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Entropy inequalities and exponential decay of

correlations for unique Gibbs measures on trees. ∗

Andrei Alpeev †

April 30, 2019

Abstract

In a recent paper by A. Backhausz, B. Gerencsér and V. Harangi,
it was shown that factors of independent identically distributed random
processes (IID) on trees obey certain geometry-driven inequalities. In
particular, the mutual information shared between two vertices decays
exponentially, and there is an explicit bound for this decay. In this note
we show that all of these inequalities could be verbatim translated to the
setting of factors of processes driven by unique Gibbs measures. As a
consequence, we show that correlations decay exponentially for unique
Gibbs measures on trees.

keywords: Gibbs measure, regular tree, exponential decay of correlations,
Bethe lattice, random coverings.

1 Introduction

The paper [BGH] provided a unified approach to entropy inequalities for factors
of IID’s on trees. It was shown that all known entropy inequalities in this setting
follow by certain combinatorial constructions from the “general edge-vertex“ en-
tropy inequality. The purpose of this note is to show that this general inequality
holds in a broader setting of factors of Gibbs processess whose distribution is a
unique Gibbs measure, thus transferring all the entropy inequalities.

Let Td be a d-regular tree with vertex set V (Td). Let A be a finite set
(alphabet). Assume that to each vertex v of the tree a function (potential)
ψv : AV (T ) → R is assigned. We would like to require that this potential is
“local” and “symmetric”. Let’s state these requirements formally. Potential
(ψv)v∈v(Td) is local if for each v ∈ V (Td) there is a postive integer D and

function ψ′
v : ABall(v,D) → R such that ψv = ψ′

v ◦ prD, here prBall(v,D) stands
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for the natural projection AV (Td) → ABall(v,D). Note that the action of the
automorphism group Aut(Td) on Td is lifted naturally to the action on AV (Td):

(γω)(v) = ω(γ−1v),

for each v ∈ V (Td) and γ ∈ Aut(Td). By saying that the potential is symmetric
we mean that for each v ∈ V (Td) and γ ∈ Aut(Td) holds ψγv(γω) = ψv(ω).
We note that due to the latter requirement, the locality of the potential is
uniform: there is a positive integer R such that for each v ∈ V (Td) there is
a function ψR

v : ABall(v,R) → R satisfying ψv = ψR
v ◦ prBall(v,R). This means

that we can define ψv on AW for any W ⊃ Ball(v,R). We denote ∂R(W ) the
R-neighborhood of W .

A Borel probability measure µ on AV (Td) is called a Gibbs measure if for

every Λ ⋐ V (Td), for any s ∈ AΛ and t ∈ A∂2RΛ we have the following for the
conditional probability

Pr(prΛ(ω) = s| pr∂2RΛ(ω) = t) =
exp

(
−
∑

v∈Λ∩∂RΛ ψv(s ⊔ t)
)

ZΛ,t
,

where ω is distributed according to µ, and ZΛ,t stands for the normalizing
coefficient

∑

s′∈AΛ

exp

(
−

∑

v∈Λ∩∂RΛ

ψv(s
′ ⊔ t)

)
.

A Gibbs process is simply a process whose distribution is a Gibbs measure.
As we will show in this note, all the inequalities from [BGH] could be trans-

ferred to the setting of factors of unique Gibbs measure processes. We will not
re-write all of these, but the most striking one:

Theorem 1. Let Td be a d-regular tree, d > 2. Let A be a finite set. Let (ψ)v be
an Aut(Td)-invariant potential such that there is a unique Gibbs measure for it.
Let (Xv) be the process distributed according to this measure. Then the following
holds for any two vertices u and v of Td with distance l between them:

I(Xu, Xv)

H(Xv)
≤

{
2

d(d−1)l if k = 2l + 1 is odd,
1

(d−1)l
if k = 2l is even.

The interesting thing is that we do not impose any restrictions on the model
apart from it being symmetric with respect to the tree automorphisms and
having unique Gibbs measure.

In [BGH] the idea was proposed to show that certain processes (including
Gibbs proccesses) are not factors of IID based on their failure to satisfy the
entropy inequalities. Our results show that this approach will fail to distinguish
factors of IID processes from factors of unique Gibbs measure processes.

