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THE ENTROPY OF GIBBS MEASURES ON SOFIC
GROUPS

ABSTRACT. We show that for every local potential on a sofic group
there exists a shift-invariant Gibbs measure. Under some condition
we show that the sofic entropy of the corresponding shift action does
not depend on a sofic approximation.

§1. INTRODUCTION

In the work [1], Lewis Bowen made a great progress in the isomorphism
problem for Bernoulli shifts by defining so-called sofic entropy. This led to
a great line of research. There is a very important question which is still
far from being resolved. The value of the sofic entropy depends a priori
on a sofic approximation. In the classical realm of amenable entropy, the
dependence on the choice of a Fglner sequence is eliminated by means of
the Ornstein—Weiss covering argument. In the case of sofic entropy, we still
do not have an analogous result. In numerous examples, the sofic entropy
is indepedent of the choice of a sofic approximation. For Bernoulli shifts,
it was proved in the very paper [1] (see also [11]); later, Hayes proved
in [9] the entropy formula for a class of algebraic actions over sofic groups,
which, in particular, implies that the sofic entropy for these actions is in-
dependent of the choice of a sofic approximation. There are also results in
other directions. In the work [4], Carderi constructed examples of actions
having different values of the sofic entropy for different sofic approxima-
tions. Nevertheless, it is still not known whether an action can have two
different nonnegative values of the sofic entropy.

In this paper, we will work with so-called Gibbs measures on sofic
groups. Gibbs measures in general are extensively studied, as well as some
particular examples like the Ising model, Potts model, etc. We will prove
the following theorem.

Key words and phrases: Gibbs measure, sofic entropy, Dobrushin uniqueness
condition.
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Theorem 1. Let G be a sofic group, (X, p, 1) be a compact measure-metric
space, and ¢ be a continuous local potential on X&. Then there exists a
shift-invariant Gibbs measure on X for the potential .

The proof involves a construction of a sequence of Gibbs measures on
finite models coming from sofic approximations. It turns out that this se-
quence of measures comes very handy for the computation of the modified
sofic entropy.

We would like to note that in [5, Sec. 5] Chung essentially considered
a Gibbs measure in a very special case when the potential ¢ is such that
©(y) depends only on the value of y € X in e, the group identity.

The remaining part of the paper is devoted to the proof of the following
theorem.

Theorem 2. Let G be a sofic group and (X, i, p) be a finite metric space
with the uniform probability measure. If a local potential v on X is such
that B has a unique Gibbs measure for every 3 € [0, 1], then the modified
sofic entropy of the corresponding shift action is the same for every sofic
approzrimation.

The definition of sofic entropy we employ in most parts of the paper is
not the standard one. This modified sofic entropy was essentially defined
by Bowen in [2]; in addition, he essentially proved that for ergodic actions
this new entropy coincides with the standard one. For more details the
reader is referred to Sec. 4 of [2], Sec. 7 of [3], and Sec. 4 of [9]. It is a
standard fact from the theory of Gibbs measures that if a shift-invariant
Gibbs measure is unique for a potential, then it is ergodic; see Sec. 3.6 for
greater details. So we have that the original sofic entropy does not depend
on a sofic approximation.

The conditions of Theorem 2 may sound too restrictive, but the famous
Dobrushin uniqueness condition [6] shows that for a moderately large set
of potentials this condition is satisfied. For more details, see Sec. 8.

Acknowledgments. I would like to thank my advisor Prof. Anatoly M. Ver-
shik for valuable comments.

§2. THE STRUCTURE OF THE PAPER

In Sec. 3, we introduce standard definitions. In Sec. 4, we show that for
every local potential on a sofic group there is at least one invariant Gibbs
measure. In Sec. 5, we discuss some important applications of the unique-
ness of a Gibbs measure. It mostly consists of technical lemmas showing
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that some maps are continuous and some limits are uniform. In Sec. 6,
we define pressure and infer a formula for it. The definition of pressure a
priori involves a sofic approximation, but the formula we prove does not,
which clears the road for our main result. In Sec. 7, we express entropy in
terms of pressure (in a way that does not involve a sofic approximation),
which allows us to finish the proof of Theorem 2. In Sec. 8, we discuss the
Dobrushin uniqueness condition.

