cm) with Cm×n.

Let Σ be a domain in Rd and U a Banach space. Then Lp(Σ;U), with 1 ≤ p ≤ ∞,
is the Banach space of strongly measurable functions u : Σ→ U satisfying

‖u‖Lp(Σ;U) =

(∫
Σ

‖u(x)‖pU dx
)1/p

<∞

if p <∞ and
‖u‖L∞(Σ;U) = ess sup

x∈Σ
‖u(x)‖U <∞

if p =∞. In case U = Cn, we shall write ‖·‖p,Σ for the norm on Lp(Σ)n = Lp(Σ;U)
and ( · , ·)2,Σ for the inner product on L2(Σ)n = L2(Σ;U). We denote by Wm

p (Σ), with
m ∈ N and 1 ≤ p ≤ ∞, the Banach space of those measurable functions u : Σ → C
that possess all weak derivatives up to and including order m and such that

‖u‖m,p,Σ = ‖u‖Wm
p (Σ) =

( ∑
|α|≤m

‖Dαu‖pLp(Σ)

)1/p

<∞

if p <∞ and
‖u‖m,∞,Σ = ‖u‖Wm

∞(Σ) = max
|α|≤m

‖Dαu‖L∞(Σ) <∞

if p =∞. Here we use the notation D = −i∇. The Hilbert space Wm
2 (Σ) is denoted

by Hm(Σ), and Hm(Σ)∗ is its dual space under the pairing ( · , ·)2,Σ. If Σ is not open,
then Wm

p (Σ) will be understood to mean the Sobolev space on the interior of Σ.
Multipliers between Sobolev spaces are (generalized) functions such that the cor-

responding multiplication operators are bounded. Here we shall be brief; a thorough
treatment of Sobolev multipliers may be found in [MSh]. Let Σ be a Lipschitz do-
main in Rd, and let m and n be nonnegative integers satisfying m ≥ n. Then γ is a
Sobolev multiplier between Hm(Σ) and Hn(Σ) (written γ ∈ M(Hm(Σ), Hn(Σ)))
provided that the operator of multiplication γ : Hm(Σ) → Hn(Σ) is continuous.
The space M(Hm(Σ), Hn(Σ)∗) of Sobolev multipliers between Hm(Σ) and the dual
of Hn(Σ) is defined in the same way. Notice that an element of M(Hm(Σ), Hn(Σ)∗)
is a complex-valued distribution.

We shall normally write ‖γ‖M for the norm of a Sobolev multiplier γ. This
should lead to no confusion, since, once we discover that γ ∈M(Hm(Σ), Hn(Σ)) (or
γ ∈M(Hm(Σ), Hn(Σ)∗)), we fix the spaces Hm(Σ) and Hn(Σ) (or the spaces Hm(Σ)
and Hn(Σ)∗).

Given a positive δ, the scaling transformation Sδ is defined to be the map that
assigns to each measurable function u on Σ the measurable function v on δ−1Σ given
by v(y) = δd/2u(δy). Then Sδ is an isomorphism of Hm(Σ) onto Hm(δ−1Σ), with

‖Sδ‖B(Hm(Σ),Hm(δ−1Σ)) ≤ max{1, δm},
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and an isometry provided that m = 0. By duality Sδ extends to Hm(Σ)∗, so that
Sδ : Hm(Σ)∗ → Hm(δ−1Σ)∗ is also an isomorphism and

‖Sδ‖B(Hm(Σ)∗,Hm(δ−1Σ)∗) ≤ max{1, δ−m}.

Let {λm}m∈[d] be a basis of Rd. Here, [d] denotes the set of integers {1, 2, . . . , d}.
Then the basis generates the lattice

Λ =
{
λ ∈ Rd : λ =

∑
m∈[d]

nmλm, nm ∈ Z
}

with the basic cell

Ω =
{
x ∈ Rd : x =

∑
m∈[d]

xmλm, xm ∈ [−2−1, 2−1)
}
.

The dual lattice Λ∗ is generated by the basis {λ∗m}m∈[d] that is defined by the equa-
tions 〈λm, λ∗n〉 = 2πδmn. We denote the Brillouin zone by Ω∗:

Ω∗ =
{
k ∈ Rd : |k| < |k − λ∗|, λ∗ ∈ Λ∗ \ {0}

}
.

Notice that the closure of Ω∗ is a convex polyhedron containing the ball of radius rΛ =
2−1 minλ∗∈Λ∗\{0}|λ∗| centered at the origin.

Lattices are intimately related to Fourier series. If u is any function in L2(Ω),
then there is a unique representation

u(x) = |Ω|−1/2
∑
λ∗∈Λ∗

ûλ∗e
−i〈x,λ∗〉,

where the series converges in L2(Ω). The corresponding mapping u 7→ {ûλ∗}λ∗∈Λ∗ is
an isometric isomorphism of L2(Ω) onto l2(Λ∗).

Let W̃m
p (Ω) denote the subspace of Wm

p (Ω) consisting of functions whose periodic

extensions are in Wm
p,loc(Rd). The symbol W̃m

p,0(Ω) stands for the space of functions

in W̃m
p (Ω) with zero mean value. We shall write H̃m(Ω) and H̃m

0 (Ω) for W̃m
2 (Ω)

and W̃m
2,0(Ω). Observe that, for each k ∈ Rd and any u ∈ H̃1(Ω), we have

‖(D + k)u‖22,Ω =
∑
λ∗∈Λ∗

|λ∗ + k|2|ûλ∗ |2,

which yields a variant of Poincaré’s inequality:

(2.1) ‖u− uΩ‖2,Ω ≤ CΩ‖(D + k)u‖2,Ω

for all k ∈ Ω∗. Here, uΩ = |Ω|−1
∫

Ω
u(x) dx and CΩ = r−1

Λ .
Another operator that is closely related to lattices is the Gelfand transform

G : L2(Rd)→ L2(Ω∗ × Ω) given by

(Gu)(k, x) = |Ω∗|−1/2
∑
λ∈Λ

u(x+ λ) e−i〈x+λ,k〉,

the series converging in L2(Ω∗×Ω). It is well known that G is an isometric isomorphism

of L2(Rd) onto L2(Ω∗×Ω) and an isomorphism of H1(Rd) onto L2(Ω∗; H̃1(Ω)). By du-

ality, the Gelfand transform extends to H1(Rd)∗, so G : H1(Rd)∗ → L2(Ω∗; H̃1(Ω))∗.
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2.2. Problem formulation. We fix a positive integer d1 and a nonnegative
integer d2; the first will be the number of the periodic directions, and the second
will be the number of the nonperiodic directions. We suppose for specificity that d2

is positive; the case d2 = 0 is similar, with obvious changes. Let d = d1 + d2. Set
Ξ = Rd1×Td2L , L > 0, where Td2L stands for the d2-dimensional flat torus Rd2/(LZd2),
that is, a cube in Rd2 with opposite sides identified. Now for each x ∈ Ξ, we have
x = (x1, x2), where x1 ∈ Rd1 and x2 ∈ Td2L . The mth coordinate of x1 and the
nth coordinate of x2 are denoted by x1,m and x2,n, respectively. The symbols D1

and D1,m will stand for Dx1
and Dx1,m

, and similarly D2 = Dx2
and D2,n = Dx2,n

.
Let Λ be a lattice in Rd1 acting on Ξ. If we denote a basic cell of Λ by Ω1 and

the torus Td2L by Ω2, then Ω = Ω1×Ω2 is a fundamental domain for Λ, and {Ωλ}λ∈Λ,
where Ωλ = λ+ Ω, is a tiling of Ξ.

We now introduce a class of allowed coefficients. Let U and V be complex Sobolev
spaces over the interior of Ω or subspaces of such spaces. We define S(U, V ) to be the
set of all complex-valued generalized functions γ ∈ C∞0 (Ξ)∗ such that (1) γ is periodic
with respect to Λ, (2) γ ∈M(U, V ), and (3) D2γ ∈M(U, V )d2 . We shall write S(U)
in place of S(U,U).

Let A be a matrix-valued function in S(L2(Ω))d×d with ReA uniformly posi-
tive definite, a1 and a2 be vector-valued functions in S(H1(Ω), L2(Ω))d, and q be a
complex-valued distribution in S(H1(Ω), H1(Ω)∗). Assume also that

(2.2) ‖a1‖M + ‖a2‖M + ‖q‖M < ‖(ReA)−1‖−1
M .

This last requirement is not as restrictive as it might seem to be. It will turn out
that the hypothesis (2.2) is, in a sense, a weaker property than the relative −∆-form-
boundedness of a∗1D +D∗a2 + q with relative bound zero, so that (2.2) is satisfied in
most cases—see Remark 2.2 below.