Models of statistical physics on regualar trees (Bethe lattices) have been
extensively studied, see e.g. [Ba]. Gibbs processes on infinite graphs and their
approximations by big finite graphs have been studied in [DM10a], [DM10b].
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In my paper [A15], it was shown that for unique Gibbs measures, finite models
of infinite Gibbs structures admitting unique Gibbs measure provide a way to
compute the sofic entropy. In works [AuP17] and [A17] the random ordering
technique was used to assess the asymptotic behaviour of certain classes of Gibbs
processes on sequences of finite graphs.

One particular property of interest is the exponential decay of correlations.
By a symmetric observable we mean a collection of functions (αv)v∈V (T ) satisfy-
ing the same requirements as potential (it should be symmetric and local), but
taking values in a finite set B (we will call it a real observable if it takes values
in R). In fact, previous theorem holds for any symmetric observable. From that
we may deduce that there is an exponential correlation decay:

Corolary 1. In the setting of the previous theorem, for any symmetric real
observable (αu) there is a constant C such that

Covν(αu, αv) ≤ C(d− 1)−k/4.

Proof. Let B be the set of values of αv for some (=any) v ∈ V (T ). Set B is
finite. There are two natuaral projections pr1, pr2 : B × B → B. Denote η the
distribution of αu() for any u ∈ V (T ). For each u, v ∈ V (T ) denote ξu,v the
distribution of (αu, αv). Let M

′ be the set of probability measures θ on B ×B
such that pr1(θ) = pr2(θ) = η. Note that M ′ is a finite-dimensional convex set.
We note that H is a smooth function in a neighborhood of η⊗ η. We claim that
there is a constant C′ such that

I(αu, αv) ≥ C′‖ξu,v − η ⊗ η‖2,

where ‖ ‖ stands for the total variation distance. This follows from the fact that
η⊗ η is the unique maximal point of function ξ 7→ 2H(η)−H(ξ) defined on M ′,
and that the second derrivative of this function is positive in any direction. Next
we note that Cov(αu, αv) is an affine function of the distribution of (αu, αv), so
we get that there is a constant C such that

Cov(αu, αv) ≤ C
(
I(αu, αv)

)1/2
.

This implies the desired.

In the paper [BSV15], a stronger decorrelation bound is obtained for factors
of IID process. Various results of this flavour were obatined in [BS14], [BGHV],
[CHV], [GH17]. It seems that some of these could be transferred to the setting
of factors of Gibbs processes.

Our proof mostly follows the steps of [BGH]. We refer the reader to the fore-
mentioned paper for the details on how to derive Theorem 1 and other entropy
inequalities from the “general edge-vertex inequality”, Theorem 2, presented in
Section 3. So it is enough to prove this inequality. Again, the basic argument
structure is the same. The main difference lies in the proof of our Lemma 6,
which corresponds to Lemma 5.4 of [BGH]. In the factor of IID case of [BGH],
a standard measure concentration inequality yuilded the desired right away. In
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our case, lack of independence in the base process forced us to opt for a sec-
ond moment argument coupled with some analysis of unique Gibbs measures.
Note that the argument takes a kind of a bootstrap form: a weak decorrelation
property is used to prove a quantitative one.

2 Preliminaries

For a metrizable compact space X , we denote M(X) the space of Borel proba-
bility measures endowed with the weak* topology. For two random variables X
and Y , their covariance is denoted Cov(X,Y ):

Cov(X,Y ) = EXY − EX EY = E
(
(X − EX)(Y − EY )

)
.

The sign “⋐” stands for “a finite subset”. For a graph G we will denote
V (G) its vertex set and E(G) its edge set. Denote Aut(G) the automorphism
group of graph G. For any vertex v and a positive integer R, denote Ball(v,R)
the ball of radius R centered at v.