§3. DEFINITIONS AND CONVENTIONS

For a metric compact space X, we will denote by M(X) the set of
all Borel probability measures on X. This set will be endowed with the
weak-* topology unless otherwise stated explicitly. We will denote by
|eellv: = sup =11/ fdu} the total variation norm on the set of all Borel

b'e

measures. The symbol € will stand for “a finite subset.”

3.1. Shift spaces. Let G be a countable group. Let (X, p, u) be a com-
pact measure-metric space with a metric p and a measure u. Consider the
set X¢ endowed with the product topology and a compatible metric 7.
We define the shift action of G on X by the formula (gy)(h) = y(hg) for
y € X9 and g,h € G. If v is a Borel probability measure on X%, we will
denote by g4(v) the pushforward of the measure v along the map g. For
r € X%and A C G, we will denote by x|4 € X* the restriction of z to A.
If A, B are disjoint subsets of G and z € X4, y € XB, we will denote by
r Uy € XAYB their gluing.

3.2. The Kantorovich distance. The Kantorovich distance provides a
very convenient language for working with the weak-* topology on the set
of probability measures on a metric compact space. It was first defined
in [10]; see also [12] for the history of the question. Consider the set M (X)
of all Borel probability measures on X endowed with the weak-* topology.
For every pair u1, us € M(X), consider the set of all couplings, that is, the
set of all measures £ € M(X x X) such that pry,(£) = p1 and proy(§) = po
(where pr; denotes the standard coordinate projection). The Kantorovich
(or mass transportation) distance is defined as

A(p, po) 1nf / (@1, 22)dé(z, y)
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It is a standard fact that the Kantorovich distance is indeed a metric
and that it is compatible with the weak-* topology. We also have that
diam(M(X, p), A) = diam(X, p). The Kantorovich distance enjoys a very
nice convexity inequality:

A <Z Qilis Y ail@,i) < i (i pai)

for pj; € M(X) and o; > 0, > a; = 1. It is easy to prove the following
i
estimate:
diam(X) |l — pa|lv
5 .

We will denote by I(v1,v2) the Kantorovich distance between measures
in M(X% r).

A(:ulnu2) <

3.3. Sofic groups. We start with the definition of a sofic approximation.
For a positive integer n, we denote [n] = {1,...,n}. Let Sym(n) be a
symmetric group considered with its standard action on [n]. We endow
this group with the so-called Hamming distance:

d(p1,p2) =n" [{k € [n], pi(k) # p2(k)}] .

Let G be a countable group. Let ¥ = {0;}°, be a sequence of maps
o; : G — Sym(s;) (not necessarily homomorphisms). We will say that it is
a sofic approximation if

1) for any g, h € G, g # h, we have ds, (c;(g),0:(h)) — 1;
2) for any g, h € G, we have d, (c;(gh),o;(g)o;(h)) — 0.

We will say that a group G is a sofic group if it has at least one sofic
approximation. From now on, let G be a sofic group and fix some sofic
approximation 3.