Remark 2.1. Our intention is to replace the scale of Lebesgue spaces with that
of multiplier spaces, which prove to be perfectly suited to the problem in question.
In particular, for this reason we use M(L2(Ω)) for the space L∞(Ω).

Let D1 =
(
D1

0

)
and D2 =

(
0
D2

)
. We also write D for D. Given ε ∈E = (0, 1], we

introduce the notation γε = (S1/ε ⊗ I)γ(Sε ⊗ I) for any Sobolev multiplier γ (if γ is
a function, then γε(x) = γ(ε−1x1, x2) for x ∈ Ξ) and define the form aε on H1(Ξ) by

(2.3) aε[u] = (AεDu,Du)2,Ξ + (Du, aε1u)2,Ξ + (aε2u,Du)2,Ξ + (qεu, u)2,Ξ.

Notice that γ 7→ γε is a bounded map of M(Hm(Ω), L2(Ω)) onto M(Hm(Ωε), L2(Ωε))
and of M(Hm(Ω), H1(Ω)∗) onto M(Hm(Ωε), H1(Ωε)∗), with norms not exceeding 1.
Here Ωε = εΩ1 × Ω2. Then, since Aε, aεn, n ∈ [2], and qε are periodic with respect
to εΛ and since {(Ωλ)ε}λ∈Λ is a tiling of Ξ, we see that Aε ∈ M(L2(Ξ))d×d, aεn ∈
M(H1(Ξ), L2(Ξ))d and qε ∈ M(H1(Ξ), H1(Ξ)∗). Furthermore, the corresponding
norms are majorized by the multiplier norms of A, an, and q, respectively. Now it is
clear that aε is bounded,

(2.4) |aε[u, v]| ≤ C[‖u‖1,2,Ξ‖v‖1,2,Ξ, u, v ∈ H1(Ξ),

where
C[ = ‖A‖M + ‖a1‖M + ‖a2‖M + ‖q‖M.

Observe also that

(2.5) Re aε[u] ≥ c∗‖Du‖22,Ξ − c\‖u‖22,Ξ, u ∈ H1(Ξ),
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where

c∗ = ‖(ReA)−1‖−1
M − ‖a1‖M − ‖a2‖M − ‖q‖M,(2.6)

c\ = 2−1
(
‖a1‖M + ‖a2‖M

)
+ ‖q‖M.(2.7)

Since c∗ is positive, it follows that aε is coercive.
Thus, aε is strictly m-sectorial, with sector

S1 =
{
z ∈ C : |Im z| ≤ c−1

∗ C[(Re z + c∗ + c\)
}
.

Let Aεµ : H1(Ξ) → H1(Ξ)∗ be the operator associated with the form aεµ = aε − µ.
Then Aεµ is an isomorphism whenever µ /∈ S1.

Remark 2.2. The hypothesis (2.2) is needed in order for the form aε to be coercive.
In fact, it can be weakened to allow those an, n ∈ [2], and q that satisfy, for any u ∈
H1(Ω),

‖anu‖22,Ω ≤ can‖Du‖22,Ω + Can‖u‖22,Ω,(2.8) ∣∣(qu, u)2,Ω

∣∣ ≤ cq‖Du‖22,Ω + Cq‖u‖22,Ω(2.9)

with

(2.10) c1/2a1 + c1/2a2 + cq < ‖(ReA)−1‖−1
M .

Indeed, since we are interested in estimating operator norms (see Theorems 3.1–3.3)
and since Sδ is an isomorphism, we may replace Aε by Âε = SδAε(Sδ)−1. (Here,
we realize the torus Ω2 = Td2L as the cube [0, L]d2 with opposite sides identified,

and, in this sense, δ−1Td2L is well defined and equals Td2δ−1L.) It is easy to see that the

coefficients of Â1 are given by Â = δ−2SδAS1/δ, ân = δ−1SδanS1/δ, and q̂ = SδqS1/δ.
Therefore, if we take δ so that δ2 ≤ min

{
ca1C

−1
a1 , ca2C

−1
a2 , cqC

−1
q

}
, then

‖â1‖M + ‖â2‖M + ‖q̂‖M ≤ δ−2
(
c1/2a1 + c1/2a2 + cq

)
< δ−2‖(ReA)−1‖−1

M = ‖(Re Â)−1‖−1
M ;

that is, the hypothesis (2.2) holds for Âε. We note that the class of operators such
as Aε here is broad enough to cover most cases that arise in applications—see an
example below.

We are interested in approximations for (Aεµ)−1 and D(Aεµ)−1 in the operator
norm on L2(Ξ). In order to describe these approximations, we define the effective
operator and two different correctors.

2.3. Effective operator. Let N be the weak solution of

(2.11) D∗1A(D1N + I) = 0

in L2(Ω2; H̃1
0 (Ω1))1×d, and let M be the weak solution of

(2.12) D∗1(AD1M + a2) = 0

in L2(Ω2; H̃1
0 (Ω1)). We know that N and M exist and are unique, since we may

rewrite these problems as

(2.13) D∗1A11D1u = D∗1f
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with an f in L2(Ω)d1 and u ∈ L2(Ω2; H̃1
0 (Ω1)) to be found. Notice in passing that

such a u satisfies

(2.14)
(
A11( · , x2)D1u( · , x2)− f( · , x2), D1v

)
2,Ω1

= 0

for almost every x2 ∈ Ω2 and all v ∈ H̃1(Ω1).
We now provide some elementary properties of N and M (cf. [Su2, Proposi-

tion 8.2]).

Lemma 2.3. Let u be the weak solution of the problem (2.13), where the function f
is in M(Hm(Ω);L2(Ω))d1 , m a nonnegative integer. Then D1u∈M(Hm(Ω2), L2(Ω))d1

and
‖D1u‖M ≤ |Ω1|1/2‖(ReA)−1‖M‖f‖M.

If, in addition, D2,nf ∈ M(Hm(Ω);L2(Ω))d1 for some n ∈ [d2], then D2,nD1u ∈
M(Hm(Ω2), L2(Ω))d1 and

‖D2,nD1u‖M ≤ |Ω1|1/2‖(ReA)−1‖M
(
‖D2,nA‖M‖(ReA)−1‖M‖f‖M + ‖D2,nf‖M

)
.

Proof. Let v = u|w|2 with w ∈ Cm(Ω2). Then v ∈ L2(Ω2; H̃1
0 (Ω1)), and we can

apply both sides of (2.13) to v, obtaining

‖(D1u)w‖2,Ω ≤ ‖(ReA11)−1‖M‖fw‖2,Ω.

This proves the first assertion.
Suppose now D2,nf ∈ M(Hm(Ω);L2(Ω))d1 . We know that D2,nf ∈ L2(Ω)d1 ,

so D2,nu exists and belongs to L2(Ω2; H̃1
0 (Ω1)), which may be verified by using the

difference quotient technique of Nirenberg. Therefore, we can write

D∗1A11D1D2,nu = D∗1
(
D2,nf − (D2,nA11)D1u

)
.

Applying both sides of the last equality to v = (D2,nu)|w|2 with w ∈ Cm(Ω2) yields

‖(D1D2,nu)w‖2,Ω ≤ ‖(ReA11)−1‖M
(
‖(D2,nA11)(D1u)w‖2,Ω + ‖(D2,nf)w‖2,Ω

)
,

and the second assertion follows.

From the above lemma and the Poincaré inequality (2.1), we conclude that N ∈
S(L2(Ω2), L2(Ω))1×d and D1N ∈ S(L2(Ω2), L2(Ω))d×d, while M ∈ S(H1(Ω2), L2(Ω))
and D1M ∈ S(H1(Ω2), L2(Ω))d.

We now turn to the effective coefficients.
Let

(2.15) A0 = |Ω1|−1

∫
Ω1

A(D1N + I) dy1.

Then, from the properties of A and N , we have A0 ∈ S(L2(Ω2))d×d. It is a standard
fact (see [ZhKO, section 1.6]) that if ReA is positive definite, then

(2.16) ReA0 ≥
(
|Ω1|−1

∫
Ω1

(ReA)−1dy1

)−1

.

This implies that ReA0 is also positive definite and furthermore (ReA0)−1 is in
M(L2(Ω2))d×d and ‖(ReA0)−1‖M ≤ ‖(ReA)−1‖M.
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Next, we define the functions

a0
1 = |Ω1|−1

∫
Ω1

(D1N + I)∗a1 dy1,(2.17)

a0
2 = |Ω1|−1

∫
Ω1

(AD1M + a2) dy1.(2.18)

Both of these are in S(H1(Ω2), L2(Ω2))d, as can be seen from the properties of A, a1,
a2 and N , M .