Let H be a locally-finite simple graph. Let us fix a finite set A (an alphabet).
Let W be any subset of V (H). Denote prW : AV (H) → AW the natural

projection map. Denote B(W ) the σ-subalgebra on AV (H) that is the preimage
of the Borel σ-algebra on AW under the projection map prW

Fix a positive integer D (a memory parameter). A potential is a collection
(ψ)v∈V (H) of functions A

Ball(v,D) → R. We will also say that ψ is a D-potential,
reflecting that its memory parameter is D. Abusing notation a little, we may
assume that ψv is defined on AW for any subsetW of V (H) containing Ball(v,D)
(including the whole space AV (H)). For a positive integer R and a subset W of
V (H), we denote ∂RW the R-neighborhood of set W , that is the set of all the
vertices outside ofW at a distance not bigger than R. The potential defines the
set of Gibbs measures. If graph H is finite, then the Gibbs measure ν is given
by the formula:

ν({ω}) =
exp

(
−
∑

v∈V (H) ψv(ω)
)

Z
,

where Z stands for the normalizing coefficient

∑

ω∈AV (H)

exp
(
−

∑

v∈V (H)

ψv(ω)
)
.

For s ∈ AΛ1 and t ∈ AΛ2 with Λ1 ∩ Λ2 = ∅, denote s ⊔ t ∈ AΛ1∪Λ2 their
glueing. If H is infinite, then there could be multiple Gibbs measures. A Borel
probability measure ν on AV (H) is a Gibbs measure for potential (ψ)v∈V (H) if

for every Λ ⋐ V (H), for any s ∈ AΛ and t ∈ A∂2DΛ, we have the following for
the conditional probability:

Pr(prΛ(ω) = s| pr∂2DΛ(ω) = t) =
exp

(
−
∑

v∈Λ∩∂DΛ ψv(s ⊔ t)
)

ZΛ,t
,
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where ω ∈ AV (H) is distributed according to ν, and ZΛ,t stands for the normal-
izing coefficient

∑

s′∈AΛ

exp

(
−

∑

v∈Λ∩∂RΛ

ψv(s
′ ⊔ t)

)
.

We will say that pair (H,ψ) forms a Gibbs structure.

3 Coverings and the edge-vertex inequality for

Gibbs measures

Let G be a finite simple connected graph. The universal covering Ĝ of graph
G is the tree obtained in the following way. Let v be any vertex from G. The
vertex set of Ĝ is the set of all non-backtracking paths on G starting from v (the

trivial one included). Two paths are connected by an edge in Ĝ iff one of these
paths is another extended by one edge. We define the natural projection map
ϕ : V (Ĝ) → V (G) which sends a vertex from Ĝ to the end of the corresponding
non-backtracking path. Of course, this map could be extended to the set of
edges E(Ĝ) as well. Note that the construction described is unique up to an
automorphism.

Consider the subroup Γϕ of Aut(Ĝ) consisting of all ϕ-preserving automor-

phisms of graph Ĝ:

Γϕ =
{
γ ∈ Aut(Ĝ)| ϕ(γv) = ϕ(v) for any v ∈ V (Ĝ)

}
.

We will usually write Γ instead of Γϕ.

Let A be a finite alphabet. Note that Γ acts on AĜ:

(γω)(v) = ω(γ−1v),

for any γ ∈ Γ, v ∈ V (Ĝ) and ω ∈ AV (Ĝ).

Let ψ = (ψ)v∈V (Ĝ) be a Γ-invariant potential on Ĝ. That is, for any v ∈

V (Ĝ), any γ ∈ Γ and ω ∈ AV (Ĝ) holds:

ψγv(γω) = ψv(ω).

If ν is the unique measure for (Ĝ, ψ), then ν is automatically Γ-invariant; this
follows from the fact that γν is a Gibbs measure for any γ ∈ Γ.

Let ν be a Γ-invariant measure on AV (Ĝ). Let B be another finite alphabet.

A measurable map τ from AV (Ĝ) to BV (Ĝ) is Γ-equivariant if the following holds:

τ(γω) = γ(τ(ω)),

for any γ ∈ Γ and ω ∈ AV (Ĝ).
Let ν be the unique Gibbs measure for (Ĝ, ψ), and τ be a Γ-equivariant

measurable map AV (Ĝ) → BV (Ĝ). Let µ be τ(ν). We note that for a fixed edge
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e ∈ E(G) and for any two edges e′, e′′ ∈ E(Ĝ) such that φ(e′) = φ(e′′) = e,
the marginal distributions pre′(µ) and pre′′(µ) on B × B are the same(up to
the natural re-labeling). So it makes sense to define the distribution µe on
B{u,v} = B ×B, where e = {u, v}.