Now we will introduce some useful notation. For a positive integer
and k € [s;], denote by 8; 1, : X[ — X& the map defined by the formula
(0:x(7))(9) = T((0i(g))(K)) for g € G and T € X[*i]. We also define a map
0; : M(X5]) — M(XF) by the formula

9i(n) = sl > Oi ey (m)-
[s:]

lkESi
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It is conjugate to the map O : C(X %) — C(X[*) defined by the equation

©: (N == 3 (B:x(r);

Si
b kelsi]

it is obvious that

/sﬁ(w)d(&(n))(w) = /(Gf(w))(T)dn(T)-

XG X si

3.4. Sofic entropy. Let  be a finite or countable set. Let n € M(Q).
The Shannon entropy of n is defined as

H(p) == n{w}) logn({w}),
we
with the usual convention that 0log0 = 0.
Let v be any invariant probability measure on X . For a positive integer
i and § > 0, we denote by Appr; ;(v) the set of all probability measures m

on X[ such that 1(©;(m),v) < 6. Then we define
his(v) = s; ' sup{H(m)|m € Appr; ;(v)}.
If Appr; 5 is empty, we set h; s(v) = —co. We define
hi(v) = limsup hi5(v),

1— 00

h(v) = }r;% hs(v).

The latter quantity will be called the modified sofic entropy. It is always not
smaller than the original sofic entropy (for the same sofic approximation),
and it coincides with the original sofic entropy for ergodic actions (see
Sec. 4 of [2], Sec. 7 of [3], and Sec. 4 of [9]).

3.5. Probability kernels. Let X and Y be two metric compact spaces.
A probability kernel is a map 7 : M(X) — M(Y") defined by the identity

[ewieonw = [are) [ewE@)w)

4 b'e 4
for some continuous map 7 : X — M(Y). We will denote by Ker(X,Y)
the set of all probability kernels from X to Y. It is easy to see that the
map 7 is continuous and affine. Now we will define two topologies on the
set of probability kernels. The first one is the weak topology. Let A be the
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Kantorovich distance on M(Y). Let m,m € Ker(X,Y). We define the
weak distance by the formula

Lyeak(m1,m2) = sup A(m1(02), m2(02))
xe

and the strong distance by the formula

Lstrong(ﬂ'lyﬂ'Q) = sup ||(7Tl (6w)77r2 (696)” .
reX

It is obvious that the strong distance induces a stronger topology than the
weak distance does. It is not hard to prove the following estimate:

A(my (v), m2(v)) < Lyeak(m1,m2)
for any v € M(X) and any 71,72 € Ker(X,Y). Thus, it is easy to see

that the map M(X) x Ker(X,Y) — M(Y) defined as (v,7) — w(v) is
continuous (here Ker(X,Y) is endowed with the weak topology).

3.6. Gibbs measures. For a detailed exposition, the reader is referred
to [6-8]. A potentialis a continuous function ¢ : X¢ — R that depends only
on finitely many coordinates of X ¢; that is, there exists a finite subset A
of G such that for any z,2’ € X coinciding outside of A we have ¢(z) =
¢(z"). We will denote by supp ¢ the minimal subset with this property.
Now we would like to define the set of Gibbs measures correspoding to the
potential ¢. For every finite subset A of G, any y € XA° and z € X4, let
us define the Hamiltonian

HY o (2) = > e(g(z Uy))
gEG,(supp 9)gNA#£D

and the partition function
Zoa= / e oD (o).

XA

Then for every A € G we introduce a probability kernel
Ton : M(XY) = M(XY)

by defining its values on d-measures:

c [ —_ 15‘

Tt 0, = (ZI0) 7 1e TR0 (du() ! @ 6, ).

It is not hard to see that wpr omp = wp o mpr = w5 for every A C A € G.
We will say that v is a Gibbs measure for the potential ¢ if m, A (¥) = v
for every A @ G. The set of all Gibbs measures for ¢ will be denoted by
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G,(X,@), or simply by G,. A simple compactness argument shows that
there always exists at least one Gibbs measure. We will say that ¢ is a
unique Gibbs measure (UGM) potential if there is only one Gibbs measure
for .

Lemma 1. If v, is a unique Gibbs measure for a potential ¢, then the
corresponding shift action is ergodic.