Finally, let q0 correspond to the form

(2.19) (q0u, u)2,Ω2 = |Ω1|−1(qu, u)2,Ω + |Ω1|−1(a∗1D1Mu, u)2,Ω

on H1(Ω2). By the properties of a1, q, and M , we obtain q0 ∈ S(H1(Ω2), H1(Ω2)∗).
Notice that, in the case when q is a function, we have, as usual,

q0 = |Ω1|−1

∫
Ω1

q dy1 + |Ω1|−1

∫
Ω1

a∗1D1M dy1.

We are almost ready to define the effective operator. Consider the form a0 on
H1(Ξ) given by

(2.20) a0[u] = (A0Du,Du)2,Ξ + (Du, a0
1u)2,Ξ + (a0

2u,Du)2,Ξ + (q0u, u)2,Ξ,

where

(q0u, u)2,Ξ =

∫
Rd1

(q0u(x1, ·), u(x1, ·))2,Ω2
dx1.

Then a0 is plainly bounded,

(2.21) |a0[u, v]| ≤ C0
[ ‖u‖1,2,Ξ‖v‖1,2,Ξ, u, v ∈ H1(Ξ),

with

C0
[ = ‖A0‖M + ‖a0

1‖M + ‖a0
2‖M + ‖q0‖M.

In a moment, we shall see that it is coercive.

Lemma 2.4. Let ǎ0 be the form on H1(Ξ)⊕ L2(Ξ; H̃1
0 (Ω1)) given by

ǎ0[ǔ] = |Ω1|−1

∫
Ξ

∫
Ω1

(〈
A(y1, x2) Ďǔ(x, y1), Ďǔ(x, y1)

〉
+
〈
Ďǔ(x, y1), a1(y1, x2) ǔ1(x)

〉
+
〈
a2(y1, x2) ǔ1(x), Ďǔ(x, y1)

〉)
dx dy1

+ |Ω1|−1

∫
Rd1

(qǔ1(x1, ·), ǔ1(x1, ·))2,Ωdx1,

where ǔ = (ǔ1, ǔ2) and Ďǔ(x, y1) = Dxǔ1(x) +Dy1 ǔ2(x, y1). Then ǎ0 is coercive and

(2.22) Re ǎ0[ǔ] ≥ c∗|Ω1|−1‖Ďǔ‖22,Ξ×Ω1
− c\‖ǔ1‖22,Ξ

for all ǔ ∈ H1(Ξ)⊕ L2(Ξ; H̃1
0 (Ω1)).
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Proof. While the proof is quite similar to that of (2.5), there is a difference: the
variables x1 and y1 in the definition of ǎ0 are “mixed,” so that we cannot treat the
lower-order terms as before.

We begin with a first-order term. By Cauchy’s inequality, we have∣∣∣∣∫
Ξ

∫
Ω1

〈
Ďǔ(x, y1), a1(y1, x2) ǔ1(x)

〉
dx dy1

∣∣∣∣
≤ ‖Ďǔ‖2,Ξ×Ω1

(∫
Ξ

∫
Ω1

|a1(y1, x2) ǔ1(x)|2dx dy1

)1/2

.

Let v denote the mapping y 7→
(∫

Rd1
|ǔ1(x1, y2)|2dx1

)1/2
. Then v ∈ H1(Ω), with

‖v‖1,2,Ω ≤ |Ω1|1/2‖ǔ1‖1,2,Ξ, and∫
Ξ

∫
Ω1

|a1(y1, x2) ǔ1(x)|2dx dy1 = ‖a1v‖22,Ω.

As a result, ∣∣∣∣∫
Ξ

∫
Ω1

〈
Ďǔ(x, y1), a1(y1, x2) ǔ1(x)

〉
dx dy1

∣∣∣∣
≤ |Ω1|1/2‖a1‖M‖Ďǔ‖2,Ξ×Ω1

‖ǔ1‖1,2,Ξ
≤ ‖a1‖M

(
‖Ďǔ‖22,Ξ×Ω1

+ 2−1|Ω1|‖ǔ1‖22,Ξ
)
.

We have used here the fact that, by Stokes’ theorem,

‖Ďǔ‖22,Ξ×Ω1
= |Ω1|‖Dxǔ1‖22,Ξ + ‖Dy1 ǔ2‖22,Ξ×Ω1

.

We may likewise prove that∣∣∣∣∫
Ξ

∫
Ω1

〈
a2(y1, x2) ǔ1(x), Ďǔ(x, y1)

〉
dx dy1

∣∣∣∣
≤ ‖a2‖M

(
‖Ďǔ‖22,Ξ×Ω1

+ 2−1|Ω1|‖ǔ1‖22,Ξ
)

and ∣∣∣∣∫
Rd1

(qǔ1(x1, ·), ǔ1(x1, ·))2,Ωdx1

∣∣∣∣
=
∣∣(qv, v)2,Ω

∣∣ ≤ ‖q‖M(‖Ďǔ‖22,Ξ×Ω1
+ |Ω1|‖ǔ1‖22,Ξ

)
.

Combining these inequalities with

Re

∫
Ξ

∫
Ω1

〈
A(y1, x2) Ďǔ(x, y1), Ďǔ(x, y1)

〉
dx dy1

≥ ‖(ReA)−1‖−1
M ‖Ďǔ‖

2
2,Ξ×Ω1

,

which is obvious, gives (2.22).

Remark 2.5. The form ǎ0 is associated with the two-scale homogenized system,
first proposed by Allaire [Al] in the context of two-scale convergence. See also [LNW]
for a self-contained approach to this matter.

Now we wish to relate the form ǎ0 to a0. Fix a u ∈ H1(Ξ). Let ǔ1(x) = u(x) and
ǔ2(x, y1) = N(y1, x2)Dxu(x) + M(y1, x2)u(x). We claim that ǔ = (ǔ1, ǔ2) belongs

to H1(Ξ)⊕L2(Ξ; H̃1
0 (Ω1)). Indeed, ǔ2(x, y1) has a derivative with respect to y1, and,
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by reasoning explained in the proof of Lemma 2.4, it lies in L2(Ξ × Ω1)d1 (notice
here that D1N and D1M are multipliers). Applying identities for N and M in the

form (2.14), we find that ǎ0[ǔ, v̌] = 0 for all v̌ ∈ {0} ⊕ L2(Ξ; H̃1
0 (Ω1)), and therefore

ǎ0[ǔ] = ǎ0[ǔ, u ⊕ 0]. Now it follows from the definitions of the effective coefficients
that

ǎ0[ǔ] = a0[u]

for every u ∈ H1(Ξ), which is the desired relation.
Since ǎ0 is coercive, the above identity tells us that so is a0, with

(2.23) Re a0[u] ≥ c∗‖Du‖22,Ξ − c\‖u‖22,Ξ, u ∈ H1(Ξ).

Hence, the form a0 is strictly m-sectorial, with sector

S0 =
{
z ∈ C : |Im z| ≤ c−1

∗ C0
[ (Re z + c∗ + c\)

}
.

Corresponding to a0
µ = a0 − µ there is an operator A0

µ = A0 − µ : H1(Ξ)→ H1(Ξ)∗,
which is an isomorphism provided that µ /∈ S0. For such a µ, (A0

µ)−1 maps L2(Ξ)
onto H2(Ξ). (This can be shown by using the difference quotient technique of Niren-
berg; see the proof of Lemma 4.2 for further details on this matter.) We denote the
largest of the sectors S0 and S1 by S.

2.4. Correctors. We introduce two types of correctors. The first, denoted Kεµ,
will be needed to obtain the approximation for D1(Aεµ)−1 and is defined as follows. Let
Pε be the pseudodifferential operator in the x1-variable with symbol χε−1Ω∗1

, where

χε−1Ω∗1
is the characteristic function of the set ε−1Ω∗1, or, to put it differently,

Pε = (F ⊗ I)∗χε−1Ω∗1
(F ⊗ I).

Here F is the Fourier transform in L2(Rd1). Then the corrector Kεµ : L2(Ξ)→ H1(Ξ)
for Aε is given by

(2.24) Kεµ = (NεD +Mε)(A0
µ)−1Pε.

We remark that, while (NεD + Mε)(A0
µ)−1f , with f ∈ L2(Ξ), is not generally in

H1(Ξ) (not even in L2(Ξ)), the function Kεµf always is, which may be proved by
applying the scaling transformation and the Gelfand transform (see (4.18)) and then
using the properties of N and M (see Lemma 4.4). What is more, these calculations
show that Kεµ is a bounded operator.