Remind that the Shannon entropy of a measure η on a finite set Q is defined
as

H(η) = −
∑

q∈Q

η({q}) log η({q}),

with the convention 0 log 0 = 0. The Shannon entropy of a random variable is
defined as the Shannon entropy of its distribution.

The main theorem of this paper is the following:

Theorem 2. In the notation above, the following inequality holds:

∑

v∈V (G)

(deg(v)− 1)H(µv) ≤
∑

e∈E(G)

H(µe).

The proof will ensue in the next section as a consequence of two lemmata
concerning colorings of finite random coverings. Basically, the first one shows
that the difference between the right-hand and the left-hand sides of the edge-
vertex inequality is involved in the estimate of the expected number of some
“good” colorings of random covers of graph G. On the other hand, the second
one shows that this expected number is at least 1−o(1) (a “good” coloring exist
almost surely).

Note that Theorem 2 is exactly the “general edge-vertex inequality” from
[BGH], the only change is that we consider factors of uniqie Gibbs measure pro-
cesses instead of factors of IID’s. IID processes form a particular case of unique
Gibbs measure processes: it is easy to construct a potential whose unique Gibbs
measure would be any given product-measure (the “interactionless potential”).
Theorem 1 and other entropy inequalities follow by constructing specially tai-
lored factors, see [BGH, Section 3] for details. These constructions work in our
case without any noticeable changes.

A Γ-cellular map is a Γ-equivariant continuous map τ from AV (Ĝ) to BV (Ĝ).
The continuity assumption may sound a bit fancy. In fact, it is equivalent to
say that for any v ∈ V (Ĝ) there is a finite set W of V (Ĝ) such that (τ(ω))(v)
depends only on prW (ω). This equivalence is known as the Curtis-Hedlund-
Lyndon theorem. There is a well-known trick to approximate a measurable
equivariant map by a cellular map. Namely, if τ ′ is a measurable equivariant
map, then for any ε > 0 there is a cellular map τ such that for any v ∈ V (Ĝ)
holds

ν
({
ω ∈ AV (Ĝ) : (τ(ω))(v) = (τ ′(ω))(v)

})
> 1− ε.

So it is enough to consider only factors obtained by cellular maps to prove
Theorem 2.
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4 Random coverings and proof of Theorem 2

Let G be a finite simple connected graph. Let Ĝ be its universal covering
together with a natural covering map ϕ : Ĝ → G. An N -fold covering of G
is a graph ĜN whose vertex set is {1, . . . , N} × V (G) together with a graph

morphism qN : ĜN → G such that

1. for each v ∈ V (G) and i from {1, . . . , N} holds qN (i, v) = v;

2. there are exactly N preimages of each edge from G;

3. for each edge {u, v}, the preimage q−1
N ({u, v}) is a perfect matching be-

tween the sets q−1
N (u) and q−1

N (v);

4. if vertices u′ and v′ from ĜN are connected, then qN (u′) and qN (v′) are
connected.

We note that, for each connected component of graph ĜN , there is a covering
map q : Ĝ→ ĜN onto this component such that ϕ = qN ◦ q

A uniform random N -fold covering of G is an N -fold covering such that the
perfect matchings q−1

N (e) for each e ∈ E(G) are taken uniformly at random. An
important property of the random N -fold covering is that for big N it looks
like the universal covering in a neighborhood of almost every of its vertices.
To be more precise, consider an N -fold covering ĜN . Take a vertex u from
V (ĜN ). Let q : Ĝ → ĜN be a covering map to the connected component of

ĜN containing u. We will say that vertex u is R-nice, for a positive integer R,
if q is a bijection from Ball(u′, R) to Ball(u,R), where u′ is any preimage of u
under map q. We note that the latter definition is independent of the choice of
covering map q. We will say that an edge is R-nice if both of its end are R-nice.