Proof. Consider the so-called tail o-algebra, that is,
T = () %
AeG
where % stands for the o-subalgebra on X generated by the cylinder sets
supported on A€ (o-subalgebras and their intersections are considered in
the v,-mod 0 sense). It is not hard to see that this subalgebra is trivial
v,-mod 0. By Proposition 14.9 of [8], we have that the subalgebra of in-
variant sets is also trivial v,-mod 0, which means exactly that the shift
action is ergodic. (|

§4 THE EXISTENCE OF A SHIFT-INVARIANT MEASURE
This section is devoted to the proof of Theorem 1.

Lemma 2. For any & > 0 and any g € G there is a positive integer N
such that for any i > N we have

[{k € [si]lr(g(8i,x (7)), 0i (01 () (k) (T)) <€ for any T € X[Si]}| > (1—¢€)s;.

Proof. Let us find a finite subset F' of G such that r(z,y) < &’ for any
two points z,y € X% such that z|r = y|p. By the definition of a sofic
approximation, there is N such that for every ¢ > I the set

Ai = {k € [sill(0s(hf)) (k) = (0i(f) 0 0:(f)) (k) for every f € F}

has at least (1—&’)s; elements. It is now easy to see that for every 7 € X%,

k € A; and for every f € F we have ((g0; (7)) (f) = (9,-7(01.(9))(@ (m)H(f),
since the left-hand side equals (8; 1 (7))(fg) = 7((6:(fg))(k)) and the right-
hand side equals 7(((03(/)) o (7i(9))) (). Thus, we have

r(g(0i,k(7)), b5 (0: (9)) () (T)) < €. 0

Lemma 3. For any € > 0 and any g € G there is a positive integer
N such that for any i > N and for any measure n on X1 we have

1(94(©i(n)), O:(n)) <e.
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Proof. Let us take ¢ > 0 such that ¢ < &/(1+diam(X %, r)). The applica-
tion of the previous lemma gives us a number N. Let us fix any ¢ > N. By
the properties of the Kantorovich distance and the previous lemma, the
size of the set of k € [s;] such that [(g40i,k (1), 05,0 (9)) (k) < € is greater
than (1 —€’)s;. Denote this set by A;. It is easy to see that

l(gﬁ((az(n))ag ( g]i Z 01 kﬁ Z 01 k]i
ke[s;] ke[s;]
=1(s;" > g @i )ssit D Oitoitonin,(m)
ke[s;] ke(sq]
) A = 1A ,
<t Y Ugs(Bik(m), Bion (g (1) (1) < 4l Adlam(XC,T)

5.
ke(si] K ’

<e'(1+diam(X% 7)) <e. O

Let

Let
Ziy = / e~ (©IN () g 8lsi) 7).
’ X [s4]
Then let n; , = e_(ey(W))(T)Z;;du@si](T). Let v; », = ©i(1:,)-

Lemma 4. For any e’ > 0 and A @ G there is a positive integer N such
that for any i > N the inequality

{Emon By (i) = Oiey (i) H > (L —€')s;
holds.
Proof. For convenience, denote T' = supp f; also denote
=(AUATUTUT ),

For a fixed positive integer i, let A; be the set of k € [s;] such that the
map g — (0;(g))(k) is injective from D and that (o;(g) o o;(h))(k) =
(oi(gh))(k). Tt easily follows from the definition of a sofic approximation
that |4;|/s; — 1. It is a simple exercise to see that for & € A; we have

Ww,A(ei,kﬁ(ni,w)) = 92’,%(772',@)- O
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Lemma 5. For any A € G and ¢ > 0 there is N such that

Umpa (i), Vi) < €
for every i > N.
Proof. Let ¢ > 0 be such that ¢ < ¢/ diam(X%,r); then we apply the

previous lemma. Let ¢ > N. Let A be the set of k € [s;] such that
T A Oiky (Mi0)) = Oiky(Mie)- Tts size is at least (1 —¢')s;, so

(o a(Vig)s Vi) <570 > U a By (16,60)), 01y (10.))
k€(si]

<& diam(XY,r) < e. O

Let v, be any accumulation point for v; . The following lemma com-
pletes the proof of Theorem 1.

