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ON PINSKER FACTORS FOR ROKHLIN ENTROPY

ABSTRACT. In this paper we prove that any dynamical system has a
unique maximal factor of zero Rokhlin entropy, the so-called Pinsker
factor. It is also proven that if the system is ergodic and this fac-
tor has no atoms, then the system is a relatively weakly mixing
extension of its Pinsker factor.

§1. INTRODUCTION

A few years ago Lewis Bowen [1] introduced a new invariant for actions
of sofic groups — sofic entropy, and this led to great progress in the problem
of classification of Bernoulli shifts up to measure conjugacy and even (for
some class of groups) up to orbit equivalence. Sofic groups form a very
large class of countable groups, but it is still an open question whether all
the countable groups are sofic or not.

So, sofic entropy, potentially, does not work for some groups. There is,
however, a very natural alternative: the minimal entropy of a generating
partition, the so-called Rokhlin entropy. The name comes from the result
of Rokhlin stating that the Kolmogorov entropy for aperiodic transfor-
mations equals the infimum of the entropies of generating partitions [7].
The fact that this is an invariant is obvious from the definition. It follows
from [1] that the Rokhlin entropy equals the entropy of the base space for
Bernoulli shifts over sofic groups. It is well known that the sofic entropy is
bounded from above by the Rokhlin entropy (see [1, 5]). Seward [8] proved
a generalization for Rokhlin entropy of Krieger’s and Denker’s theorems.

In the realm of Kolmogorov entropy, it is well known that every system
has a unique maximal factor of zero entropy, the so-called Pinsker factor,
and it is known that the system itself is a relatively weakly mixing ex-
tension of its Pinsker factor (see [4]). In this paper, we will transfer these
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classical results into the new setting of Rokhlin entropy. Namely, we will
prove the following theorem.

Theorem 1. Every dynamical system contains a Pinsker subalgebra with
respect to Rokhlin entropy, that is, a unique mazximal subalgebra among
subalgebras with zero Rokhlin entropy.

After that we will use the Furstenberg—Zimmer structure theory to
obtain the following result which resembles a classical theorem on Kol-
mogorov entropy ([4]).

Theorem 2. Assume that the Pinsker factor of an ergodic dynamical
system is nonatomic. Then the initial system is a realively weakly mixing
extension of its Pinsker factor.
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§2. FACTS FROM ERGODIC THEORY AND DESCRIPTIVE SET
THEORY

Our intention here is to remind some facts and notions from ergodic
theory we will use in proofs.

A standard probability space, or a Lebesgue space, is a measurable space
arising from any Borel probability measure on a standard Borel space.
Such spaces have a lot of convenient properties (see [6, 4]). Consider a
standard probability space X = (X, 2 ,u) (where X is a set, 2 is a
o-algebra, and p is a measure). A o-subalgebra & C £ is said to be
complete if for any A € & and B € 2" such that u(AAB) = 0 (here A
denotes the symmetric difference operation) we have B € &. Obviously,
any o-subalgebra has the completion. Let # : X — Y be a measure-
preserving map between standard probability spaces X = (X, 2", u) and
Y = (V,%,v). In this situation, the pair (Y, x) is called a factor, 7 is
called a factor map, and Y is called a factor space. For any factor there
is a correspondent o-subalgebra: consider the completion %’ of the o-
subalgebra {m 1 (A4)|A € #}. Also, for every complete o-subalgebra in 2~
there is a factor such that the correspondent o-subalgebra is exactly the
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given one. Thus there is a natural correspondence between o-subalgebras
and factors. For more details, see [4].