For each vertex v in graph G, denote LĜN
v the preimage set of this vertex under

the natural covering map to G. We establish similar notation LĜN
e for an edge

e ∈ E(G).
For a positive ε and positive integer R, we will say that an N -fold covering

ĜN of graph G is (R, ε)-nice if for each vertex v ∈ V (G) the portion of R-nice

vertices in LĜN
v is bigger than 1 − ε, and the same holds for each edge. The

following lemma is discussed in [BGH, Section 5.a]

Lemma 1. Let R be a positive integer and let ε > 0. Then for any ε > 0 there
is N ′ such that for every N > N ′ the random uniform N -fold covering ĜN is
(R, ε)-nice with probability at least 1− ε.

Sketch of proof. Let v be a vertex from graphG and p be a finite non-backtracking
path on G starting at v. Let u ∈ V (ĜN ) be any vertex with v = qN (u), and let

p̂ be the lift of path p to the path on ĜN starting at u, and whose projection
under qN is p. It is sufficient to prove that, with probability close to 1, p̂ has
no recurring vertices provided that N is big enough. This can be done easily by
induction and using the “lazy evaluation” trick. Namely, instead of construct-
ing at once the random perfect matchings involved in the definition of random
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covering, one should only pick randomly the edge needed to continue lifting the
path considered.

Let ĜN be an N -fold covering of G, let B be a finite alphabet. Let c be
a map from V (ĜN ) to B. We associate with it the “empirical distribution”.
Namely, for each vertex v we pick uniformly its preimage v′ under the covering
map qN . The distribution of c(v′), a measure on B, is our empirical distribution
and will be denoted µc

v. In other words,

µc
v =

1

N

∑

v′∈L
ĜN
v

δc(v′).

In the same way, for each edge e = {u, v}, we pick uniformly at random its
preimage e′ = {u′, v′} (qN (u′) = u and qN (v′) = v) under the covering map.
The distribution of (c(u′), c(v′)) is a measure on Be = B×B and will be denoted
µc
e. We may also write:

µc
e =

1

N

∑

{u,v}∈L
ĜN
e

δ(c(u′),c(v′)).

In the next lemma we assume for a moment that (µv)v∈V (G) and (µe)e∈E(G)

are just two collections of measures on B and B × B respectively. We will say
that these collections are consistent if prv(µe) = µv for every e ∈ E(G) and v is
one of two vertices connected by edge e.

Lemma 2. Let (µv)v∈V (G) and (µe)e∈E(G) be a consistent collection of mea-
sures. For every ε > 0 the following holds:

EĜN

∣∣∣c : V (ĜN ) → B, ‖µc
e − µe‖ ≤ ε for every e ∈ E(G)

∣∣∣

= exp

(
N

( ∑

e∈E(G)

H(µe)−
∑

v∈V (G)

(deg(v)− 1)H(µv) + oε,N (1)

))
, (1)

where o-small tends to zero as N tends to infinity and ε tends to zero.

We omit the proof and refer the reader to [BGH, Lemma 5.6]. Note that the
statement therein is slightly different, the precise equality is required. Nonethe-
less, the careful inspection of the proof reveals that it works in our case as
well.

Theorem 2 will follow from the previous lemma if only we can prove that the
expectation mentioned in that lemma is bigger than 1 − o(1). This is exactly
what we get in the next one.

Lemma 3. For every ε > 0 there is N ′ such that for every N > N ′, a random
N -fold covering ĜN with probability more than 1−ε has a coloring c : V (ĜN ) →
B such that ‖µc

e − µe‖ ≤ ε for every e ∈ E(G).

We will prove Lemma 3 in Section 6 after laying below the necessary ground-
work on Gibbs measures.
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5 Asymptotic independence for unique Gibbs

measures

Distant parts of processes governed by unique Gibbs measures are almost inde-
pendent. It turns out, that the latter is true in some sense even if we warp the
Gibbs sructure outside of some (big enough) ball in the graph. the purpose of
this section is to explain these points.

We refer the reader to the monographs [G11] and [RS15] for the preliminaries
on Gibbs measures.

Gibbs measures satisfy the so-called Markov property (see [G11, p. 157]).
Namely, let ν be a Gibbs measure for the potential ψ. For any finite subset Λ
of V (H) and for any B(Λ)-measurable L2-function f , holds

E(f |B(V (H) \ Λ)) = E(f |B(∂2DΛ)).

Remark 1. Consider the following expression:

‖E(f |B(∂2DΛ))− E(f)‖2.