Lemma 6. The measure v, is a shift-invariant Gibbs measure for the
potential ¢.

In the case where ¢ is a UGM potential, we denote by v, its unique
(and, obviously, invariant) Gibbs measure.

§5. SOME IMPLICATIONS OF THE UNIQUENESS OF A (GIBBS
MEASURE

We will denote by Pot(X,G) the set of local potentials on X. Let us
introduce the following seminorm on the set Pot(X, G):

lpllvar = Y sup {lo(@) — o), zle(gy = vlerigy } -
geG

We will call it the variational seminorm.
Lemma 7. The map (¢, m) — my.a(m) is continuous.

Proof. Tt is easy to verify that the map Pot(X,G) — Ker(X,Y") defined as
@ — T, A 1s continuous if Ker(X,Y) is endowed with the strong topology
and Pot(X,G) is endowed with the topology induced by the variational
seminorm. Consequently, it is continuous if Ker(X,Y") is endowed with the
weak topology, which implies the required assertion. O

Lemma 8. Assume that @ + v is a unique Gibbs measure potential for
all B €10,1]. Then vpypy depends weakly continuously on 3.
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Proof. Consider the space [0,1] x M(X%). Consider its subsets

Ma = {(B, m)|mr 4y (m) = m}
for every A € G. By the previous lemma, all of them are closed. So,
their intersection is closed, too. But it is exactly the graph of the function
B+ Vi gy Since both [0, 1] and M (X “) are Hausdorff compact, it follows
that this function is continuous. O

Lemma 9. Under the assumptions of the previous lemma, v; o1 5y tends
to Vpygy uniformly in (.

Proof. Assuming the contrary, we have that there is € > 0, a sequence
(n;) of positive integers, and a sequence 8; of numbers from [0, 1] such
that [V, o180, Vots;w) = €. Passing to a subsequence, we may assume
that §; tends to some 3’ and vy, ,4+8,4 tends to some measure v/. It is
easy to see that v’ is a Gibbs measure for the potential ¢ + 3’4 and that
UV, vpq8) 2 €, which contradicts the uniqueness of a Gibbs measure for
the potential ¢ + 5'1. O

§6. PRESSURE
Denote P;, = s; "log Z; .
Definition 1. The pressure of a UGM potential ¢ is defined as
P, = lim P,
11— 00
if this limit exists.
An important example: if ¢ = 0, then P, = 0.

Theorem 3. Assume that p + S is a UGM potential for every 8 € [0,1]
and that P, exists. Then ¢ + 1 has a pressure, and it can be expressed by
the formula

1
P<p+¢ = P(p — /dﬂ / @[)(W)dl/w+5¢
0 XG

For the proof we will need the following lemma.

Lemma 10.

dF;,
%MJ = - / Y(y) dVi o +8y-
XG
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Proof. By definition,

APigrpy _ d 1 L dZipisy
——— = — (s, logZ, = :
a3~ ap O e Te) = S
1 d x
L[ si@r(erBe)(N) g8l
= e
8iZi o489 / dﬁ( ) a
Xls]
_ ! /(@;(w))(T)e—sz-(6;*(w+/3w))(r)du®[si1
Zisot8y J

Xlss

/(GWDﬁﬂmwww:/¢WMwwwMW~ 0

x[s;] Xé

Proof of Theorem 3. By the previous lemma, we obviously have

1

P,y =P, — /dﬂ / Y(W)dVi 1 py-
XG

0

Now, since v; g, tends to vg, uniformly in 3, we have

1
Poty = lim Pipiy =Py - /dﬁ / P(w)dvyypy- U
0 XG
§7. THE ENTROPY FORMULA

In this section, X will be a finite space with the discrete metric and
the uniform probability measure. We will prove a nice formula for the sofic
entropy of the shift action for the Gibbs measure of a UGM potential,
which will lead to the proof of Theorem 2.