The second corrector, denoted Cεµ, will be needed for a more subtle result. If k

is a vector in Rd1 and k is the corresponding element of Rd1 ⊕ {0}, then we define
differential expressions

S(k; y1) =
(
(k +D2)∗A(y1, ·) + a∗1(y1, ·)

)
(k +D2) + (k +D2)∗a2(y1, ·) + q(y1, ·),

T (k; y1) =
(
(k +D2)∗A(y1, ·) + a∗1(y1, ·)

)
Dy1

and families of operators

A0
µ(k) = (k +D2)∗A0(k +D2) + (a0

1)∗(k +D2) + (k +D2)∗a0
2 + q0 − µ,

Kµ(k; y1) =
(
N(y1, ·) (k +D2) +M(y1, ·)

)
(A0

µ(k))−1.

Let (Aεµ)+ be the adjoint of Aεµ. For the operator (Aεµ)+, we construct the ef-
fective operator (A0

µ)+ and the corrector (Kεµ)+, as well as the families A0
µ(k)+
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and Kµ(k; y1)+. (It may be noted in passing that (A0
µ)+ is the adjoint of A0

µ.) Fi-
nally, let Lµ be the pseudodifferential operator in the x1-variable with operator-valued
symbol k 7→ Lµ(k) : L2(Ω2)→ L2(Ω2), where

Lµ(k) = |Ω1|−1

∫
Ω1

(
Kµ(k; y1)+

)∗(S(k; y1) (A0
µ(k))−1 + T (k; y1)Kµ(k; y1)

)
dy1;

that is,
Lµ = (F ⊗ I)∗Lµ( ·)(F ⊗ I).

The operator L+
µ is constructed similarly. The corrector Cεµ : L2(Ξ) → L2(Ξ) is then

defined by the formula

(2.25) Cεµ =
(
Kεµ − Lµ

)
+
(
(Kεµ)+ − L+

µ

)∗
.

We will see in what follows that Cεµ is continuous.

Remark 2.6. Notice that, since A0
µ( ·) is the symbol of A0

µ in the above indicated
sense, Lµ can be written as

Lµ = (A0
µ)−1M(A0

µ)−1,

where M : H2(Ξ) → H1(Ξ)∗ is a third-order differential operator with coefficients
depending only on x2.

We conclude this section with an example of the operator Aε.

2.5. An example. Let d > 1 and p > d. From the Ehrling lemma, we know
that if γ ∈ Lp(Ω), then γ ∈M(H1(Ω), L2(Ω)) and for all ε > 0 there is a Cγ(ε) > 0,
depending on d, p, Ω, and ‖γ‖p,Ω, such that

(2.26) ‖γu‖22,Ω ≤ ε‖Du‖22,Ω + Cγ(ε)‖u‖22,Ω, u ∈ H1(Ω).

As an example of a multiplier betweenH1(Ω) andH1(Ω)∗, let δΣ be the Dirac distribu-
tion on a d−1 dimensional Lipschitz surface Σ in Ω and let σ be a function in Lp−1(Σ).
Again, for each ε > 0 there is a Cσ(ε), depending on d, p, Ω, Σ, and ‖σ‖p−1,Σ, such
that

(2.27)
∣∣(σδΣu, u)2,Ω

∣∣ ≤ ε‖Du‖22,Ω + Cσ(ε)‖u‖22,Ω, u ∈ H1(Ω).

Equipped with this information, we consider a periodic operator on L2(Ξ) of the
form

Hε = (D −Aε1)∗gε(D −Aε2) + V ε.

We may think of Hε as a (possibly non-self-adjoint) periodic Schrödinger operator
with magnetic and electric potentials that is associated with metric gε. Suppose
that g is a periodic function in Lip(Ω2;L∞(Ω1))d×d and Re g is uniformly positive
definite. Let A1 and A2 be periodic functions in W 1

p (Ω2;Lp(Ω1))d. Finally, let Σ
be a d − 1 dimensional periodic Lipschitz surface in Ξ. Then we assume that V is
the sum of a periodic function V̂ ∈ W 1

p/2(Ω2;Lp/2(Ω1)) and a distribution σδΣ with

periodic σ ∈W 1
p−1(Σ ∩ Ω). Clearly, Hε thus defined can be expressed in the form

Hε = D∗AεD + (aε1)∗D +D∗aε2 + qε,

where the coefficients satisfy the properties (2.8)–(2.10) in Remark 2.2. So our result
applies to Hε.
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It is straightforward to construct an analogous example for the case d = 1. Now
we take Σ to be a discrete periodic set of points in R and assume that g ∈ L∞(Ω)
with Re g uniformly positive definite, A1, A2 ∈ L2(Ω), and V = V̂ + σδΣ, where V̂
lies in L1(Ω) and σ is a periodic function on Σ.

We note that the potential V ε may also involve a singular term ε−1W ε with a
suitable function W . We refer the reader to [Su3, section 11] for the details.

3. Main results. We now state the principal results of the present paper.

Theorem 3.1. If µ /∈ S, then for any ε ∈E we have

‖(Aεµ)−1 − (A0
µ)−1‖B(L2(Ξ)) . ε,(3.1)

‖D2(Aεµ)−1 −D2(A0
µ)−1‖B(L2(Ξ))d . ε.(3.2)

The estimates are sharp with respect to the order, and the constants depend only on
d, rΛ, µ, and the multiplier norms of the coefficients.

Theorem 3.2. If µ /∈ S, then for any ε ∈E we have

(3.3) ‖D1(Aεµ)−1 −D1(A0
µ)−1 − εD1Kεµ‖B(L2(Ξ))d . ε.

The estimate is sharp with respect to the order, and the constant depends only on d,
rΛ, µ, and the multiplier norms of the coefficients.

Theorem 3.3. If µ /∈ S, then for any ε ∈E we have

(3.4) ‖(Aεµ)−1 − (A0
µ)−1 − εCεµ‖B(L2(Ξ)) . ε2.

The estimate is sharp with respect to the order, and the constant depends only on d,
rΛ, µ, and the multiplier norms of the coefficients.

Remark 3.4. Although it is possible to write down all the constants explicitly,
we do not do so here. In particular, we write α . β to mean α ≤ Cβ, where C
is a positive constant depending only on d, rΛ, µ, and the multiplier norms of the
coefficients.

Remark 3.5. Using the resolvent identity, we can transfer the estimates in Theo-
rems 3.1–3.3 to those µ ∈ S for which Aεµ (at least for each ε in an interval (0, εµ])
and A0

µ, when viewed as operators on L2(Ξ), have bounded inverses with norms ma-
jorized by constants independent of ε. For instance, the estimates hold if µ is in the
resolvent set of the effective operator. In this case, we may choose εµ to be equal to 1
if µ /∈ S1 and to be so small that, for some µ0 /∈ S,

εµ <
1

Cµ0
|µ− µ0|

(
1 + |µ− µ0|‖(A0

µ)−1‖B(L2(Ξ))

)
if µ ∈ S1. Here Cµ0

is the implied constant in the estimate (3.1) with µ0 in place
of µ. The condition on εµ for µ ∈ S1 comes from suitable resolvent identities and the
fact that Aεµ0

converges to A0
µ0

in the norm-resolvent sense.

Remark 3.6. The hypothesis that the coefficients have weak derivatives with re-
spect to the nonperiodic variable is crucial to our analysis and reflects the fact that
the roles of the two variables are quite different. Roughly speaking, only the first
variable is involved in the homogenization procedure, while the second plays the role
of a parameter (see, for example, the definitions of N and M , where this is literally
the case). In particular, the hypothesis ensures that N and M belong to H1(Ξ) and
that the preimage of L2(Ξ) under A0

µ is H2(Ξ); as a consequence, the range of Kεµ is
contained in H1(Ξ).
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Remark 3.7. While (Aεµ)−1 and D2(Aεµ)−1 have limits, the operator D1(Aεµ)−1

can fail to converge, because, though the norm of εD1Kεµ is bounded uniformly in ε,
it need not go to zero. However, if, for example, D∗1A = 0 and D∗1a2 = 0 (in the weak
sense), then Kεµ = 0, and D1(Aεµ)−1 is therefore convergent as well. Notice that, in
this case, the effective coefficients are obtained by simply taking the mean over Ω1.