A dynamical system, or a G-space, is a pair (X, T') consisting of a stan-
dard probability space X = (X, 2", u) and an action of a countable group
G on X by measure-preserving transformations. Two dynamical systems
(X,T) and (Y,S) with the same acting group are said to be isomorphic,
or conjugate, if there is a measure-preserving isomorphism ¢ : X — Y
that is equivariant with respect to the actions: p(T9(z)) = S9(¢(x)) for
every g and for almost every . A factor of a dynamical system (X,T) is a
pair consisting of a system (Y, S) and an equivariant measure-preserving
map 7 : X — Y. An extension of a dynamical system (Y,S) is a pair
consisting of a system (X, 7T) and an equivariant measure-preserving map
7 : X — Y. Two extensioms ((Xy,T),71) and ((Xz,T3),7=) are said to
be isomorphic if there is an equivariant measure-preserving a.e. bijection
11 X1 — Xy such that m; = w2 0 9.

A o-subalgebra 7 is called an invariant subalgebra if for every set
A € of wehave T9(A) € o . Tt is not hard to see that on the correspondent
factor space a factor action S of the group G can be defined. Thus there
is a natural correspondence between factors and invariant o-subalgebras
(see [4]).

Let X = (X, 2, 1) be a standard probability space. A partition a is a
countable or finite collection of disjoint measurable subsets of X covering
the whole space. A partition « is said to be measurable with respect to
a o-subalgebra o7 if all its elements belong to <. Consider a dynamical
system (X, T"). We will say that a o-subagebra is generated by a partition if
it is the smallest complete invariant o-subalgebra with respect to which the
partition is measurable. A partition is said to be generating if it generates
the g-algebra 2.

Let (X,T), (Y,S) be two dynamical systems, and let 7 : X — Y be
a factor map. For any partition a of X measurable with respect to the
o-subalgebra correspondent to the factor (Y, ), there is a unique, up to
a set of zero measure, partition 8 of Y such that a = 771 (a).

Lemma 1. Let (X,T) (with X = (X, 2", p)) be a dynamical system, let
o be an invariant o-subalgebra, and let o be an o/ -measurable partition
of X. Let B be a partition of Y such that a = 7= 1(3). Let (Y, S) be the
correspondent factor action, and let # : X — Y be the factor map. The
following assertions are equivalent:

1. The partition o generates the o-subalgebra <7 .
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2. The partition 8 generates the o-algebra % .

3. The partition 8 separates points of Y, that is, there exists a conull
set Y C Y such that for any y1,y2 € Y/, y1 # ys2, there is an
element g € G such that S9(y1) and S9(y2) lie in different parts

of B.
§3. BASIC FACTS ON ROKHLIN ENTROPY

In what follows, all the o-subalgebras are complete.

Let X = (X, 2", 1) be a standard probability space, and let (X,T) be a
dynamical system. The Shannon entropy of a parition o = {4, As,...} is
given by the formula H(a) = — >, u(A;i) log(u(A;)) with the usual con-
vention 0log 0 = 0. The Rokhlin entropy of an invariant o-subalgebra <7 is
the infimum of the Shannon entropies of generating partitions measurable
with respect to this subalgebra. We will denote it by h(<7). The Rokhlin
entropy h(X,T') of a dynamical system is defined as the Rokhlin entropy
of the o-algebra 2. We will say that a o-algebra o7 is generated by a
set {4} of o-algebras, and denote it by o/ = \/ &, if & is the minimal
o-algebra containing these subalgebras. In this situation we will also say
that < is the join of the o-algebras {47 }.

Lemma 2. Let {<,9,...} be a countable or finite set of invariant o-
subalgebras and o/ be their join. Then h(/) < > h().

Proof. The claim is obviously true if the sum of the entropies is infinite.
Otherwise take any ¢ > 0. By definition, for any i there is a generating
partition a; for <7 with Shannon entropy smaller than h(<;)+¢/2¢ . By the
completeness of the space of partitions with respect to the Rokhlin metric
(see [7]), the join \/, a; exists and H(\/,; o) < >, H(ag) < >, h() +e.
This is, obviously, a generating partition for .o/ O

Lemma 3. Let I be a linearly ordered set and {<;}ic; be a monotone
sequence of o-subalgebras, that is, o/ C a7; for i < j. Then there is a
countable subset J in I such that \/,c; o =\ ¢y ;.