Lemma 11. Let ¢ be a UGM potential. The measure 1;,, is such that it
maximizes the quantity

Hm)/si ~ [ o)d©:m))
XG
among all the probability measures on X%,

Proof. A simple application of the Lagrange multipliers method. O
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Lemma 12. Let ¢ be a UGM potential. Then
h(v,) = lim 5;1H(ni7w)
11— 00
if the latter limit exists.

Proof. Let us first prove that h(v,) > lim s; " H(n;,,). It suffices to prove
1— 00
that hs(v,) > lim s;'H(n;,) for every §. But this is obvious, since for
1— 00

sufficiently large ¢ we have [(v,, ©;(1;,,)) < 9.
Let us now prove that for every £ > 0 there exist § > 0 and a positive
integer 7o such that for every ¢ > ¢y we have

H(m)/s; < Jim s; ' H(njp) + e

for any m € Appr; 5(v,). In order to do this, we pick > 0 such that for
any &/, k" € M(X) with [(k', k") < 26 the inequality

/w(y)dﬂ'* /cp(y)d/f” <e/2

X6

holds. Then we pick i¢ such that for every i > ig we have
H(nip)/si < lim H(njp)/s;+e/2

and [(v; 4, v,) < d. Let us now fix any ¢ > ig. By the previous lemma,

mmmﬁ/hmﬂ&mmw

X6

<HW@M—/¢@&&W@M>

X6

< lim wwm+w%/¢@m¢m

J—00
XG
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and since I(v; ,,m) < 24, it follows that

H(m)/s,
< [ ewa©m)w - [ oW ) +/2+ lim H)/s
XG XG

< lim H(n;)/s5 + ¢,
J—00
which implies that
hs(vp) < lim H(njp)/5;5 +¢,
j—00
SO
h(vy) < lim H(njp)/s; +e.
J—00
Since € can be taken arbitrarily small, we have

h(v,) < lim H(nje)/s;- O
j—oo

Theorem 4. If ¢ is a UGM potential and has a pressure, then the modified
sofic entropy can be expressed by the formula

h(ve) = Py + / () dv(y) + log X .
xXG

Proof. For any positive integer i and for any element 7 € X! by the
construction of 7, , we have

— X @i r(7))
(=0
i, T = Si
@ |X Zi-w
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Now we will compute the Shannon entropy of ;.

H(ni) = — Z M ({7}) 1og(ni,0 ({7}))

TEX[Si]
- 2 e(0ix(r))
e kelsil
= Z TNz Z ©(0:1(1)) + silog| X | +log Z;
reXls:l k€E[si]
*kEZ[ ]<p(9i,k(7'))
[
TEX[Si] by kE[si]
= silog|X| +log Zi, + s / o(y)dvi,e-
XG
It is now easy to see that
. H
) = tim T = 2t [ ), () + 1o)X, 0
?

XG

Proof of Theorem 2. We will apply Theorem 3 to the case ¢ = 0. It
was noted at the beginning of Sec. 6 that P, = 0. The formula from
Theorem 3 does not involve a sofic approximation, so Py does not depend
on a sofic approximation. Then we apply Theorem 4, and again it contains
nothing involving a sofic approximation, so h(vy) does not depend on a
sofic approximation. O

§8. A CONCLUDING REMARK

The conditions of Theorem 2, which are seemingly too restrictive, are
justified by the Dobrushin uniqueness theorem. We will establish an adap-
tation of this theorem to our setting.

Let pr : X — X be the map defined by the equation pr(z) = z(e). Let

bosp = b { 1T, (0} (62,)) = 1y, () ()l v,

21,02 € X x1len gy = 932|G\{g}}

for g € G\ {e}. Denote

bo= Y by

geG\{e}
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Theorem 5 (Dobrushin [6]). Let b, < 1. Then ¢ has a unique Gibbs
measure.
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