Remark 3.8. We may replace Pε with another smoothing. For instance, the
Steklov averaging operator (see [Zh]) or the scale-splitting operator (see [Gr1]) can
be used instead. This follows from the inequalities

‖(D1N)w‖22,Ξ . ‖N ⊗D1w‖22,Ξ + ‖w‖22,Ξ,(3.5)

‖(D1M)w‖22,Ξ . ‖MD1w‖22,Ξ + ‖w‖21,2,Ξ,(3.6)

which hold for any w ∈ C∞0 (Ξ) (the proof of the inequalities is parallel to that of
Lemma 2.3), and properties of the smoothing operators (cf. similar techniques in
[PSu, Lemma 3.5]). The reason why we chose Pε is merely one of convenience: as
we shall see below, Pε takes a rather simple form after passing to the fundamental
domain.

Remark 3.9. As already indicated, the operator Pε guarantees that the range of
Kεµ is contained in H1(Ξ). This means that, in general, it is not possible to remove Pε.
However, this can be done in certain cases. For example, if N ∈ M(L2(Ω))1×d

and M ∈M(H1(Ω), L2(Ω)), then the classical corrector

K̂εµ = (NεD +Mε)(A0
µ)−1

as well as the composition D1K̂εµ are bounded on L2(Ξ) (by (3.5) and (3.6)), and the

estimates (3.3) and (3.4) remain true with K̂εµ in place of Kεµ and

Ĉεµ =
(
K̂εµ − Lµ

)
+
(
(K̂εµ)+ − L+

µ

)∗
in place of Cεµ.

4. Problem on the fundamental domain. Our strategy is to reduce Aεµ to
an operator on the fundamental domain Ω and then formulate Theorems 3.1–3.3 in
terms of this latter operator.

Let τ = (k, ε) ∈ T = Ω∗1 × E. We introduce the notation D1(τ) = D1 + k ,
D2(τ) = εD2 and D(τ) = D1(τ) +D2(τ) and set

‖u‖1,2,Ω;τ =
(
‖D(τ)u‖22,Ω + |τ |2‖u‖22,Ω

)1/2
and

‖u‖11,2,Ω;τ =
(
‖D1(τ)u‖22,Ω + |τ |2‖u‖22,Ω

)1/2
,

‖u‖12,2,Ω;τ =
(
‖D2(τ)u‖22,Ω + |τ |2‖u‖22,Ω

)1/2
for any u for which the right-hand sides make sense.

Now let us define periodic Sobolev spaces over the interior of Ω. Recall that we
view Λ as acting on Ξ and Ω ⊂ Rd is a fundamental domain for Λ. The space W̃m

p (Ω)
consists of all functions that are in Wm

p (Ω) and that have periodic extensions in

Wm
p (K) for each compact set K ⊂ Ξ. Let W̃m

p,0(Ω) be the subspace of functions in

W̃m
p (Ω) with zero mean over Ω1. As usual, H̃m(Ω) = W̃m

2 (Ω) and H̃m
0 (Ω) = W̃m

2,0(Ω).
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We define the form a(τ) on H̃1(Ω) by

(4.1)
a(τ)[u] = (AD(τ)u,D(τ)u)2,Ω + ε(D(τ)u, a1u)2,Ω

+ ε(a2u,D(τ)u)2,Ω + ε2(qu, u)2,Ω.

Note that, when estimating ‖anu‖2,Ω, n ∈ [2], and |(qu, u)2,Ω|, we can replace u by
uv with v(x) = ei〈x1,k〉. Hence,

ε‖anu‖2,Ω ≤ ‖an‖M
(
ε2‖D1(τ)u‖22,Ω + ‖D2(τ)u‖22,Ω + ε2‖u‖22,Ω

)1/2
,(4.2)

ε2|(qu, u)2,Ω| ≤ ‖q‖M
(
ε2‖D1(τ)u‖22,Ω + ‖D2(τ)u‖22,Ω + ε2‖u‖22,Ω

)
;(4.3)

in particular, this means that

ε‖anu‖2,Ω ≤ ‖an‖M
(
‖D(τ)u‖22,Ω + ε2‖u‖22,Ω

)1/2
,(4.4)

ε2|(qu, u)2,Ω| ≤ ‖q‖M
(
‖D(τ)u‖22,Ω + ε2‖u‖22,Ω

)
(4.5)

for all u ∈ H1(Ω). Therefore, the same reasoning as for aε gives

(4.6) |a(τ)[u, v]| ≤ C[‖u‖1,2,Ω;τ‖v‖1,2,Ω;τ , u, v ∈ H̃1(Ω),

and

(4.7) Re a(τ)[u] ≥ c∗‖D(τ)u‖22,Ω − ε2c\‖u‖22,Ω, u ∈ H̃1(Ω).

Define Aµ(τ) = A(τ)−ε2µ : H̃1(Ω)→ H̃1(Ω)∗ to be the operator associated with
the form aµ(τ) = a(τ)− ε2µ. It follows that Aµ(τ) is an isomorphism if µ /∈ S1.

Lemma 4.1. For any µ /∈ S and τ ∈ T we have

‖(Aµ(τ))−1‖B(L2(Ω)) . |τ |−2,

‖D(τ)(Aµ(τ))−1‖B(L2(Ω))d . |τ |−1,

‖D(τ)(Aµ(τ))−1D(τ)‖B(L2(Ω))d×d . 1,

‖D(τ)D2(τ)(Aµ(τ))−1‖B(L2(Ω))d×d . 1,

where the constants depend on d, µ, and the multiplier norms of the coefficients.

Proof. We do the case µ ∈R, where

R =
{
z ∈ C : Re z < −c\

}
.

The general case then follows by the resolvent identity.
Expanding u ∈ H̃1(Ω) in a Fourier series

u(x) = |Ω1|−1/2
∑
λ∗∈Λ∗

ûλ∗(x2) e−i〈x1,λ
∗〉,

we find that, for all k ∈ Ω∗1,

(4.8) ‖D1(τ)u‖22,Ω =
∑
λ∗∈Λ∗

|λ∗ + k|2‖ûλ∗‖22,Ω2
≥ |k|2‖u‖22,Ω,

which means that
|τ |2‖u‖22,Ω ≤ ‖D(τ)u‖22,Ω + ε2‖u‖22,Ω.
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Combining this with (4.7) gives the first estimate. The second is immediate from the
first and (4.7), and the third follows at once from (4.7). It remains to prove the last.

We shall use the classical technique of difference quotients. To that end, we intro-
duce a little notation. Let e2,m, m ∈ [d2], be the unit vector along the x2,m-axis. If u
is any function on Ω, then we define the difference quotient Dh

2,m in the variable x2,m

of size h ∈ R \ {0} by setting Dh
2,mu = −ih−1(T h2,mu − u), where (T h2,mu)(x) =

u(x+ he2,m). Observe that
(Dh

2,m)∗ = D−h2,m

and
Dh

2,m(uv) = (Dh
2,mu)T h2,mv + u(Dh

2,mv).

For f ∈ L2(Ω) fixed, we set w = (Aµ(τ))−1f . Then

(4.9) aµ(τ)[Dh
2,mw] = (f,D−h2,mD

h
2,mw)2,Ω −

(
[Dh

2,m,Aµ(τ)]w,Dh
2,mw

)
2,Ω
.

If we show that

(4.10)
∣∣([Dh

2,m,Aµ(τ)]u, v
)

2,Ω

∣∣ . ‖u‖1,2,Ω;τ‖v‖1,2,Ω;τ , u, v ∈ H̃1(Ω),

where the constant is independent of h, then, by the estimates that we just proved,
the right-hand side of (4.9) will not exceed

ε−1‖D(τ)Dh
2,mw‖2,Ω‖f‖2,Ω + |τ |−1C‖Dh

2,mw‖1,2,Ω;τ‖f‖2,Ω
≤ 2−1c∗‖D(τ)Dh

2,mw‖22,Ω + ε2|c\ + Reµ| ‖Dh
2,mw‖22,Ω + ε−2C‖f‖22,Ω

with some constant C. We have used here the fact that, for any h,

‖D−h2,mD
h
2,mw‖2,Ω ≤ ‖D2,mD

h
2,mw‖2,Ω.

On the other hand, since −(c\ + Reµ) > 0, it follows from (4.7) that

Re aµ(τ)[Dh
2,mw] ≥ c∗‖D(τ)Dh

2,mw‖22,Ω + ε2|c\ + Reµ| ‖Dh
2,mw‖22,Ω.