There is an explicit parameter: the measure ν. In fact, only the projection
ν0 = prΛ∪∂2DΛ ν matters in this respect. We may notice also that f is well-

defined on AΛ∪∂2DΛ and that ν′0 is positive on all elements of AΛ∪∂2DΛ. The
latter means that the function

ν1 7→ ‖Eν1(f |B(∂2DΛ))− E(f)‖2

is continuous in a neighborhood of ν0.

Let H be a locally-finite connected graph with a D-potential ψ. Let H ′ be
another locally-finite graph with a D-potential ψ′. Let v be a vertex in H , v′

be a vertex in H ′ and R > D be an integer. A (v, v′, R)-partial isomorphism
is an isomorphism between induced subgraphs t : Ball(v,R) → Ball(v′, R) such
that t(v) = v′, and

ψ′
t(u)(tω) = ψu(ω),

for every u ∈ Ball(v,R − D) and ω ∈ ABall(v,R)(note that t induces a map
ABall(v,R) → ABall(v′,R)). Roughly speaking, this means that the Gibbs struc-
tures are the same in the neighborhoods of v and v′.

Suppose that the Gibbs measure is unique for potential ψ on H and v is
a vertex from V (H). Let f : AV (H) → R be a bounded measurable function.
Then

lim
R→∞

E

(
f |B

(
V (H) \ Ball(v,R)

))
= E(f), (2)

where the limit is taken in the L2-norm. The latter is a consequence of the
martingale convergence theorem together with the fact that the tail subalgebra
T =

⋂
R>0 B(V (H) \ Ball(v,R)) is trivial on the unique Gibbs measure ([G11,

Theorem 7.7 (a), p. 118]).
A unique Gibbs measure is stable in a certain sense. To be more precise,
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Lemma 4. Let ν be the unique Gibbs measure for Gibbs structure (H,ψ), let
Λ be a finite subset of V (H) and v ∈ Λ. Then for every ε > 0 there is such an
integer R that if the Gibbs structure is changed only outside of Ball(v,R), then
any Gibbs measure ν′ (it is not necessarily unique anymore) for the new Gibbs
structure satisfies

‖prΛ(ν) − prΛ(ν
′)‖ ≤ ε.

Proof. Assume the contrary. There is an ε > 0 and a sequence (HR, ψR) of
Gibbs structures such that (HR, ψR) is isomorphic to (H,ψ) in the Ball(v,R),
and for any (HR, ψR) there is a Gibbs measure νR such that

‖prΛ(ν) − prΛ(ν
R)‖ > ε

if Λ ⊂ Ball(v,R). For each W ⋐ V (H), the projection prW (νR) is well-defined
as soon as W ⊂ Ball(v,R). Using the diagonal trick, we may extract a subse-
quence, and assume that projections prW (νi) converge for all finite subsets W
of V (H). For eachW consider the limiting measure νW . Using the Kolmogorov
theorem, we may extend this collection of measures to a measure ν1 on AV (H).
This has a property that ‖prΛ(ν1) − prΛ(ν)‖ > ε. We also note that ν1 is a
Gibbs measure for (H,ψ). This contradicts our assumption that ν is the unique
Gibbs measure for (H,ψ).

Lemma 5. Suppose that graph H with potential ψ has a unique Gibbs measure.
Let f1 be a function defined on AW1 for some finite subset W1 of V (H), such
that 0 ≤ f1 ≤ 1, and let v ∈ W1. For every ε > 0 there are such positive
integers R′ < R′′ with W1 ⊂ (Ball(v′, R′)) that if (H,ψ) is (v, v′, R′′)-partially
isomorphic to (H ′, ψ′), and ν′ is a Gibbs measure (that is not necessarily unique)
for (H ′, ψ′), then the following holds.

For any function f2 defined on AW2 , where W2 ⊂ V (H ′) \Ball(v′, R′), such
that 0 ≤ f2 ≤ 1, we have:

∣∣Covν′(f ′
1, f2)

∣∣ ≤ ε,

where f ′
1 is the transfer of f1 from H to H ′ via the partial isomorphism map.