Proof. The set 2  endowed with the metric d(A, B) = u(AAB) is a
complete separable semimetric space. It is not hard to see that the join of
a monotone sequence of g-subalgebras corresponds to the closure of the
union of the correspondent subsets in the semimetric space (27, d). Now
we can refine a countable subsequence with the same closure of the union,
since our space is a separable semimetric space. O
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Proof of Theorem 1. Consider the set of all invariant o-subalgebras of
zero Rokhlin entropy ordered by inclusion. It follows from the two previous
lemmas and Zorn’s lemma that there is at least one maximal zero-entropy
algebra. It is easy to see that this algebra is unique, since two maximal
subalgebras can be joined, and their join will differ from both of them and
have zero entropy, leading to a contradiction. O

§4. THE PINSKER FACTOR AND RELATIVE WEAK MIXING

Let (X,T) (with X = (X, 2", u)) be a G-space and (Y, R) (with Y =
(Y, % ,v)) be a factor of (X,T). The system (X,T') is called relatively
weakly mixing over (Y, S) if its relatively independent joining with any
ergodic system over the common factor (Y, S) is ergodic.

Let (Y, R) be a G-space. Consider a metric compact space (Z, d) with a
Borel probability measure 5 that is invariant under the action of isometries,
and let (g,y) — S9Y (where y € Y and g € G) be a measurable family of
isometries such that S9E" () o §hw = Gohw for any g,h € G and almost
every y € Y, and S%? = id for almost every y (where e is the group iden-
tity and id is the identity map). Then we can define an action of the group
G on the set Y x Z endowed with the product measure by the formula
Q7 : (y,z) — (R9(y), S9¥(z)). Obviously, this defines a dynamical system
which is naturally an extension of (Y, R). Any extension of (Y, R) isomor-
phic to an extension obtained in this way is called an isometric extension.
The following theorem is the famous Furstenberg—Zimmer dichotomy (see
[9, 3, 4]).

Theorem 3 (Furstenberg, Zimmer). Assume that we have an ergodic ex-
tension of an ergodic dynamical system. Then exactly one of the following
assertions holds:

1. The extension is weakly mixing.
2. There is an intermediate isometric extension.

In order to prove Theorem 2, we will need the following lemma.

Lemma 4. Let (X, T) be an ergodic isometric extension of an ergodic sys-
tem (Y,.S) such that the space Y has no atoms. Then h(X,T) < h(Y,S5).

Proof. Let h(Y) < oo, since otherwise the assertion is obvious. Let Y =
Y, % ,v) and X = (X, 2", u). Without loss of generality we may assume
that X =Y x Z where (Z,d) is a metric compact space. Take ¢ > 0. Let 8
be a generating partition for (Y, S) such that H(5) < ¢/2. Take 5’ to be
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the correspondent partition of X. By Lemma 1, there is a conull set X’ € X
such that for any two points (y1, 1), (Y2, 22) € X’ with y; # ys there is an
element g € G such that T9(y1, z1) and TY9(y2, z2) lie in different parts of
B’. Since Y has no atoms and is a standard probability space, we have a
sequence {C;} of positive-measure subsets in X such that v(C;) — 0. Take
any point zg from the support of the measure on the set Z. Obviously,
any ball B,.(zp) of positive radius has a positive measure. Let {A;} be the
sequence of measurable subsets in X of the form A; = C; x Bl/,-(zo) C
X x Z. Consider the sequence of paritions a; = {A;, X\ 4;}. It is easy to see
that H(a;) — 0. Take a subsequence n; — oo such that ), H (o) < /2.
Then the partition 3’ V'\/, a,; dynamically separates points from a conull
subset of X. Thus it is a generating partition, and its entropy is smaller
than h(Y,S) + . We are done, since € can be taken arbitrarily small. O

Proof of Theorem 2. Assume to the contrary that the Pinsker factor
has an intermediate isometric extension. By the previous lemma, this ex-
tension also has zero entropy, a contradiction. (I
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