As a result,
‖D(τ)εDh

2,mw‖2,Ω . ‖f‖2,Ω
uniformly in h. Thus, there exists D(τ)D2,m(τ)w, with

‖D(τ)D2,m(τ)w‖2,Ω . ‖f‖2,Ω,

as desired.
We conclude by proving (4.10). Since(

[Dh
2,m,Aµ(τ)]T −h2,mu, v

)
2,Ω

=
(
(Dh

2,mA)D(τ)u,D(τ)v
)

2,Ω
− ε
(
D(τ)u, (Dh

2,ma1)v
)

2,Ω

+ ε
(
(Dh

2,ma2)u,D(τ)v
)

2,Ω
+ ε2

(
(Dh

2,mq)u, v
)

2,Ω
,

we see that it suffices to show that each coefficient of this form is still a multiplier with
norm bounded by a constant independent of h, because then an argument similar to
the one we used for proving (4.6) will lead to (4.10). Obviously,

(Dh
2,mγ)(x) =

∫
(0,1)

(T th2,mD2,mγ)(x) dt
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for every function γ that has a derivative D2,mγ ∈ L2(Ω). A duality argument shows
that if D2,mγ ∈ H1(Ω)∗, then(

(Dh
2,mγ)u, u

)
2,Ω

=

∫
(0,1)

(
(D2,mγ)T −th2,m u, T −th2,m u

)
2,Ω
dt

for any u ∈ C1(Ω̄). Hence, ‖Dh
2,mA‖M ≤ ‖D2,mA‖M, ‖Dh

2,man‖M ≤ ‖D2,man‖M,

n ∈ [2], and ‖Dh
2,mq‖M ≤ ‖D2,mq‖M. This completes the proof.

Let Aµ(τ)+ : H̃1(Ω) → H̃1(Ω)∗ be the formal adjoint of Aµ(τ). From (4.6)
and (4.7), we see that Aµ(τ)+ is also an isomorphism whenever µ /∈ S1. Moreover,
the conclusion of Lemma 4.1 holds for Aµ(τ)+. It is easy to note the relationship
between Aµ(τ) and Aµ(τ)+. Indeed, a suitable restriction of Aµ(τ)+ is the adjoint of
the restriction of Aµ(τ), so that, if µ /∈ S1,

(4.11)
(
(Aµ(τ))−1f, f

)
2,Ω

=
(
f, (Aµ(τ)+)−1f

)
2,Ω
, f ∈ L2(Ω).

We shall think of L2(Ω) as the tensor product L2(Ω1)⊗L2(Ω2). Recall that G is
the Gelfand transform and Sε is the scaling transformation. Clearly, GSε ⊗ I maps
H1(Ξ) onto L2(Ω∗1; H̃1(Ω)) and, for any u ∈ H1(Ξ),

aεµ[u] = ε−2

∫
Ω∗1

aµ(τ)[ũ(k, ·)] dk,

where ũ = (GSε ⊗ I)u; that is,

(4.12) (GSε ⊗ I)(Aεµ)−1(GSε ⊗ I)−1 =

∫ ⊕
Ω∗1

ε2(Aµ(τ))−1dk.

Now, we would like to do the same for the operator A0
µ. To this end, let a0(τ) be

the form on H̃1(Ω) defined by

(4.13)
a0(τ)[u] = (A0D(τ)u,D(τ)u)2,Ω + ε(D(τ)u, a0

1u)2,Ω

+ ε(a0
2u,D(τ)u)2,Ω + ε2(q0u, u)2,Ω,

where

(q0u, u)2,Ω =

∫
Ω1

(q0u(x1, ·), u(x1, ·))2,Ω2
dx1.

The same arguments used to obtain (2.21) and (2.23) now show that

(4.14) |a0(τ)[u, v]| ≤ C0
[ ‖u‖1,2,Ω;τ‖v‖1,2,Ω;τ , u, v ∈ H̃1(Ω),

and

(4.15) Re a0(τ)[u] ≥ c∗‖D(τ)u‖22,Ω − ε2c\‖u‖22,Ω, u ∈ H̃1(Ω).

Let A0
µ(τ) = A0(τ)−ε2µ : H̃1(Ω)→ H̃1(Ω)∗ be the operator corresponding to a0

µ(τ) =
a0(τ)− ε2µ. Then A0

µ(τ) is an isomorphism if µ /∈ S0.

Lemma 4.2. For any µ /∈ S and τ ∈ T we have

‖(A0
µ(τ))−1‖B(L2(Ω)) . |τ |−2,

‖D(τ)(A0
µ(τ))−1‖B(L2(Ω))d . |τ |−1,

‖D(τ)(A0
µ(τ))−1D(τ)‖B(L2(Ω))d×d . 1,

‖D(τ)D(τ)(A0
µ(τ))−1‖B(L2(Ω))d×d . 1,

where the constants depend on d, µ, and the multiplier norms of the coefficients.
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Proof. The proof is similar to that of Lemma 4.1.

Since, for every u ∈ H1(Ξ),

a0
µ[u] = ε−2

∫
Ω∗1

a0
µ(τ)[ũ(k, ·)] dk,

with ũ = (GSε ⊗ I)u, it follows that

(4.16) (GSε ⊗ I)(A0
µ)−1(GSε ⊗ I)−1 =

∫ ⊕
Ω∗1

ε2(A0
µ(τ))−1dk.

As a result, we may restate Theorem 3.1 in terms of the fibers Aµ(τ) and A0
µ(τ).

Theorem 4.3. Let µ /∈ S. Then for all τ ∈ T it holds that

‖(Aµ(τ))−1 − (A0
µ(τ))−1‖B(L2(Ω)) . |τ |−1,

‖D2(τ)(Aµ(τ))−1 −D2(τ)(A0
µ(τ))−1‖B(L2(Ω))d . 1,

where the constants depend only on d, rΛ, µ, and the multiplier norms of the coeffi-
cients.

Let P denote the orthogonal projection in L2(Ω) onto C⊗ L2(Ω2). Notice that

(GSε ⊗ I)Pε(GSε ⊗ I)−1 =

∫ ⊕
Ω∗1

P dk.

Define Kµ(τ) : L2(Ω)→ H̃1(Ω) by

(4.17) Kµ(τ) = (ND(τ) + εM)(A0
µ(τ))−1P.

Lemma 4.4. For any µ /∈ S and τ ∈ T we have

‖D1Kµ(τ)‖B(L2(Ω))d . |τ |−1,

‖D1D2(τ)Kµ(τ)‖B(L2(Ω))d×d . 1,

where the constants depend on d, µ, and the multiplier norms of the coefficients.

Proof. Let f ∈ L2(Ω), and let u = (A0
µ(τ))−1Pf and U = Kµ(τ)f . Then, by

Lemma 4.2, it follows that

‖D1U‖2,Ω ≤ |Ω1|−1/2
(
‖D1N‖M + ‖D1M‖M

)
‖u‖12,2,Ω;τ . |τ |−1‖f‖2,Ω

and

‖D1D2(τ)U‖2,Ω ≤ |Ω1|−1/2
(
‖D1D2N‖M + ‖D1D2M‖M

)
|τ |‖u‖12,2,Ω;τ

+ |Ω1|−1/2
(
‖D1N‖M + ‖D1M‖M

)
‖D2(τ)u‖12,2,Ω;τ . ‖f‖2,Ω,

as required.

We remark that, since PKµ(τ) = 0 (by the definitions of N and M), we may use
Poincaré’s inequality to see that Kµ(τ) and D2(τ)Kµ(τ) satisfy estimates similar to
those for D1Kµ(τ) and D1D2(τ)Kµ(τ), respectively. This means that, unlike the case
of Aµ(τ) and A0

µ(τ), where both D1(τ) and D2(τ) make the norms of the correspond-
ing compositions smaller, roughly speaking, by multiplying each of these norms by
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|τ |, the differentiation D1 will not change the order of the norm of Kµ(τ). The reason,
of course, is that the corrector Kεµ involves functions that rapidly oscillate in the first
variable.

In the same fashion as above, we may prove that

(4.18) (GSε ⊗ I)Kεµ(GSε ⊗ I)−1 =

∫ ⊕
Ω∗1

εKµ(τ) dk.

Theorem 3.2 now takes the following form.

Theorem 4.5. Let µ /∈ S. Then for all τ ∈ T it holds that

‖D1(τ)(Aµ(τ))−1 −D1(τ)(A0
µ(τ))−1 −D1(τ)Kµ(τ)‖B(L2(Ω))d . 1,

where the constant depends only on d, rΛ, µ, and the multiplier norms of the coeffi-
cients.