Proof. Denote A = B(V (H ′) \ Ball(v′, R′)) and C = B(∂2D Ball(v′, R′)).
∣∣Cov(f ′

1, f2)
∣∣ =

∣∣E(f ′
1 − Ef ′

1)(f2 − Ef2)
∣∣ =

∣∣∣E
(
E
(
(f ′

1 − Ef ′
1)(f2 − Ef2)

∣∣A
))∣∣∣ =

∣∣∣E
(
E
(
(f ′

1 − Ef ′
1)
∣∣A
)
·
(
f2 − Ef2

))∣∣∣.

The last equality is due to the fact that if F1 and F2 are two L2-functions and
F2 is A -measurable, then E

(
F1 · F2|A

)
= E

(
F1|A

)
· F2 almost everywhere.

We carry on using the Cauchy-Bunyakovsky-Schwartz inequality and then the
Markov property:
∣∣∣E
(
E
(
(f ′

1 − Ef ′
1)
∣∣A
)
·
(
f2 − Ef2

))∣∣∣ ≤
∥∥∥E
(
(f ′

1 − Ef ′
1)
∣∣A
)∥∥∥

2
=

∥∥E(f ′
1 |A )− Ef ′

1

∥∥
2
=
∥∥E(f ′

1 |C )− Ef ′
1

∥∥
2
.
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If R′′ is big enough, then we can transfer the expression from graph H ′ back to
H using Remark 1 and Lemma 4. Then we apply again the Markov property
to change the conditioning subalgebra:
∥∥E(f ′

1 |C )− Ef ′
1

∥∥
2
≤ ε/2 +

∥∥E(f1 |C ′)− Ef1
∥∥
2
= ε/2 +

∥∥E(f1 |A ′)− Ef1
∥∥
2
,

where C ′ = B(∂2D Ball(v,R′)) and A ′ = B(V (H ′) \Ball(v′, R′)). Now we use
the martingale convergence (equation 2) to note that

∥∥E(f1 |A ′)− Ef1
∥∥
2
≤ ε/2,

for big enough R′. Alltogether, if we take R′ and R′′ big enough and such that
R′ < R′′, then we have ∣∣Covν′(f ′

1, f2)
∣∣ ≤ ε.

6 Nice coverings have good colorings

Suppose ĜN is anN -fold covering of graphG. We note that in this case there is a
natutal translation of the potential to this covering. Indeed, for any u ∈ V (ĜN )

let q be a covering map from H to the connected component of ĜN containing u.

Fix any preimage u′ of u under map q. Any coloring ω ∈ AV (ĜN ) can be lifted

to a periodic coloring ω′ ∈ AV (Ĝ). We now define ψĜN
u (ω) to be ψq−1(u)(ω

′).
This construction looks very natural when D-ball around u is isomorphic to the
corresponding D-ball around u′. In the latter case we literally translate the
potential from Ball(u′, D) to Ball(u,D). In a similar fashion, we can transfer

the cellular map τ to the map τ ĜN from AV (ĜN ) to BV (ĜN ). Namely, we will

define (τ ĜN (ω))(u) to be (τ(ω′))(u′). The transferred potential will define the

Gibbs measure νĜN on AĜN (note that it is defined on a finite set and is unique

therefore). Now define µĜN = τ ĜN (νĜN ). Remind that for a map c : ĜN → B
and any e ∈ E(G) we defined the empirical ditribution µc

e.

Lemma 6. For any ε > 0 there is δ > 0 and natural numbers R and N ′, that
if an N -fold covering ĜN (N > N ′) of graph G is (R, δ)-nice, then there is a

coloring c : V (ĜN ) → B such that ‖µe − µc
e‖ ≤ ε for every e ∈ E(G).

Note that this lemma implies immediately Lemma 3 since, by Lemma 1, a
random covering ĜN for N > N ′ is (R, δ)-nice with probability bigger than
1− ε, provided that N ′ is big enough.

Proof. As in the proof of Lemma 5.4 from [BGH] we will employ a random
construction. We will prove that for big enough N ′ and R, and small enough

δ > 0, a µĜN -random c will suffice for us with high probability.
Fix an edge e ∈ E(G) connecting two vertices u and v of graph G.
We note that Ec(µ

c
e) is arbitrarily close to µe, provided N ′, R are large

and δ is small enough. This is due to two observations. First, if R is big,
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and i is an R-nice edge of ĜN , then the distribution of B × B-valued random
varible (c(u′), c(v′)) (where u′ and v′ are the vertices connected by edge i, and
these are the respective preimages of vertices u and v) is close to µe. Second,
the contribution of the non-nice vertices is controlled by δ and could be made
arbirarily small.