Let S(τ) : H̃1(Ω)→ H̃1(Ω)∗ and T (τ) : H̃1(Ω)→ H̃1(Ω)∗ be given by

S(τ) =
(
(k +D2(τ))∗A+ εa∗1

)
(k +D2(τ)) + ε(k +D2(τ))∗a2 + ε2q,(4.19)

T (τ) =
(
(k +D2(τ))∗A+ εa∗1

)
D1.(4.20)

Clearly, S(τ) and T (τ) are bounded operators, satisfying estimates like that forAµ(τ).
It is in fact possible to improve these estimates by using (4.2) and (4.3) instead of
(4.4) and (4.5):

|(S(τ)u, v)2,Ω| .
(
ε‖D1(τ)u‖2,Ω + ‖u‖12,2,Ω;τ

)(
ε‖D1(τ)v‖2,Ω + ‖v‖12,2,Ω;τ

)
,(4.21)

|(T (τ)u, v)2,Ω| . ‖D1u‖2,Ω
(
ε‖D1(τ)v‖2,Ω + ‖v‖12,2,Ω;τ

)
(4.22)

if u, v ∈ H̃1(Ω). The operators S(τ)+ and T (τ)+ are defined likewise. Of course,
estimates similar to (4.21) and (4.22) hold for S(τ)+ and T (τ)+ as well. Notice that

(4.23) Aµ(τ) = D∗1AD1 + S(τ) + T (τ) + (T (τ)+)∗ − ε2µ.

We break Theorem 3.3 into two parts. The first is formulated as follows.

Lemma 4.6. For any µ /∈ S and ε ∈E we have

‖Lµ(I − Pε)‖B(L2(Ξ)) . ε,

where the constant depends on d, rΛ, µ, and the multiplier norms of the coefficients.

Proof. We estimate the operator norm of the symbol Lµ( ·). Fix k ∈ Rd1 \ {0}.
Let f ∈ L2(Ω2), and let u = (A0

µ(τ))−1f and U = Kµ(τ)f , U+ = Kµ(τ)+f , where τ =
(k, 1). Then

(Lµ(k)f, f)2,Ω2
= |Ω1|−1

(
S(τ)u+ T (τ)U,U+

)
2,Ω
.

It should be noted that while Lemmas 4.2 and 4.4 are only asserted to be valid for
A0
µ(τ) and Kµ(τ) with τ ∈ Ω∗1 × E, they may be extended to A0

µ(τ)P and Kµ(τ)

with τ ∈ Rd1 ×E. Indeed, the condition k ∈ Ω∗1 is used only to ensure the inequal-
ity (4.8). But when u does not depend on x1, we have equality for each k ∈ Rd1 . Thus,
the estimates (4.21) and (4.22) together with these extended versions of Lemmas 4.2
and 4.4, as well as Poincaré’s inequality, give

|(Lµ(k)f, f)2,Ω2 | .
(
‖u‖12,2,Ω;τ + ‖D1U‖2,Ω

)
‖D1U

+‖12,2,Ω;τ . |k|−1‖f‖22,Ω2
.
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Now if g ∈ C∞0 (Ξ) and ĝ = (F ⊗ I)g, then

|(Lµ(I − Pε)g, g)2,Ξ| ≤
∫
Rd1\ε−1Ω∗1

∣∣(Lµ(k)ĝ(k, ·), ĝ(k, ·)
)

2,Ω2

∣∣ dk
.
∫
Rd1\ε−1Ω∗1

|k|−1‖ĝ(k, ·)‖22,Ω dk ≤ εr−1
Λ ‖g‖

2
2,Ξ.

This is the result that we wished to prove.

The lemma takes care of Lµ(I − Pε) and L+
µ (I − Pε) in the estimate (3.4), so

we may concentrate our attention on LµPε and L+
µPε. Let A0

µ(τ)+ and Kµ(τ)+ play
the roles of A0

µ(τ) and Kµ(τ) for Aµ(τ)+. Then, since(
(GSε ⊗ I)Pεu

)
(k, x) = |Ω1|−1/2

(
(S1/εF ⊗ I)u

)
(k, x2)

for every u ∈ L2(Ξ), we find that

(4.24) (GSε ⊗ I)LµPε(GSε ⊗ I)−1 =

∫ ⊕
Ω∗1

εLµ(τ)P dk,

where Lµ(τ) : L2(Ω)→ L2(Ω) is given by

(4.25) Lµ(τ) =
(
Kµ(τ)+

)∗(S(τ)(A0
µ(τ))−1 + T (τ)Kµ(τ)

)
.

Define Lµ(τ)+ similarly. Obviously, in order to prove Theorem 3.3, we need to estab-
lish the following result.

Theorem 4.7. Let µ /∈ S. Then for all τ ∈ T it holds that∥∥(Aµ(τ))−1 − (A0
µ(τ))−1 −

(
Kµ(τ)−Lµ(τ)

)
P −P

(
Kµ(τ)+ −Lµ(τ)+

)∗∥∥
B(L2(Ω))

. 1,

where the constant depends only on d, rΛ, µ, and the multiplier norms of the coeffi-
cients.

We now turn to the proofs. Our first goal is to verify the identity

(4.26)

(Aµ(τ))−1P − (A0
µ(τ))−1P −Kµ(τ)

= −(Aµ(τ))−1P⊥
(
S(τ)(A0

µ(τ))−1P + T (τ)Kµ(τ)
)

− (Aµ(τ))−1
(
S(τ)+ + T (τ)+ − ε2µ̄

)∗Kµ(τ).

Denote the operator on the left by Uµ(τ). If f, g ∈ L2(Ω), then we set u = (A0
µ(τ))−1f ,

U = Kµ(τ)f , and v+ = (Aµ(τ)+)−1g. By (4.11), we have

(Uµ(τ)f, g)2,Ω = a0
µ(τ)[Pu, v+]− aµ(τ)[Pu+ U, v+]

(here we are using the fact that D(τ) commutes with P on periodic functions; hence,
so does A0

µ(τ)). Looking at the definitions of the effective coefficients, we see that

(4.27) A0
µ(τ)P = P

(
Aµ(τ) + T (τ)(ND(τ) + εM)

)
P,

from which we obtain

(4.28) a0
µ(τ)[Pu, v+]− aµ(τ)[Pu, v+] = (T (τ)U,Pv+)2,Ω − (Aµ(τ)Pu,P⊥v+)2,Ω.
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On the other hand, it follows from (4.23) that

(4.29) aµ(τ)[U, v+] = (T (τ)U,Pv+)2,Ω + (S(τ)U,Pv+)2,Ω + (Aµ(τ)U,P⊥v+)2,Ω.

The first term on the right-hand side of this last equality cancels with the first term
on the right-hand side of (4.28), so

(Uµ(τ)f, g)2,Ω = −(Aµ(τ)(Pu+ U),P⊥v+)2,Ω − (S(τ)U,Pv+)2,Ω.

Notice that, by the definitions of N and M ,

D∗1AD1U + (T (τ)+)∗Pu = 0.

Since T (τ)P = 0, T (τ)+P = 0, and PKµ(τ) = 0, this and the identity (4.23) imply
that

(Uµ(τ)f, g)2,Ω = −
(
S(τ)Pu+T (τ)U,P⊥v+

)
2,Ω
−
(
S(τ)U+(T (τ)+)∗U−ε2µU, v+

)
2,Ω
.

Then, using (4.11) and the fact that S(τ)+ is the formal adjoint of S(τ), we get (4.26).
Another important identity is

(4.30)

(Aµ(τ))−1P − (A0
µ(τ))−1P −Kµ(τ) + Lµ(τ)P + P(Lµ(τ)+)∗

= −
(
(Aµ(τ)+)−1 −Kµ(τ)+

)∗P⊥(S(τ)(A0
µ(τ))−1P + T (τ)Kµ(τ)

)
−
(
(Aµ(τ)+)−1 − (A0

µ(τ)+)−1P −Kµ(τ)+
)∗(S(τ)+ + T (τ)+

)∗Kµ(τ)

−
(
S(τ)+Kµ(τ)+ − ε2µ̄(Aµ(τ)+)−1

)∗Kµ(τ).

To prove this, we just note that T (τ)+P = 0 and PKµ(τ)+ = 0 and then apply (4.26).
We denote the operator on the left by Vµ(τ).

With these results in hand, it is easy to complete the proofs of the theorems.

Proof of Theorem 4.3. We write

(Aµ(τ))−1 − (A0
µ(τ))−1 = Uµ(τ) + (Aµ(τ))−1P⊥ − (A0

µ(τ))−1P⊥ +Kµ(τ).

Poincaré’s inequality (2.1) and Lemmas 4.1 and 4.2 (for Aµ(τ)+ and A0
µ(τ)+, re-

spectively) show that the norms of |τ |(Aµ(τ))−1P⊥, D2(τ)(Aµ(τ))−1P⊥ as well as
|τ |(A0

µ(τ))−1P⊥, D2(τ)(A0
µ(τ))−1P⊥ are uniformly bounded. In Lemma 4.4, we

proved that so are the norms of |τ |Kµ(τ) and D2(τ)Kµ(τ). Thus, it is enough to
check that

‖Uµ(τ)‖B(L2(Ω)) . |τ |−1,(4.31)

‖D2(τ)Uµ(τ)‖B(L2(Ω)) . 1.(4.32)

Let the notation be as above. We use (4.21) and (4.22) together with the Poincaré
inequality (2.1) to estimate each term in (4.26). The result is that

(4.33)
|(Uµ(τ)f, g)2,Ω| . |τ |−1

(
|τ |‖u‖12,2,Ω;τ + ‖D1U‖12,2,Ω;τ

)
×
(
‖D1(τ)v+‖12,2,Ω;τ + |τ |‖v+‖12,2,Ω;τ

)
.

Combining this with Lemmas 4.1 (for Aµ(τ)+), 4.2, and 4.4 gives (4.31).
The inequality (4.32) is proved in a like manner. We set w+ = (Aµ(τ)+)−1D2(τ)∗g

with g ∈ L2(Ω)d such that D2(τ)∗g ∈ L2(Ω) and then estimate the form

(4.34)
(Uµ(τ)f,D2(τ)∗g)2,Ω = −

(
S(τ)Pu+ T (τ)U,P⊥w+

)
2,Ω

−
(
U, (S(τ)+ + T (τ)+ − ε2µ̄)w+

)
2,Ω
.
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However, a modification is required to eliminate the mixed second derivatives of w+

which arise when we estimate the right-hand side (cf. (4.33), where a similar term,
namely, D2(τ)D1(τ)v+, causes no difficulty).

We do so as follows. Let ϕ ∈ L2(Ω2; H̃1(Ω1)), and let ψ be the solution of

D2(τ)∗D2(τ)ψ + |τ |2ψ = ϕ

in L2(Ω1;H1(Ω2)). Obviously, ψ has first derivatives and mixed second derivatives, as
well as pure second derivatives in x2. Fix l ∈ Rd1 ⊕ {0} with |l | = |τ | and define the

operator E(τ) : L2(Ω2; H̃1(Ω1)) → H̃1(Ω)d that assigns to each ϕ ∈ L2(Ω2; H̃1(Ω1))
the function (l +D2(τ))ψ. It follows that (l +D2(τ))∗E(τ) is the identity mapping.
A straightforward calculation (using the fact that ‖E(τ)ϕ‖2,Ω = ‖ψ‖12,2,Ω;τ ) shows
that E(τ) is bounded and

(4.35) |τ |‖D1(τ)E(τ)ϕ‖2,Ω + ‖E(τ)ϕ‖12,2,Ω;τ ≤ ‖D1(τ)ϕ‖2,Ω + 3‖ϕ‖2,Ω.

Now, we may rewrite the first expression on the right-hand side of (4.34) as(
S(τ)Pu+ T (τ)U,P⊥w+

)
2,Ω

= ε
(
[D2,S(τ)]Pu+ [D2, T (τ)]U, E(τ)P⊥w+

)
2,Ω

+
(
S(τ)(l +D2(τ))Pu+ T (τ)(l +D2(τ))U, E(τ)P⊥w+

)
2,Ω
.

Applying (4.21) and (4.22) and similar results for the commutators of D2 with S(τ)
and T (τ) (notice that these commutators have the same forms as S(τ) and T (τ)), we
conclude that∣∣(S(τ)Pu+ T (τ)U,P⊥w+

)
2,Ω

∣∣
.
(
‖D2(τ)u‖12,2,Ω;τ + |τ |‖u‖12,2,Ω;τ + ‖D1U‖12,2,Ω;τ

)
×
(
|τ |‖D1(τ)E(τ)P⊥w+‖2,Ω + ‖E(τ)P⊥w+‖12,2,Ω;τ

)
.

Therefore, by the estimate (4.35) together with the Poincaré inequality,

(4.36)

∣∣(S(τ)Pu+ T (τ)U,P⊥w+
)

2,Ω

∣∣
.
(
‖D2(τ)u‖12,2,Ω;τ + |τ |‖u‖12,2,Ω;τ + ‖D1U‖12,2,Ω;τ

)
‖D1(τ)w+‖2,Ω.

The second expression on the right of (4.34) is handled in the same way as before.
The upshot is that

(4.37)
|(Uµ(τ)f,D2(τ)∗g)2,Ω|

.
(
‖D2(τ)u‖12,2,Ω;τ + |τ |‖u‖12,2,Ω;τ + ‖D1U‖12,2,Ω;τ

)
‖w+‖1,2,Ω;τ ,

whence (4.32) follows by Lemmas 4.1 (for Aµ(τ)+), 4.2, and 4.4.

Proof of Theorem 4.5. The proof follows the same pattern as the previous one.
Again, the assertion is reduced, by Poincaré’s inequality and Lemmas 4.1 and 4.2, to
the estimation of D1(τ)Uµ(τ). Then the arguments that we used to obtain (4.37) go
through without change to yield the desired conclusion.

Proof of Theorem 4.7. We write

(Aµ(τ))−1 − (A0
µ(τ))−1 −

(
Kµ(τ)− Lµ(τ)

)
P − P

(
Kµ(τ)+ − Lµ(τ)+

)∗
= Vµ(τ) +

(
P⊥(Aµ(τ)+)−1 − P⊥(A0

µ(τ)+)−1 −Kµ(τ)+
)∗
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(recall that Vµ(τ) is the operator on the left side of (4.30)). Since Theorem 4.5 holds
true for Aµ(τ)+, it follows that

‖P⊥(Aµ(τ)+)−1 − P⊥(A0
µ(τ)+)−1 −Kµ(τ)+‖B(L2(Ω)) . 1,

where we have used Poincaré’s inequality and the fact that PKµ(τ)+ = 0. Thus, we
are left with estimating the operator Vµ(τ).

Fix f, g ∈ L2(Ω). Let u, U , and v+ be as above, and let u+ = (A0
µ(τ)+)−1g

and U+ = Kµ(τ)+g. Then, by (4.30),

(Vµ(τ)f, g)2,Ω = −
(
S(τ)Pu+ T (τ)U,P⊥(v+ − U+)

)
2,Ω

−
(
U, (S(τ)+ + T (τ)+)(v+ − Pu+ − U+)

)
2,Ω

−
(
U,S(τ)+U+ − ε2µ̄v+

)
2,Ω
.

We use (4.36), with v+−U+ in place of w+, to estimate, dropping the constants, the
first expression on the right-hand side by

(4.38)
(
‖D2(τ)u‖12,2,Ω;τ + |τ |‖u‖12,2,Ω;τ + ‖D1U‖12,2,Ω;τ

)
‖D1(τ)P⊥(v+ − U+)‖2,Ω.

The remaining terms, according to estimates similar to (4.21) and (4.22) as well as
Poincaré’s inequality, do not exceed

(4.39) ‖D1U‖12,2,Ω;τ

(
‖v+ −Pu+ −U+‖1,2,Ω;τ + ‖D1U

+‖12,2,Ω;τ + |τ |‖D1(τ)v+‖2,Ω
)

(notice here that PKµ(τ) = 0). Further, by Poincaré’s inequality,

(4.40) ‖D1(τ)P⊥(v+−U+)‖2,Ω . ‖D1(τ)(v+−u+−U+)‖2,Ω + ‖D1(τ)D1(τ)u+‖2,Ω

and

(4.41)
‖v+ − Pu+ − U+‖1,2,Ω;τ . ‖D1(τ)(v+ − u+ − U+)‖2,Ω + ‖v+ − u+‖12,2,Ω;τ

+ ‖D1(τ)u+‖1,2,Ω;τ + ‖D1U
+‖12,2,Ω;τ .

If we combine (4.38) with (4.40) and (4.39) with (4.41) and apply Lemma 4.1 (for
Aµ(τ)+), Lemma 4.2 (forA0

µ(τ) andA0
µ(τ)+), and Lemma 4.4 (for Kµ(τ) and Kµ(τ)+)

and Theorems 4.3 and 4.5 (for Aµ(τ)+), then we obtain

|(Vµ(τ)f, g)2,Ω| . ‖f‖2,Ω‖g‖2,Ω.

This proves the theorem.
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