Let us show now that actually µc
e concentrates near its expected values.

Take any two elements bu, bv from B. Edge e has a preimage set LĜN
e of edges

from ĜN . Define (fi,e,bu,bv)i∈LWGN
e

to be the variable that equals 1 whenever
c(u′) = bu and c(v′) = bv, and 0 otherwise. Denote

fe,bu,bv =
1

N

∑

i∈L
ĜN
e

fi,e,bu,bv .

Note that fe,bu,bv = µc
e({(bu, bv)}). Here lies the main difference of our proof

from that of [BGH]. In that paper, a measure concentration bound was used.
Since our process is not IID, we need to find another option. By the Chebyshev
inequality, it amounts to prove the following:

Lemma 7. For any ε > 0 there are large enough N ′ and R, and small enough
δ > 0, such that the following holds. For any (R, δ)-nice N -fold covering ĜN

with N > N ′, we have:
Var(fe,bu,bv ) < ε.

The rest is devoted to the proof of the lemma above.
Let’s explain the variant of the second-moment argument needed. Let (Yi)i=1...N

be a collection of random variables on the same probability space with zero
expectation each (we can alway obtain the latter by subtracting respective ex-
pectation). Assume also that |Yi| ≤ 1 almost surely. Let

Y =
1

N

∑

1≤i≤N

Yi.

We want to show that for big N , the second moment of Y is close to 0. Of
course we will need some additional assumptions. Let’s expand:

EY
2
=

1

N2

∑

i

EY 2
i +

1

N2

∑

i6=j

EYiYj . (3)

Note that the first summand vanishes as N gets bigger.
If Yi’s are pairwise independent, then the second term of expression 3 is

zero, and we are done. This is classical Chebyshev’s law of large numbers.
Let us weaken the independence assumption a little. Assume that each Yi
“interacts” with the uniformly bounded number of Yj ’s. That is there is a
contant K(uniform in N) such that for each i there are at most K of j’s with
Yi and Yj being pairwise dependent. In that case the second summand of 3 is
bounded by K/N , and we obtain the desired.
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For our exposition we need a further weakening. Roughly speaking, we say
that that each Yi interacts in a “significant way” only to a uniformly bounded
number of Yj ’s. We assume that all pairs can interact, but for each ε′ > 0 there
is a number Kε′(uniform in N) such that for each i there are at most Kε′ such
j’s that |EYiYj | > ε′. So there are “far” pairs (i, j) with covariance less than ε′

and the “close” ones with covariance not less than ε′. This assumption implies
that the second term of the second moment is bounded by ε′ +Kε′/N .

We need to take into account now that some elements i are “bad” = “not
nice”(we don’t have the bound on interaction for them as described above), but
their number is limited by δN . In our expression for the second moment we will
get:

EY
2
=

1

N2

∑

i

EY 2
i +

1

N2

∑

i6=j

EYiYj =

1

N2

∑

i

EY 2
i +

1

N2

∑

i6=j

nice

EYiYj +
1

N2

∑

i6=j

i or j bad

EYiYj ≤

1

N
+ ε′ +

Kε′

N
+ 2δ. (4)

We return to the proof of Lemma 7. By Lemma 5, we can take R so big

that for any two R-nice edges i, j ∈ LĜN
e that are 2R apart(in the usual graph

distance on ĜN ), we will have

Cov(fi,e,bu,bv , fj,e,bu,bv ) ≤ ε/4.

So for any R-nice edge i from LĜN
e there are no more than 2R(degG)2R+2 R-nice

edges j from LĜN
e such that

Cov(fi,e,bu,bv , fj,e,bu,bv ) > ε/4.

So in 4 we have ε′ = ε/2 and Kε′ = 2R(degG)2R+2. Now if we take δ smaller
than ε/2, then for big enough N , the variance of fe,bu,bv will be smaller than ε.
This finishes the proof of Lemma 7 and thus of Lemmata 6 and 3.
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